A Modularity-based Random

SAT Instances Generator

Jesus Giraldez-Cru and Jordi Levy

Artificial Intelligence Research Institute
Spanish National Research Council
(IIA-CSIC)

Barcelona, Spain

IJCAI 2015
July 31, 2015

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Industrial SAT Instances

@ The Boolean Satisfiability Problem (SAT).

@ Many real-world problems are efficiently solved by
modern SAT solvers.

e Conflict-Driven Clause Learning (CDCL) SAT solvers.

@ Industrial SAT Instances:

e Problems encodings from real-world applications.

e No precise definition/model: crypto, bmc, scheduling,
planning, ...

e Heterogeneity.

e Finite and reduced number of instances.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Realistic Pseudo-Industrial SAT Instances Generators

@ The generation of realistic random pseudo-industrial
SAT instances:

e [SelmanKautzMcAllester97]:
CHALLENGE 10: Develop a generator for problem
instances that have computational properties that
are more similar to real world instances.

o [KautzSelman03]

o [Dechter03]

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Realistic Pseudo-Industrial SAT Instances Generators

@ The generation of realistic random pseudo-industrial
SAT instances:

e [SelmanKautzMcAllester97]:
CHALLENGE 10: Develop a generator for problem
instances that have computational properties that
are more similar to real world instances.

o [KautzSelman03]

o [Dechter03]

@ Need: Testing and Debugging Purposes.

o Desired size.
@ Desired hardness.
e Desired properties.

@ Approach: Analysis of SAT instances.

e General common properties.
o Isolate some of them.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Graphs

@ A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Graphs

@ A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.

@ The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and

same degrees).
S owixy) [deg(x)

Ci xeC;

QG,C)= Y M - | =
CieC Z W(X,y) Z deg(x)

x,yeVv xeV

where G = (V,w) and deg(x) = >,y W(X,).

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Graphs

@ A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.

@ The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and

same degrees).
S owixy) [deg(x)

Ci xeC;j

QG,Cc)= Y X - | =
2 S winy) | S degt)

x,yeVv xeV

where G = (V,w) and deg(x) = >,y W(X,).

@ The modularity of a graph is the maximal modularity for
any possible partition: Q(G) = max{Q(G, C)|C}.

@ The (optimal) modularity ranges in the interval [0, 1].

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Industrial SAT Instances

@ SAT Instances as Graphs.
@ The Variable Incidence Graph (VIG):
e Nodes are variables.

e Edges between two variables in the same clause.
e Weights to give the same relevance to all clauses.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

The Community Structure of Industrial SAT Instances

@ SAT Instances as Graphs.
@ The Variable Incidence Graph (VIG):

e Nodes are variables.
e Edges between two variables in the same clause.
e Weights to give the same relevance to all clauses.

@ Industrial SAT instances have a clear community
structure.

@ Their modularity has values greater than 0.7 in most
cases (random SAT instances have a modularity smaller
than 0.3).

[AnsoteguiGiraldezLevy12]

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (1)

@ Classical Random k-CNF model: Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model: Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (1)

@ Classical Random k-CNF model: Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model: Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

@ For each clause, repeat:
o With probability P: all literals in the same community.
e With probability 1 — P: all literals in distinct communities.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (1)

@ Classical Random k-CNF model: Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model: Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

@ For each clause, repeat:
o With probability P: all literals in the same community.
With probability 1 — P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (1)

@ Classical Random k-CNF model: Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model: Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

@ For each clause, repeat:
o With probability P: all literals in the same community.
With probability 1 — P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

@ Restriction: k < ¢ < n/k
e There always exists at least one possible clause to select.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (Il)

@ Community Attachment model: Fx(n,m,c, P)

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (Il)

@ Community Attachment model: Fx(n,m,c, P)

@ Theorem. Given a SAT instance I' € Fx(n,m,c, P), let G
be its VIG. The average modularity of G is bounded as:

1
ElQ(G)) = P~ -

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (Il)

@ Community Attachment model: Fx(n,m,c, P)

@ Theorem. Given a SAT instance I' € Fx(n,m,c, P), let G
be its VIG. The average modularity of G is bounded as:

1
ElQ(G)) = P~ -

@ When P is big enough, the modularity is very close to this
lower-bound. Therefore, we simply take:

1
P=Q+ -
c

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Community Attachment Generator (ll1)

@ High modularity:
more adequate to model real-world problems.

@ Low modularity:
more similar to classical random problems.

