
A Modularity-based Random
SAT Instances Generator

Jesús Giráldez-Cru and Jordi Levy

Artificial Intelligence Research Institute
Spanish National Research Council

(IIIA-CSIC)
Barcelona, Spain

IJCAI 2015
July 31, 2015

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Industrial SAT Instances

The Boolean Satisfiability Problem (SAT).

Many real-world problems are efficiently solved by
modern SAT solvers.

Conflict-Driven Clause Learning (CDCL) SAT solvers.

Industrial SAT Instances:
Problems encodings from real-world applications.
No precise definition/model: crypto, bmc, scheduling,
planning, ...
Heterogeneity.
Finite and reduced number of instances.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Realistic Pseudo-Industrial SAT Instances Generators
The generation of realistic random pseudo-industrial
SAT instances:

[SelmanKautzMcAllester97]:
CHALLENGE 10: Develop a generator for problem
instances that have computational properties that
are more similar to real world instances.

[KautzSelman03]
[Dechter03]

Need: Testing and Debugging Purposes.
Desired size.
Desired hardness.
Desired properties.

Approach: Analysis of SAT instances.
General common properties.
Isolate some of them.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Realistic Pseudo-Industrial SAT Instances Generators
The generation of realistic random pseudo-industrial
SAT instances:

[SelmanKautzMcAllester97]:
CHALLENGE 10: Develop a generator for problem
instances that have computational properties that
are more similar to real world instances.

[KautzSelman03]
[Dechter03]

Need: Testing and Debugging Purposes.
Desired size.
Desired hardness.
Desired properties.

Approach: Analysis of SAT instances.
General common properties.
Isolate some of them.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Graphs

A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.
The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and
same degrees).

Q(G,C) =
∑
Ci∈C

∑
x ,y∈Ci

w(x , y)

∑
x ,y∈V

w(x , y)
−


∑
x∈Ci

deg(x)

∑
x∈V

deg(x)


2

where G = (V ,w) and deg(x) =
∑

y∈V w(x , y).
The modularity of a graph is the maximal modularity for
any possible partition: Q(G) = max{Q(G,C)|C}.
The (optimal) modularity ranges in the interval [0,1].

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Graphs

A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.
The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and
same degrees).

Q(G,C) =
∑
Ci∈C

∑
x ,y∈Ci

w(x , y)

∑
x ,y∈V

w(x , y)
−


∑
x∈Ci

deg(x)

∑
x∈V

deg(x)


2

where G = (V ,w) and deg(x) =
∑

y∈V w(x , y).
The modularity of a graph is the maximal modularity for
any possible partition: Q(G) = max{Q(G,C)|C}.
The (optimal) modularity ranges in the interval [0,1].

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Graphs

A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.
The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and
same degrees).

Q(G,C) =
∑
Ci∈C

∑
x ,y∈Ci

w(x , y)

∑
x ,y∈V

w(x , y)
−


∑
x∈Ci

deg(x)

∑
x∈V

deg(x)


2

where G = (V ,w) and deg(x) =
∑

y∈V w(x , y).
The modularity of a graph is the maximal modularity for
any possible partition: Q(G) = max{Q(G,C)|C}.
The (optimal) modularity ranges in the interval [0,1].

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Industrial SAT Instances

SAT Instances as Graphs.
The Variable Incidence Graph (VIG):

Nodes are variables.
Edges between two variables in the same clause.
Weights to give the same relevance to all clauses.

Industrial SAT instances have a clear community
structure.
Their modularity has values greater than 0.7 in most
cases (random SAT instances have a modularity smaller
than 0.3).
[AnsóteguiGiráldezLevy12]

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Industrial SAT Instances

SAT Instances as Graphs.
The Variable Incidence Graph (VIG):

Nodes are variables.
Edges between two variables in the same clause.
Weights to give the same relevance to all clauses.

