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Abstract. This note introduces a new attribute selection measure for ID3-1ike inductive algorithms. This measure 
is based on a distance between partitions such that the selected attribute in a node induces the partition which 
is closest to the correct partition of the subset of training examples corresponding to this node. The relationship 
of this measure with Quinlan's information gain is also established. It is also formally proved that our distance 
is not biased towards attributes with large numbers of values. Experimental studies with this distance confirm 
previously reported results showing that the predictive accuracy of induced decision trees is not sensitive to the 
goodness of the attribute selection measure. However, this distance produces smaller trees than the gain ratio 
measure of Quinlan, especially in the case of data whose attributes have significantly different numbers of values. 
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1. Introduction 

ID3 (Quinlan, 1979, 1986) is a well-known inductive learning algorithm to induce classifica- 
tion rules in the form of a decision tree. ID3 works on a set of examples described in terms 
of "attribute-value" pairs. Each attribute measures some feature of an object by means of 
a value among a set of discrete, mutually exclusive values. ID3 performs a heuristic hill- 
climbing search without backtracking through the space of possible decision trees. For 
each non-terminal node of the tree, ID3 recursively selects an attribute and creates a branch 
for each value of the attribute. Therefore, a fundamental step in this algorithm is the selec- 
tion of the attribute at each node. Quinlan introduced a selection measure based on the 
computation of an information gain for each attribute and the attribute that maximizes this 
gain is selected. The selected attribute is the one that generates a partition in which the 
examples are distributed less randomly over the classes. This note starts by recalling in 
some detail Quinlan's information Gain. A notable disadvantage of this measure is that 
it is biased towards selecting attributes with many values. This motivated Quinlan to define 
the Gain Ratio which mitigates this bias but suffers from other disadvantages that we will 
describe. We introduce a distance between partitions as attribute selection measure and 
we formally prove that it is not biased towards many-valued attributes. The relation of the 
proposed distance with Quinlan's Gain is established and the advantages of our distance 
over Quinlan's Gain Ratio are shown. 
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2. Quinlan's information gain measure 

Let X be a finite set of examples and {A~ . . . . .  Ap} a set of attributes. For each attribute 
Ak, ID3 measures the information gained by branching on the values of attribute A k using 
the following information Gain measure 

Gain(Ak, X) = I(X) - E(Ak, X) (1) 

where 

I(X) = 
I xn61  

- ~ Pj log2Pj, PJ - IXl (2) 
j= l  

measures the randomness of the distribution of examples in X over m possible classes. Pj 
is the probability of occurrence of each class Fj in the set X of examples, defined as the 
proportion of examples in X that belong to class Fj, and E(A r, X) is given by 

E(AK, X) = l(Xi) 
i=1 

(3) 

where: 

- -  n is the number of possible values of attribute Ax. 
- -  IXil is the number of examples in X having value V i for attribute Ate, and 
- -  Ixl is the number of examples in the node 

Note that the sets X1, • • . ,  Xn form a partition on X generated by the n values of Ak. l(Xi) 
measures the randomness of the distribution of examples in the set Xi, over the possible 
classes and is given by 

= - Ix, n 61 I x / n  61 (4) 
j=,  Ixil tog  Ixi  

E(Ar, X) is, therefore, the expected information for the tree with Ar as root. This expected 
information is the weighted average, over the n values of attribute At,  of the measures 
I(Xi). 

The attribute selected is the one that maximizes the above Gain. However, as has already 
been pointed out in the literature (Hart, 1984; Kononenko et al., 1984; Quinlan, 1986), 
this measure is biased in favor of attributes with a large number of values. Quinlan (1986) 
introduced a modification of the Gain measures to compensate for this bias. The modifica- 
tion consists in dividing Gain(Ak, X) by the following expression 

(5) 
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obtaining the Gain Ratio 

GR(Ak, X) = I(X) - E(A k, X) (6) 
IV(ak) 

IV(Ak) measures the information content of the attribute itself, and according to Quinlan, 
"the rationale behind this is that as much as possible of the information provided by deter- 
mining the value of an attribute should be useful for classification purpose." However, the 
modified Gain has the following limitations: it may not be always defined (the denominator 
may be zero), and it may choose attributes with very low 1V(Ak) rather than those with 
high gain. To avoid this Quinlan proposes to apply the Gain Ratio to select from among 
those attributes whose initial (not modified) Gain is at least as high as the average Gain 
of all the attributes. 