This generator is publicly available at:
http://www.iiia.csic.es/ " jgiraldez/software

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

=
S
o
9]
=
5]
0]
172
1)
o
=
i)
@
=
=
<
]
£
S
k-]
=
5]
o
°
59
1)
«
T
=
=
]
>
]
5]
=
<<

Jesus Giraldez-Cru and Jordi Levy

0.8

Q:

0
Q2
=
c
>
S
S
o)
o
o
Y

Example
200 variables
850 clauses

SAT Solvers Performance

Glucose (industrial) vs March (random):

Q=03
100000
T] UNSAT -+
10000 | k| SAT
F(X)=X-oeeeee
1000 | B]
5 .
s
= 100 4
[
-E 10 F -
g
5
[]
o1 f]
001 g L L L
001 0.1 1 10 100 1000 10000 100000

Runtime Glucose

Jesus Giraldez-Cru di Levy A Modularity-based Random SAT Instances Generator

Solvers Performance

Glucose (industrial) vs March (random):

Q=03 Q=05
100000 100000
T UNSAT + T UNSAT +
SAT SAT
10000 | 10000
()= (X)X
1000 k| 1000 |
S S
] g
S 100 | B S 100 F B
o o
-5 10 B 5 10 B
g g
5 5
o [] o L 1
01 E| 01 E|
001 i L L L L L 001 it L L L L
001 0.1 1 10 100 1000 10000 100000 001 0.1 1 10 100 1000 10000 100000

Runtime Glucose Runtime Glucose

A Modularit;

SAT Solvers Performance

Glucose (industrial) vs March (random):

Q=05
100000 100000 A UNSAT -
10000 10000 k| fS(SIX 777777777777
1000 | 1000 | e
<3 <
]]
S 100 b B S 100 b g
© ©
.5 10 k| 5 10 F <
g €
5 5
[] []
+
01| B B
001 Lt L L L L L 001 Lt L L L L L
001 0.1 1 10 100 1000 10000 100000 001 0.1 1 10 100 1000 10000 100000
Runtime Glucose Runtime Glucose
Q=07
100000 T T T T T ™ UNSAT +
o g F(X)=xeemeeeeees
=
1000 g
o o
3
S0+ -
o +
+
E 10 -
€
E}
€ L + 1
+ 4
o1 f, L B
¥
A
001 Lt L L L L L
001 01 1 10 100 1000 10000 100000

Runtime Glucose

Jesus Giraldez T Instances Generator

SAT Solvers Performance

Glucose (industrial) vs March (random):

Q=05
100000 100000
T UNSAT +
SAT
10000 10000 k|
f(x)=xemeeeees
1000 | 1000 |
<3 <
]]
S 100 b B S 100 b
© ©
.5 10 E| g 10F
g €
5 5
[] []
+
L L L L L 001 iu L L L L L
1 10 100 1000 10000 100000 001 0.1 1 10 100 1000 10000 100000
Runtime Glucose Runtime Glucose
Q=07 Q=038
100000 T T T T T u UNSAT + 100000 u u u u u ™3 UNSAT +
10000 | 4+ ESEEE————— 1 SAT 10000 |+ 4+ i CHEm—— T SAT
P F(x) = F(X)=xeemeeeeeee
g+ .
+
1000 . g 1000 . 4
e e
3 3
S0k . E Sl]
2 s o
é 10 | B E 10 | -
€ g
5 5
€ L +] T L 1
81 § 4
001 Lt L L L L L L L L L L

001 0.1 1 10 100 1000 10000 100000 . 10 100 1000 10000 100000
Runtime Glucose Runtime Glucose

The Phase Transition Point

@ Finite size (Observations): NES B
The phase transition point g o 88 /g
SAT-UNSAT, if exists, decreases Lo S

for higher values of modularity. By /

@ Infinite size (Theorem):
The phase transition point
SAT-UNSAT, if exists, does not
depend on the modularity.

o Proof.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

Analyzing the SAT Solver

@ 1000 variables and 10 communities.

1000 ; i ' g h ; i ii

e-mﬂ lf‘i}ﬁ“

600 |-

800

Variable

0 .
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Decision along time

@ Using community structure to improve the performance of

CDCL SAT solvers:
[AnsoteguiGirdldezLevySimon] to appear in SAT 2015.

A Modularity-based Random SAT Instances Generator

Jesus Giraldez-Cru and Jordi Levy

Thank you
for your attention!

Poster Panel #49

| am looking for postdocs opportunities
jgiraldez@iiia.csic.es

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator

