The Fractal Dimension of SAT Formulas

C. Ansótegui1 M.L. Bonet2 J. Giráldez-Cru3 J. Levy3

1DIEI - Univ. de Lleida
2LSI - UPC
3IIIA-CSIC

IJCAR 2014
July 19, 2014
Known Facts from SAT Community

- **Random** and **industrial** formulas: **distinct nature.**
 - SAT competitions: different tracks.

- SAT solvers **specialize.**

- Many **very large industrial instances solved efficiently** by modern SAT solvers (**CDCL**).
 - Good performance: ability to exploit some **hidden structure.**
SAT Instances

- **Random k-CNF:**
 - Its definition is clear.
 - Generate k-CNF of n vars and m clauses:

    ```
    for i in 1..m
    Select randomly $k$ literals among $n$
    with random polarity
    ```
 - Theoretical point of view.

- **Industrial CNF:**
 - Problems encodings from real-world applications.
 - No precise definition: crypto, bmc, scheduling, planning, ...
 - Heterogeneity.
SAT Instances

- **Random k-CNF:**
 - Its definition is clear.
 - Generate k-CNF of n vars and m clauses:

    ```
    for i in 1..m
    Select randomly $k$ literals among $n$
    with random polarity
    ```
 - Theoretical point of view.

- **Industrial CNF:**
 - Problems encodings from real-world applications.
 - No precise definition: crypto, bmc, scheduling, planning, ...
 - Heterogeneity.
[Some] Open Questions in SAT

- **Open Question #1**: What is exactly the **structure** of industrial formulas?

- **Open Question #2**: How SAT solvers (can) **exploit** this structure?
The classical Erdös-Rényi model:

- Generate a graph of n nodes and m edges:

  ```
  for $i$ in 1..m
  Select randomly 2 nodes among $n$
  ```

- These networks cannot be used for representing many real-world networks.

Real-world networks:

- **Features**: Clustering coefficient, Modularity, ...
- **Models**: Small-world, Scale-free, ...
- Methods of **generation**: Preferential attachment, ...
Complex Networks

- The **classical Erdös-Rényi model**:
 - Generate a graph of n nodes and m edges:
 - for i in 1..m
 - Select randomly 2 nodes among n
 - These networks cannot be used for representing many real-world networks.

- **Real-world networks**:
 - **Features**: Clustering coefficient, Modularity, ...
 - **Models**: Small-world, Scale-free, ...
 - Methods of **generation**: Preferential attachment, ...
Complex Networks vs SAT

- **Erdős-Rényi graphs**: for i in 1..m
 Select randomly 2 nodes among n

- **Random k-CNF**: for i in 1..m
 Select randomly k literals among n
 with random polarity

- **Real-world networks**: features, models, methods of generation.

- **Industrial CNF**: ?

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

DIEI - Univ. de Lleida, LSI - UPC, IIIA-CSIC

The Fractal Dimension of SAT Formulas
Complex Networks vs SAT

- **Erdös-Rényi graphs**: for \(i \) in 1..\(m \)
 Select randomly 2 nodes among \(n \)

- **Random k-CNF**: for \(i \) in 1..\(m \)
 Select randomly \(k \) literals among \(n \)
 with random polarity

- **Real-world networks**: features, models, methods of generation.

- **Industrial CNF**: ?
[Some] Open Questions in SAT

- **Open Question #1**: What is exactly the **structure** of industrial formulas?
- **Open Question #2**: How SAT solvers (can) **exploit** this structure?

- Many works in terms of **complex networks** trying to **answer** these questions.
Previous Work (I)

- **Open Question #1**: What is exactly the **structure** of industrial formulas?

 Scale-free Structure [Ansótegui, Bonet, Levy. CP2009]
Open Question #1: What is exactly the structure of industrial formulas?

Community Structure [Ansótegui, Giráldez-Cru, Levy. SAT2012]
Previous Work (III)

- **Open Question #1**: What is exactly the **structure** of industrial formulas?
- **Open Question #2**: How SAT solvers (can) **exploit** this structure?
 - Centrality & Branching vars [Katsirelos, Simon. CP2012]
 - Parallel SAT Solving [Sonobe, Kondoh, Inaba. SAT2014]
 - LBD & Runtime Prediction [Newsham, Ganesh, Fischmesiter, Audemard, Simon. SAT2014] *Best Paper Award*
 - ...