Bratko and Kononenko (1986) and Breiman et al. (1984) take a different approach to 
this multivalued attributes problem by grouping the various attribute values together so 
that all the attributes become bi-valued. However, binarized trees have the problem of be- 
ing more difficult to interpret. 

In this paper we introduce a new attribute selection measure that provides a clearer and 
more formal framework for attribute selection and solves the problem of bias in favor of 
multivalued attributes without having the limitations of Quinlan's Gain Ratio. 

3. An alternate selection criterion 

Instead of using Quinlan's Gain, we propose an attribute selection criterion based on a 
distance between partitions. The chosen attribute in a node will be that whose correspond- 
ing partition is the closest (in terms of the distance) to the correct partition of the subset 
of examples in this node. 

3.1. Distances between partitions 

First let us recall some fundamental results of information theory. 
Let us consider two partitions on the same set X; a partition PA whose classes will be 

denoted A i for 1 ___ i -< n and a partition PB, whose classes will be denoted Bj for 
l < j _ < m .  

Let us consider the following probabilities 

Pi = P(Ai) 
= ? ( B ?  

ei j  : P(hi  0 nj) 
Pj/i = P(nj/hi) 

for all 1 < i _< nand  1 < j  _< m. 
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The average information of partition PA which measures the randomness of the distribu- 
tion of elements of X over the n classes of the partition is 

I(PA) = - ~ Pilog2Pi 
i=l 

(7) 

Similarly, for PB is 

I(PB) = - ~ PjlogzPj 
j = l  

(8) 

Furthermore, the mutual average information of the intersection of two partitions 
P A N  PBis 

I(PA f) PB) = - ~ ~ Pqlog2P~j 
i=1 j = l  

(9) 

and the conditional information of PB given PA is 

I(PB/PA) = I(PB fq PA) -- I(PA) = - Pijlog2 = - Pi Z Pj/il°gzPjfi (10) 
i=1 j= l  k ' - P i - )  i=l j= l  

Now we can introduce two distances between partitions, one being a normalization of the 
other. We will show a relationship between the normalized distance and Quinlan's Gain. 

Proposition-1 

The measure d(PA, PB) = I(PB/PA) + I(PA/PB) is a metric distance measure (L6pez de 
M~ntaras, 1977), that is, for any partitions PA, PB, and Pc on X it satisfies 

(i) d(P a, PB) >~ 0 and the equality holds iff PA = PB 
(ii) d(Pa, PB) = d(PB, Pa) 

(iii) d(P~, Ps) + d(Pa, Pc) >- d(PB, Pc) 

(lla) 
(rib) 
(llc) 

Proof" 

Properties (i) and (ii) are trivial. Let us prove the triangular inequality (iii). Let us first 
show the following inequality 

I(PB/PA) + I(PA/PC) >- I(PB/Pc) (12) 

Since I(PB/PA) < I(Ps), we can write 
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I(PB/PA) + l(PA/Pc) > I(PB/(P A n Pc)) + I(PA/Pc) (13) 

Now by (10) we have 

I(PB/(Pa fq Pc)) + I(PA/Pc) = I((PB f3 PA)/Pc) (14) 

On the other hand, by (10) we know that 

I((P a fq PA)/Pc) >_ I(PJPC) (15) 

combining (13), (14) and (15) we have 

I(Ps/PA) + I(PA/Pc) > I(PB/Pc) (16) 

Similarly permuting PB and Pc in (16) we obtain 

I(Pc/PA) + I(PA/PB) >- I(PUPs) (17) 

Finally, adding (16) and (17) we obtain 

I(Ps/PA) + I(PA/Ps) + I(PA/Pc) + I(Pc/PA) >- I(Ps/Pc) + I(PUPB) 

that is: d(PB, PA) + d(PA, Pc) >- d(PB, Pc). 

