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Abstract

The goal of this paper is to propose and analyse a transfer learning meta-algorithm that al-
lows the implementation of distinct methods using heuristics to accelerate a Reinforcement
Learning procedure in one domain (the target) that are obtained from another (simpler)
domain (the source domain). This meta-algorithm works in three stages: first, it uses a
Reinforcement Learning step to learn a task on the source domain, storing the knowledge
thus obtained in a case base; second, it does an unsupervised mapping of the source-domain
actions to the target-domain actions; and, third, the case base obtained in the first stage
is used as heuristics to speed up the learning process in the target domain.

A set of empirical evaluations were conducted in two target domains: the 3D mountain
car (using a learned case base from a 2D simulation) and stability learning for a humanoid
robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Ac-
robot domain). The results attest that our transfer learning algorithm outperforms recent
heuristically-accelerated reinforcement learning and transfer learning algorithms.
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1. Introduction

Reinforcement learning (RL) is a field of machine learning whose aim is to
maximise the total amount of reward an agent receives while interacting with
its environment (Sutton and Barto, 1998). This interaction occurs by means
of exploring the state space by trial-and-error actions on the environment,
leading to a process whose convergence is often slow (or infeasible) on complex
tasks (Taylor and Stone, 2009, 2011).

The current scientific literature presents distinct ways of accelerating
the computational process involved in Reinforcement Learning (RL) through
the use of various methods, such as composition of functions (Drummond,
2002), human feedback (Knox and Stone, 2010, 2012), imitation (Price and
Boutilier, 2003), and reward shaping (Konidaris and Barto, 2006). The use
of heuristics to this end has been pursued in (Bianchi et al., 2008), in order to
speed up the action selection procedure during the learning process. Heuris-
tics were also obtained from previously learned policies within a Case-Based
Reasoning approach (Bianchi et al., 2009). In fact, the (re)use of heuristics
from a base of cases naturally leads to the Transfer Learning (TL) framework
in machine learning (Taylor and Stone, 2009), whose goal is to develop meth-
ods that allow the transfer of knowledge obtained on one domain to another
(Pan and Yang, 2010).

Transfer learning is an important tool to speed up RL algorithms since,
in RL, small changes on a problem configuration usually require complete
new training. Within a Transfer Learning context, this complete re-training
can be simplified, as the knowledge acquired in a previous situation can be
re-used as heuristics, accelerating the learning procedure in the new situation.

A very informative definition of transfer learning is given in (Pan and
Yang, 2010): given a source domain (Ds) with its related task (Ts), and a
target domain (Dt) with its related task (Tt), transfer learning aims to im-
prove the performance of learning the task’s predictive function at the target
domain, using the knowledge obtained on learning the predictive function in
Ds and Ts, for Ds 6= Dt or Ts 6= Tt. Also, according to (Pan and Yang, 2010),
transfer learning algorithms can be characterised by (1) which information is
transfered; (2) how it is transfered; and, (3) when it is transfered. The first
characteristic refers to what part of knowledge is chosen to be transfered, in
RL it could be the rewards or the policy, for instance. The second feature
is related to the algorithms used to transfer the knowledge from one domain
to the other, which should take into account task mappings; and the third
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feature specifies in which situations the knowledge should be transfered.
This paper investigates the strengths of a transfer learning meta-algorithm,

called L3, that provides a framework that allows the implementation of dif-
ferent algorithms using heuristics to accelerate a Reinforcement Learning
procedure in one domain (target), that are obtained from another, simpler,
domain (source). The L3 meta-algorithm works in 3 stages: first, it uses a
RL algorithm to learn how to perform one task, storing the solution for this
problem as a case in a case base; in the second stage, it maps actions of
the source domain to actions of the target domain; and, in the last stage, it
uses the stored cases as heuristics to speed up the Reinforcement Learning
process in the target domain. By using a case base as part of the transfer
learning procedure, L3 falls within the class of case-based transfer learning
algorithms, discussed in (Klenk et al., 2011). A preliminary investigation
on this meta-algorithm was presented in (Celiberto et al., 2011), where a
L3 instance based on the Q-Learning algorithm was described. The present
paper extends our previous work in three ways: first, this work introduces a
new L3 algorithm based on the SARSA(λ) algorithm; second, the proposed
algorithms are evaluated on more domains than those described in (Celiberto
et al., 2011); and, third, we show that the L3 framework is robust under the
transference of negative information.

The theoretical background, that supports this work, is presented in Sec-
tion 3, that also presents the evolution of methods that use heuristics to
accelerate RL. The L3 meta-algorithm, that is built upon this theoretical
background, is described in Section 4, and Section 5 presents the empiri-
cal results of applying L3 in two distinct domains: the 3D mountain car
and stability learning for a humanoid robot in the Robocup 3D Soccer Sim-
ulator. The results show that L3 outperforms several algorithms, includ-
ing Q-Learning, used as baseline algorithm, and two state-of-the-art transfer
learning algorithms.

2. Related Work

The field of transfer learning can be seen as the consolidation of a set of
techniques proposed over the past years (Pan and Yang, 2010), such as life-
long learning (Thrun, 1996), knowledge (or inductive) transfer (Niculescu-
Mizil and Caruana, 2012), metalearning (Lemke et al., 2013), among oth-
ers. There are also closely related techniques, such as multi-task learning
(Caruana, 1997), imitation learning (Argall et al., 2009) and human advice
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(Griffith et al., 2013). The goal of multi-task learning is to learn multiple
tasks simultaneously, using common features in the pool of (distinct) tasks
to accelerate the learning process of each of the tasks individually; in con-
trast, transfer learning focus on accelerating the learning rate of one target
task only, given the knowledge obtained from learning a previous task. Im-
itation learning aims at speeding up the learning process of a task by using
the knowledge obtained from the observation of another agent solving the
same task, whereas transfer learning concentrates on the transference of the
knowledge obtained by a single agent on solving distinct (but related) tasks
(Taylor and Stone, 2009). Similarly to imitation learning, human advice in-
tegrates knowledge provided by a human agent in the machine learning loop,
which is an issue outside the interest of current methods in transfer learning.

In a broader sense, transfer learning may be placed within the abstrac-
tion in artificial intelligence umbrella, as abstractions in AI usually relate a
ground problem with a more abstract one (not necessarily a more abstract
version of the same problem), according to (Saitta and Zucker, 2013). In
fact, (Saitta and Zucker, 2013, p. 54) points out that a comprehensive the-
ory of abstraction should provide “the framework to support the transfer of
techniques between different domains”.

The application of Transfer Learning within Reinforcement Learning tasks
was first proposed in (Drummond, 2002), where an algorithm was defined that
exploits strong features obtained from RL on one task in order to compose
functions in a case base that is used on the solution of a new task. More
recent work on transferring cases for RL includes (von Hessling and Goel,
2005), which propose a technique for abstracting reusable cases from RL,
enabling the transfer of acquired knowledge to other instances of the same
problem. A method that abstracts the intention of an actor on solving a
task, turning it into a case base for RL is proposed in (Aha et al., 2009).
Focusing on policy reuse, Fernández and Veloso (2006) propose a method
that uses previously learned policies as a probabilistic bias that guides the
exploration/exploitation process. The principles of knowledge transfer were
applied to general game learning in (Banerjee and Stone, 2007), whereby
the knowledge obtained in learning one particular game is generalised to be
used in other games. The problem of transferring policies across continuous
domains was tackled in (Soni and Singh, 2006) by means of a model min-
imisation strategy for mapping state-action pairs. In contrast to previous
work, which were mostly based on model-free methods, Taylor et al. (2008a)
propose a transfer-learning method for a model-based reinforcement learning
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algorithm for continuous state space. The problem of finding the appropriate
potential function for accelerating the task performance of the target domain
is defined as a supervised regression problem in (Snel and Whiteson, 2012).
In this regression problem the goal is to select the features that are most
relevant to the potential function by means of the features’ influence on the
prediction of the cross-task value. A more complete survey of transfer learn-
ing in reinforcement learning, up till 2009, is presented in (Taylor and Stone,
2009).