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy
DIEI - Univ. de Lleida, LSI - UPC, IIIA-CSIC
The Fractal Dimension of SAT Formulas
Motivations

- **Analysis** of the structure of industrial SAT instances.

- **Generators** of more realistic industrial-like SAT formulas.

- (Possible) **improvements** in SAT solving techniques.
Outline

1. Introduction

2. The Fractal Dimension of Graphs

3. The Fractal Dimension of SAT Formulas

4. Conclusions
A graph has **fractal dimension** (it is **self-similar**) if it keeps the **same shape** after **rescaling**.
Intuition

A graph has **fractal dimension** (it is **self-similar**) if it keeps the **same shape** after **rescaling**.

0.5, 0.15, 1.5, 1.15, 2.5, 0.15, 2.5, 2.15, 3.5, 3.15, 4.5, 2.15, 4.5, 0.15, 5.5, 1.15, 6.5, 0.15
Intuition

A graph has **fractal dimension** (it is **self-similar**) if it keeps the **same shape** after **rescaling**.

1.5,0.553.5,2.555.5,0.550.5,0.151.5,1.152.5,0.152.5,2.153.5,3.154.5,2.154.5,0.156.5,0.15

C. Ansótegui, M. L. Bonet, **J. Giráldez-Cru** and J. Levy

The Fractal Dimension of SAT Formulas

DIEI - Univ. de Lleida, LSI - UPC, **IIIA-CSIC**
Computing the Fractal Dimension (I)

- **[Def.]** A circle of radius r and center c is a subset of nodes of the graph such that the distance between any of them and the node c is strictly smaller than r.

- **[Def.]** Let $N(r)$ be the minimum number of circles of radius r required to cover a graph.
 - $N(1) = n$
 - $N(d_{\text{max}} + 1) = 1$
Computing the Fractal Dimension (II)

<table>
<thead>
<tr>
<th>r</th>
<th>$N(r)$</th>
<th>d_{max} = 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>#nodes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

The Fractal Dimension of SAT Formulas
Computing the Fractal Dimension (II)

The Fractal Dimension of SAT Formulas

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

DIEI - Univ. de Lleida, LSI - UPC, IIIA-CSIC
Computing the Fractal Dimension (II)

<table>
<thead>
<tr>
<th>(r)</th>
<th>(N(r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

\(d_{\text{max}} = 7 \)

The Fractal Dimension of SAT Formulas

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

DIEI - Univ. de Lleida, LSI - UPC, IIIA-CSIC
Computing the Fractal Dimension (II)

<table>
<thead>
<tr>
<th>r</th>
<th>$N(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

$d_{\text{max}} = 7$
Computing the Fractal Dimension (II)

The Fractal Dimension of SAT Formulas

\[

d_{\text{max}} = 7
\]

<table>
<thead>
<tr>
<th>(r)</th>
<th>(N(r))</th>
<th>#nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

DIEI - Univ. de Lleida, LSI - UPC, IIIA-CSIC

The Fractal Dimension of SAT Formulas
Computing the Fractal Dimension (II)

\[
\begin{array}{|c|c|}
\hline
r & N(r) \\
\hline
1 & 27 \quad \text{#nodes} \\
2 & 8 \\
3 & 5 \\
4 & 3 \\
5 & 2 \\
6 & 2 \\
7 & 1 \\
8 & d_{\text{max}} = 7 \\
\hline
\end{array}
\]
Computing the Fractal Dimension (II)

<table>
<thead>
<tr>
<th>r</th>
<th>$N(r)$</th>
<th>#nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>$d_{\text{max}} = 7$</td>
</tr>
</tbody>
</table>
Computing the Fractal Dimension (III)

- [Def.] (Hausdorff) A graph has the **self-similarity** property if the function $N(r)$ decreases polynomially.
- I.e. $N(r) \sim r^{-d}$, for some value d.
- In the case, we call d the **dimension** of the graph.

<table>
<thead>
<tr>
<th>r</th>
<th>$N(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
[Def.] (Hausdorff) A graph has the self-similarity property if the function $N(r)$ decreases polynomially.

I.e. $N(r) \sim r^{-d}$, for some value d.

In the case, we call d the dimension of the graph.

<table>
<thead>
<tr>
<th>r</th>
<th>$N(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Computing the Fractal Dimension (III)

- **[Def.]** *(Hausdorff)* A graph has the **self-similarity** property if the function $N(r)$ decreases polynomially.

- I.e. $N(r) \sim r^{-d}$, for some value d.

- In the case, we call d the **dimension** of the graph.

<table>
<thead>
<tr>
<th>r</th>
<th>$N(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Computing the Fractal Dimension (IV)

- **[Lemma]** Computing the function $N(r)$ is **NP-hard**.
 - Reducing $GraphCOL$ to $N(2)$.

- **Burning** algorithms:
 - More efficient algorithms (greedy).
 - Approximate upper bounds of $N(r)$.
 - Select the circle that covers (burns) the maximal number of uncovered (unburned) nodes.
 - Further approximations needed to make the algorithms of practical use in very large graphs.

- The **Burning by Node Degree (BND)** algorithm.
Computing the Fractal Dimension (IV)

- **[Lemma]** Computing the function $N(r)$ is **NP-hard**.
 - Reducing $GraphCOL$ to $N(2)$.

- **Burning** algorithms:
 - More efficient algorithms (**greedy**).
 - Approximate **upper bounds** of $N(r)$.
 - Select the circle that covers (**burns**) the maximal number of uncovered (**unburned**) nodes.
 - Further approximations needed to make the algorithms of practical use in very large graphs.

- The **Burning by Node Degree (BND)** algorithm.
Computing the Fractal Dimension (IV)

- [Lemma] Computing the function $N(r)$ is NP-hard.
 - Reducing \textit{GraphCOL} to $N(2)$.

- **Burning** algorithms:
 - More efficient algorithms (\textit{greedy}).
 - Approximate upper bounds of $N(r)$.
 - Select the circle that covers (\textit{burns}) the maximal number of uncovered (\textit{unburned}) nodes.
 - Further approximations needed to make the algorithms of practical use in very large graphs.

- The **Burning by Node Degree (BND)** algorithm.

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

DIEI - Univ. de Lleida, LSI - UPC, I3A-CSIC

The Fractal Dimension of SAT Formulas
The Burning by Node Degree (BND) Algorithm

Algorithm 1 Burning by Node Degree (BND)

1: **Input**: Graph $G = (V, E)$
2: **Output**: vector[int] N
4: int $i := 2$
5: while $N[i - 1] > \text{connectedComponents}(G)$ do
6: \quad vector[bool] burned($|V|$)
7: \quad $N[i] := 0$
8: \quad burned := {false, ..., false}
9: \quad while existsUnburnedNode(burned) do
10: \quad \quad $c := \text{highestDegreeUnburnedNode}(G, burned)$
11: \quad \quad $S := \text{circle}(c, i)$
12: \quad \quad for all $x \in S$ do
13: \quad \quad \quad burned$[x] := \text{true}$
14: \quad \quad end for
15: \quad end while
16: \quad $i := i + 1$
17: end while
Example

\[
\begin{array}{c|c|c}
 r & N^{\text{real}}(r) & N^{\text{BND}}(r) \\
1 & 27 & 27 \\
2 & 8 & 9 \\
3 & 5 & 6 \\
4 & 3 & 3 \\
5 & 2 & 2 \\
6 & 2 & 2 \\
7 & 2 & 2 \\
8 & 1 & 1 \\
\end{array}
\]
Example

BND gives upper bounds of $N(r)$

<table>
<thead>
<tr>
<th>r</th>
<th>$N^{real}(r)$</th>
<th>$N^{BND}(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

BND gives upper bounds of $N(r)$

BND well accurate for SAT instances

<table>
<thead>
<tr>
<th>r</th>
<th>$N_{\text{real}}(r)$</th>
<th>$N_{\text{BND}}(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Fractal Dimension vs Diameter

- Determines the **maximal radius** r^{max}.
- Related to the **diameter**: $r^{max} \leq d^{max} \leq 2r^{max}$

- **Diameter:**
 - **Dependent** on the size of the graph.
 - Quite **expensive** to compute in practice.

- **The fractal dimension:**
 - **Independent on the size.** Families with similar $N(r)$ function shape.
 - It can be **computed more efficiently** than the diameter.
Fractal Dimension vs Diameter

- Determines the maximal radius r^{max}.
- Related to the diameter: $r^{max} \leq d^{max} \leq 2r^{max}$

Diameter:
- Dependent on the size of the graph.
- Quite expensive to compute in practice.

The fractal dimension:
- Independent on the size. Families with similar $N(r)$ function shape.
- It can be computed more efficiently than the diameter.
Fractal Dimension vs Diameter

- Determines the maximal radius r^{max}.
- Related to the diameter: $r^{\text{max}} \leq d^{\text{max}} \leq 2r^{\text{max}}$

Diameter:

- **Dependent** on the size of the graph.
- Quite **expensive** to compute in practice.