Proposition 2 

The normalization 

d(Pa, PB) 
d~(PA, PB) - I(Pa n PB) 

is a distance in [0, 1] (L6pez de M~ntaras, 1977). 

Proof." 

Properties (i) and (ii) are clearly preserved. In order to prove that the triangular inequality 
(iii) also holds, let us first prove the following inequality 

I(PB/Pa) 
I(PB (~ PA) 

from (10) we have: 

I(PB/PA) + 
I(P8 f~ PA) 

+ I(PA/Pc) > I(PB/Pc) 
I(PA Iq PC) -- I(PB f') Pc) 

I(P A/Pc) _ I(PB/P A) + I(P A/Pc) > 
I(PA fq PC) I(PB/PA) + I(PA) I(PA/Pc) + I(Pc) - 

(18) 
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I(PB/PA) > 
-- I(PB/PA) + I(PA/Pc) + I(Pc) 

I (PB/Pc)  >__ = 
I(PB/Pc) + l(ec) 

That is (18) is true. 

+ I(PA/Pc) = I(Ps/PA) + I(PA/P c) 
I(PB/P A) + I(PA/P c) + I(P c) I(PB/PA) + I(PA/P c) + I(P c) 

I(PB/Pc) 
I(P n tq Pc) 

Now permuting PB and Pc in (18) we have 

I(Pc/PA) + I(PA/PB) > I(Pc/PB) 
I(P C A PA) I(P A CI PB) -- l (Pc f'l PB) 

Finally, adding (18) and (19) we obtain 

I(Ps/PA) + I(PA/PB) + I(Pa/Pc) + I(PdPA) >_ I(PB/Pc) + I(Pc/PB) 
I(P A f'l PB) I(P A Iq Pc) I(Pn f"l Pc) 

Therefore, the triangular inequality also holds. 

Finally, let us prove that dlv(PB, PA) ~. [0, 1] 

We have that I(PB/PA) = I(P8 N PA) -- I(PA) 

and t(PA/Pe) = I(P B N PA) -- I(PB) 

Then 

but 

dN(PA, PB) t(PBIPA) + I(PA/PB) 
= I(PB m PA) = 2 

1 ~ t (ea)  + I(PB) < 2 
I(PB n PA) 

because from I(PB/PA) <-- I(PB) we have 

I(PB n PA) <-- ~(P~) + I(PA) 

and because we also have 

I(PA) + I(PB) 
t(PB n PA) 

(19) 

(20) 

I(PB CI PA) >- I(PA) 
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and I(P8 f3 PA) ~ I(Ps). 

Therefore 2 x I(P~ (3 PA) >- I(PB) + l(Pa) 

4. Relation with Quinlan's information gain 

Let us first reformulate Quinlan's Gain in terms of measures of information on partitions 
in order to see the relationship with the proposed distance. Let P c  be the partition {C~, 
. . . .  Cm} of the set X of examples in its m classes, and let Pv  be the partition {X~, . . . ,  
X,} generated by the n possible values of attribute Ak (see Paragraph 2) 

It is easy to check that the expression I(X) in Quinlan's Gain is the average information 
of partition Pc  as defined in section 3.1 above. That is 

I(X) -- 1(Pc) = - ~ P / o g : e :  
j= l  

(21) 

On the other hand, Expression (3) can be rewritten as follows 

E(AK, X) = - ~ Pi ~ Pj/ilog2ej/i 
i=l j=l  

(22) 

where 

Lxi c~ cjL 
Pj:i - Ixil 

and 

Pi = Ixil 
[xl 

but (22) is the conditional information of Pc given Pv. Therefore, Quinlan's Gain can be 
expressed, in terms of measures of information on partitions, as follows 

Gain(AK, X) = I(Pc) - I(Pc/Pv) (23) 

Once we have expressed Quinlan's Gain in such terms, it is easy to see its relationship 
with our normalized distance: 

Adding and subtracting I(Pv/Pc) to (23) we have 

Gain(AK, X) = I(Pv/Pc) + I(Pc) - I(Pc/Pv) - I(Pv/Pc) = 

= I(Pv f) Pc) - I(Pc/Pv) - I(Pv/Pc) 
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Now, dividing by I(Pv (3 Pc) we obtain 

Gain(AK, X) _ 1 - l(Pc/Pv) + l(Pv/Pc) 
I(Pv f3 Pc) I(Pv f3 Pc) 

We have then 

1 - du(Pc, Pv) Gain(AK, X) 
- I ( P v  (7 P c )  ~ [0, 1] (24) 

That is, mathematically speaking, Quinlan's Gain normalized by the mutual information 
of Pc and Pv, is a similarity relation. 