It is evident in the literature of transfer learning in RL that most of the
early approaches typically use hand-coded inter-task mapping for transferring
knowledge from one domain to another (Ammar et al., 2012). More recently,
there has been an increasing number of work reporting successful experiments
on learning inter-task mapping. The work proposed by Taylor (2008) was
perhaps the first approach to automate the process of inter-task mappings
in TL, where actions with similar effects (in the target and source domains)
were associated to allow the transference of knowledge across the domains.
In fact, Taylor (2008) explores the use of inter-task mappings with various
possibilities of features to transfer, such as Value-function, Q-value, Policy
and rules representing the source-task policy learned. This work also proposes
the “Modeling Approximated State Transitions by Exploiting Regression”
(MASTER) algorithm, that automatically learns a mapping between source
and target tasks using an agent’s experience.

In (Ammar and Taylor, 2012) the correspondence between state spaces
of the tasks is accomplished assuming an underlying subspace (called the
common-task subspace) that relates the source and target tasks. The inter-
task mapping is then autonomously determined by a function approximation
technique. The common task subspace, however, is determined manually.
Relaxing the need for a hand-coded subspace, Ammar et al. (2012) propose a
supervised method for learning the inter-task mapping by using sparse coding
with a similarity measure. The use of multiple inter-task mappings in trans-
fer learning is investigated in (Fachantidis et al., 2012) for both model-free
and model-based RL. In this work, in order to avoid negative mappings, the
authors propose a method for selecting the most relevant mappings. A hybrid
approach implementing model-free and model-based learning for transferring
models of potential-based, reward shaping functions is proposed in (Fachan-
tidis et al., 2013), whereby the transition and reward functions of the source
task are obtained by cascade neural networks. A value-function approxima-
tion (the Cerebral Model Articulation Controller, CMAC (Albus, 1975)) is
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used to find the value of a state, given the neighbouring state values. In the
target task this algorithm generates simulations from the source task that
are used in a RL step; finally, the target and source models are queried for a
new state, the algorithm then chooses which model (either target or source)
to use, selecting that with the least prediction error for that state.

The meta-algorithm proposed in this paper falls into the category of meth-
ods whose inter-task mapping is automatically learned. For this reason, the
algorithms proposed in (Fachantidis et al., 2013) and in (Taylor, 2008) (men-
tioned above) are used in the present paper for comparison purposes, as
described in Section 5.

In contrast to other work in this area, as we shall see further in this paper,
in L3 the knowledge is transferred across domains in terms of heuristics that
are stored as a case base to be used to accelerate reinforcement learning in
the target domains. This allows the learning process to recover from negative
(or imprecise) transfers.

The next section presents the theoretical background of this work, tracing
the evolution of the use of heuristics to speed up RL.

3. Background

The task of a RL agent is to learn an optimal policy π∗ : S → A that maps
the current state s into a desirable action a to be performed in s (Littman
and Szepesvári, 1996). In RL, the policy π should be learned through trial-
and-error interactions of the agent with its environment. This problem is
usually formulated as a discrete time, finite state, finite action Markov Deci-
sion Process (MDP), where the learner’s environment is modeled as a 4-tuple
〈S,A, T ,R〉, in which: S is a finite set of states; A is a finite set of actions
that the agent can perform; T : S ×A → Π(S) is a state transition function,
where Π(S) is a probability distribution over S; and, R : S × A → R: is a
reward function (Kaelbling et al., 1996).

Within the set of RL algoritms, Q–learning (Watkins, 1989) obtains an
optimal policy π∗ when the model (T and R) is not known in advance. This
is done by using the following update rule:

Q̂(s, a)← Q̂(s, a) + α
[
r + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

]
, (1)

where s is the current state; a is the action performed in s; r is the reward
received; s′ is the new state obtained by executing action a in state s; α is the
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learning rate (α = 1/(1+visits(s, a))), and γ is a discount factor (0 ≤ γ < 1).
The term visits(s, a) is the total number of times this state-action pair has
been visited up to, and including, the current iteration.

The SARSA algorithm (Rummery and Niranjan, 1994) is a modification
of Q-learning that updates the policy based on actions taken during the
interaction with the environment – this kind of learning is known as on-
policy. The SARSA learning rule does not include the maximisation that
exists in the Q-learning learning rule, and can be represented by Equation 2
below:

Q̂(s, a)← Q̂(s, a) + α
[
r + γQ̂(s′, a′)− Q̂(s, a)

]
, (2)

where all the variables are defined in the same way as in Equation 1.
The SARSA algorithm outperforms Q-learning when the use of explo-

ration occasionally results in a large negative reward, learning to avoid “dan-
gerous areas” on the learning space.

The Heuristically Accelerated Reinforcement Learning (HARL) is a class
of algorithms (Bianchi et al., 2008) that solves the RL problem by making
explicit use of a heuristic function H : S × A → R to influence the choice
of actions during the learning process. The heuristic function is used only in
the action-choice rule; it defines which action at must be executed when the
agent is in a state st. The action-choice rule used in HARL is a modification
of the standard ε − Greedy rule used in Reinforcement Learning, but with
the heuristic function included:

π(st) =

{
arg maxat

[
Q̂(st, at) + ξHt(st, at)

]
if q ≤ ε,

arandom otherwise,
(3)

where: H : S ×A → R is the heuristic function, which influences the action
choice. The subscript t indicates that the heuristic function can be non-
stationary; ξ is a real variable used to weigh the influence of the heuristic
function; q is a random value with uniform probability in [0,1] and ε (0 ≤
ε ≤ 1) is the parameter that defines the exploration/exploitation trade-off:
the greater the value of p, the smaller is the probability of a random choice;
arandom is a random action selected from the set of possible actions in the
state st.

As a general rule, the value of the heuristic Ht(st, at) used in the HARL
must be higher than the variation among Q̂(st, at) for a similar st ∈ S (so
that it can influence the choice of actions) and it must be as low as possible
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in order to minimize the error. There are several possibilities to compute
Ht(st, at), from using a large value that is lower than rn/(1− γ), where rn is
the negative reward the agent receives in each time step (see Bianchi et al.
(2012) for a discussion on this value), to using a small value that depends on
the instant values of the value function approximation, that can be defined
as:

Ht(st, at) =

{
maxa Q̂(st, a)− Q̂(st, at) + η if at = πH(st),

0 otherwise,
(4)

where η is a small real value and πH(st) is the action suggested by the heuris-
tic H.

Bianchi et al. (2012) showed that as the heuristic is used only in the choice
of the action to be taken, this algorithm differs from the original RL algorithm
only in the way the exploration is carried out. The only convergence condition
of the RL algorithm that could be affected by the exploration made in the
HARL is the necessity of infinite visitation to each pair state-action. One
option to validate this condition is to recede the influence of the heuristics
with time, by multiplying ξ by a decay factor. Other options is to use other
visitation strategies, such as intercalating steps where the algorithm makes
alternate use of the heuristics and exploration steps, or using the heuristics
only during a period of time, smaller than the total learning time for RL
algorithm. Thus the formal results obtained for RL algorithms remain valid
for HARL.