The fractal dimension:

- **Independent on the size.** Families with similar $N(r)$ function shape.
- It can be **computed more efficiently** than the diameter.

We propose the use of the Fractal Dimension
Outline

1. Introduction
2. The Fractal Dimension of Graphs
3. The Fractal Dimension of SAT Formulas
4. Conclusions
SAT Formulas as Graphs

\[\sigma = (a \lor b) \land (a \lor \neg c) \]

Clause-Variable Incidence Graph (CVIG)

Variable Incidence Graph (VIG)

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

The Fractal Dimension of SAT Formulas
The Relation between VIG and CVIG

<table>
<thead>
<tr>
<th>VIG</th>
<th>CVIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(r))</td>
<td>(N^b(r))</td>
</tr>
</tbody>
</table>

[Lemma]

- If \(N(r) \sim r^{-d} \implies N^b(r) \sim r^{-d} \)
- If \(N(r) \sim e^{-\beta r} \implies N^b(r) \sim e^{-\frac{\beta}{2} r} \)
The Accuracy of the BND Algorithm (I)

<table>
<thead>
<tr>
<th></th>
<th>BND</th>
<th>MEMB¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>#solved</td>
<td>300</td>
<td>17</td>
</tr>
<tr>
<td>av. of runtime</td>
<td>0.11sec</td>
<td>10min 7.2sec</td>
</tr>
<tr>
<td>$N^b(r)$</td>
<td>Very similar values</td>
<td></td>
</tr>
</tbody>
</table>

Set: 300 industrial instances of the SAT Competition 2013

¹ [Song et al. Journal of Statistical Mechanics (2007)]
The Accuracy of the BND Algorithm (II)

C. Ansótegui, M. L. Bonet, J. Giráldez-Cru and J. Levy

DIEI - Univ. de Lleida, LSI - UPC, IIIA-CSIC

The Fractal Dimension of SAT Formulas
Known Results for Random 2CNF Formulas

- **Phase transition point** at $m/n = 1$.

- VIG’s of random 2CNF formulas = Erdös-Rényi graphs.
- Percolation threshold at $m/n = 0.5$.
 - In this point, self-similar ($d = 2$).
 - Above this point $N(r)$ decays exponentially.

- To the best of our knowledge, there is no known result for random 3CNF instances.
Known Results for Random 2CNF Formulas

- **Phase transition point** at $m/n = 1$.

- **VIG’s of random 2CNF formulas** = Erdös-Rényi graphs.

- **Percolation threshold** at $m/n = 0.5$.
 - In this point, **self-similar** ($d = 2$).
 - Above this point $N(r)$ decays exponentially.

- To the best of our knowledge, there is **no known result** for random 3CNF instances.
Known Results for Random 2CNF Formulas

- Phase transition point at $m/n = 1$.

- VIG’s of random 2CNF formulas = Erdös-Rényi graphs.

- Percolation threshold at $m/n = 0.5$.
 - In this point, self-similar ($d = 2$).
 - Above this point $N(r)$ decays exponentially.

- To the best of our knowledge, there is no known result for random 3CNF instances.
Random 3CNF Formulas

- Experimentally, $N(r)$ (and $N^b(r)$) only depends on the clause/variable ratio m/n (and not on the number of variables n).
- Phase transition point ($m/n \approx 4.25$):
 - $N(r) \sim e^{-2.3r}$ and $N^b(r) \sim e^{-1.16r}$
 - Hence, the decay of CVIG is just half of the decay of VIG (as expected)
- (Experimentally) Percolation threshold at $m/n \approx 0.17$, $d = 2$
Industrial SAT Formulas (I)

- Analysis of the **SAT Competition 2013** (300 instances).
- Most industrial SAT instances are **self-similar**: $2 \leq d \leq 4$.
- Most families have homogeneous behaviors.
- The size of the formulas does not affect the value of the dimension of the family (same slope for all instances).
Industrial SAT Formulas (I)

- Analysis of the SAT Competition 2013 (300 instances).

- Most industrial SAT instances are self-similar: $2 \leq d \leq 4$.

