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1. Introduction. The solvability of monadic second-order unification problems
considered in this paper is a decision problem with many natural relationships with
other well-known decision problems (higher-order unification, word unification, con-
text unification and specializations thereof). For various members of this family, the
exact complexity is still not known. In this paper we show that solvability of monadic
second-order unification problems is NP-complete, thus adding a new piece to the
larger puzzle. The techniques we use in our proof turned out to be relevant for other
problems as well. Before we describe the organization of the paper we illuminate
in more detail the relationship of monadic second-order unification with the above
problems, give a brief survey on the techniques used in our proof, and indicate further
contributions obtained from our method.

1.1. Monadic second-order unification from a higher-order perspective.
Higher-order unification (HOU) is unification in the simply typed λ-calculus, i.e., the
problem of, given two λ-terms with the same type, deciding if there is a substitution
(of free variables by equally typed terms) that, applied to both terms, makes them
equivalent w.r.t. αβη-equality (see chapter about HOU in [1]).

Second-order unification (SOU) is a restriction of HOU where all variables are at
most second-order typed and constants are at most third-order typed. Some authors
restrict constants in SOU to also be second-order typed, and it is also common to con-
sider just one base type. Here, we will also make these assumptions. It is well known
that the problem of deciding if an SOU problem has a solution is undecidable [5], even
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if we impose additional restrictions on the number of second-order variables (just one),
their number of occurrences (just four), and their arity (just one) [3, 9, 13]. All these
undecidability proofs require a language with at least a binary or higher arity constant.
In fact, one single binary constant is enough [3, 14].

Monadic second-order unification (MSOU) is a restriction of SOU where all func-
tion constants occurring in the problem are at most unary. Contrary to general SOU,
MSOU is decidable [6, 24, 2]. In [23], it is proved that the problem is NP-hard. In
this paper, our main contribution is to prove that MSOU is in NP.

Assuming that second-order variables, like constants, are also unary does not
affect the decidability of MSOU or its complexity (see Proposition 3.1). Also, the use
of a unique first-order constant does not affect the complexity of MSOU. Here we will
use a single one called �. Thus, in instantiations λy . t for variables X of the problem,
the variable y can occur at most once in t. This leads to the specialization where
every equation is of the form f1(f2(. . . fn(�) . . .)) ?= g1(g2(. . . gn(�) . . .)), where fi, gi
are unary function symbols or unary variables, and which is rather similar to a word
equation.

Example 1. The equation X(a(X(�))) ?= a(Y (Y (�))) has, among others, the
solutions [X �→ λx . a(a(a(x))), Y �→ λx . a(a(a(x)))] and [X �→ λx . a(a(a(�))), Y �→
λx . a(x)]. In the second solution the instantiation of X does not use its argument.

Since all terms are monadic, we will avoid the use of parenthesis in all cases where
this is possible and write the terms as words.

1.2. Monadic second-order unification from a word unification perspec-
tive. Word unification (WU) is the problem of solving equations on strings. Given
a finite alphabet of constants Σ and variables X , a word equation s ?= t is defined
by a pair of words s, t ∈ (Σ ∪ X )+. A solution of s ?= t is a substitution of vari-
ables by words in Σ∗ such that, after replacing, the words obtained from s and t are
equal.

In MSOU, apart from Σ and X , we also have a special symbol denoted by �. A
basic MSOU equation s ?= t is defined by a pair of words s, t ∈ (Σ∪X )+ �. A solution
of s ?= t is a substitution of variables by either λx .w x or λx .w �, where w ∈ Σ∗

and where we use β-reduction after the substitution. In the first case we say that
the instantiation uses its argument. The substitution of a variable X by λx .w x in
w1 X w2, where w1, w2 do not contain X, results in w1 ww2, as in word unification,
whereas the substitution of X by λx .w � in w1 X w2 results in w1 w �. Therefore,
compared to WU in MSOU some part of the original equation can be removed after
instantiation. Moreover, the set of solutions of an MSOU equation is wider than the
set of solutions of the corresponding WU equation.

Example 2. All solutions of the word equation X aX ?= a Y Y have the form
[X �→ an, Y �→ an]. The monadic equation X aX � ?= a Y Y � has, apart from solu-
tions of the form [X �→ λx . an x, Y �→ λx . an x], other solutions of the form [X �→
λx . aww �, Y �→ λx .w x], [X �→ λx . aw x, Y �→ λx .w a aw �], [X �→ λx . x, Y �→
λx . �], and [X �→ λx . aw �, Y �→ λx .w �], for any w ∈ Σ∗.

MSOU problems can be decided by guessing for every variable whether it uses its
argument or not, modifying the equation by dropping symbols to the right of variables
that do not use their arguments, and then calling WU (see also Proposition 2.5).

Example 3. The solutions of the MSOU equation X aX � ?= a Y Y � can be
found by solving the disjunction of the word equations X aX ?= a Y Y , X ?= a Y Y ,
X aX ?= a Y , and X ?= a Y .

This simple reduction shows that MSOU is decidable, since WU is decidable [16],
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and also that MSOU is in PSPACE, since the reduction is in NP and by using the
result that WU is in PSPACE [20]. Since this is the best currently known upper bound
for WU, our result that MSOU is NP-complete gives a sharp bound that (currently)
cannot be obtained from results on WU.

1.3. Techniques. To prove that MSOU is in NP, we first show for any solvable
set of equations how we can represent (at least) one of the solutions (unifiers) in poly-
nomial space. Then, we prove that we can check in polynomial time if a substitution
(written in such a representation) is a solution.

We combine two key results to obtain this sharp bound: One is the result on the
exponential upper bound on the exponent of periodicity of size-minimal unifiers [16,
8, 23] (see Lemma 2.4). This upper bound allows us to represent exponents in linear
space. The other key is a result of Plandowski [17, 18] (see Theorem 4.2). He proves
that, given two context-free recursion-free grammars with just one rule for every
nonterminal symbol (here called singleton grammars), we can check if they define the
same (singleton) language in polynomial time (in the size of the grammars). This
result is used to check that applying a substitution (represented using this kind of
grammar) to both sides of an equation will result in the same term. The successful
combination requires us to prove a polynomial upper bound for the size increase of
the singleton grammars obtained after a series of extensions (see section 4).

1.4. Further contributions. The method presented in this paper appears to
be new and powerful for obtaining sharp complexity bounds and efficient algorithms
for unification problems.

WU can be seen as a restriction of MSOU with the extra condition that every
variable must be instantiated with a λ-term λx . t, where t has exactly one occurrence
of the bound variable x. Our results suggests that MSOU is an easier problem—from
the complexity point of view—than WU. Moreover, all naive attempts to encode
WU as MSOU have failed. The direct application of our method to WU fails, since
Lemma 6.8 does not hold for WU; i.e., if all equations are of the form X . . . ?= Y . . . ,
then there is a trivial solution as MSOU equations, but this syntactic form does not
imply any easy solution method for the equations interpreted as word equations.

Context unification (CU) is a variant of SOU where instantiations of second-order
variables use their arguments exactly once. Hence, WU is monadic CU. Decidability
of CU is currently unknown. During revision of this paper we were able to apply
variants of this technique to determine the complexity of a fragment of CU: stratified
context unification [12].

Bounded second-order unification (BSOU) is another variant of SOU where, given
a positive integer k, instantiations of second-order variables can use their arguments
at most k times. Hence, MSOU is also a subproblem of BSOU, because in MSOU
instantiations of variables can use their arguments at most once. It is also known that
BSOU is decidable [22], which provides another proof of decidability of MSOU, but
no tight upper complexity bound. On the other hand, our proof and results suggest
an application to BSOU, which has recently (during revision of this paper) resulted
in proving a precise upper complexity bound for BSOU [11].

1.5. Paper organization. This paper proceeds as follows. In section 2 we define
a basic version of the MSOU problem and give some complexity bounds. We will prove
in the rest of the paper that this problem is in NP. Then, in section 3 we define the
MSOU problem in its most general form as a specialization of SOU, and we prove
that it can be NP-reduced to the basic version. We prove some properties of singleton
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context-free grammars in section 4, and in section 5 we use them to compact the
representation of equations and solutions. We use a graph in order to describe the
instantiation of some variable w.r.t. a given solution (section 6). Sometimes, we need
to rewrite such graphs (section 7). Based on this graph, we prove that for any size-
minimal solution we can represent the values of all variable instantiations using a
polynomial-sized singleton grammar (Theorem 7.7). In section 8, we conclude the
NP-completeness of MSOU and also of the corresponding matching problem.

2. Basic monadic second-order unification. In this section we present a
simplification of the MSOU problem, called the basic MSOU problem. As we will
see in section 3 (Proposition 3.1), general MSOU can be NP-reduced to this basic
case; therefore this will not cause a loss of generality. The simplification consists
in (1) considering only unary free variables (notice that, in the general case, the
“monadic” restriction affects constants only, not variables) and (2) considering only
the function symbols occurring in the equations and a unique (zero-ary) constant,
called �. In this presentation we will limit the use of concepts and notation of the
λ-calculus as much as possible. Moreover, we will use words to represent monadic
second-order terms. This will make the use of context-free grammars in section 4
more comprehensible.

Let Σ be a finite set of unary function symbols, denoted by lowercase letters
f, g, . . . , and let X be an infinite and denumerable set of unary variables, denoted by
uppercase letters X,Y, . . . . Apart from these sets, we also consider a unique constant �.