HAQL was the first HARL algorithm implemented (Bianchi et al., 2004).
It extends the Q-Learning algorithm by using the heuristic function to influ-
ence the action choice. HAQL has been used in a variety of domains such
as autonomous mobile robot navigation (Bianchi et al., 2008), RoboCup 2D
Simulation (Celiberto et al., 2007), Multi-Robot Task Allocation (MRTA)
applied in the RoboCup Small Size League (Gurzoni et al., 2011); it was also
extended to deal with multiagent problems (Bianchi et al., 2007). The HAQL
algorithm is shown in Algorithm 1.

The use of heuristics in the SARSA algorithm was recently proposed by
Bianchi et al. (2012). In the same paper, the authors also expand the number
of HARL algorithms by proposing the Heuristically Accelerated Q(λ), HA-
SARSA(λ) and HA-TD(λ), the first algorithms that used both heuristics and
eligibility traces.

The HAQL algorithm was extended in (Bianchi and López de Màntaras,
2010) to allow the retrieval and reuse of heuristics from a case base. In this
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Algorithm 1 HAQL algorithm (Bianchi et al., 2004)

Require: The learning rate α, the exploration/exploitation rate ε, the re-
ward function R : S × A → R, the heuristic function H : S × A → R, a
small real value η and ξ used to weight the influence of the heuristic.

1: Initialise Q̂t(st, at) and Ht(st, at) arbitrarily.
2: repeat

{for each episode}
3: Initialise st.
4: repeat

{for each step}
5: Compute Ht(st, at).
6: Select an action at using the modified ε−Greedy rule:

at =

{
arg maxat

[
Q̂(st, at) + ξHt(st, at)

]
if q ≤ ε,

arandom otherwise,

7: Execute the action at.
8: Observe r(st, at), st+1.
9: Q̂(st, at)← Q̂(st, at) + α[r + γmaxat+1 Q̂(st+1, at+1)− Q̂(st, at)]

10: st ← st+1.
11: until st is terminal.
12: until some stopping criterion is reached

algorithm, called CB-HAQL (see Algorithm 2), steps were added before the
action selection is made in order to compute the similarity of the cases with
the current state and the cost of adaptation.

A case is retrieved if the similarity between the new problem and a case in
the case base is above a certain threshold. To compute the similarity, several
functions can be used. For example, the distance between the attributes of
the new problem and the problem in the case base can be computed using
a distance metric such as the Manhattan distance, the Euclidian distance or
the Gaussian distance. The problem of finding a good similarity function
for a domain is well known in the literature of Case Based Reasoning, with
several works dedicated to it (Burkhard, 2001; Finnie and Sun, 2002).

The case definition used in the HAQL algorithm (and inherited by the
work presented in this paper) was that proposed by Ros et al. (2009), which is
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composed of three parts: (1) the problem description (P ), which corresponds
to the situation in which the case can be used; (2) the solution description,
which is composed by the sequence of actions that each agent must perform
to solve the problem; and, (3) the case scope that defines the applicability
boundaries of the cases.

After a case is retrieved, the heuristic (with the sequence of actions sug-
gested by the case selected) is computed using Equation 4. This heuristic
is used for an amount of time proportional to the number of actions of the
retrieved case. After this time interval, a new case can be retrieved.

Algorithm 2 CB-HAQL algorithm (Bianchi and López de Màntaras, 2010)

Require: The learning rate α, the exploration/exploitation rate ε, the re-
ward function R : S × A → R, the heuristic function H : S × A → R,
a small real value η and ξ used to weight the influence of the heuristic.
Also requires a case base C that is different for each problem.

1: Initialise Q̂t(s, a) and Ht(s, a) arbitrarily.
2: repeat

{for each episode}
3: Initialise st.
4: repeat

{for each step}
5: Compute similarity between the current state and all the states in

the case base.
6: Retrieve the case that is most similar to the current problem.
7: if the retrieved case is similar to the current state then
8: Compute Ht(st, at).
9: end if

10: Select an action at using the modified ε−Greedy rule:

at =

{
arg maxat

[
Q̂(st, at) + ξHt(st, at)

]
if q ≤ ε,

arandom otherwise,

11: Execute the action at. Observe r(st, at), st+1.
12: Q̂(st, at)← Q̂(st, at) + α[r + γmaxat+1 Q̂(st+1, at+1)− Q̂(st, at)]
13: st ← st+1.
14: until st is terminal.
15: until some stopping criterion is reached
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Algorithm 3 L3 meta-algorithm

{STAGE 1: Case base construction}
1: Use a Reinforcement Learning algorithm to compute the optimal policy

for the source domain.
2: Create a case base.
{STAGE 2: Action-mapping across domains}

3: Map actions from source domain to target domain using a Neural Net-
work (Algorithm 4).
{STAGE 3: Reusing the case base in a CB-HARL algorithm}

4: Use the case base in a CB-HARL algorithm to solve the problem in the
target domain (Algorithm 2).

Although only the CB-HAQL has been proposed before, we can infer that
there is a class of algorithms of this kind, that extends all HARL algorithms
by using cases as heuristics. We will call this class of algorithms CB-HARL,
and any algorithm of this new class will differ from the one presented in
Algorithm 2 only by the basic RL algorithm used. For example, the CB-
HASARSA differs from the CB-HAQL only in the line 12, where the update
rule used is Equation 2 instead of Equation 1.

4. Transferring a case base of heuristics: the L3 meta-algorithm

In this work we investigate one extension of CB-HARL algorithms to-
wards transferring cases between learning agents across distinct domains.
This extension has been defined within the L3 meta-algorithm (Algorithm
3), which works in three stages: first, the algorithm learns how to perform a
task in the source domain, storing the optimal policy for this problem as a
case base; second, it maps actions from the source domain to actions in the
target domain; and third, it uses the case base learned in the first stage as
heuristics in a CB-HARL algorithm. The L3 processing stages are detailed
as follows.

Stage 1: In the case base construction phase, a RL algorithm (such as
Q-learning or SARSA) is used to compute the optimal policy for the source
domain. A case base is then built from the learned policy, with a pre-defined
number of cases. Similar to the model proposed in (Ros et al., 2009), each
case is described by a 3-tuple: case = (P,A,R), where: P is the description
of the problem, containing all relevant information of the agent state; A is an
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action that solves the problem; and, R is the expected return for performing
the action, which indicates the quality of the action stored in this case. There
are several ways by which the case-base can be built from the learned policy,
such as:

• select N cases by random sampling the state set and finding the best
action for that state;

• Select N cases by random sampling the action-state set and excluding
the cases that contains the worst actions for the state chosen;

• Select N cases that have the best Q value.

These cases will be explored in the experiments below.
Stage 2: In the action-mapping stage, a Neural Network maps the actions

between the source task and the target task. In this network, the input nodes
correspond to the set of possible actions in the target domain, and the output
nodes correspond to the set of actions of the source domain. In order to learn
the network weights, a set of random actions is executed in both domains. If
the observed results of the two actions are similar (for example, both actions
lead to an increase in the x speed of a robot), the weight that links this pair
of actions is increased. If the results of the two actions are different, the
weight of the connection is decreased. In this way, this neural network learns
the relationship between the consequences of actions in both domains.