Furthermore, Quinlan's Gain Ratio can also be expressed in terms of information measures 
on partitions as follows 

GR(AK, X) = /(Pc) - (Pc/Pv) _ Gain(AK, X) 
I(Pv) I(Pv) 

(25) 

since 

IV(AIO = - logz - Ixl ~-] PilogzPi = I ( P v )  
i=1 

We notice that the difference between (24) and (25) is that "1 - du(Pc, Pv)" is equiva- 
lent to normalizing Quinlan's gain by the mutual information l(Pv N Pc) instead of the 
information l(Pv) associated with the partition generated by attribute A/¢. It is interesting 
to notice that in our case, I(Pc f) Pv) cannot be zero if the numerator is different from 
zero contrarily to the Gain ratio expression which may not always be defined. Furthermore, 
our normalization also solves the problem of choosing attributes with very low information 
content l(Pv) rather than with high Gain because we always have I(Pv f) Pc) > Gain(AK, X). 
Therefore, instead of selecting the attribute that maximizes Quinlan's Gain ratio, we pro- 
pose to select the attribute that minimizes our normalized distance. 

Quinlan empirically found that his Gain Ratio criterion is efficient in compensating the 
bias in favor of attributes with larger number of values. With the proposed distance this 
is also true and, furthermore, it can be formally proved. In order to prove it let us first 
recall Quinlan's analysis concerning the bias of his gain (Quinlan, 1986): Let A be an at- 
tribute with values A1, A2, • •. ,  An and let A' be an attribute constructed from A by split- 
ting one of its n values into two. (The partition P'v generated by A' is finer than the parti- 
tion Pv generated by A, that is P'v C Pv). In this case, if the values of A were sufficiently 
fine for the induction task at hand, we would not expect this refinement to increase the 
usefulness of A'. Rather, as Quinlan writes, it might be anticipated that excessive fineness 
would tend to obscure structure in the training set so that A' should be in fact less useful 
than A. However it can be proved that Gain(A', X) is greater than Gain(A, X) with the 
result that A' would be selected. With the proposed distance this is not the case as the follow- 
ing theorem shows. 
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Theorem 

Let Pc, Pv and P~, be partitions on the same set X such that Pb is finer than Pv and let 
us assume that all the examples in Xk of Pv belong to Cl of Pc. Then we have that 

d(Pv, Pc) < d(P~,, Pc) and dN(Pv, Pc) < du(P~,, Pc) 

Proof" 

After splitting Xk into Xk, and Xk~ in Pb, we will have 

Ixk n Cll = IX~, n GI + Ix~ n c~l. 

Therefore, Pkt = ekal ~1- ek2l.  Now, the difference in the computation of d(Pv, Pc) with 
respect to the computation of d(P~,, Pc) is that the terms: 

_ p~tlog 2 Pk._jt (27) 
Pt 

and 

- PktlOg2 Pk__.Jt (28) 
P~ 

intervening in the computation of d(Pv, Pc), will be respectively substituted by: 

- k,tlogz Pk,t + Pk21log2 (29) 
Pt PI -J 

and 

-- IPk,/ogz Pk'--Jt + Pkjlog2 Pkj 1 
Pk, Pk~ 

(30) 

Proof" 

In this case, besides the replacement of (27) and (28) by (29) and (30) in the numerator, 
the term - Pk, log2 Pkt intervening in the denominator is also replaced by - (Pk,t logz Pk,t 
+ Pkj log2 Pk;). We have then that the increase in the numerator is: 

in the computation of d(P{,,, Pc). 
Because Xk is split randomly into Xk, and Xk,, we have Pl,,tlPk. = Pk;IPk2 = Pk/Pk, So 

the terms (28) and (30) are equal. But (29) is greater than (27), because when p = Pl + P2 
and p, Pl, Pz E [0, 11 we have that - logz p < - log2 Pt; and - log2 p <- - log2 p2. 
Therefore d(Pv, Pc) < d(P~,, Pc). 