Words of (Σ∪X )∗ are denoted by lowercase letters w, u, v, . . . , and ε is the empty
word. The length of a word w is denoted by |w|. Concatenation is juxtaposition. The
notation v � w means that the word v is a prefix of the word w.

Monadic terms, denoted by letters s, t, . . . , are defined by the grammar t ::=
� | f(t) |X(t), where f ∈ Σ and X ∈ X . We remove parentheses and represent monadic
terms, e.g., f(X(g(Y (�)))), as words, e.g., f X g Y �. Therefore, terms are redefined
as words of (Σ ∪ X )∗ �. The size of a term t = w �, noted |t|, is defined by |t| = |w|.

Monadic functions, denoted by Greek letters ϕ, . . . , may be of the form λx .w �
or λx .w x, where w ∈ (Σ ∪ X )∗. In the first case we say that the function does not
use the argument. In both cases, the size of the function is |w|, and x is said to be a
bound variable, i.e., not free.

A monadic substitution, denoted by Greek letters σ, ρ, τ, . . . , is a mapping from
a finite subset of variables to monadic functions. We represent these mappings as
σ = [X1 �→ ϕ1, . . . , Xn �→ ϕn], where Dom(σ) = {X1, . . . , Xn} is the domain of the
substitution. We extend substitutions to functions from monadic terms to monadic
terms recursively as follows:

σ(�) = �,

σ(f w1) = f σ(w1),

σ(X w1) = w2 � if σ(X) = λx .w2 �,

σ(X w1) = w2 σ(w1) if σ(X) = λx .w2 x.

The size of a substitution is defined as |σ| =
∑

X∈Dom(σ) |σ(X)|. Given two substitu-

tions σ and ρ, their composition is defined by (σ ◦ρ)(t) = σ(ρ(t)), for any term t, and
is also a substitution; hence Dom(σ ◦ ρ) is finite. Given a set of variables V and a
substitution σ, the restriction of σ to the domain V is denoted by σ|V . Given a set of
variables V , we say that a substitution σ is more general w.r.t. V than another sub-
stitution ρ, denoted σ �V ρ, if there exists a substitution τ such that ρ(X) = τ(σ(X))
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for all variables X ∈ V , i.e., ρ = (τ ◦ σ)|V . (Usually, V will be the set of variables
occurring in a set of equations; in this case, we do not mention V if it is clear from the
context). This defines a preorder relation on substitutions. An equivalence relation
can also be defined as σ ≈V ρ if σ �V ρ and ρ �V σ. A substitution σ is said to be
ground if σ(X) does not contain (free occurrences of) variables for all X ∈ Dom(σ).
Notice that if σ and τ are ground, then σ ≈V τ is equivalent to σ|V = τ |V (otherwise
they are only equivalent modulo variable renaming). We say that a substitution σ
introduces a constant a (or a variable X) if, for some Y ∈ Dom(σ), σ(Y ) has an
occurrence of a (or X).

Definition 2.1. A basic monadic second-order unification problem (basic MSOU
problem) E is a finite set of pairs of monadic terms a.k.a. monadic equations, repre-
sented as E = {s1

?= t1, . . . , sn
?= tn}.

The set of variables occurring in E is denoted as FV (E). The size of E is the
sum of the sizes of its terms si and ti and is denoted as |E|. We denote the number
of equations of E as #Eq(E).

Definition 2.2. A unifier of E is a monadic substitution σ, mapping variables of
FV (E) to monadic functions and solving all equations: σ(si) = σ(ti) for i = 1, . . . , n.
It is said to be ground if σ(si) and σ(ti) do not contain free occurrences of variables
for i = 1, . . . , n. Most general unifiers are unifiers that are minimal w.r.t. �FV (E).

A solution of E is a ground unifier. A solution σ of E is said to be size-minimal if
Dom(σ) = FV (E) and has minimal size among all solutions of E; i.e., it minimizes∑

X∈FV (E) |σ(X)|.
The problem E is said to be unifiable if it has a unifier, and solvable if it has a

ground unifier or solution.
Example 4. Let f and g be unary function symbols and X and Y unary variables.

Consider the following basic MSOU problem:

{f g Y X � ?= X f g Y �}.

It has infinitely many solutions, for instance, σ1 = [X �→ λx . (f g)n x, Y �→
λx . (f g)mx] for any n,m ≥ 0 or σ2 = [X �→ λx . (f g)n+1 �, Y �→ λx . (f g)n �]
for any n ≥ 0. Obviously σ1 with n = m = 0 is a size-minimal solution. Observe also
that, interpreting the problem as a WU equation, we can use σ1 to get the correspond-
ing solution for the word equation because the monadic functions of the solutions use
their argument, whereas this is not the case for σ2.

2.1. The exponent of periodicity bound. The following lemma will provide
us with an upper bound on the number of iterations of subwords within solutions.

Definition 2.3. For a ground substitution σ, its exponent of periodicity, denoted
as eop(σ), is the maximal number n ∈ N, such that for words u, v, and w over
Σ∗, where v is not empty, σ(X) = λy . u vn w y or σ(X) = λy . u vn w � for some
X ∈ Dom(σ).

We know that any size-minimal ground unifier (i.e., solution) of a set of MSOU
equations satisfies the following exponent of periodicity lemma [16, 8, 23, 22].

Lemma 2.4 (see [22, Lemma 4.1]). There exists a constant α ∈ R
+ such that

for every basic MSOU problem 〈Σ, E〉 and every size-minimal solution σ we have
eop(σ) ≤ 2α|E|.

2.2. Some upper and lower complexity bounds. We show the relation of
MSOU problems to WU. The NP-reduction of MSOU to WU (and its NP-hardness)
allows us to translate any upper bound from WU to MSOU. It does not appear to be
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possible to encode WU as an MSOU problem, which provides evidence that MSOU
may be an easier problem than WU.

Proposition 2.5. MSOU is in PSPACE.
Proof. MSOU is NP-reducible to solvability of basic MSOU problems (Proposi-

tion 3.1), and this in turn to WU: Given a basic MSOU problem E, we solve it using
WU as follows. It is only necessary to search solutions where σ(X), for X ∈ FV (E),
is of the form λx . a1 . . . an x or of the form λx . a1 . . . an �. Thus, the first step is
guessing, for every variable occurring in E, whether it uses its argument or not, i.e.,
whether it is of the first or second form. Then, we translate E into a set of word
equations by first replacing every occurrence of X s by X �, when σ(X) does not use
its argument, and then removing � at the end of the terms and interpreting them as
words. Now, we can apply an algorithm solving WU.

This nondeterministic reduction is correct, since if E is solvable as a basic MSOU
problem, then the resulting word equations are solvable (for the convenient guessing).
It is easy to see that the converse is also true.

A theorem of Plandowski [20] showing that WU is in PSPACE now implies that
MSOU is in PSPACE.

It is well known that MSOU is NP-hard [23]. We show that this also holds for
monadic second-order matching. The proof gives a good feeling of what one can
express in MSOU.

Theorem 2.6. Basic monadic second-order matching is NP-hard.
Proof. We use the ONE-IN-THREE-SAT problem, which is known to be NP-

complete [4]. An instance of the ONE-IN-THREE-SAT problem consists of the fol-
lowing: a set of propositional variables p1, . . . , pn and m clauses Ci = {qi,1, qi,2, qi,3},
where qi,j ∈ {p1, . . . , pn} for every i = 1, . . . ,m and j = 1, 2, 3. A solution is an
assignment of the truth values true and false to the propositional variables, such that
in every clause exactly one variable is assigned the value true.

We construct a basic MSOU problem where equations have ground right-hand
sides and where Σ = {a, b, c}. For every i = 1, . . . , n let Xi, Yi be unary second-order
variables. For i = 1, . . . , n, we use the equations

Xi Yi b �
?= a b �,

Xi Yi c �
?= a c �.

These equations enforce that for all i either Xi is instantiated by λx . x or by
λx . a x, and similarly for Yi, and that there are at most two possibilities for the
instantiation of the pair Xi, Yi for every i: The assignment [Xi �→ λx . a x, Yi �→ λx . x]
is interpreted as true, and the assignment [Xi �→ λx . x, Yi �→ λx . a x] as false. Every
clause C = {pi, pj , pk} is encoded as an equation

Xi Xj Xk b �
?= a b �.

Now it is obvious that the set of constructed equations has a unifier, if and only
if the instance of ONE-IN-THREE-SAT is solvable. The equations form a monadic
second-order matching problem and can be generated in linear time. Hence, the claim
follows.

3. General monadic second-order unification. In the rest of this paper we
will prove the complexity estimation for basic MSOU problems. In this section we
will argue that the restriction to “basic” does not compromise generality. The main
claim is that there is a nondeterministic reduction from (general) MSOU problems to
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basic MSOU problems that can be done in nondeterministic polynomial time. As a
subcase of HOU, the definition of the problem in all its generality requires the use of
the λ-calculus. However, we will limit its use to this section, which can be skipped
by those readers not familiar with the λ-calculus.

We will use the standard notation and definitions of the simply typed λ-calculus,
and we inherit the definitions of the previous section, unless we explicitly overwrite
them here.

