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Abstract. This paper proposes a new Case-Based Reasoning (CBR) approach, named Q-CBR, that uses a Qualitative Spatial

Reasoning theory to model, retrieve and reuse cases by means of spatial relations. Qualitative relations between objects, repre-

sented in terms of the EOPRA formalism, are stored as qualitative cases that are applied in the definition of new retrieval and

reuse algorithms. The retrieval algorithm uses a Conceptual Neighborhood Diagram to compute the similarity between a new

problem and the cases in the case base, and to select the most similar case. The reuse algorithm uses a composition algorithm

to calculate the adapted position of the agents based on their frame of reference. The proposed approach was evaluated on sim-

ulation and on real humanoid robots. Results suggest that this proposal is faster than using a quantitative model with numerical

similarity measurement such as the Euclidean distance. As a result of running Q-CBR, the robots obtained a higher average

number of goals than those obtained when running a metric CBR approach.
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Introduction

Case-Based Reasoning (CBR) is a paradigm of Ar-

tificial Intelligence (AI) that uses the knowledge ob-

tained in past situations, defined in terms of cases, to

solve new problems. It combines processes for solving

a problem and learning from this experience in a pro-

cess cycle known as the four REs: retrieve, reuse, re-

vise and retain [1]. The retrieval step searches the case

base for the most similar cases to a given problem, re-

trieving the candidate cases; the reuse step selects the

most similar case to be used as a solution to the prob-

lem; the revise step analyses the proposed solution and

the retain step decides if the reused case is useful to

solve the new problem.

In general, when CBR is applied in problems where

the objects’ positions in space is relevant, a metric co-

ordinate system is used to represent case similarity.

Consequently, there is a large number of distinct simi-

larity measurement strategies based on numerical dis-

tances or other metric information [6].
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In some domains, however, a metric representation

is not the most effective. For instance, in a humanoid-

robot domain, where a video camera is the main source

of information, the use of a metric coordinate system

to represent object’s position generates a high error

rate. In this context, qualitative relations between spa-

tial entities can provide a more appropriate representa-

tion of the robot’s environment. From the distance and

direction information obtained by the robot’s sensors,

qualitative spatial regions can be defined, allowing for

reasoning about, and comparison of, relations between

domain objects, the regions in which the objects are

located and their occupancy regions.

This paper proposes a novel CBR approach using

Qualitative Spatial Reasoning (QSR) to model cases

and to serve as the basis for retrieval and reuse algo-

rithms. The idea is to use EOPRA [24] for domain

modeling, whereby instead of representing cases using

the Cartesian coordinate system, we represent them as

qualitative orientation and distance relations. The pro-

posed algorithms use Conceptual Neighborhood Dia-

grams (CND) [7, 14] and a cost function to compute

the similarity between a new problem and the cases in

the case base, to retrieve the most similar case and to

reuse its solution to solve the new problem. This work



was evaluated in the robot-soccer domain, as defined

by the RoboCup Federation Humanoid League [34]. In

this domain, a team of humanoid robots plays a soccer

game against an opponent team on an artificial grass-

soccer field. Three categories separate the teams ac-

cording to the robots’ heights. The robots must have a

human-like body, with two legs, two arms and one head

attached to a trunk. Two types of experiments were per-

formed: the first was conducted in a simulation soft-

ware, in which the proposed approach was compared

to the metric-based method presented in Ros et al. [35]

and to a reactive approach; the second experiment was

executed with real robots, where the present proposal

was compared with a reactive approach. In both exper-

iments, the number of goals scored and the retrieval

time were analyzed.

Ros et al. [35] applies CBR for the coordinated ac-

tion selection in the robot-soccer domain, using the

Cartesian coordinate system to represent the position

of objects in the field. The present work differs from

Ros et al. since it discretizes the world following a

qualitative spatial reasoning formalism and proposes

a faster retrieval algorithm that can be used in robots

with limited processing power. Finally, by running

the algorithms proposed in this paper, the robots per-

formed a higher average number of goals than running

a metrical-based CBR.

