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Industrial SAT Instances

@ The Boolean Satisfiability Problem (SAT).

@ Many real-world problems are efficiently solved by
modern SAT solvers.

e Conflict-Driven Clause Learning (CDCL) SAT solvers.

@ Industrial SAT Instances:

e Problems encodings from real-world applications.

e No precise definition/model: crypto, bmc, scheduling,
planning, ...

e Heterogeneity.

e Finite and reduced number of instances.
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Realistic Pseudo-Industrial SAT Instances Generators

@ The generation of realistic random pseudo-industrial
SAT instances:

e [SelmanKautzMcAllester97]:
CHALLENGE 10: Develop a generator for problem
instances that have computational properties that
are more similar to real world instances.

o [KautzSelman03]

o [Dechter03]
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Realistic Pseudo-Industrial SAT Instances Generators

@ The generation of realistic random pseudo-industrial
SAT instances:

e [SelmanKautzMcAllester97]:
CHALLENGE 10: Develop a generator for problem
instances that have computational properties that
are more similar to real world instances.

o [KautzSelman03]

o [Dechter03]

@ Need: Testing and Debugging Purposes.

o Desired size.
@ Desired hardness.
e Desired properties.

@ Approach: Analysis of SAT instances.

e General common properties.
o Isolate some of them.
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The Community Structure of Graphs

@ A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.
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The Community Structure of Graphs

@ A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.

@ The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and

same degrees).
S owixy) [ deg(x)

Ci xeC;

QG,C)= Y M - | =
CieC Z W(X,y) Z deg(x)

x,yeVv xeV

where G = (V,w) and deg(x) = >,y W(X, ).
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The Community Structure of Graphs

@ A graph has clear community structure if its nodes can
be grouped into communities such that its edges mostly
connect nodes of the same community.

@ The modularity Q [NewmanGirvan04] of a graph G and a
partition C of its nodes measures the fraction of internal
edges (w.r.t. to a random graph with same nodes and

same degrees).
S owixy) [ deg(x)

Ci xeC;j

QG,Cc)= Y X - | =
2 S winy) | S degt)

x,yeVv xeV

where G = (V,w) and deg(x) = >,y W(X, ).

@ The modularity of a graph is the maximal modularity for
any possible partition: Q(G) = max{Q(G, C)|C}.

@ The (optimal) modularity ranges in the interval [0, 1].
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The Community Structure of Industrial SAT Instances

@ SAT Instances as Graphs.
@ The Variable Incidence Graph (VIG):
e Nodes are variables.

e Edges between two variables in the same clause.
e Weights to give the same relevance to all clauses.
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The Community Structure of Industrial SAT Instances

@ SAT Instances as Graphs.
@ The Variable Incidence Graph (VIG):

e Nodes are variables.
e Edges between two variables in the same clause.
e Weights to give the same relevance to all clauses.

@ Industrial SAT instances have a clear community
structure.

@ Their modularity has values greater than 0.7 in most
cases (random SAT instances have a modularity smaller
than 0.3).

[AnsoteguiGiraldezLevy12]
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Community Attachment Generator (1)

@ Classical Random k-CNF model:  Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model:  Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator



Community Attachment Generator (1)

@ Classical Random k-CNF model:  Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model:  Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

@ For each clause, repeat:
o With probability P: all literals in the same community.
e With probability 1 — P: all literals in distinct communities.
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Community Attachment Generator (1)

@ Classical Random k-CNF model:  Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model:  Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

@ For each clause, repeat:
o With probability P: all literals in the same community.
With probability 1 — P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).
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Community Attachment Generator (1)

@ Classical Random k-CNF model:  Fy(n, m)
e n: #variables, m: #clauses, k: clause size

@ Community Attachment model:  Fx(n,m, c, P)
e c: #communities (each community has n/c variables)
e Probability P

@ For each clause, repeat:
o With probability P: all literals in the same community.
With probability 1 — P: all literals in distinct communities.

Communities randomly chosen among c.
Variables randomly chosen among n/c.
Polarities randomly assigned.

Avoiding trivial clauses (repeated literals or tautologies).

@ Restriction: k < ¢ < n/k
e There always exists at least one possible clause to select.
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Community Attachment Generator (Il)

@ Community Attachment model:  Fx(n,m,c, P)
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Community Attachment Generator (Il)

@ Community Attachment model:  Fx(n,m,c, P)

@ Theorem. Given a SAT instance I' € Fx(n,m,c, P), let G
be its VIG. The average modularity of G is bounded as:

1
ElQ(G)) = P~ -
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Community Attachment Generator (Il)

@ Community Attachment model:  Fx(n,m,c, P)

@ Theorem. Given a SAT instance I' € Fx(n,m,c, P), let G
be its VIG. The average modularity of G is bounded as:

1
ElQ(G)) = P~ -

@ When P is big enough, the modularity is very close to this
lower-bound. Therefore, we simply take:

1
P=Q+ -
c
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Community Attachment Generator (ll1)

@ High modularity:
more adequate to model real-world problems.

@ Low modularity:
more similar to classical random problems.

This generator is publicly available at:
http://www.iiia.csic.es/ " jgiraldez/software
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200 variables
850 clauses



SAT Solvers Performance

Glucose (industrial) vs March (random):
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Solvers Performance

Glucose (industrial) vs March (random):
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SAT Solvers Performance

Glucose (industrial) vs March (random):
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SAT Solvers Performance

Glucose (industrial) vs March (random):
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The Phase Transition Point

@ Finite size (Observations): NES B
The phase transition point g o 88 /g
SAT-UNSAT, if exists, decreases Lo S

for higher values of modularity. By /

@ Infinite size (Theorem):
The phase transition point
SAT-UNSAT, if exists, does not
depend on the modularity.

o Proof.

Jesus Giraldez-Cru and Jordi Levy A Modularity-based Random SAT Instances Generator



Analyzing the SAT Solver

@ 1000 variables and 10 communities.
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@ Using community structure to improve the performance of

CDCL SAT solvers:
[AnsoteguiGirdldezLevySimon] to appear in SAT 2015.
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