We consider only one (first-order) base type o and all the second-order types con-
structed from it, i.e., the ones described by the syntax τ ::= o → o | o → τ , with the
usual convention that → is associative to the right. Hence, every type is o which has
order one, or it is of the form o → o → · · · → o and has order two.1

We consider a signature Σ = Σ0 ∪ Σ1 of constants, denoted by a, b, c, . . . , where
constants of Σ0 have type o and constants of Σ1 have type o → o. There is also
a set of variables X =

⋃
i≥0 Xi, denoted by x, y, z, . . . , where every set Xi contains

infinitely and denumerable many variables with type o → · · · → o︸ ︷︷ ︸
i+1

. Constants of Σ0

and variables of X0 are first-order typed and are said to have arity zero, whereas those
of Σi and Xi, for i > 0, are second-order typed and have arity i.

Well-typed terms over the signature Σ and the set of variables X are built as
usual in the simply typed λ-calculus:

(i) any constant a ∈ Σi and any variable x ∈ Xi is a well-typed term of type

o →i+1· · ·→ o,
(ii) if t is a well-typed term of type τ , and x ∈ X0, then (λx . t) is also a well-

typed term of type o → τ , and
(iii) if s of type o → τ and t of type o are well-typed terms, then (s t) is also a

well-typed term of type τ .
General second-order terms are defined using a signature Σ =

⋃
i≥0 Σi and a set of

variables X =
⋃

i≥0 Xi, where constants of Σi and variables of Xi have arity i. There-
fore, monadic terms are second-order terms built without using constants of arity
greater than one. Notice that there is no restriction on the arity of variables, whereas
in basic MSOU we consider only unary variables.

Any term of type o → · · · → o︸ ︷︷ ︸
n+1

is said to have arity n. It is called of first-order

type when n = 0, and of second-order type when n > 0. Hence, the arity of a term
or of a symbol determines its type, and we will usually specify the arity instead of
the type. When we say normal form we mean η-long β-reduced normal form, defined
as usual. Since we do not consider third- or higher-order constants, first-order typed
terms in normal form do not contain λ-abstractions, and second-order typed terms
contain λ-abstractions only in outermost positions. The set of free variables of a
term t is denoted by FV (t). A term without occurrences of free variables is said to
be closed. The size of a term t is denoted |t| and defined as its number of symbols
(variables and constants), when written in normal form.

Second-order substitutions are functions from terms to terms, defined as usual.
The application of a substitution σ to a term t is written as σ(t), where we implicitly
assume that σ(t) (after some β-reductions) is written in normal form. For any sub-
stitution σ, the set of variables x, such that σ(x) =βη x, is finite and is called the
domain of the substitution and denoted Dom(σ). A substitution σ can be represented

1This also means that we do not allow symbols or expressions of third- or a higher-order type.
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as [x1 �→ t1, . . . , xn �→ tn], where xi ∈ Dom(σ) and ti has the same type as xi and
satisfies ti = σ(xi).

An instance of the (general) MSOU problem is a pair 〈Σ, E〉, where Σ = Σ0 ∪Σ1

is a monadic signature and E is a set of equations E = {s1
?= t1, . . . , sn

?= tn},
where si and ti are normalized first-order terms over Σ, i.e., terms not containing
λ-abstractions.

Note that, in monadic signatures, closed second-order terms are of two forms:
λx1 . · · · .λxn . (a1 (. . . (am xi) . . .)) or λx1 . · · · .λxn . (a1 (. . . (am b) . . .)) for unary con-
stants ai and a zero-ary constant b. Since solutions σ map variables to closed terms,
in the first case we say that σ(x) uses one of its arguments, and if x is unary, we say
that σ(x) uses its argument, and in the second case we say that σ(x) is constant or
that it ignores its argument.

Unifiability of MSOU problems does not depend on the signature, as long as
the symbols of the equations are in the signature. However, its solvability has some
dependence on the signature; more precisely it depends on the existence of at least
one first-order constant.

In MSOU, as in general SOU, we can prove that for every unifiable set of equations
E, and every most general unifier σ, all constants occurring in σ also occur in E.
The proof is by contradiction. If there is a most general unifier using constants not
occurring in the equations, we can replace these constants by fresh variables, obtaining
a more general unifier. The statement does not hold for variable occurrences in
unifiers. Even if the set of equations is built from unary variables and unary constants,
most general unifiers may introduce fresh n-ary variables with n ≥ 2. For instance,
the set of equations {(x a) ?= (y b)} has only one most general second-order unifier
[x �→ λx . ((z x) b), y �→ λx . ((z a)x)] that introduces a binary variable z.

Proposition 3.1. Unifiability of MSOU problems is NP-reducible to solvability
of basic MSOU problems.

Proof. The reduction is done in three steps.
(i) First, we reduce unifiability of MSOU problems to solvability, provided that

Σ0 contains at least one constant. In other words, for any signature Σ, any
set of equations E over Σ, and first-order constant b, 〈Σ, E〉 is unifiable, if
and only if 〈Σ ∪ {b}, E〉 is solvable.

For the if direction, assume given a solution σ. If b ∈ Σ, then b ∈ E and
we can replace b by a fresh first-order variable xb everywhere in σ and obtain a
(maybe nonground) unifier of 〈Σ, E〉. For the only if part, assume given a unifier
σ. Then we can define a substitution ρ such that, for every n ≥ 0, every n-ary
variable x ∈ FV (σ(E)) is instantiated by λx1 . · · · . λxn . b. Then ρ ◦σ is a solution of
〈Σ ∪ {b}, E〉.

(ii) Second, we prove that solvability of MSOU problems is reducible in polyno-
mial time to solvability of MSOU problems with just one first-order constant.

Assume given an MSOU problem 〈Σ, E〉. If Σ0 = ∅, then the problem is unsolv-
able. Otherwise, we reduce the problem as follows. We transform the signature Σ
into a new signature Σ′ = Σ′

1 ∪Σ′
0, where the set of unary constants is Σ′

1 = Σ1 ∪Σ0;
i.e., the former zero-ary constants are unary ones in the new signature, and the set
of zero-ary constants is Σ′

0 = {�}. We replace every first-order constant occurrence
a in the equations E by (a �), obtaining a set of equations E′ over Σ′. We will see
that any solution σ of 〈Σ, E〉 can be translated into a solution σ′ of 〈Σ′, E′〉, and vice
versa.

Any solution σ of 〈Σ, E〉 can be translated into a solution of 〈Σ′, E′〉 using the
same transformation as for the equations. To show the other direction, let σ′ be
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a solution of 〈Σ′, E′〉. Before retranslating σ′ we transform it into σ′′ as follows:
For every x in Dom(σ′), we remove every occurrence of symbols a ∈ Σ0 in σ′(x)
which is not of the form (a �); i.e., we replace (a s) by s when s = �, until this
replacement is no longer applicable. The translation from E to E′ ensures that in
E′ every occurrence of all x is in subterms of the form ((. . . (x s1) . . .) sn), where
si = �. Looking at the different cases, the removal of symbols takes place only within
instantiations of variables and does not conflict with the constants occurring in E.
Hence, σ′′ is a solution of 〈Σ′, E′〉 and can be immediately retranslated to a solution
of 〈Σ, E〉.

The translations of signature, set of equations, and solutions in either direction
are polynomial.

(iii) Third, we prove that we can go a step further, assuming that all variables
are unary: We show that solvability of MSOU, where Σ0 = {�}, is nonde-
terministically reducible in polynomial time to solvability of MSOU with the
same signature, and where all variables occurring in the equations are unary:
Xn = ∅ for all n = 1.

Given an MSOU problem 〈Σ, E〉, where Σ0 = {�}, we consider substitutions
ρ that instantiate every first-order variable x ∈ FV (E) by (x′ �), where x′ is a
fresh unary variable, and every n-ary variable y ∈ FV (E) (with n ≥ 2) by either
λx1 . · · · . λxn . (y

′ xi), where 1 ≤ i ≤ n, or λx1 . · · · . λxn . (y
′ �), where y′ is a fresh

unary variable, and the selection is nondeterministic. Obviously, if for some ρ as given
above, 〈Σ, ρ(E)〉 is solvable, so is 〈Σ, E〉.

Conversely, if 〈Σ, E〉 is solvable, we prove that for some ρ satisfying the specified
conditions, 〈Σ, ρ(E)〉 is also solvable. Mainly, we prove that there is some ρ as specified
above and a substitution τ with σ(x) = τ ◦ ρ(x) for all x ∈ FV (E); thus τ solves
〈Σ, ρ(E)〉.

Since all constants have arity at most one and solutions are ground, instantiations
σ(x) of n-ary variables, for n ≥ 2, use at most one of their arguments: σ(x) =
λx1 . · · · . λxn . t, where t has a unique occurrence of some xi, or none. Therefore, we
can take ρ(x) = λx1 . · · · . λxn . (x

′ xi) or ρ(x) = λx1 . · · · . λxn . (x
′ �). Instantiations

of first-order variables use at least the first-order constant �; therefore they can also
be replaced by a fresh unary variable applied to this constant. It is obvious how to
construct the solution τ of 〈Σ, ρ(E)〉 from σ.

Finally, note that we can compute the substitution ρ in nondeterministic polyno-
mial time on the size of E because for any nonunary variable x, we can guess whether
x uses one of its arguments and, in the positive case, which argument ρ(x) uses.

The following lemma states that if there is just one zero-ary constant in the sig-
nature, the set of size-minimal solutions is independent from the rest of the signature.
Therefore, since we are dealing with size-minimal solutions of basic MSOU problems,
in the next sections, we will not specify the signature.