In the remainder of this work we present the CBR

and QSR, which are the foundations of this work, (Sec-

tion 1), the proposed Qualitative Case-Based Reason-

ing method (Section 2), the results obtained during the

retrieval and reuse steps (Section 3) and the related

work (Section 4).

1. Research Background

This section presents the two methodologies that are

used in this work, Case-Based Reasoning (CBR) and

Qualitative Spatial Reasoning (QSR).

1.1. Case-Based Reasoning

Case-Based Reasoning (CBR) [1] can be summa-

rized by means of two principles: the existence of real-

world regularities (i.e., similar problems have similar

solutions) and the tendency to encounter similar prob-

lems [17].

Given a new problem, CBR uses the knowledge of

previous situations (cases) to find a similar case that

can be reused to solve the new problem.

A case in the robot-soccer domain can be defined as

the following triple [35]:

case = (P,A,K), (1)

where P is the problem description, A is the solution

description and K represents the case scope.

According to [35], the problem description (P) cor-

responds to the situation in which the case can be used,

representing the global coordinates of the objects in

the case. For instance, in the robot-soccer domain, the

problem description of a case can include the position

of any object in the soccer field. Considering a case

with u objects, where each object is represented with

the symbol Ri (i ∈ {1, . . . ,u}), P can be defined as:

P = {R1 : (x1,y1), . . . ,Ru : (xu,yu)}. (2)

The solution description (A) is composed of a se-

quence of actions that each agent (that is part of the so-

lution) must perform to solve the problem. Let v be the

number of agents that are part of the solution and p, the

number of actions that each agent can perform. A so-

lution description (A) can be defined by means of one

set of actions ai j
(for i ∈ {1, . . . ,v} and j ∈ {1, . . . , p})

assigned to each agent Ri:

A = {R1 : {a11
, . . . ,a1p}, . . . ,Rv : {av1

, . . . ,avp}}.

(3)

The case-scope representation (K) is defined as el-

liptic regions around the object’s positions, where the

objects should be positioned in order to retrieve that

case. In other words, K defines the applicability bound-

aries of the cases.

Ros et al. [35] also proposed a retrieval method

where cases are evaluated along three important as-

pects: the similarity between problem and case; the

cost of adapting a problem to a case; and, the applica-

bility of a solution to a case. The similarity function

was defined measuring the distance between robots and

the ball in a problem and in a case:

Sim(p,c) = dist(Bc
,Bp)+

u

∑
i=0

dist(Ri
c
,Ri

p), (4)

where Bc is the ball’s position in the case c, Bp is the

ball’s position in the problem p, Ri
c is the i robot’s po-

sition in the case c, Ri
p is the i robot’s position in the

problem p and dist(Ri
c,Ri

p) is the Gaussian distance

between the robot Ri
c to the robot Ri

p.



The adaptation cost was defined in [35] measuring

the distance the robots have to move from their current

positions to their adapted positions:

Cost(p,c) =
v

∑
i=1

dist(ri,adaptPosi), (5)

where v is the number of robots that take part in the

case solution, dist is the Euclidean distance, ri is the

current position of robot i and adaptPosi is the adapted

position for robot i.

Finally, the applicability measure take into account

the adversarial component of the domain, i.e., one so-

lution retrieved in the case depends on the opponents’

positions. Ros et al. [35] combined the opponent sim-

ilarity function, which measures the opponent’s threat

to accomplishing the task, with a function that com-

putes if the trajectory of the ball indicated in the case

is free of opponents.

In addition to the work of Ros et al., [35], other

works have used CBR in the robot-soccer domain. Lin,

Liu and Chen [19] presented one of the first archi-

tectures that includes a deliberative CBR system for

soccer-playing agents; Karol et al. [16] proposed high-

level planning strategies, which included a CBR sys-

tem. In Marlin et al. [21], three case-based reasoning

prototypes were developed for a team in the RoboCup

small-size league, where CBR was used to position

the goalie, select team formations and recognize game

states for the team.