This scheme can be formalised as a single layer, forward-feed, unsuper-
vised neural network using the Hebbian learning rule, where the input and
output vectors are in bipolar form (−1 or 1). The Hebbian rule (or Hebbian
law) was proposed by Hebb (1949), and it can be paraphrased as “cells that
fire together wire together; cells that fire out of sync, loose their link”1. The
main idea of this learning rule is that the weights that connect two neurons
should be increased when their outputs are similar, and decreased when they
are dissimilar. This rule allows the construction of unsupervised neural net-
works, since it facilitates the input of training pairs that are not known a
priori. It differs from some of the better known learning rules, such as the
Delta Learning rule of the Backpropagation Algorithm (Rumelhart et al.,

1This mnemonic sentence is attributed to Carla Shatz at Stanford University (Doidge,
2007).
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Algorithm 4 Action-mapping across domains
1: for a large number of iterations do
2: Randomly select an action in the Source domain;
3: Randomly select an action in the Target domain;
4: Execute the selected actions in both domains;
5: Compute the consequences of the executed action in all the dimensions

of the Source domain;
6: Compute the consequences of the executed action in all the dimensions

of the Target domain;
7: Update the connection between neurons of the selected actions using

Equation 5;
8: end for

1986), since the target output is not necessary for the learning process to be
successful.

The Hebbian learning rule can be defined by the following equation:

∆wi,j = αxiyj, (5)

where α is the learning rate, xi is the input and yj is the output neuron.
In this work, as the main goal of the neural network is to learn the rela-

tionship between the consequences of the actions in two different domains,
the values of xi and yj used during the learning phase are the action conse-
quences, that is, the changes in the domains due to the action executions.
Algorithm 4 details the action-map learning process.

After the learning phase, the trained neural network is used to map the
actions from one domain to the other. As the proposed neural network is
single layer, forward feed, the output of one neuron depends on the weighted
sum of the input neurons:

sumj = β0 +
∑
i

wi,jxi, (6)

where x is the input vector defining the target domain action, sumj is the
weighted sum and β0 is the neuron bias. The output of the neural network
is given by applying a binary activation function, Heaviside step function, to
the output of all neurons:

yj =

{
+1, if sumj ≥ 0

−1, if sumj < 0.
(7)
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The result of this computation is a table that describes the relationship
between the actions of both domains.

The benefits of this mapping approach is that it is simple, fast and effec-
tive. However, this requires that the state mapping is given so that the neural
network could be applied. Future work shall consider developing a mapping
procedure capable of both, mapping states and actions autonomously.

Stage 3: In the final stage, the previously stored case base is used in a
CB-HARL algorithm to speed up task learning in the target domain.

Case retrieval (in this context) is driven by a similarity measure between
the new problem and the data in the case base. Inspired in the case retrieval
method proposed in (Ros et al., 2009), in this work we use a similarity func-
tion to compute the similarity between the new problem and the stored case
base:

Sim(P,C) =
n∑

i=0

dist(Ai
c, Ai

p), (8)

where Ai
c is the value of the attribute i in the description of the case, Ai

p is
its value in the new problem, and dist(a, b) is the distance between objects
a and b. As described in Section 3, the distance between the attributes of
the new problem and the problem in the case base can be computed using
a distance metric such as the Manhattan distance, the Euclidian distance
or the Gaussian distance. To retrieve a case, the similarity between all the
cases in the case base and the new problem are computed, and the case that
is most similar to the new problem is retrieved.

After a case is retrieved, a heuristic is computed using Equation 4 and
the action suggested by the case is selected and executed. If the case base
does not contain a case that can be used in the current situation (i.e., the
similarity between all the cases in the case base and the current situation
is below a pre-defined threshold), the CB-HARL algorithm behaves as the
original RL algorithm implemented in it.

Using the L3 framework, two algorithms were implemented in this work:

• L3-Q, which is based on the CB-HAQL, and was previously proposed
by Celiberto et al. (2011), and

• L3-SARSA(λ), which extends the SARSA(λ) algorithm to include the
use of cases as heuristics in the action selection.
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5. Results and evaluation

In this section we present experiments where two L3 algorithms, L3-Q
and L3-SARSA(λ), are applied in two domains: one which is a traditional
benchmark in Reinforcement Learning, the Mountain Car Problem; and a
more recent control problem, the Stabilisation of a Humanoid Robot. The
first experiment shows how a control strategy can be mapped and transferred
between similar domains and the last experiment shows a more complex
transfer procedure. Our claim here is that L3 outperforms its non-transfer
learning version, and also state-of-the-art transfer learning algorithms.

In (Taylor and Stone, 2009) several performance metrics for transfer learn-
ing were proposed. Although each one of these metrics have known draw-
backs, and others can be proposed, these five metrics are becoming a standart
in the transfer learning community. The metrics are:

1. Jumpstart: the initial improvement of the performance of an agent in
the target task, given by the transfer.;

2. Asymptotic Performance: the final learned performance of the agent in
the target task;

3. Total Reward: the total reward earned by the agent;

4. Transfer Ratio: the ratio between the total reward received by an agent
that used the transfer and the one received by an agent that does not
use transfer learning;

5. Time To Threshold: the time taken by an agent to achieve a pre-defined
level of performance.

These metrics were used in the experiments below to provide more in-
formation for comparing the algorithms in a multi-dimensional evaluation
procedure.

Student’s t-Test (Spiegel, 1998) was also used in this work as a statistical
test to verify the hypothesis that L3 speeds up the learning process. Ac-
cording to Nehmzow (2006), if two different control programs produce two
distinct means of a particular result, the t-Test can be used to decide whether
there is a significant difference between these two means. The greater the
value of T, the more significantly different are the results.

In order to show that the L3 meta-algorithm improves the learning rate of
the system, we compare the obtained results with those obtained with other
RL, HARL and TL algorithms.
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5.1. Experiment 1: Mountain Car Problem

In this experiment we tested how cases acquired in the 2D mountain car
problem (Moore, 1991) can be transferred and used to speed up the learning
in the 3D mountain car problem (Taylor et al., 2008b).

In the mountain car problem, a car that is located at the bottom of a
valley is moved backward and forward until it reaches the top of a hill. The
goal of the learning agent is to generalise across continuous state variables in
order to learn how to drive the car up to the goal state.

In the 2D mountain car problem two continuous variables describe the
agent’s state: the horizontal position (x) restricted to the range [-1.2, 0.6]
and the velocity (ẋ) restricted to the range [-0.07, 0.07]. The agent may
select one of the following three actions on each step:

{left(−1), neutral(0), right(+1)},

which change the velocity by -0.0007, 0, and 0.0007 respectively. The car
reaches the top of the hill when its horizontal position is greater than 0.5.
The system dynamics is given by Equations 9 below:

xt+1 = min(0.5,max(−1.2, xt + ẋt+1));

ẋt+1 = min(0.07,max(−0.07, ẋt + 0.001at − 0.0025cos(3xt))).
(9)

The 3D mountain car is similar to its 2D version, whereas the former
is defined over a surface rather than on a curve (Taylor, 2008) (as shown
in Figure 1). The state is composed of four continuous state variables: x,
ẋ, y, ẏ. The positions and velocities have ranges of [-1.2, 0.6] and [-0.07,
0.07], respectively. The agent can select from five actions at each time step:
{neutral, west, east, south, north}. The actions west and east modify ẋ by
-0.0007 and +0.0007 respectively, while south and north modify ẏ by -0.0007
and +0.0007 respectively.

The 2D Mountain Car implementation used in this work is that described
in (Sutton and Barto, 1998) and it is available for download at (Sutton, 2000).
This simulator implements a Gradient-Descent SARSA(λ) algorithm, using
a CMAC function approximator with 9 by 9 tilings.