Lemma 3.2. For any MSOU problem 〈Σ, E〉, where Σ0 = {�}, every size-minimal
solution σ contains only constants that also occur in E or are equal to �.

Proof. Suppose that a size-minimal solution of 〈Σ, E〉 introduces a constant a that
does not occur in E. Then, we could generate a solution with a strictly smaller size by
replacing all subterms of the form (a s) by �. This would contradict minimality.

4. Singleton context-free grammars. In this section we prove some proper-
ties of context-free grammars. They will be used to compactly represent solutions
of MSOU problems. In particular, we will use singleton context-free grammars that
define languages with just one word.
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A context-free grammar (CFG) is a 4-tuple (Σ, N, P, s), where Σ is an alphabet of
terminal symbols, N is an alphabet of nonterminal symbols (contrary to the standard
conventions and in order to avoid confusion between free variables (unknowns) and
nonterminal symbols, all terminal and nonterminal symbols are denoted by lowercase
letters), P is a finite set of rules, and s ∈ N is the start symbol. In fact, we will not
distinguish any particular start symbol, and we will represent a CFG as a 3-tuple
(Σ, N, P ). Moreover, we will use Chomsky grammars with at most two symbols on
the right-hand sides of the rules.

Definition 4.1. We say that a CFG G = (Σ, N, P ) generates a word v ∈ Σ∗ if
there exists a nonterminal symbol a ∈ N such that v belongs to the language defined
by (Σ, N, P, a). In such a case, we also say that a generates v.

We say that a CFG is singleton if it is in Chomsky normal form, i.e., the right-
hand sides of the productions consist of words of length at most 2, it is not recursive,
and there exists just one production for each nonterminal symbol. Then, every nonter-
minal symbol a ∈ N generates just one word, denoted wa, and we say that a generates
wa. In general, for any sequence α ∈ (Σ ∪N)∗, wα ∈ Σ∗ denotes the word generated
by α.

Plandowski [17, 18] defines singleton grammars, but he calls them grammars
defining set of words. Note that so-called straight-line programs are an equivalent
device [7]. Plandowski proves the following result.

Theorem 4.2 (see [18, Theorem 33]). The word equivalence problem for singleton
CFGs is defined as follows: Given a singleton grammar and two nonterminal symbols
a and b, decide whether wa = wb. This problem can be solved in polynomial worst-case
time in the size of the grammar.

Recent work [15] claims that this can be done in cubic time.
For nonrecursive grammars we define their depth as follows. The usage of both

size and depth of the grammar is necessary for a good estimation, since they reflect
balancing conditions for a singleton grammar seen as a tree. Using only a single
measure leads to unsatisfactory upper bounds (see Remark 1 in section 8).

Definition 4.3. Let G = (Σ, N, P ) be a nonrecursive CFG. For any terminal
symbol a ∈ Σ we define depth(a) = 0, and for any nonterminal symbol a ∈ N we
define

depth(a) = max{depth(b) + 1 | a → α ∈ P, b occurs in α}.

We define the depth of G as depth(G) = max{depth(a) | a ∈ N}.
Given a Chomsky CFG G, we define the size of G, noted |G|, as the number of

its rules.
We say that G′ = (Σ′, N ′, P ′) is an extension of G = (Σ, N, P ), denoted as

G′ ⊇ G, if and only if Σ′ ⊇ Σ, N ′ ⊇ N , and P ′ ⊇ P , where we require only
Σ′ = Σ. We can extend a singleton grammar in order to generate concatenation,
exponentiation, and prefixes and suffixes of words already generated by the grammar.
We use these extension operations in the next sections to build the grammar defining
some solution of the unification problem. The following three lemmas state how the
size and the depth of the grammar are increased with these transformations. Since in
the final step of this paper a grammar of polynomial size is guessed and checked in
polynomial time, we only need the existence of polynomial-sized grammars. Thus we
do not care about the algorithmic complexity of constructing these grammars.

Lemma 4.4 (concatenation). Let G be a singleton grammar generating the words
v1, . . . , vn for n ≥ 1. Then there exists a singleton grammar G′ ⊇ G that generates
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the word v1 . . . vn and satisfies

|G′| ≤ |G| + n− 1,

depth(G′) ≤ depth(G) + �log n�.

Proof. Let ai be the nonterminal symbol generating vi, for any i = 1, . . . , n. We
define G′ by adding a set of rules to G of the form

bi,j → bi, � i+j
2 � b� i+j

2 �+1, j ,

where 1 ≤ i ≤ j ≤ n and bi,i is ai. Then, b1,n generates v1 . . . vn, and to generate it we
need only to add n− 1 of such rules. The depth is increased by at most �log n�.

Lemma 4.5 (exponentiation). Let G be a singleton grammar generating the
word v. For any n ≥ 1, there exists a singleton grammar G′ ⊇ G that generates
the word vn and satisfies

|G′| ≤ |G| + 2 �log n�,
depth(G′) ≤ depth(G) + �log n� + 1.

Proof. Let a be the nonterminal symbol generating v, m = �log n�, and let
n = k02

0 + k12
1 + · · · + km2m be a binary representation satisfying ki ∈ {0, 1}. We

add the following set of rules to G:

a1 → a a,
a2 → a1 a1,

· · ·
am → am−1 am−1,

b0 →
{

a if k0 = 1,
ε if k0 = 0,

b1 →
{

a1 b0 if k1 = 1,
b0 if k1 = 0,

· · ·

bm →
{

am bm−1 if km = 1,
bm−1 if km = 0.

Then, the nonterminal symbol bm generates vn, and it is easy to see that this
grammar satisfies the bounds stated by the lemma.

Lemma 4.6 (prefixes and suffixes). Let G be a singleton grammar generating the
word v. For any prefix or suffix v′ of v, there exists a singleton grammar G′ ⊇ G that
generates v′ and satisfies

|G′| ≤ |G| + depth(G),

depth(G′) = depth(G).

Proof. Let a be the nonterminal symbol generating v. By induction on depth(a),
we will prove a stronger result: For any prefix v′ of wa, there exists a grammar G′

generating v′ and satisfying |G′| ≤ |G| + depth(a) and depth(G′) = depth(G).
The base case is trivial since depth(a) = 0 implies that a is a terminal symbol,

and v′ = v or v′ is empty. For the induction case, assume that v′ = v; otherwise
we are done. Let a → α be the rule for a. Note that |α| ≤ 2. There exists a prefix
β b of α, where b is a nonterminal, such that wβ is a prefix of v′ and v′ is a prefix
of wβ b; i.e., v′ = wβ v

′′, where v′′ is a prefix of wb. By induction hypothesis, there
exists a grammar G′′ ⊇ G deriving v′′ from some b′ with the same depth as G and size
|G′′| ≤ |G|+ depth(b) ≤ |G|+ depth(a)− 1. We add a′ → β b′ to get the grammar G′
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from G′′ such that wa′ = v′. Notice that |G′| = |G′′|+ 1, and depth(G′) = depth(G′′)
because depth(b′) ≤ depth(b) implies depth(a′) ≤ depth(a).

For suffixes the proof is very similar.
We illustrate Lemmas 4.4, 4.5, and 4.6 by means of Example 5.
Example 5. Let G be the grammar defined by the productions {c1 → c2 c3,

c2 → c3 c4, c3 → ff , c4 → gg}. The words generated by the nonterminals c1, c2, c3,
and c4 of G are v1 = ffggff, v2 = ffgg, v3 = ff , and v4 = gg, respectively.

(i) Concatenation. We first show how to build the word

v1v2v3v4 = ffggffffggffgg

using the techniques of the proof of Lemma 4.4. Following the definitions of bi,j →
bi, � i+j

2 � b� i+j
2 �+1, j , and bi,i = ci, we extend G with the following rules:

b1,4 → b1,2 b3,4,
b1,2 → c1 c2,
b3,4 → c3 c4.

Then, b1,4 generates v1v2v3v4.
(ii) Exponentiation. Now we show how to build the word (v1)

5 according to the
techniques of the proof of Lemma 4.5. We have 5 = 1 · 22 + 0 · 21 + 1 · 20; hence we
extend G with the following rules:

a1 → c1 c1,
a2 → a1 a1,

b0 → c1,
b1 → b0,
b2 → a2 b1.

Then b2 generates (v1)
5.

(iii) Prefix. Finally we show how to build the word prefix v′ = ffg of v1 using
the techniques of the proof of Lemma 4.6. We extend G with the following rules:

c′1 → c′2,

c′2 → c3 c
′
4,

c′4 → g.

Then c′1 generates v′.

5. Compact representations. In this section we use singleton grammars to
compact the representation of solutions of basic MSOU problems. We go a step further
and also compact the representation of equations, allowing the use of nonterminal
symbols of a singleton grammar to represent large words also in the equations.

Definition 5.1. Let Σ be a signature of unary symbols, and let X be a set of
unary variables.

A compact representation of a basic MSOU problem E is a pair 〈E′, G〉, where
G = 〈Σ, N, P 〉 is a singleton CFG and E′ is a set of equations of the form {s1

?=
t1, . . . , sn

?= tn}, where si, ti ∈ (Σ ∪ X ∪ N)∗ �, for i = 1, . . . , n, such that when
replacing in E′ every nonterminal symbol a by the word wa that it generates, it results
in the set of equations E.