Floyd, Esfandiari and Lam [12] used CBR in the

RoboCup Soccer Simulation League, where the agents

perceive the objects in the field, convert this percep-

tion into a case structure and retrieve the k-most similar

cases, using the k-nearest-neighbor search. This work

proposed two similarity functions and allows an agent

to imitate the actions of a player.

The work presented in Davoust, Floyd and Esfan-

diari [5] proposed the use of fuzzy histograms to rep-

resent the objects in the field and a similarity metric,

based on the Jacard Coefficient, that matches scenes in

a given problem to cases in a case base, retrieving the

action related to the most similar case. Altaf et al. [2]

proposed an architecture to control more complex soc-

cer behaviors such as dribbling and goal scoring ap-

plied to humanoid multi-robot scenarios.

The main difference between the work cited in this

section and the present proposal is the use of a qualita-

tive formalism to model, retrieve and reuse cases. Also,

the work described in this paper was tested in a real-

robot domain, considering robot failures and noises,

whereas in much previous works, experiments were

conducted in simulated environments, under optimal

conditions, with a global knowledge of the environ-

ment and using numerical values. More specifically,

in our proposal the agents have local vision and use

qualitative spatial representations to retrieve and reuse

cases. Even if the qualitative position of an object is

different from the precise object location, the retrieval

algorithm proposed in this paper retrieves the case with

the lowest adaptation cost.

The next section introduces the field of qualitative

spatial reasoning in AI, describes the EOPRAm for-

malism and the idea of Conceptual Neighborhood Di-

agrams.

1.2. Qualitative Spatial Reasoning

Qualitative Spatial Reasoning (QSR) is a subfield of

knowledge representation in AI that formalizes quali-

tative spatial relations between objects, aiming at mod-

eling the human common sense understanding of the

world [39]. QSR has been applied in distinct fields,

such as robot navigation and self-localization, geo-

graphic information systems and computer vision [3].

Formalisms in QSR verse on various spatial modali-

ties, such as mereotopology [31], qualitative directions

[13, 33], occlusion [22, 30, 36] and so forth [3, 18].

Among the several proposed formalisms in the

QSR literature, the Oriented Point Relation Algebra

(OPRA) [23] has been the major formalism for rep-

resenting and reasoning about objects with intrinsic

fronts, such as cars, boats [11, 25] and robots [23].

OPRAm refers to the Oriented Point Algebra with

granularity m, used in order to obtain the angular reso-

lution, which is equal to 2π
2m

[25]. The objects are repre-

sented as oriented points, that refer to Cartesian coordi-

nates (x and y) and orientation (θ ). Each point defines

a relative reference frame of granularity m (m ∈ N).

In OPRAm a relation between two oriented points

A and B is represented as Am∠
j
i B, which means: given

the granularity m, the relative position of B with re-

spect to A is described by i and the relative position of

A with respect to B is j. The OPRA formalism de-

scribes only the orientation between objects, however

in several domains the distance is an important spatial

information that must be considered.

In order to represent distances, Moratz and Wall-

grüm [24] proposed a definition of relative distance

based on local references called elevations. Elevations

are defined by the height of objects, whose projection

in the 2D plane defines a circle around the object’s lo-



cations, that is used as a distance reference. The size

of this projection is represented by δ , and all distance

ratios are calculated taking into consideration n and δ ,

where n is the distance granularity [8]. The granularity

also applies to elevations in order to provide an appro-

priate level of abstraction for distance relations. Equa-

tion 6 calculates the boundaries of qualitative distances

around an elevated point A, where 0 6 ep 6 2n and ep

must be an even number [24].

bA(ep) =























∞ if ep = 2n,

epδA
n

if ep 6 n,

nδA
2n−ep

otherwise.

(6)

In this context, the distance relations between two

points A and B is represented as A m©
f
e B, where e

represents the relative distance of B with respect to A

and f , the relative distance of A with respect to B.

The idea of elevated points can be combined with a

directional calculus, enhancing its expressiveness. An

example is EOPRA [8, 25] that combines the con-

cepts of directional relations of OPRA with quali-

tative distance as elevated points, describing the po-

sitions of objects (distance and orientation) from the

point of view of an agent.

The EOPRAm notation is derived from OPRAm

and it allows a joint representation of qualitative di-

rection and distance between two points as: An
m∠

j
i

f
e B,

where m is the orientation granularity, n is the distance

granularity, i and j are orientation relations, and e and

f are distance relations. A granularity parameter m al-

lows the definition of angular zones used to represent

a world discretization. Given the granularity parame-

ter m, the world is partitioned into 4m regions for each

oriented object.

Figure 1 shows an example of a EOPRA relation

between two elevated points (A and B): A4∠
1
13

5
3B rep-

resenting that both A and B have been discretized into

16 orientation relations (4m) and 8 distance relations

(2m). For relative orientation, A is in the sector 1 of B

and B is in the sector 13 of A, and for relative distance,

A is in the sector 5 of B and B is in the sector 3 of A.

For each jointly exhaustive and pairwise disjoint set

of QSR relations there is a specific Conceptual Neigh-

borhood Diagram (CND) [14]. A CND is a graph with

nodes corresponding to a relation between spatial en-

tities and edges corresponding to a pair of conceptual

neighbors (i.e. there is no other relation from the set
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Fig. 1. EOPRA4 relation A 4∠
1
13

5
3 B.

that represents the transition from one relation to the

other in the pair). Randell and Witkowski [32] have

used CND and similarity matrix as a tool to compare

and measure the distance between sets of spatial re-

gions. The work of Weghe and Maeyer [7] used a QSR

formalism and its CND to represent and reason about

movements of objects, measuring the distance between

the relations of two objects. In this paper, we apply a

Conceptual Neighborhood Diagram as a tool to mea-

sure the distance between a new problem and items in

a case base in order to retrieve the most similar case to

the problem. This idea is developed in the next section.

2. Problem Formulation

This section presents the Qualitative Case-Based

Reasoning (Q-CBR) method, the qualitative spatial

modeling for the cases, the CND of EOPRAm and the

description of the use of CND as a tool for similarity

measuring, defining a new retrieval algorithm for CBR.

2.1. Qualitative direction and distance

This work uses EOPRAm to represent the relations

between any two objects in the RoboCup domain as a

tuple of orientation and distance. Based on the work

of Moratz and Wallgrün [24] and Dorr, Latecki and

Moratz [8], we have considered the viewpoint orienta-

tion as being the front of the agent and the granularity

parameter m = 6, creating 24 direction sectors. These

direction sectors are grouped into 8 regions: left (l),

right (r), front (f), back (b), left-front (lf), right-front

(rf), left-back (lb) and right-back (rb). Figure 2 shows

the direction sectors and regions defined, where each

region is composed of three sectors. We have consid-

ered that left-front, right-front, left-back and right-back





CND of EOPRA6 resulted in a similarity matrix with

the minimal path (distance) between each 49 relations,

allowing a fast case comparison during the retrieval

step1.

2.2. Qualitative case representation

Inspired by the work of Ros et al. [35], we define a

case (C) as the problem description (P) and the solu-

tion description (A), represented by:

C = (P,A). (7)

The problem description (P) corresponds to the

qualitative spatial relations between an agent and the

objects in the environment, given by the qualitative di-

rection and distance to each object, from the agent’s

viewpoint. P is given by:

P = {R1 : [O1, . . . ,Ou], . . . ,Rv : [O1, . . . ,Ou]}, (8)

where v is the number of robots that take part in the

case solution, u is the total number of objects that

each agent can perceive, Ri is the agent’s label and

O1,O2, ...,Ou are the qualitative relations between an

object and the current agent Ri (each relation is an ori-

entation and distance tuple). By objects, in the domain

considered, we mean the ball and the other robots that

can be perceived by the agent.

The solution description (A) is that defined in Sec-

tion 1 above.

In contrast to the work presented in [35] (described

in Section 1), the use of the case scope (K) is not nec-

essary in the qualitative case representation proposed

here, since in the present paper objects are located in

qualitative regions. In this work K is only necessary in

the experiments (Section 3), where the results obtained

with our method is compared to those of Ros et al. [35].

2.3. Qualitative case retrieval

The present work uses the distance between rela-

tions in the CND to compute the similarity between the

new problem and the cases in the case base. This can be

done by means of a distance function based on the ma-

trix described in Section 2.1. This qualitative distance

function can be defined as:

1The distance matrix for EOPRA6 is available at the URL

https://goo.gl/photos/nJ83KngMH6i789xz7

DistQ(p,c) = (9)

v

∑
i=1

Dminφ (Ri
c
,Ri

p)+
u

∑
j=1

Dminφ (O j
c
,O j

p),

where v is the number of robots that take part in the

case solution, u is the number of objects that each agent

can perceive, Ri
c is the qualitative position of each

robot i in the case and Ri
p is the qualitative position

of robot i in the given problem, O j
c is the qualitative

position of each object j in the case and O j
p the object

j qualitative position in the problem.

The distance function is used to calculate case sim-

ilarity by means of the qualitative similarity function

defined in Equation 10.

SimQ(p,c) = (10)

CNDMaxDist × (v+u)−DistQ(p,c)

CNDMaxDist × (v+u)
,

where v and u are as defined in the qualitative distance

function and CNDMaxDist is the maximum distance be-

tween two objects in the CND. The result is normal-

ized.

A retrieved case is not always directly applicable

to the problem at hand without some adaptation. If

this is the case, the qualitative adaptation cost function

(shown in Equation 11) is applied.

CostQ(p,c) =
v

∑
i=1

Dminφ (Ri
c
,Ri

p), (11)

where v is the number of robots that take part in the

case solution, Ri
c is the qualitative position of each

robot i in the case and Ri
p is the qualitative position of

robot i in the problem. The adaptation cost function in-

cludes only robots that are in the agent’s team, mean-

ing that their position can be controlled (i.e., adapted).

The adaptation cost is the cost to move the robots of

the team to the position that is described in the most

similar candidate case, and it reflects how much this

adaptation costs.

Algorithm 1 represents the proposed retrieval method

based on the CND distance measure and adaptation

cost. This algorithm has two lists: sim_candidates

which contains cases whose similarity value is greater

than a threshold; and the list adapt_candidates that is

used to compute the adaptation cost of the candidate

cases, sorted in ascending cost order. Lines 2-11 of Al-

gorithm 1 search for candidate cases in the entire case

base. Line 3 measures the qualitative similarity from



Algorithm 1 Retrieval step using CND similarity mea-

sure.

1: function RETRIEVE(Problem p, Case base CB)

2: for each case c ∈CB do

3: sim_value = SimQ(p,c)
4: if sim_value = 1 then

5: return c

6: else

7: if sim_value > threshold then

8: insert(sim_value,c,sim_candidates)
9: end if

10: end if

11: end for

12: if empty(sim_candidates) then

13: return reactive_case

14: end if

15: for each case c ∈ sim_candidates do

16: adapt_value =CostQ(p,c)
17: insert(adapt_value,c,adapt_candidates)
18: end for

19: sort(adapt_value,adapt_candidates)
20: return f irst(c,adapt_candidates)
21: end function

problem to case using Equation 10. In lines 4-5, if there

is a case equal to the problem, the function returns the

case and ends the search. If no case is found within the

similarity range allowed, a pre-defined reactive case is

returned (lines 12-13). A reactive case consists of a

naïve behavior, in which the robot searches for the ball,

walks toward it, aligns itself with respect to the oppos-

ing goal and kicks the ball forward. Lines 15-20 com-

pute the cost of adaptation of each case found in the

previous steps. The list of cases is sorted by the adapta-

tion cost, and the case with the lowest adaptation cost

is returned (sim_value is the second sort criteria).

Figure 6 shows an example of a qualitative retrieval

task with three stored cases. In this example, one agent

is the reference (positioned as EQ) and two other ob-

jects are randomly positioned in the environment. Con-

sider one teammate robot (u = 1) and three objects,

for instance two opponent robots and one ball (v = 3),

where the teammate is the only object that can be

adapted in the case. According to the distance matrix,

CNDMaxDist is equal to 8.

Figure 6 (top-left) shows the CND of the new prob-

lem, representing a snapshot of the objects’ position in

the environment, where the ball is placed very close

and in front of the robot (f,vc), the teammate is placed

to the left and far from the robot (l,f ), one opponent

positioned on the left and close to the robot (l,c) and
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Fig. 6. Example of stored cases and case retrieval.

another opponent positioned on the right-front and far

from the reference robot (rf,f ).

After running the retrieval algorithm the result is: (a)

case #1 (top-right) with DistQ = 6, SimQ = 0.8125 and

CostQ = 1; (b) case #2 (bottom-left) with DistQ = 0,

SimQ = 1 and CostQ = 0; (c) case #3 (bottom-right)

with DistQ = 2, SimQ = 0.9375 and CostQ = 0. In

this example, case #2 will be retrieved because it has

SimQ = 1, but if case #2 would be discarded, case #3

could be retrieved since it has the lowest adaptation

cost.

2.4. Qualitative case reuse

The reuse step consists of adapting the position of

the robots in the problem to the qualitative position of

the retrieved case. Basically, this step contains three

agents: the coordinator robot (Rcoord), which coordi-

nates the retrieval and reuse steps, the executor robot

(Rexe), a robot that is part of the solution, and a re-

trieved robot (Rret ), a virtual robot which represents the

Rexe’s position of the retrieved case.

The reuse step focuses on calculating how the Rexe

can reach the Rret ’s position, and the actions it must

perform to reach this position. But before sharing the

retrieved case to the agents, an intermediate step is nec-

essary: the adaptation step.

The adaptation step is performed by the Composi-

tion Algorithm (CA) proposed by Perico et al. [27]

which infers the qualitative orientation and distance

from Rexe to Rret . The CA (presented in Algorithm

4) uses two other algorithms to infer the qualitative

distance and direction: Algorithm 2 infers a set of

OPRAm relations, and Algorithm 3 restricts the set of

relations by means of triangulation.



Algorithm 2 uses the OPRAm algorithm proposed

by Mossakowski and Moratz [25] and returns a set

of possible direction relations. Lines 5 and 14 com-

pute the composition of OPRA relations as defined

by Mossakowski and Moratz [25]:

opra(m∠
j
i ,m∠k

k,m∠t
s) iff

∃0 6 u,v,w < 4m.turnm(u,−i,s)∧

turnm(v,−k, j)∧ turnm(w,−t, l)∧

trianglem(u,v,w)

(12)

According to [25], turnm(a,b,c) detects complete

turns, while trianglem(a,b,c) detects a triangle by

means of the sum of the angles and the comparison of

the sign of the angles (signm(d)). A triangle is verified

as:

trianglem(a,b,c) iff

turnm(a,b,c−2m)∧ (a,b,c) 6=

(2m,2m,2m)∧

signm(a) = signm(b) = signm(c)

(13)

Equation 14 verifies a complete turn and Equation

15 returns the sign of an angle, as:

turnm(a,b,c) iff

|(a+b+ c+2m) mod 4m)−2m|6

(a mod 2m)× (b mod 2m)

(14)

signm(d) =















0, if (d mod 4m = 0)∨
(d mod 4m = 2m)

1, if (d mod 4m < 2m)
−1, otherwise

(15)

OPRAm algorithm and the used functions are well-

defined by referred authors.

Let i, j, k and l be known object relations and s and

t be unknown relations. Given a set of relations be-

tween the objects A, B and C, where Am∠
j
i B, Bm∠

l
kC

and Am∠
t
sC, the algorithm infers the set of possible di-

rections, i.e., it checks which values s can assume when

t is given; or which values of s and t can assume when

t is not given, and returns all compositions that hold.