In the present experiment we modified the 2D Mountain Car simula-
tor to test the results of using Q-Learning, Q(λ), SARSA, and SARSA(λ)
algorithms. All of these four algorithms reached the same optimal policy.
However, best results were achieved by SARSA(λ) with the parameters pro-
posed in (Sutton and Barto, 1998), which were: α = 0, 5, the exploration/
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(a) 2D Mountain Car (b) 3D Mountain Car

Figure 1: Two versions of the Mountain Car Problem (Image adapted from Taylor (2008))

exploitation rate = 0.0, γ = 1.0. The reward is -1 on every time step until
the car reaches the goal position, ending one episode.

In order to acquire the case base to be used by the L3-SARSA(λ) algo-
rithm, SARSA(λ) was used to learn the 2D mountain car problem during
200 episodes (each episode ends either after 10.000 steps or when the agent
finds the goal state). As observed in (Sutton and Barto, 1998), this simula-
tor could learn a near optimal policy within 100 episodes. In this work we
tested with a different number of episodes, verifying that within 200 episodes
learning stabilises (Q̂(s′, a′)− Q̂(s, a) ∼ 0).

Case acquisition begins after the learning stabilises. Each case contains
the state, position and velocity, (P ), the action taken (A) and the expected
return (R). For instance, an acquired case has the following form: 〈P =
(−1.036143, 0.013455);A = right ; R = −79 .531860 〉.

There are several ways in which the case base acquisition can be accom-
plished. We tested the following four possibilities:

• Select N cases by random sampling the state set and finding the best
action for that state. To do this, we define the position and speed using
a random number generator, then we find the action that maximizes
this state (argmax(Q)), and its Q value, saving this data as a case.
In this way, the case base is built using the best actions for the 2D
problem, for a uniformly distributed set of states.

• Select N cases by random sampling the action-state set. During this
sampling process, if a case contains the worst action for that state (i.e.,
the one with the lowest Q value), this case is discarded. In this way,
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the case base is built using actions that are not the worst for the 2D
problem.

• Select N cases that have the best Q value. To do this, we sample
N ∗ 1000 times the state set, finding the best action and its Q value for
a sampled state. Then, only the N cases with the highest values of Q
are selected to be included in the case base. By doing this, we built a
case-base with the N best state-action pairs.

• For comparison purposes, we also built a set with the N worst cases,
obtained analogously to the first possibility cited above, but using
argmin(Q) instead of argmax(Q).

The random number generator used to acquire the case base is the Mersenne
Twist Random Generator (Matsumoto and Nishimura (1998)). This is the
most widely used pseudorandom number generator up to date.

In order to use a case in the target domain, an action mapping between
the two domains is needed. As described in Section 4, this mapping is made
using an unsupervised neural network using the Hebbian learning rule, where
the input and output vectors are in bipolar form (−1 or 1) and the activation
function of the output nodes is the Heaviside step function. The network has
a five-neuron input layer (one neuron for each of the 5 actions in the target
domain) and three neurons in the output layer (one for each of the actions
in the source domain).

In this experiment, the consequences of each action are measured as the
variation of the car’s speed in each dimension. To do this we compute, for
all dimensions in both domains, the variations as given by:

variationd = velocityd − oldV elodityd; (10)

where oldV elocityd is updated at the end of each iteration, and d is the
dimension.

As the actions in the 3D Mountain Car domain are only applied in one
dimension (e.g. the action south changes the speed only in the y direction),
in order to use the action’s effects to train the neural network, the dimension
in which the action is applied has to be defined. This is accomplished by
selecting the greatest value of the variations in the x and y axis computed
for this domain. Note that z is a function of x and y.
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Table 1: Action Map for the Mountain Car Problem

3D 2D
neutral neutral
north right
east right
south left
west left

The 3D Mountain Car implementation used in this work is based on the
one described in (Fachantidis et al., 2012), and that is available for download
at (Partalas, 2014a). The parameters used in the neural networks were:
learning rate = 0.9, Bias = 0.01 and 100.000 iterations were used. The bias
was used because there are changes in the velocity when using the neutral
action due to the gravity force that acts on the car. The bias eliminate these
effects on the mapping. One problem with this mapping is that it cannot
map the neutral action, as it does not have any direct consequence on the
target and source domains. But it can be inferred, as it is the action that
has the lowest weights in the neural network connections, and that is not
mapped to any other action on the source domain.

Table 1 shows the results of the automatic action-mapping executed in
the second stage of the L3 algorithm. Note that the actions that accelerate
the car towards the goal were mapped together, as well as the actions that
accelerate the car away from the goal. The neutral action is inferred as the
one that did not have any effect on the target domain.

The last task is now to transfer the cases to the target domain. As
mentioned above, the 3D Mountain Car experiments were conducted using
the simulator provided by Sutton and Barto (1998), with the implementation
of the Mountain Car 3D provided by Partalas (2014a). The simulator was
modified to introduce the L3-SARSA(λ) algorithm, with the addition of the
case retrieval procedure and the use of the heuristic function.

To implement the case retrieval procedure, for each action selected, Equa-
tion 8 was used to compute the similarity between the current state of the
car and each case in the case base. As the source task has only two attributes
(horizontal position x and velocity ẋ) in the case base, and the problem has
four attributes (x, ẋ, y, ẏ), we used Equation 8 to find the most similar case
between each degree of freedom of the 3D problem and the 2D problem, and
computed the similarity of a case as the minimum value between these two
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results, as stated in Equation 11:

Sim(P,C) = Min[dist(xi
c, xp) + dist(ẋci , ẋ

p), dist(xi
c, yp) + dist(ẋci , ẏ

p)],
(11)

where dist(a, b) = |a− b| is the Manhattan Distance between two points.
The heuristic used in the L3-SARSA(λ) was computed using Equation 4,

where st is the current state and at is equivalent to ac, which is the action
suggested by the most similar case in the case base. To compare both actions,
at must be mapped to the source domain using the learned mapping function
map : At → As , which maps actions from the target domain into actions in
the source domain. Equation 4 can be rewritten as:

Ht(st, at) =

{
maxa Q̂(st, a)− Q̂(st, at) + η if map(at) = ac,

0 otherwise.
(12)

Thirty training sessions (each of which contained 1,000 episodes) were ex-
ecuted for four algorithms in the 3D domain: SARSA(λ), HA-SARSA(λ), L3-
SARSA(λ) and the TiMRLA Value-Addition algorithm (described in Fachan-
tidis et al. (2012)). For comparison purposes we also include the results ob-
tained by Taylor’s MASTER Algorithm, published in (Taylor, 2008, Chapter
7).

The last two are state-of-the art transfer learning algorithms that were
selected for comparison purposes (as mentioned in Section 2).

The heuristic used in HA-SARSA(λ) was defined by a simple rule: if
the velocity is negative, use a negative thrust, i.e., decrease the velocity by
0.0007. This heuristic can be expressed by:

Ht(st, at) =


+100 if ẋt < 0 & at = west,

+100 if ẏt < 0 & at = south,

0 otherwise,

(13)

where ẋt and ẏt are elements of the state st.
The TiMRLA Value-Addition algorithm described in (Fachantidis et al.,

2012) was executed using the software provided by the authors (available in
(Partalas, 2014b)). The case base used in L3-SARSA(λ) was the one that
contains N cases selected by random sampling the state set and finding the
best action for that state, because this is the case base that produced the best
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results for the transfer2. The parameters used in the experiments were the
same over all trials: the learning rate α = 0.2, the exploration/exploitation
rate ε = 0.0, λ = 0.95, γ = 1.0. The parameter used to create the heuristics
in L3 is η = 1 and the parameter that weights the influence of the heuristic
ξ = 1, with a decay of 10−4 at the end of each episode. Values in the Q
table were randomly initiated. Figure 2 shows the learning curves obtained,
where it can be noted that L3-SARSA(λ) outperforms all other algorithms
until episode 600; after that the performances of the algorithms converge.
The curves for L3-SARSA(λ) and Taylor’s MASTER algorithm are shown in
Figure 3).
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Figure 2: The learning curves for SARSA(λ), HA-SARSA(λ), the TiMRLA Value-
Addition algorithm and L3-SARSA(λ) in the 3D Mountain Car Problem. The curves
are smoothed with a window of 25 episodes with an error bar at every 25 episodes.

For the experiments reported in this section, the value of the module of
T (of the t-Student test) was computed for each episode using the data pre-
sented in Figure 2. The dashed line indicates the 99% confidence limit, i.e.
results above the line are different and the probability for this statement to
be erroneous is 1%. The results in Figure 4 show that L3-SARSA(λ) per-

2A comparison between the case bases are shown at the end of this section (cf. Fig. 5).
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Figure 3: The learning curves for L3-SARSA(λ) and Taylor’s MASTER Algorithm in the
3D Mountain Car Problem. The curve for L3-SARSA(λ) is smoothed with a window of
10 episodes with an error bar at every 10 episodes. Taylor’s MASTER Algorithm results
were extracted from (Taylor, 2008, Figure 7.6, page 226).

forms clearly better than SARSA(λ) until the 750th episode, HA-SARSA(λ)
until the 450th episode with a level of confidence greater than 99%. It also
outperforms the TiMRLA Value-Addition algorithm until the 450th episode.
After that the performances of all algorithms are equivalent, as expected.

The results of the comparison between L3-SARSA(λ) and Taylor’s MAS-
TER algorithm (Figure 3) shows that L3 outperforms MASTER in the initial
episodes. After the 20 th episode, the errorbars on MASTER’s results are
very large, making the value of T drop below the 99% limit in which there
is confidence that the algorithms are different. The asymptotic values of the
MASTER algorithm are higher than L3-SARSA(λ), but they are still within
the limit in which it can be said that the performances are the same.

Tables 2 and 3 show the values of Jumpstart, Asymptotic Performance,
Total Reward, Transfer Ratio and Time To Threshold metrics for the algo-
rithms executed in this experiment. These tables show that L3-SARSA(λ)
outperforms the other algorithms. The closest results to those obtained by
L3-SARSA were obtained on Asymptotic Performance of the MASTER al-
gorithm. In fact, MASTER has a higher mean value of the Asymptotic
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Figure 4: Student’s t-test between (a) L3-SARSA(λ) and SARSA(λ), (b) between L3-
SARSA(λ) and HA-SARSA(λ), (c) L3-SARSA(λ) and the TiMRLA Value-Addition al-
gorithm by Fachantidis et al. (2012) and (d) L3-SARSA(λ) and MASTER algorithm by
Taylor (2008).
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Table 2: Jumpstart improvement, Asymptotic Performance, Total Reward and Transfer
Ratio for the SARSA(λ), HA-SARSA(λ), L3-SARSA(λ), TiMRLA Value-Addition algo-
rithm by Fachantidis et al. (2012) and MASTER algorithm by Taylor (2008).

Algorithm Jumpstart Asymptotic Total Reward Transfer Ratio
Performance (×103)

SARSA(λ) – -287 ± 16 -1091 –
HA-SARSA(λ) 455 ± 397 -205 ± 24 -692 1.57
L3-SARSA(λ) 4600 ± 60 -250 ± 27 -381 2.86

TiMRLA 0 ± 0 -271 ± 14 -1054 1.05
MASTER 3889 ± 780 -200 ± 45 -231 4.72

Table 3: Time to Threshold for the SARSA(λ), HA-SARSA(λ), L3-SARSA(λ) and TiM-
RLA Value-Addition algorithm by Fachantidis et al. (2012) and MASTER algorithm by
Taylor (2008).

Algorithm Time to Threshold (episodes)
-4000 -3000 -2000 -1000 -400

SARSA(λ) 33 77 140 508 868
HA-SARSA(λ) 6 17 49 256 709
L3-SARSA(λ) 0 0 0 0 0

TiMRLA 117 157 216 345 508
MASTER 0 0 0 10 28

Performance (and a higher Total Reward as a consequence) than those of
L3-SARSA, however the t-Student test shows that results from MASTER
and L3-SARSA are not statistically distinct.

In order to decide which case base should be used in the transfer, from the
three possibilities acquired (as mentioned above), we compared the results of
using each case base with the L3-SARSA(λ) algorithm in the target domain.
The results, presented in Figure 5, show that the best case base is the one that
selects N cases by random sampling the state set, finding the best action for
that state. For this experiment, the value of the module of T (of the t-Student
test) was computed for each episode using the data represented in Figure 5.
The results are similar to the ones in Figure 4 and show that L3-SARSA(λ),
using the cases with the best actions from random sampling of the state set,
outperforms all the other case bases until the 600th episode, when they reach
the same performance level, with a level of confidence greater than 99%. The
error bars were not added in Figure 5 in order to enhance visibility of the
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Figure 5: The learning curves for SARSA(λ) and L3-SARSA(λ) using three different case
bases in the 3D Mountain Car Problem. The curves are smoothed with a window of 25
episodes.

curves, they have the same size of those shown in Figure 2.
The behaviour of L3-SARSA(λ) with respect to negative transfer was also

investigated in this work. A negative transfer is a situation when the transfer
degrades the learning agent’s performance. This can be caused by problems
related to the knowledge acquisition phase in the source task or to eventual
incorrect mappings between the tasks.

A negative transfer was provided to L3-SARSA(λ) from a case base con-
structed with the N worst cases (as shown in Figure 6). In order to compare
the performance of our algorithm against other TL algorithms in this context,
we used the TiMRLA Value-Addition algorithm with negative information
obtained by inverting the values of the transfered data. The results of the
negative transfer for both L3-SARSA(λ) and TiMRLA Value-Addition algo-
rithm are shown in Figure 6.

In this figure it can be seen that the negative transfer in L3-SARSA(λ)
degrades the algorithm’s performance until the 100th episode, after that point
it learns at a fast pace, converging to the solution earlier than SARSA(λ).
This behaviour is due to the fact that, as the case base contains the worst
actions, at the beginning of the learning trial our algorithm only makes bad
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Figure 6: The learning curves for SARSA(λ) and L3-SARSA(λ) using the case base con-
structed with the N worst cases and TiMRLA using a Negative Transfer in the 3D Moun-
tain Car Problem. The curves are smoothed with a window of 25 episodes.

choices. But, as the case base is used as an heuristic, the SARSA(λ) algorithm
learns that the actions suggested by the heuristics are misleading, and that
they should not be executed. So, at this point (around the 200th episode),
it begins to learn which is the best action to be performed, already knowing
which are the worst actions (and not selecting any of the latter). In contrast,
the TiMRLA Value-Addition algorithm with a negative transfer (shown in
Figure 6) had a very poor asymptotic performance, much lower than L3-
SARSA(λ) with negative transfer and the traditional SARSA(λ) algorithm.

In Section 3, we stated that the convergence of the HARL algorithms
depends on the infinite visitation to each pair state-action condition, and that
this condition can be considered valid for these algorithms by reducing the
influence of the heuristics over time in a number of manners: by multiplying
ξ by a decay factor; by multiplying η by a decaying factor; or by using the
heuristics only during a period of time, shorter than the total learning time
for RL algorithm.