Finally, let us also prove that dN(Pv, Pc) <- d~Pk, Pc) 
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8N = - ~Pk,l log2 Pk'l + Pk,l log2 Pk2t I + Pkt lOgz Pkl 
P-7 PZ 

and the increase in the denominator is: 

8D = -- (Pk,l log2 ek,I + ek2l log2 ek21) + ekl log2 ekl 

Now, since Pkl = Pk,t + Pk; it is trivial to check that 8 N = 8o = & 
Therefore, we finally have: 

div(P'v, Pc) = d(Pv, Pc) + 8 > d(Pv, Pc) = d~Pv, Pc) 
l(Pv, Pc) + ~ I(Pv, Pc) 

because 

d(Pv, Pc) 
< 1  

I(Pv, Pc) 

We have then proved that our distance does not favor attributes with large numbers of values. 

5. Experimental results 

Recent comparative studies of several selection measures for decision-tree induction 
(Mingers, 1989) show that Quinlan's Gain Ratio generates the smallest trees. We have com- 
pared our distance-based criterion with Quinlan's Gain Ratio using data of two medical 
domains (see Table 1) already used by other researchers (Clark & Niblett, 1987; Cestnik 
et al., 1987) to compare their inductive algorithms. In each domain we have taken different 
proportions (60%, 70%, 80%) of randomly selected examples for training and the remain- 
ing (40%, 30%, 20%) for testing. For each proportion we performed 6 runs. The average 
complexity and accuracy over the 6 runs of the induced trees is shown in Tables 2 and 
3 for hepatitis and breast cancer respectively. 

Our results support previously reported results (Breiman et al., 1984; Mingers, 1989) 
that the accuracy of the induced trees is not sensitive to the goodness of the attribute selec- 
tion measure. However, our distance may generate smaller trees than Quinlan's Gain Ratio 
especially in the domain of hepatitis whose attributes have a large variability in the number 
of values, although the differences are not statistically significant. 

Table 1. Characteristics of the data sets 

Domain No. of Classes No. of Attributes No. of Examples Values/Attributes 

Hepatitis 2 19 155 (9,2,2,2,2,2,2,2,2,2,2, 
2,7,7,7,7,1,0,2) 

Breast cancer 2 10 288 (3,2,3,3,2,2,3,2,5,2) 
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Table 2. Results for the Hepatitis data 

No. of Leaves Accuracy 
Prop. (Gain ratio, distance) (Gain ratio, distance) 

60% (19, 18) (77.9, 77.0) 
70% (20, 18) (78.6, 79.3) 
80% (24, 20) (80.0, 80.0) 

Table 3. Results for the Breast cancer data 

No. of Leaves Accuracy 
Prop. (Gain ratio, distance) (Gain ratio, distance) 

60% (73, 71) (68.3, 70.7) 
70% (79, 78) (69.2, 70.6) 
80% (87, 87) (69.1, 70.2) 

6. Conclusions 

The aim of this note was to introduce a distance between partitions as an attribute selection 
criterion to be used in ID3-1ike algorithms. We have also shown the relation between our 
distance and Quinlan's Gain criterion by reformulating Quinlan's Gain in terms of measures 
of information on partitions. Such a relationship provides an interesting interpretation of 
Quinlan's normalized Gain as a similarity relation, and this helps to clarify its meaning. 
Furthermore, we have formally shown that our distance does not favor attributes with larger 
ranges of values. Thus, we have a clean, non ad  h o c  measure that does as well (or slightly 
better) in its performance compared to the previously thought best measure (i.e., Quinlan's 
Gain Ratio used in conjunction with the original Gain measure). We intend to pursue this 
comparison further with more data sets. We also believe that our formal analysis provides 
the "proper"  normalization for Quinlan's Gain. 
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