- Most families have homogeneous behaviors

- The size of the formulas does not affect the value of the dimension of the family (same slope for all instances).
Family \textit{diagnosis}: \(d \approx 2.84 \) (26 instances)

Family \textit{crypto-sha}: \(d \approx 3.91 \) (30 instances)
Industrial SAT Formulas (III)

- Family *scheduling-pesp*: \(d \approx 2.65 \) (30 instances)
- Family *crypto-gos*: \(d \approx 3.00 \) (30 instances)
In some families, all instances have a $N(r)$ function with exponential decay, i.e. they are not self-similar.
Analyzing the Fractal Dimension (I)

We identify **two phenomena** (only in some cases):

1. **Abrupt decay** (but no exponential function).
Analyzing the Fractal Dimension (II)

- Family *hardware-cec*: \(d \approx 2.25 \) (30 instances)
- Family *termination*: \(d \approx 2.37 \) (5 instances)
Analyzing the Fractal Dimension (III)

We identify **two phenomena** (only in some cases):

1. **Abrupt decay** (but no exponential function).
 - Small number of edges connecting distant areas of the graph.
 - No effect for small values of r.
 - They may drop down the number of circles for big values of r.
 - Existence of **non-local** dependencies.

2. **Long tail**.
Analyzing the Fractal Dimension (III)

We identify **two phenomena** (only in some cases):

1. **Abrupt decay** (but no exponential function).
 - Small number of edges connecting distant areas of the graph.
 - No effect for small values of r.
 - They may drop down the number of circles for big values of r.
 - Existence of **non-local** dependencies.

2. **Long tail**.
Analyzing the Fractal Dimension (IV)

- Family *hardware-bmc-ibm*: \(d \approx 2.18 \) (4 instances)
- Family *hardware-bmc*: \(d \approx 2.29 \) (3 instances)
Analyzing the Fractal Dimension (V)

We identify **two phenomena** (only in some cases):

1. **Abrupt decay** (but no exponential function).
 - Small number of edges connecting distant areas of the graph.
 - No effect for small values of r.
 - They may drop down the number of circles for big values of r.
 - Existence of **non-local** dependencies.

2. **Long tail**.
 - Existence of (small) **unconnected components**.
 - Removed after preprocessing.
Outline

1 Introduction

2 The Fractal Dimension of Graphs

3 The Fractal Dimension of SAT Formulas

4 Conclusions
Summary

- **FD** related to *diameter*, but **more stable** (independent on the size).
- **BND**: efficient computation of FD in very large graphs (as SAT instances).
- Most industrial SAT instances are **self-similar**: $2 \leq d \leq 4$.
- Random SAT formulas are clearly **not self-similar**.
- **Learning** does **not** contribute to connect distant parts of the formula (as one could think) [See details in Section 5].
- **Future work**: Generators of more realistic industrial-like SAT instances take into account the fractal dimension.
Summary

- **FD** related to **diameter**, but **more stable** (independent on the size).
- **BND**: efficient computation of FD in very **large graphs** (as SAT instances).
- Most industrial SAT instances are **self-similar**: $2 \leq d \leq 4$.
- **Random** SAT formulas are clearly **not self-similar**.
- Learning **does not contribute** to connect distant parts of the formula (as one could think) [See details in Section 5].
- Future work: **Generators** of more realistic industrial-like SAT instances take into account the fractal dimension.
Summary

- **FD** related to **diameter**, but **more stable** (independent on the size).
- **BND**: efficient computation of FD in very **large graphs** (as SAT instances).
- **Most industrial SAT instances are self-similar**: $2 \leq d \leq 4$.
- **Random** SAT formulas are clearly **not self-similar**.
- **Learning** does **not** contribute to connect distant parts of the formula (as one could think) *[See details in Section 5]*.

Future work: Generators of more realistic industrial-like SAT instances take into account the fractal dimension.
Summary

- **FD** related to **diameter**, but **more stable** (independent on the size).

- **BND**: efficient computation of **FD** in very **large graphs** (as SAT instances).

- Most industrial SAT instances are **self-similar**: $2 \leq d \leq 4$.

- **Random** SAT formulas are clearly **not self-similar**.

- **Learning** does not contribute to connect distant parts of the formula (as one could think) *See details in Section 5*.

- **Future work**: **Generators** of **more realistic** industrial-like SAT instances take into account the fractal dimension.
Thank you for your attention!
The Fractal Dimension of SAT Formulas

C. Ansótegui1 M.L. Bonet2 J. Giráldez-Cru3 J. Levy3

1DIEI - Univ. de Lleida
2LSI - UPC
3IIIA-CSIC

IJCAR 2014
July 19, 2014