Figure 7 shows that the results of the negative transfer when using L3-
SARSA(λ) depends on the value of the η and ξ parameters and their decay
(Figure 7a and b), and in the number of episodes that the heuristic is used
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Figure 7: The learning curves for SARSA(λ), and L3-SARSA(λ) using the case base
constructed with the N worst cases, with different parameter settings, in the 3D Mountain
Car Problem. (a) Uses a decay on the value of η, while (b) decays the value of ξ. (c) makes
uses of the heuristic only up to an episode number, and no heuristic after that limit. The
curves are smoothed with a window of 25 episodes.

(Figure 7c). Bianchi et al. (2014) showed that using a fixed value for η and
ξ, the algorithm takes longer to ignore the negative transfer. Multiplying
ξ by a decay value at the end of each episode reduces the influence of the
heuristics over time. If this value is too high, the algorithm takes longer to
ignore the misleading heuristics. On the other hand, if this value is too low,
the algorithm ignores the heuristics too soon, which makes it behave as the
traditional SARSA(λ) algorithm. The same effect happens when the heuristic
is used only until a certain episode (Figure 7c). The results presented here
corroborates the results presented in (Bianchi et al., 2014).

This experiment was coded in C++, compiled with GNU g++, and exe-
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cuted on a Virtual Machine running Linux Ubuntu 14 LTS, virtualised using
VM-Ware Player, and running on a MacPro running Mac OS X 10.6, 2,66GHz
Intel Xeon processor and 12 Gb of RAM memory3. The time needed by each
part of this experiment to be executed is presented in Table 4 (where the
learning time of L3-SARSA(λ) was divided into its constituting parts). It
can be seen that the time to acquire the case base, and to map the source
and target domains is negligible in comparison to the time needed to learn
the target task. It is not possible to compare these results with the TiMRLA,
because the software provided by the authors uses the deprecated RL-Glue
Library (Tanner and White, 2009), which makes its running time much slower
than the other algorithms.

Table 4: The average Learning Time for SARSA(λ), HA-SARSA(λ) and L3-SARSA(λ).

Algorithm Learning Time (seconds)
SARSA(λ) 18.2± 0.8

HA-SARSA(λ) 15.7± 1.5
L3-SARSA(λ) 9.29± 0.08︷ ︸︸ ︷

Case Acquisition Mapping Learning on Target
0.11± 0.003 0.03± 0.0005 9.25± 0.07

5.2. Experiment 2: Humanoid Robot Stabilisation

In this experiment we investigate the transfer of cases acquired in the
Acrobot domain (Sutton and Barto, 1998) to accelerate stability learning for
a humanoid robot in the Robocup 3D Soccer Simulator domain.

The Acrobot is a two-link pendulum operating in a vertical plane. The
first joint of this actuator is passive, whereas a motor is mounted at the
second joint (between the links) to provide a torque input. This system
has four continuous state variables: the two joint positions, θ1 and θ2, and
the two joint velocities θ̇1 and θ̇2. The goal is to swing the endpoint of the
pendulum above its base by an amount equal to the equilibrium position
(θ1 = (π/2), θ2 = 0), starting from the initial state θ1 = θ2 = 0. There are
three possible actions in this system: positive torque, negative torque, and no
torque.

3This virtual machine, and all the software needed to run this experiment, is available
at http://fei.edu.br/~rbianchi/software.
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The RoboCup 3D Simulated Soccer (Boedecker et al., 2010) is a realistic
simulator that allows the development of control techniques for humanoid
robots. The current robot model used in the simulator is based on the Nao
Robot by Aldebaran Robotics, which is a humanoid with 22 degrees of free-
dom, 57cm high and weighing around 4.5kg. Nao is equipped with various
sensors and effectors, some of them, reproduced in the simulator, are: angle
sensors in each joint, a gyroscope, an accelerometer and a force sensor which
provides information about the force applied upon the sole of each of the
robot’s feet.

In this experiment only three of the Nao’s joints were used: Hip Pitch,
Knee Pitch, and Foot Pitch (with left and right joint having the same posi-
tion). All the other joints of the robot were kept in a stationary position. At
each time step, the robot could use one of the following seven actions: +0.5◦

Hip Pitch, +0.5◦ Knee Pitch, +0.5◦ Foot Pitch, −0.5◦ Hip Pitch, −0.5◦ Knee
Pitch, −0.5◦ Foot Pitch or no action. The robot starts a trial at a random
position close to the equilibrium (i.e., the body leaning forward or backward
in angles between -20 and 20 degrees in the foot joint). Informally, looking
at the humanoid’s left side a movement that makes the robot to lean forward
is an anti-clockwise rotation of the robot’s joints, which is a positive rotation
(negative is defined on an analogous way).

In the first stage of L3-Q, Q–learning is applied in the Acrobot domain
over 10.000 episodes (each episode ending either after 20.000 steps or when
the agent finds the goal state). The case base acquisition starts when learning
stabilises (i.e., when Q̂(s′, a′)− Q̂(s, a) ∼ 0) which happens near the 9,000th
episode. From that point, 500 cases are acquired by randomly sampling the
action-state set. During this sampling, cases containing actions with the
lowest Q value for that state (the worst one) were discarded. In the second
stage of L3-Q, the actions between the two domains are connected. This
procedure mapped Acrobot’s θ1 angle with the movement of Nao’s ankle
(foot pitch) and Acrobot’s θ2 angle with the movement of Nao’s knee. Then,
the forward-feed perceptron neural network described in Section 4 is used,
with input nodes corresponding to the seven actions used in the Robocup 3D
Simulator (the set of possible actions in the target domain), and output nodes
corresponding to the three possible actions in the Acrobot domain (the set
of actions of the source domain). Table 5 shows the results of this automatic
action-mapping.

At the last stage of the L3-Q algorithm, the case base is used in the
CB-HAQL algorithm to learn Nao’s equilibrium position. The features used

29



Table 5: Action Map for the Humanoid Robot Stabilisation Problem

Acrobot Robocup 3D
Positive torque +0.5◦ Hip Pitch
Negative torque −0.5◦ Hip Pitch

no torque no action

to compute the distance between a case and the problem are the joint an-
gles (assumed as states in both domains). In this experiment, the distance
function is defined as the Gaussian distance between atributes of the source
domain and target domain:

dist(a, b) = exp

(
−

[(
ax − bx
τx

)2

+

(
ay − by
τ y

)2
])

, (14)

where τx, τ y are the radius of the scope around the object. The Gaussian
distance is used because the larger the distance between two points, the
lower is the similarity between them. Also, the τx, τ y parameters are used
as thresholds that define a maximum distance allowed for two points to have
some degree of similarity, if the distance is greater than a limit, for two
object’s a and b, then Sim(a, b) = 0.

To verify that L3-Q improves the learning rate, the L3 learning curves
are compared with those of Q-learning and the HAQL. This comparison was
accomplished over thirty training sessions for each of the three algorithms,
each of these sessions consists of 400 episodes of 120 seconds each. The same
parameters were used throughout these experiments, as follows: α = 0.25,
γ = 0.9, exploration/ exploitation rate = 0.1 and the Q table was initialised
with zeroes. HAQL and L3-Q use η = 1 and ξ = 1, and reward of -1 on all
steps which do not lead to the goal. The goal state is rewarded with +1. The
heuristic used in the HAQL algorithm was defined using a simple rule: if the
Nao is leaning forward, move the HIP angle −0.5◦, if it is leaning backward,
move the HIP angle +0.5◦.

This is computed using the equation below:

Ht(st, at) =


maxa Q̂(st, a)− Q̂(st, at) + 1 if HipPitch > 0 & at = −0.5◦,

maxa Q̂(st, a)− Q̂(st, at) + 1 if HipPitch < 0 & at = +0.5◦,

0 otherwise.

(15)

The results obtained are presented in Figure 8, which shows the number
of times per episode taken by the agent to reach the goal. It can be seen
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Figure 8: The learning curves for Q–learning, HAQL and L3-Q for the Humanoid Robot
Stabilisation Problem

that L3-Q outperforms both Q–learning and HAQL in the initial learning
phase; while the three algorithms converge to similar performance results in
later episodes, as expected. The results of applying the Student’s t-Test are
presented in Figure 9, where we can see that the performance obtained for
L3-Q is statistically distinct from the performances of Q-learning up to the
350th episode and for HAQL up to the 50th episode, with a level of confidence
greater than 1%. After that, the results are statistically indistinguishable.

One issue worth discussing in this experiment is the selection of the robot’s
joint whose transfer would be more effective. To transfer the learning from
Acrobot to the humanoid robot three different joints could be used: the feet
joint, the knee joint or the hip joint. In order to verify in which of these
the transfer would produce the best results, we repeated the experiment
transferring the learning each time to a different joint. The results of this
comparison, presented in Figure 10, show that the best transfer occurs at
the hip joint. The t-Test applied on this problem (Figure 11) shows that the
use of L3-Q at the Hip joint is better than its application at the robot’s feet
up till the 100th episode, and that it was better than L3-Q applied to the
robot’s Knee only at the beginning of the learning trial. Future work shall
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Figure 9: Student’s t-test between L3 and Q-learning (a) and between L3 and HAQL (b).
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address an automatic way of finding the best joint to be used in such cases.
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Figure 10: The learning curves for Q–learning and L3-Q for three distinct joints of the
humanoid robot

6. Discussion

In the meta-algorithm L3, an element of the case base is used in the
action selection rule to guide the search in the new domain, in the same
way a heuristic is used in an informed search procedure. At the beginning
of each learning episode, RL operates as a blind search method. As such,
knowledge can be used to lift RL from a blind search style to an informed
search procedure.

Experimental results (described in Section 5) were obtained for two in-
stances of L3 (L3-Q and L3-SARSA(λ)) over two distinct domains, in order
to confirm the generality of the method proposed. The experiments verified
the initial claim that L3 outperforms its non transfer-learning versions, and
also state-of-the-art transfer learning algorithms. The results show that L3
outperforms traditional RL algorithms, such as Q-Learning and SARSA(λ),
HARL algorithms such as the HAQL and HA-SARSA(λ), and TL algorithms
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Figure 11: Student’s t-test between L3-Q used in the hip joint and in the knee joint (a),
and between L3 used in the hip joint and in the feet joint (b).
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such as Taylor’s MASTER (Taylor, 2008) and TiMRLA Value-Addition algo-
rithms (Fachantidis et al., 2013). It is worth pointing out that, in contrast to
L3, HAQL and HA-SARSA(λ) presuppose user-defined domain knowledge.
The fact that the L3 algorithms outperform other heuristically accelerated
reinforcement learning (HARL) algorithms lets us conclude that learning the
optimal policy of a similar task to be used as a heuristic in another domain
is better than using a tailor-made heuristic based on expert knowledge.

L3 was compared with other state-of-the-art transfer learning algorithms:
L3 was compared with the the TiMRLA Value-Addition algorithm transfer
learning algorithm (Fachantidis et al., 2013) and Taylor’s MASTER algo-
rithm (Taylor, 2008) on the Mountain Car experiment (Section 5.1). We
did not find any competing algorithm in the literature to compare the Hu-
manoid Robot Stabilisation experiment (presented in Section 5.2), which was
a domain included in this paper to illustrate the generality of the algorithm
proposed.

In this paper we compared L3 with HAQL but not with its case-base
counterpart, CB-HAQL. In order to compare with CB-HAQL a tailor-made
case base would have to be built. Not only this is a tedious process, but
the results obtained would be very similar to those obtained with HAQL,
since a tailor-made case base would be constructed using some pre-defined
heuristics.

To the best of our knowledge, L3 is the only class of TL algorithms for
Reinforcement Learning to date that uses the knowledge obtained in one
domain as heuristics in another. This characteristic makes L3 robust to
negative transfers: if the cases acquired in the source domain are not useful
in the target domain, assuming them as heuristics will not speed up the
learning procedure but, in the worst case (when every case in the case base is
not applicable to the target domain), L3 will be as efficient as the original RL
algorithm that it is based. In other words, if the case base contains no useful
(or even misleading) information for the target domain, the agent is still able
to learn the optimal policy for the domain using the RL component of the
algorithm. As the value of the heuristic defined in Equation 4 is bounded,
after a finite number of learning iterations, the correct value of the value
function in that state will be learned.

The effect of negative transfer on L3 was presented in Figures 6, that
show the learning curves for L3 when it was given (as transferred knowledge
from the source domain) a set with the N worst cases, obtained by random
sampling the state set and selecting the worst action for that state.
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Figure 6 shows that L3 with negative transfer (curve L3-argmin) had
the lowest jumpstart and could not learn anything until the 200th episode,
after that it presented the best asymptotic performance and the best time
to threshold, in contrast to the other cases analysed. This was due to the
fact that the negative transfer delayed the algorithm initially (as expected),
but after a number of learning iterations, the algorithm ignored the negative
heuristics and avoided the states previously generated by these heuristics in
later episodes. In other words, the learning curve of L3-argmin was steeper
than the others because L3 learned to avoid bad states, from having to deal
with the negative transference of knowledge in earlier episodes.

This verifies our hypothesis that L3 is robust to negative transfers due to
its reliance on the transference of heuristics between domains. However, we
were incapable of exactly bounding the finite number of learning iterations
needed for L3 to recover from negative transfers. This is an open issue to be
addressed in future work.

7. Conclusion and open issues

In this paper we investigated the performance of a new class of algorithms,
called L3, which uses a case base to transfer knowledge as heuristics between
domains. Two algorithms of this class were investigated: L3-Q, based on
Q-Learning, and L3-SARSA(λ), based on the gradient descent SARSA(λ).
The transference of heuristics across domains makes L3 robust to negative
transfers, which is the major contribution of these algorithms to the state of
the art of transfer learning in reinforcement learning. In order to show the
generality of L3, this algorithm was applied to benchmark domains in RL
whose results show that L3 outperforms Q-Learning (which is traditionally
used as baseline algorithm), a Heuristically Accelerated RL algorithm and
two state-of-the-art transfer learning algorithms.

However, L3 was not capable of mapping actions between domains in
which there is a one-to-many possibility of mappings, and vice-versa. This
issue shall be considered in future research. Future work shall also consider
further possible relevance measures for case selection, other than the reward
received. A possible candidate for such measure could be the probability
assigned to a possible case to be used. In general, the more a case is used in
the source domain, the more relevant it is. Whether or not the use of these
cases in the target domain results in a better performance than that reported
in this paper is an issued to be investigated.
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In our experiments, cases are single step: they represent a single action
to be taken in a state. However, we believe that this approach could easily
be made more general, in the sense that sequences of actions can also be
stored in the case base and used as heuristics. Experiments to validate this
hypothesis are a matter for future work.
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