Industrial SAT instances have a clear community
structure.
Their modularity has values greater than 0.7 in most
cases (random SAT instances have a modularity smaller
than 0.3).
[AnsóteguiGiráldezLevy12]

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (I)

Classical Random k -CNF model: Fk (n,m)
n: #variables, m: #clauses, k : clause size

Community Attachment model: Fk (n,m, c,P)
c: #communities (each community has n/c variables)
Probability P

For each clause, repeat:
With probability P: all literals in the same community.
With probability 1− P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

Restriction: k ≤ c ≤ n/k
There always exists at least one possible clause to select.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (I)

Classical Random k -CNF model: Fk (n,m)
n: #variables, m: #clauses, k : clause size

Community Attachment model: Fk (n,m, c,P)
c: #communities (each community has n/c variables)
Probability P

For each clause, repeat:
With probability P: all literals in the same community.
With probability 1− P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

Restriction: k ≤ c ≤ n/k
There always exists at least one possible clause to select.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (I)

Classical Random k -CNF model: Fk (n,m)
n: #variables, m: #clauses, k : clause size

Community Attachment model: Fk (n,m, c,P)
c: #communities (each community has n/c variables)
Probability P

For each clause, repeat:
With probability P: all literals in the same community.
With probability 1− P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

Restriction: k ≤ c ≤ n/k
There always exists at least one possible clause to select.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (I)

Classical Random k -CNF model: Fk (n,m)
n: #variables, m: #clauses, k : clause size

Community Attachment model: Fk (n,m, c,P)
c: #communities (each community has n/c variables)
Probability P

For each clause, repeat:
With probability P: all literals in the same community.
With probability 1− P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

Restriction: k ≤ c ≤ n/k
There always exists at least one possible clause to select.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (II)

Community Attachment model: Fk (n,m, c,P)

Theorem. Given a SAT instance Γ ∈ Fk (n,m, c,P), let G
be its VIG. The average modularity of G is bounded as:

E [Q(G)] ≥ P − 1
c

When P is big enough, the modularity is very close to this
lower-bound. Therefore, we simply take:

P = Q +
1
c

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (II)

Community Attachment model: Fk (n,m, c,P)

Theorem. Given a SAT instance Γ ∈ Fk (n,m, c,P), let G
be its VIG. The average modularity of G is bounded as:

E [Q(G)] ≥ P − 1
c

When P is big enough, the modularity is very close to this
lower-bound. Therefore, we simply take:

P = Q +
1
c

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (II)

Community Attachment model: Fk (n,m, c,P)

Theorem. Given a SAT instance Γ ∈ Fk (n,m, c,P), let G
be its VIG. The average modularity of G is bounded as:

E [Q(G)] ≥ P − 1
c

When P is big enough, the modularity is very close to this
lower-bound. Therefore, we simply take:

P = Q +
1
c

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (III)

High modularity:
more adequate to model real-world problems.

Low modularity:
more similar to classical random problems.

This generator is publicly available at:
http://www.iiia.csic.es/˜jgiraldez/software

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Example

200 variables
850 clauses
Q = 0.8
20 communities

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

SAT Solvers Performance

Glucose (industrial) vs March (random):

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.3

UNSAT
SAT
f(x)=x

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

SAT Solvers Performance

Glucose (industrial) vs March (random):

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.3

UNSAT
SAT
f(x)=x

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.5

UNSAT
SAT
f(x)=x

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

SAT Solvers Performance
Glucose (industrial) vs March (random):

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.3

UNSAT
SAT
f(x)=x

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.5

UNSAT
SAT
f(x)=x

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.7

UNSAT
SAT
f(x)=x

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

SAT Solvers Performance
Glucose (industrial) vs March (random):

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.3

UNSAT
SAT
f(x)=x

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.5

UNSAT
SAT
f(x)=x

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.7

UNSAT
SAT
f(x)=x

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

R
u
n
ti
m

e
 M

a
rc

h

Runtime Glucose

Q = 0.8

UNSAT
SAT
f(x)=x

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Phase Transition Point

Finite size (Observations):
The phase transition point
SAT-UNSAT, if exists, decreases
for higher values of modularity.

Infinite size (Theorem):
The phase transition point
SAT-UNSAT, if exists, does not
depend on the modularity.

Proof.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4

P
e
rc

e
n
ta

g
e
 U

N
S

A
T

 f
o
rm

u
la

s
 (

%
)

m/n

Q = 0.9
Q = 0.8
Q = 0.7
Q = 0.5
Q = 0.3

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Analyzing the SAT Solver

1000 variables and 10 communities.

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
a

ri
a

b
le

Decision along time

Using community structure to improve the performance of
CDCL SAT solvers:
[AnsóteguiGiráldezLevySimon] to appear in SAT 2015.

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Thank you
for your attention!

Poster Panel #49

I am looking for postdocs opportunities
jgiraldez@iiia.csic.es

Jesús Giráldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