A compact representation of a monadic substitution σ is a pair 〈σ′, G〉, where
G = 〈Σ, N, P 〉 is a singleton CFG and σ′ is a mapping from variables X to terms
of the form λx . α � or λx . α x, where α ∈ (Σ ∪N)∗, such that, after replacing every
nonterminal symbol by the word it represents, we obtain σ.
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We say that 〈τ,G′〉 is a compacted solution of 〈E,G〉 if the substitution repre-
sented by 〈τ,G′〉 is a solution of the set of equations represented by 〈E,G〉, where G′

is an extension of G.
Notice that nonterminal symbols derive into sequences of unary function symbols,

that we do not consider first-order variables, and that � is the only constant. Words
of (Σ ∪ X ∪N)∗ are denoted by Greek letters α, β, . . . .

Example 6. Let Σ = {f} and N := {a, c, d}. Consider the compacted equations
〈E,G〉 defined by

E = {aX X f � ?= Y Y Y �},
G = {a → c c, c → f f}.

Then, the pairs 〈σ1, G1〉 and 〈σ2, G2〉, defined by

σ1 = [X �→ λx . c x, Y �→ λx . d x],
G1 = {a → c c, c → f f, d → c f} and

σ2 = [X �→ λx . e �, Y �→ λx . a �],
G2 = {a → c c, c → f f, e → ε},

are compacted representations of solutions of 〈E,G〉. The first solution is not size-
minimal. The second solution is size-minimal, but it is not a most general unifier. In
fact, the second is an instantiation of the most general unifiers [X �→ λx . Z x, Y �→
λx . aZ Z f �] and [X �→ λx . Z aZ aZ �, Y �→ λx . aZ x].

We generalize the basic MSOU problem in the sense that, given some compacted
equations 〈E,G〉, we will try to find a compacted solution 〈σ,G′〉. Moreover, the
grammar G′ used to represent the solution will be an extension of the grammar G
given to represent the equations.

Notice that solvability of a set of monadic equations and solvability of compact
equations are, w.r.t. decidability, equivalent problems. With respect to their complex-
ity, we will prove that solvability of compact equations can be decided in NP-time.
This implies that solvability of MSOU is also in NP (since 〈E, ∅〉 is a trivial compact
representation of E).

Notice that the straightforward translation of a compacted set of equations into
the set of monadic equations that they represent may exponentially increase the size
of the equations. Using another translation, we can show that solvability of MSOU
problems and solvability of compacted MSOU problems are polynomially equivalent.

Proposition 5.2. Given a compacted set of equations 〈E,G〉, there is a P-time
translation into a basic MSOU problem E′, such that 〈E,G〉 is solvable if and only if
E′ is solvable.

Proof. For every nonterminal a in G, define a fresh unary variable Xa. For every
production a → b c of the grammar, where a, b, c ∈ N , define a set of two equations
Ea = {Xa �

?= Xb Xc �, Xa f � ?= Xb Xc f �}, where f ∈ Σ and Xa, Xb, . . . are fresh
variables. This is similar for the other kinds of rules, where the right-hand sides are
shorter. The terminal symbols are not translated. For instance, for a → b c, where
a ∈ N and b, c ∈ Σ, Ea = {Xa �

?= b c �,Xa f � ?= b c f �}. Then, E′ = Ê ∪
⋃

a∈N Ea,

where Ê is the translation of the equations E by replacing nonterminals a with the
corresponding unary variable Xa. The size of E′ is smaller than |E| + 12 |G|, and it
can be constructed in polynomial time.

The equations in
⋃

a∈N Ea enforce that, for every nonterminal a, σ(Xa) uses its
argument, and therefore σ(Xa) = λx .wa x. Now it is easy to see that 〈E,G〉 is
solvable if and only if E′ is solvable.
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6. The graph of surface dependencies. In this section we define graphs of
surface dependencies. The purpose of these graphs is to support constructing the
compact representation of a minimal solution σ of a compacted set of equations and
estimating the size of this representation. Later on this will be used to show that
only a polynomial-sized representation has to be guessed in order to check solvability.
Observe that we only impose a bound on the size of the representation and do not care
about the complexity of finding such a representation. In our proof, we start from the
compact representation 〈E,G〉 of some basic MSOU problem and a given solution σ.
Then, we find a variable X whose instantiation can be compactly represented. This is
done by extending the grammar to G′ ⊇ G. Then, we repeat the process starting from
the same equation with the variable already instantiated. Observe that G′ (apart from
the instantiation of the X) is able to generate all the words represented by G. This
iteration describes a proof by induction, not the unification algorithm. It could be
interpreted as a nondeterministic unification procedure, however, with the restriction
of finding a size-minimal solution, and moreover, without a guarantee of being in NP.

There are cases in which for some variable X of the problem, its instantiation
σ(X) is immediately given or immediately constructible from the “surface” of the
equations. We identify two such cases: when σ has a small component (Lemma 6.6)
and when the graph contains a cycle (Lemma 6.12). We also identify three situations
which ensure that any size-minimal solution has small components: when the graph
has a constant equation (Lemma 6.7), when the graph has no edges (Lemma 6.8), and
when there are strong divergences (Lemma 6.10). In the rest of the cases, it becomes
necessary to rewrite the graph to obtain a new graph that describes the instantiation
of some variable. This graph rewriting process will be described in section 7.

The graph of surface dependencies is defined only for simplified equations, where
a simplified equation is defined as follows.

Definition 6.1. Given a compacted set of equations 〈E,G〉, we say that they
are simplified if E does not contain equations of the following forms (symmetric cases
omitted):

(i) a s ?= b t, where a, b ∈ Σ ∪N ,
(ii) s ?= a b t, where a, b ∈ Σ ∪N , or
(iii) s ?= a t, where a ∈ N and wa = ε.
Note that simplified equations are of the forms (symmetric cases omitted) X s ?=

a �, X s ?= a Y t, X s ?= � (flexible-rigid), or X s ?= Y t (flexible-flexible), where a is
a nonterminal. Note also that solvable equations without variables have the form
α � ?= β �, where α, β are in (Σ ∪N)∗, satisfy wα = wβ , and are not simplified.

We describe a simplification algorithm in the proof of the following lemma. This
algorithm will be used as a subroutine in the proof of Theorem 7.7. Notice that it
can increase the size of the associated grammar as stated in the lemma.

Lemma 6.2 (simplification). Given the solvable and compacted set of equations
〈E,G〉, there exists a simplified and compacted set of equations 〈E′, G′〉 with the same
solutions, such that

|G′| = |G| + O(|E|(depth(G) + log |E|)),
depth(G′) = depth(G) + O(log |E|),

and the number of equations, number of variables, and number of occurrences of vari-
ables in E′ are not greater than the corresponding numbers for E.

Proof. For all equations si
?= ti of E, let αi, βi be the longest prefixes of si and ti,

respectively, that do not contain variables or �; i.e., si = αi s
′
i, and ti = βi t

′
i, where
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s′i and t′i have a variable or � in the head. Let vi be the word satisfying wαi
= wβi

vi
or wαi

vi = wβi
.

Using Lemma 4.4, construct an extension of the grammar with a nonterminal for
the word α1 β1 . . . αnβn. For every i = 1, . . . , n, since vi is a suffix of some prefix of this
word, use Lemma 4.6 to prove that there exists another extension of the grammar
that generates vi. This last process will be repeated at most 2 #Eq(E) times to
obtain a new grammar G′. This ensures that depth(G′) ≤ depth(G) + �log |E|� and
|G′| ≤ |G|+ |E|+2 #Eq(E) (depth(G)+�log |E|�). This implies the estimations given
in the lemma.

Now, we construct E′ from E as follows. For every i = 1, . . . , n,
(i) if s′i = t′i = �, then remove the equation from E;
(ii) if wαi

= wβi
, then replace si

?= ti in E by s′i
?= t′i;

(iii) if wαi is a prefix of wβi , then replace s ?= t in E by s′i
?= b t′i, where b is the

nonterminal of G′ generating vi; and
(iv) proceed similarly if wβi is a prefix of wαi .
Notice that the case where neither wαi

is a prefix of wβi
nor wβi

is a prefix of wαi

is not possible for solvable equations. Notice also that, if we simplify equations one
by one, generating a suffix of a prefix of αi or of βi each time, we would get a worse
estimation.

Definition 6.3. A constant equation is a simplified and compacted equation of
the form X t ?= a � or X t ?= �, where t ∈ (Σ ∪ X ∪ N)∗ � is a compacted term and
a ∈ N is a nonterminal symbol.

We define the graph of surface dependencies only for solvable, simplified, and
compacted sets of equations.

Definition 6.4. Let 〈E,G〉 be a solvable, simplified, and compacted set of equa-
tions. Let ≈ be the minimal equivalence relation satisfying X ≈ Y whenever E con-
tains an equation of the form X s ?= Y t. This defines a partition on FV (E).

The graph of surface dependencies of 〈E,G〉 is a labeled directed multigraph2

defined as follows:
Nodes: The nodes are the ≈-equivalence classes of variables and the empty set ∅.
Edges: There are two cases:

(i) For every equation of the form X s ?= a Y t, where X,Y ∈ X are variables
and a ∈ N is a nonterminal symbol, there is an edge

Simplification yields that wa = ε for the edge label a.
(ii) For every constant equation X s ?= a �, where X ∈ X and a ∈ N , there is an

edge

In the case of a constant equation X s ?= �, we use ε as the label of the edge.
The size of a graph of surface dependencies D, denoted as |D|, is defined as its number
of edges.