Using triangulation, Algorithm 3 reduces the number

of possible relations in the disjunction, resulting in a

qualitative direction.

Finally, CA calculates the rough distance between

Rcoord , Rexe and Rret and discretizes it into qualitative

distances, as presented in Section 2.1.

Algorithm 2 OPRAm - Inferring the set of relations ŝ

or ŝ and t̂ of OPRAm for non-coincident points.

1: function OPRAINFERENCE(Granularity m, Rela-

tions i, j,k, l, t)

2: if relation t = /0 then

3: for each stest ∈ relations do

4: for each ttest ∈ relations do

5: if opra(m, i, j,k, l,stest , ttest) then

6: insert(stest , ŝ)
7: insert(ttest , t̂

8: end if

9: end for

10: end for

11: return ŝ, t̂

12: else

13: for each stest ∈ relations do

14: if opra(m, i, j,k, l,stest , t) then

15: insert(stest , ŝ)
16: end if

17: end for

18: return ŝ

19: end if

20: end function

Algorithm 3 Triangulation - Restricting the set of ŝ

relations by triangulation.

1: function RESTRICTINGOPRA(Granularity m, Re-

lations ŝ, Angle α)

2: iaux = DiscretizeToOpra(m, i,α)
3: irestr = sum(i, iaux)
4: if irestr = even number then

5: ĉ = [irestr +1, irestr −1]
6: else

7: ĉ = [irestr]
8: end if

9: for each n ∈ ŝ do

10: if n ⊂ ĉ then

11: insert(n, â)
12: end if

13: end for

14: return â

15: end function



Algorithm 5 presents the proposed reuse method. As

the retrieved case contains the qualitative position of

the coordinator robot’s point of view, it needs to be

converted to the executor robot’s point of view, that has

its own qualitative relations about the world. The algo-

rithm receives the problem and the retrieved case and,

for each robot that is part of the solution, an adapted

position is generated based on the executor robot’s

point of view (line 3). Line 4 shares with the execu-

tor robot the adapted positions and line 5 shares the

actions it must perform to solve the problem.

Algorithm 4 Composition Algorithm.

1: function CA(Problem p, Case c, Integer coord,

Integer r)

2: i, j,k, l,s, t = ObtainRelation(p,c)
3: ŝ = OpraIn f erence(m, i, j,k, l, t)
4: qDirect = RestrictingOpra(m, ŝ,al pha)
5: qDist =CalculateDistance(p,c,coord,r)
6: return qDirect,qDist

7: end function

Algorithm 5 Reuse step using Composition Algo-

rithm.

1: function REUSE(Problem p, Case c)

2: for each robot r ∈ executorsrobot do

3: adapt_pos =CA(p,c,coord,r)
4: send_positions(adapt_pos,r)
5: send_actions(c)
6: end for

7: end function

In order to exemplify the reuse step using CA, Fig-

ure 7 presents the coordinator robot’s (Rcoord) point of

view about the executor robot’s (Rexe) qualitative po-

sition, the robot’s position on the retrieved case (Rret ),

and the executor robot’s point of view about the co-

ordinator robot’s qualitative position. Rcoord can eas-

ily obtain the angle β , so it can calculate the angle α
using the law of cosines. After obtaining α , the an-

gle is discretized according OPRA6 definitions, rep-

resenting the Rexe’s qualitative orientation to the Rret

position. The Rexe’s qualitative distance is calculated

by the Pythagorean theorem and the distance is dis-

cretized according EOPRA6. In Figure 7 (left) the

Rcoord searches for the objects’ position on the envi-

ronment and finds the Rexe’s position in left,farthest; it

retrieves a case and selects the most similar case where

the robot’s position in the case is front,very far (Rret ).

Figure 7 (center), by running the Composition Algo-

rithm, the adapted position to the Rexe’s point of view is

obtained, returning the regions right-front,farthest that

are shared among the agents. Figure 7 (right) shows

that Rexe executes the movements to reach Rret ’s posi-

tion and performs the actions to solve the problem2.

3. Experiments and Results

This section presents the experiments and results

obtained applying the algorithms introduced in this

work to the humanoid-robot soccer environment. Two

types of experiments are performed: (1) in a simulator:

where we compared our qualitative case-based algo-

rithms with the metric approach proposed by Ros et al.

[35] and with a reactive agent; (2) in a real humanoid-

robot domain: where our qualitative case-based algo-

rithms were compared with a reactive agent.

The experiments in this section aim at analyzing

which of the approaches resulted in more goals scored

and fewer errors, and to compare the retrieval time of

cases between metric and qualitative methods. The fol-

lowing sections present the software architecture used

in the experiments, describe the two experiments per-

formed as well as the results obtained.

3.1. RoboFEI Humanoid Soccer Simulator

Both simulation and real robot experiments were

conducted using a software developed with the pur-

pose of enabling the reproduction of experiments and

performance comparison of different algorithms: the

RoboFEI Humanoid Soccer Simulator. This software

uses the Cross architecture described in Perico et al.

[29], which is based on low-level tasks, such as vision,

control and communication processes, allowing users

to develop and test high-level decision-making algo-

rithms in simulation and transfer them to real robots

without the need of much software modifications.

The Cross architecture (Figure 8) is a hybrid ar-

chitecture, because there are some aspects of reactive

and hierarchical paradigms. The processes are com-

pletely independent from one another, and they can

be grouped into vision, localization, decision-making,

planning, communication, perception and control sys-

tems, each of which communicate to each other us-

ing a shared memory. A major process, named man-

agement process, is responsible to launch, synchronize

and monitor all the other processes.

2The direction and distance labels were hidden to allow clear vi-

sualization.









scenarios is measured based on the distance between

the considered relations. It differs from the retrieval al-

gorithm presented in this paper since, here, each qual-

itative position of the objects in the cases is compared

with the objects in the problem, retrieving the cases

that have the minimal cost of adaptation among the

cases that have the CND that is the most similar the

problem’s CND.

Young and Hawes [40, 41] applied the Star Calcu-

lus to represent the qualitative direction between enti-

ties on the RoboCup Soccer Keepaway [38]. In another

environment, Southey and Little [37] applied QSR to

games, where the objects’ position were modeled as

qualitative spatial relations. The results of these papers

show that the use of QSR is an interesting way to gen-

eralize the objects’ position representation. Our work

uses EOPRA and compares its retrieval time with re-

spect to a metric-based algorithm. We also performed

experiments on real robots, with limited view of the

environment.

5. Conclusion

This work introduced and analyzed an algorithm

called Q-CBR, a case-based reasoning method assum-

ing a qualitative spatial representation of the domain.

By modeling cases in a CBR system as qualitative

spatial relations, and using the notion of Conceptual

Neighborhood Diagram and cost functions as similar-

ity measure, a faster case-retrieval method was ob-

tained when compared with a metric algorithm. Be-

sides, in some domains, qualitative representation is

more appropriate than numerical. The humanoid-robot

soccer is one of these domains, as the robots are not

capable of computing the precise positions of objects

in the field.

Aiming at evaluating the method proposed in this

paper, experiments were performed in a simulated en-

vironment with a small case base, using two distinct

scenarios. The proposed method was also evaluated

in a real humanoid-robot scenario. The results show

that the teams that used Q-CBR had a higher num-

ber of scored goals and lower (more efficient) retrieval

time. In all experiments executed in this work, the al-

gorithm introduced in this paper (Q-CBR) was three

times faster than the metric algorithm tested, which al-

lows the execution of Q-CBR in robots with a limited

processing power and hardware.

Future work shall consider the implementation of

the complete Q-CBR cycle and the investigation of the

performances related to the revision and retention pro-

cesses. We also propose to implement Q-CBR as a

multi-agent system, where each robot has its own case

base and cooperates with the other team members to

define which case would be better to solve the problem.

Given the interesting results obtained by Q-CBR, we

propose to implement this work following the Goal-

Driven Autonomy (GDA) model, where the agents will

be able to learn, plan and reuse goal policies.
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