Note that the node ∅ has no outgoing edges.

2There may be several edges, even labeled differently between two nodes.
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6.1. Small components of solutions. We say that a solution of 〈E,G〉 has
a small component if there exists a variable whose value is “small” enough to be
described just as the prefix of some word defined by G. This will be helpful in
the construction of a compact representation of a size-minimal solution for several
reasons: It is a case where the instantiation of a variable is completely known, it can
be constructed with only a small increase of the grammar, and it eases the definition
and argumentation for the remaining cases.

We identify some classes of compacted equations that have a solution with a small
component.

Definition 6.5. Given the simplified and compacted set of equations 〈E,G〉, a
variable X occurring in E, and a solution σ, we say that X is a small component of
σ if σ(X) = λx . v x, or σ(X) = λx . v � and either v = ε or there is a nonterminal a
in G such that v is a prefix of wa.

Lemma 6.6 (small component). Let 〈E,G〉 be a simplified and compacted set
of equations, and let σ be a solution of 〈E,G〉 with a small component X such that
σ(X) = λx . v x or σ(X) = λx . v �. Then, there exists a singleton CFG G′ ⊇ G
generating v and satisfying

|G′| ≤ |G| + depth(G),

depth(G′) = depth(G).

Proof. The inequalities follow from Definition 6.5 and Lemma 4.6.
This lemma is helpful in two ways: It allows us to eliminate variables from the

problem and it restricts the cases where this elimination does not work (and it is
necessary to rewrite the equations) to cases in which solutions do not have small com-
ponents; i.e., they have only “large” instantiations. This will simplify the reasoning.

Lemma 6.7. All solutions of simplified and compacted sets of equations containing
constant equations have at least one small component.

Proof. Let 〈E,G〉 be a simplified and compacted set of equations, and let σ be a
solution. Since σ solves a constant equation of the form X s ?= a �, it must instantiate
X either with λx . v x or with λx . v � for some prefix v of wa. Similar arguments hold
for equations of the form X s ?= �.

The following lemma describes the situation that reflects the difference between
basic MSOU problems and WU when all equations are flexible-flexible. While in
MSOU we can instantiate variables by terms not using their arguments, such as
λx . �, this is not possible when considering WU; hence the lemma does not hold for
WU. This is the point that shows that our result is not straightforwardly transferable
to WU.

Lemma 6.8. Let 〈E,G〉 be a simplified and compacted set of equations such that
the graph of surface dependencies does not contain edges and such that FV (E) = ∅,
and let σ be a size-minimal solution of 〈E,G〉. Then, for every variable X ∈ FV (E),
either σ(X) = λx . � or σ(X) = λx . x. This also means that there is at least one small
component in σ.

Proof. If there are not edges, then all equations are of the form X s ?= Y t.
The substitution σ, with σ(X) = λx . � for every variable X ∈ FV (E), is a size-
minimal solution; hence for every other size-minimal solution σ′ and for every variable
X ∈ FV (E), only σ′(X) = λx . � or σ′(X) = λx . x is possible.3

3We could make the solution with σ′(X) = λx . �, for all variables, be the only size-minimal
solution by changing the term size measure to make λx . � smaller than λx . x. However, then the
exponent of periodicity bound (see Lemma 2.4) must be adapted.
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Definition 6.9. A dependence graph D is said to contain a divergence L2
a←

L1
b→ L3 if it contains a subgraph of the following form (where L1, L2, and L3 are

not necessarily distinct nodes):

If neither wa is a prefix of wb nor wb is a prefix of wa, then it is called a strong
divergence and otherwise a weak divergence.

Strong divergences are easy to eliminate, whereas weak divergences require a more
complex treatment, which will be done by rewriting the graph.

Lemma 6.10. Given a simplified and compacted set of equations, if its graph
of surface dependencies contains a strong divergence, then every solution has small
components.

Proof. Given 〈E,G〉, let D be its graph of surface dependencies, and let σ be

any of its solutions. Assume that D contains a strong divergence L2
a← L1

b→ L3.
For every variable X ∈ L1, let vX ∈ Σ∗ be a word such that either σ(X) = λy . vX y
or σ(X) = λy . vX �. By definition of D, we have a pair of equations in E of the
form X1 · · · ?= a t1 and X2 · · · ?= b t2, where X1, X2 ∈ L1. Therefore, vX1 is a prefix
of σ(wa t1), and vX2 is a prefix of σ(wb t2). Now, let Y ∈ L1 be the variable such
that vY is the shortest word of {vX | X ∈ L1}. By the equivalence relation and
the dependence graph definitions, we have that vY is a prefix of both vX1

and vX2
,

and thus a prefix of σ(wa t1) and of σ(wb t2). Since wa is not a prefix of wb, and
vice versa, we have that vY is a proper prefix of both wa and wb. (Notice that vY
is not necessarily the longest common prefix of wa and wb). Therefore, Y is a small
component of σ.

6.2. Cycles in the graph of dependencies. The cycles in the graph of surface
dependencies describe the base of some exponentiation occurring in the instantiation
of some variables. For instance, the solutions of the equation X f � ?= f X � have the
form [X �→ λy . fn y] for some n ≥ 0. The base of this power is described by a cycle
in its graph of surface dependencies:

Lemma 6.11. Let E be a (noncompacted) set of equations with a cycle of the
form

X1 · · · ?= w1 X2 · · ·
X2 · · · ?= w2 X3 · · ·

· · ·
Xm · · · ?= wm X1 · · · ,

where wi ∈ Σ∗, for every i = 1, . . . ,m, and w1 . . . wm = ε.
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Then, for every solution σ of E, there is some variable Xk, with 1 ≤ k ≤ m, such
that σ(Xk) = λx . u x, where u is a prefix of (wk . . . wm w1 . . . wk−1)

n for sufficiently
large n.

Proof. The proof is by induction on the size of σ.
For any i = 1, . . . ,m, if σ solves Xi · · · ?= wi Xi+1 · · · , then either σ(Xi) = λx . ui x

for some proper prefix ui of wi, or we have σ(Xi) = λx .wi vi x or σ(Xi) = λx .wi vi �,
for some word vi. Therefore, there are two cases:

If, for some k = 1, . . . ,m, we have the first situation that there is some Xk such
that σ(Xk) = λx . uk x, where uk is a prefix of wk, then the claim of the lemma holds.

Otherwise, for every i = 1, . . . ,m, we have σ(Xi) = λx .wi vi x or σ(Xi) =
λx.wi vi �. In this case we generate a new system by instantiating Xi by λx .wi X

′
i x,

where X ′
i are fresh and different unary second-order variables. Then, the equations

in the cycle become

w1 X
′
1 · · ·

?= w1 w2 X
′
2 · · · ,

w2 X
′
2 · · ·

?= w2 w3 X
′
3 · · · ,

· · ·
wm X ′

m · · · ?= wm w1 X
′
1 · · · .

Simplifying the equations, we obtain a new system of equations,

X ′
1 · · ·

?= w2 X
′
2 · · · ,

X ′
2 · · ·

?= w3 X
′
3 · · · ,

· · ·
X ′

m · · · ?= w1 X
′
1 · · · .

From the original solution σ we get a solution σ′ of the new equations satisfying
σ′(X ′

i) = λx . vi x or σ(X ′
i) = λx . vi �, for all i = 1, . . . ,m. Now the induction

hypothesis applies since σ′ is smaller than σ; hence there is a variable X ′
k such that

σ′(X ′
k) = λx . vk x, where vk is a prefix of (wk+1 . . . wm w1 . . . wk)

n, for large enough
n. Hence σ(Xk) = λx.wk vk x, and the claim holds.

Lemma 6.12 (cycles). Let 〈E,G〉 be a solvable, simplified, and compacted set of
equations, with a graph of surface dependencies D with some cycle. Then, for every
solution σ without small components, there exists a variable X such that σ(X) =
λy .w y and w is generated by some grammar G′ ⊇ G satisfying

|G′| = |G| + O(depth(G) + #Eq(E) + log eop(σ)),

depth(G′) = depth(G) + O(log #Eq(E) + log eop(σ)).

More precisely, the corresponding node [X] is inside the cycle, and, for some
0 ≤ n ≤ eop(σ) and some prefix v of wα, we have σ(X) = λy . (wα)n v y, where
α ∈ N∗ is the sequence of labels of the edges completing the cycle from [X].

Proof. Select a cycle in the graph D:
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Therefore, there is a subset of equations in E of the form

Y1,m1
. . . ?= a1 Y2,1 . . . ; Y2,1 . . .

?= Y2,2 . . . ; · · · Y2,m2−1 . . .
?= Y2,m2

. . . ;

Y2,m2 . . .
?= a2 Y3,1 . . . ; Y3,1 . . .

?= Y3,2 . . . ; · · · Y3,m3−1 . . .
?= Y3,m3 . . . ;

· · ·
Yn,mn

. . . ?= an Y1,1 . . . ; Y1,1 . . .
?= Y1,2 . . . ; · · · Y1,m1−1 . . .

?= Y1,m1 . . . ,

where {Yi,1, . . . , Yi,mi
} ⊆ [Yi] for i = 1, . . . , n. Note that wai

= ε for all i, since E is
simplified.

Now, fix a solution σ and proceed as follows. Let E′ be the set of equations
represented by the compacted equations above. Notice that wa1 · · ·wan = ε, and
E′ fulfills the conditions of Lemma 6.11. The substitution σ also solves E′, and
applying Lemma 6.11, we get a variable Yk,l such that σ(Yk,l) = λx.wn

α v x, where
α = ak · · · am a1 · · · ak−1 and v is a prefix of wα. Moreover, we have n ≤ eop(σ).

To prove the existence of G′, we proceed by adding new rules to G. Note that all
symbols labeling the edges of D are nonterminals in G. We construct a sequence of
grammars G ⊆ G1 ⊆ G2 ⊆ G3 ⊆ G′ such that G1, apart from the words generated
by G, also generates wα, G2 also generates v, G3 also generates (wα)n, and G′ also
generates (wα)n v.

Since the length of α is at most |D|, by Lemma 4.4, we have

|G1| ≤ |G| + |D| − 1,

depth(G1) ≤ depth(G) + �log |D|�.

By Lemma 4.6, we can define v with

|G2| ≤ |G1| + depth(G1),
depth(G2) = depth(G1).

By Lemma 4.5, we can define (wα)n with

|G3| ≤ |G2| + 2 �log eop(σ)�,
depth(G3) ≤ depth(G2) + �log eop(σ)�

and, since we still need another rule to define (wα)n v,

|G′| ≤ |G3| + 1,

depth(G′) ≤ depth(G3) + 1.

The composition of all these inequalities results in the inequalities

|G′| ≤ |G| + depth(G) + |D| + �log |D|� + 2 �log eop(σ)�,
depth(G′) ≤ depth(G) + �log |D|� + �log eop(σ)� + 1.

In terms of O-notation, this reduces to

|G′| = |G| + O(depth(G) + |D| + log eop(σ)),

depth(G′) = depth(G) + O(log |D| + log eop(σ)).

And, since |D| ≤ #Eq(E),

|G′| = |G| + O(depth(G) + #Eq(E) + log eop(σ)),

depth(G′) = depth(G) + O(log #Eq(E) + log eop(σ)),

as stated in the lemma.
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7. Rewriting the graph of dependencies. In the previous section we saw
that Lemmas 6.6 and 6.12 both describe the instantiation σ(X) of some variable and
allow us to eliminate it during the construction of a compact representation of the
solution σ. In other words, they describe parts of the solution, i.e., a substitution
ρ = [X �→ σ(X)] satisfying ρ �FV (E) σ.

In this section we will see that, when these two lemmas are not applicable, we
can rewrite the set of equations (and its corresponding graph of dependencies) until
one of the two lemmas becomes applicable. This rewriting process is done by partially
instantiating some variables, i.e., applying a substitution ρ also satisfying ρ �FV (E) σ.
The substitution has the form ρ = [X �→ λy .wX ′ y], where X ′ is a fresh variable and
w ∈ Σ∗. Substitutions of such form, as well as the total instantiations of the form
ρ = [X �→ λy .w y] and ρ = [X �→ λy .w �] described in Lemmas 6.6 and 6.12,
are all called partial instantiations. Formally, we define partial instantiations as
follows.

Definition 7.1. We say that a substitution ρ is a partial instantiation if it can
be decomposed as ρ = (ρ1 ◦ · · · ◦ ρn)|Dom(ρ), where each ρi either has the form ρi =
[Xi �→ λy .wi X

′
i y], ρi = [Xi �→ λy . y], or ρi = [Xi �→ λy . �], for some Xi, X

′
i ∈ X1

and some wi ∈ Σ∗.
The following lemma states the preservation of some properties of partial instan-

tiations of equations. Notice that some of these properties do not hold for arbitrary
substitutions satisfying ρ �FV (E) σ.

Lemma 7.2 (preservation). For any (noncompacted) set of equations E, any
solution σ, and any partial instantiation ρ, satisfying ρ �FV (E) σ, there exists a
substitution σ′ satisfying

(i) σ = (σ′ ◦ ρ)|FV (E),
(ii) σ′ is a solution of ρ(E),
(iii) if σ is a size-minimal solution of E, then σ′ is also a size-minimal solution

of ρ(E),
(iv) eop(σ) ≥ eop(σ′),
(v) |FV (E)| ≥ |FV (ρ(E))|, and
(vi) the number of occurrences of variables in E is greater than or equal to the

number of occurrences of variables in ρ(E).
Proof. The requirement ρ �FV (E) σ ensures that there exists a substitution σ′

such that σ(X) = σ′ ◦ ρ(X) for any X ∈ FV (E). The restriction of σ′ to the domain
FV (ρ(E)) also satisfies this property. Therefore, the required σ′ always exists.

Since σ is a solution of E, for any variable X ∈ FV (E), σ(X) is a closed term.
Moreover, since σ = (σ′ ◦ ρ)|FV (E), for any variable X ∈ FV (E), σ(X) = σ′ ◦ ρ(X).
The same applies to any term containing only variables of E, hence to any side
of any equation of E. Therefore, for any equation ρ(s) ?= ρ(t) of ρ(E), we have
σ′(ρ(s)) = σ(s) = σ(t) = σ′(ρ(t)). Hence, σ′ solves ρ(E).

Minimality is proved by contradiction. Assume that σ′ is not size-minimal. Let
τ ′ be a size-minimal solution of ρ(E). Obviously, τ ′ ◦ ρ is a solution of E. Since τ ′

is size-smaller than σ′, we have
∑

X∈FV (ρ(E)) |τ ′(X)| <
∑

X∈FV (ρ(E)) |σ′(X)|. Now,
since ρ is a partial instantiation, we have

∑
X∈FV (E)

|τ ′(ρ(X))| =
∑

X∈FV (E)

|ρ(X)| +
∑

Y ∈FV (ρ(E))

(|τ ′(Y )| − 1) and

∑
X∈FV (E)

|σ′(ρ(X))| =
∑

X∈FV (E)

|ρ(X)| +
∑

Y ∈FV (ρ(E))

(|σ′(Y )| − 1).
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Therefore,
∑

X∈FV (E) |τ ′(ρ(X))| <
∑

X∈FV (E) |σ′(ρ(X))| =
∑

X∈FV (E) σ(X), which
contradicts the assumption that σ is size-minimal.

Let X ′ ∈ Dom(σ′) be a variable, and let v be a nonempty word, such that
σ′(X ′) = λy . u veop(σ′) w � (or similarly replacing � by y). Since Dom(σ′) = FV (ρ(E)),
either X ′ ∈ FV (E) or, for some variable Y ∈ FV (E), ρ(Y ) contains X. Hence, in
both cases, there exists a variable X ∈ FV (E) ⊆ Dom(σ) such that σ(X) contains
veop(σ′). Therefore eop(σ) is at least eop(σ′).

The requirement that ρ is a partial instantiation ensures that after applying this
substitution the number of variables and the number of occurrences of variables in E
do not increase.

Now we deal with the following case: There are compacted sets of equations whose
graph of surface dependencies does not have any cycle, and the focused solution does
not have any small component; i.e., we deal with the case not covered by Lemmas 6.6
and 6.12. Since there are no cycles, the edges define a partial order � on the nodes,
with N � N ′ if and only if N → N ′ is an edge. Hence we can speak of �-maximal
nodes. Since there are size-minimal solutions without small components, Lemma 6.8
shows that these graphs contain at least one edge, Lemma 6.10 states that they
do not contain strong divergences, and Lemma 6.7 shows that they do not contain
any edge to the node labeled with ∅. There is a �-maximal node with at least one
outgoing edge to other nodes and without any strong divergence. We will transform
the equations, whose graph of dependencies contains such maximal nodes, in order
to obtain a description of some variable instantiation. In fact, this transformation
on the equations carries over to a graph transformation. An example of this graph
transformation (or rewriting) is shown in Example 7.

Definition 7.3. Let 〈E,G〉 with FV (E) = ∅ be a simplified and compacted set
of equations without cycles such that there is a solution without small components.
Then the transformation rule 〈E,G〉 ⇒ 〈E′, G′〉 is defined as follows.

Let D be the graph of surface dependencies of 〈E,G〉. Let [X] be a �-maximal
node in D with at least one outgoing edge. Let {a1, . . . , am} be the set of all labels of
the outgoing edges of [X], where wa1 is a prefix of wai , for all i = 1, . . . ,m. For every
Y ∈ [X], let Y ′ be a fresh unary variable, and let ρ be the substitution that maps each
Y ∈ [X] to λy .wa1 Y

′ y. Then let 〈E′, G′〉 be the simplification of 〈ρ(E), G〉.
If D′ is the graph of surface dependencies of 〈E′, G′〉, we write D ⇒ D′.
Notice that in the previous definition, since there are not any cycles and there

are solutions without small components, by Lemma 6.8 there are edges, and hence
there is a �-maximal node with some outgoing edge; by Lemmas 6.7 and 6.10 there
are neither constant equations nor strong divergences. This allows us to assume that
wa1 is a prefix of wai for i = 1, . . . ,m. Notice also that for all equations of the form
Y s ?= aZ t, where Y ∈ [X], the symbol a is the label of some outgoing edge of [X].
Finally, notice that the substitution ρ is a partial instantiation; hence Lemma 7.2
applies.

The transformation of 〈E,G〉 results in the compacted equations 〈E′, G′〉 satisfy-
ing the following:

(i) The grammar G′ is an extension of G such that for i = 1, . . . ,m, the non-
terminal bi generates the word vi, which is defined by wai = wa1 vi.

(ii) The set of equations E′ is obtained from E by replacing all equations of the
form Y s ?= Z t, where Y,Z ∈ [X], by the equation Y ′ ρ(s) ?= Z ′ ρ(t), and replacing
every equation of the form Y s ?= ai Z t, where Y ∈ [X], by Y ′ ρ(s) ?= bi Z ρ(t).

Every solution σ without small components of E can be transformed into a
solution of E′ by defining it on the fresh variables Y ′ (see Lemma 7.5).
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In the special case that m = 2, wa1
= wa2

, and wa1
≺ wa2

, the transformation
on the graph of surface dependencies can be represented as a graph rewriting rule

where b2 is a new nonterminal of the grammar G′, that generates a word satisfying
wa2

= wa1
wb2 .

Notice that in this rewriting process at least one arrow and also the node [X] are
removed. Note also that in the case wa1

= wa2 , the three nodes are merged into one
node [X ′] ∪ [Z1] ∪ [Z2], thus removing more than one edge.

Example 7. Consider the following simplified and compacted set of equations and
their set of solution components for n ≥ 0:

Σ = {a, b, c, d, e},
N = {f, g},
X1 c �

?= f X2 c �,

X1 d �
?= g X3 a b d �,

X2 e �
?= g X3 e �,

G-rules: {f → a b, g → a}.

X1 �→ λx . (a b)n+2 x,
X2 �→ λx . (a b)n+1 x,
X3 �→ λx . b (a b)n x,

The graph of surface dependencies is

Applying the transformation rule to the only �-maximal node [X1], we get the fol-
lowing simplified and compacted set of equations E′:

Σ = {a, b, c, d, e},
N ′ = {f, g, h},
X ′

1 c �
?= hX2 c �,

X ′
1 d �

?= X3 a b d �,

X2 e �
?= g X3 e �,

G′-rules: {f → a b, g → a, h → b}.

The modified graph is as follows:

Lemma 7.4 (rewriting). Let 〈E,G〉 be a simplified and compacted set of equations,
and let 〈E,G〉 ⇒ 〈E′, G′〉; then

|G′| ≤ |G| + #Eq(E) depth(G),
depth(G′) = depth(G).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE COMPLEXITY OF MONADIC SECOND-ORDER UNIFICATION 1135

Moreover, |E′| ≤ |E| + m, where m is the number of variable occurrences of E.
Proof. Let m be the number of outgoing edges of the removed node. The new

grammar G′ extends G by defining m− 1 suffixes of words defined by G. Therefore,
according to Lemma 4.6, we can obtain such a grammar G′ satisfying the upper
bounds:

|G′| ≤ |G| + (m− 1) depth(G),
depth(G′) = depth(G).

It is easy to check that m ≤ #Eq(E).
Finally E′ is obtained by replacing in E the variable occurrences of some variables

Y (belonging to [X]) by b Y ′ and then simplifying. This simplification only has to
remove the same nonterminal symbol from the head of both sides of some equations;
hence it does not increase the size of the grammar. Therefore, the rewriting increases
the size of E at most by 1 for each variable occurrence in E.

Lemma 7.5. For any simplified and compacted set of equations 〈E,G〉 without
cycles in its graph of surface dependencies, any solution σ without small components,
and any transformation 〈E,G〉 ⇒ 〈E′, G′〉 defined by the substitution ρ, there exists
a substitution σ′ such that

(i) σ′ is a solution of 〈E′, G′〉,
(ii) σ′ satisfies σ = (σ′ ◦ ρ)|FV (E).

Proof. If there are not any small components, then the substitution ρ satisfies
ρ �FV (E) σ. Then the lemma is a direct consequence of Lemma 7.2.

The previous lemma may be iterated: If σ′ does not contain small components,
and the graph of surface dependencies of 〈E′, G′〉 does not contain cycles, we use it
again to obtain a new solution σ′′ of a new 〈E′′, G′′〉 and so on. By Lemma 7.6, this
process cannot be repeated more than #Eq(E) times.

Lemma 7.6. Any graph rewriting sequence D ⇒∗ D′ has length at most |D|.
Proof. This is clear, since in every transformation step at least one edge is re-

moved.
In Figure 7.1 we define an algorithm that, given the compacted set of equations

〈E,G〉 and a size-minimal solution σ, computes a polynomial-sized compacted solution
〈ρ,G′〉 representing σ. Note that the complexity of this algorithm is irrelevant; only
the polynomial size of the obtained representation will be needed.

Theorem 7.7 (compacted solution). Given the initial compacted set of equations
〈E0, G0〉 and the size-minimal solution σ0, the algorithm of Figure 7.1 computes a
compacted solution 〈ρ,G′〉 representing σ0.

Moreover, the following inequalities hold:

|G′| ≤ |G0| + O(|E0|4 depth(G0) + |E0|6),
depth(G′) ≤ depth(G0) + O(|E0|2),
|ρ| = O(|E0|3).

Proof. The algorithm performs a sequence of transformations on the compacted
equations 〈E,G〉, the compacted substitution 〈ρ,G〉, and the solution σ. These trans-
formations are of four types: simplification (step 6), small components (step 9), cycles
(step 16), and rewriting (step 23). First we show how many transformations of each
type are performed and then how they modify some of the measures of the represen-
tations (number of equations, their size, etc.).

(i) Termination: Cycle and small component transformations remove a vari-
able from E; therefore they cannot be executed more than |E0| times. According
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Input: σ0, 〈E0, G0〉
Output: ρ,G′

1. ρ := Id
2. 〈E,G〉 := 〈E0, G0〉
3. σ := σ0

4. while FV (E) = ∅ do
5. if 〈E,G〉 is not simplified then
6. let 〈E′, G′〉 be the simplification of 〈E,G〉
7. 〈E,G〉 := 〈E′, G′〉
8. elseif σ has a small component X then
9. let G′ be the grammar described in Lemma 6.6, and

10. let a be the nonterminal of G′ generating v
11. if σ(X) = λx . v x then ρ := [X �→ λx . a x] ◦ ρ
12. if σ(X) = λx . v � then ρ := [X �→ λx . a �] ◦ ρ
13. 〈E,G〉 := 〈ρ(E), G′〉
14. σ = σ|FV (E)

15. elseif D contains a cycle then
16. let G′ be the grammar,
17. let X be the variable in the cycle described in Lemma 6.12, and
18. let a be the nonterminal generating (wα)n v,

where σ(X) = λy . (wα)n v y
19. ρ := [X �→ λx . a x] ◦ ρ
20. 〈E,G〉 := 〈ρ(E), G′〉
21. σ = σ|FV (E)

22. else
23. compute 〈E,G〉 ⇒ 〈E′, G′〉
24. let [X] be the �-maximal class transformed by this rewriting, and
25. let a1 be the label of the outgoing edge of [X] generating the

shortest word
26. τ := Id
27. for all Y ∈ [X]
28. τ := [Y �→ λy . a1 Y

′ y] ◦ τ
29. let σ′ be the solution of 〈E′, G′〉 satisfying σ = (σ′ ◦ τ)|FV (E) given

by Lemma 7.5
30. ρ = τ ◦ ρ
31. 〈E,G〉 := 〈E′, G′〉
32. σ := σ′

33. endwhile
34. ρ := ρ|FV (E0)

Fig. 7.1. Pseudocode of the algorithm to compute a representation ρ of a solution.

to Lemma 7.6, rewriting sequences cannot be longer than |D|. The size |D| of the
graph of surface dependencies is bounded by the number of equations (we will see in
the following that this measure is decreasing), hence by |E0|. After every rewriting
sequence we get a set of equations E with a cycle, or a solution σ with a small com-
ponent. Therefore, there is a total number of at most |E0|2 rewriting steps. Finally,
after every rewriting step we get a simplified set of equations. Therefore, we can-
not perform more simplification steps than cycle elimination plus small component
elimination steps, hence not more than |E0|.
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(ii) Number of equations, variables, and occurrences of variables: Simplifications
preserve or decrease all these parameters, as well as the partial instantiations per-
formed by the cycle and small component transformations, according to Lemma 7.2.
Rewritings are composed by a partial instantiation followed by a simplification; there-
fore they also preserve or decrease these parameters.

(iii) Size of the equations, |E|: The size of E is preserved or decreases with
simplifications, cycles, and small component steps. However, it can be increased in
the number of occurrences of variables at every rewriting step (see Lemma 7.4). Since
there are no more than |E0|2 rewriting steps and the increase is bounded by |E0|, we
have |E| ≤ |E0| + |E0|3 along the execution of the algorithm.

(iv) Exponent of periodicity, eop(σ): According to Lemma 7.2, the exponent of
periodicity of the solution, after a partial instantiation like the ones we perform in
the cycle, small component and rewriting steps, is preserved or decreases. Since by
Lemma 2.4, eop(σ0) ≤ 2α |E0| for the initial minimal solution σ0, this bound holds
along the execution of the algorithm.

(v) Depth of the grammar, depth(G): There are the following possibilities:

depth(G′) = depth(G) +O(log |E|) (simplification, Lemma 6.2),
depth(G′) = depth(G) (small component, Lemma 6.6),
depth(G′) = depth(G) +O(log #Eq(E)

+ log eop(σ)) (cycle, Lemma 6.12),
depth(G′) = depth(G) (rewriting, Lemma 7.4).

Since log eop(σ) = O(|E0|) and the number of cycle steps as well as of simplifications
is at most |E0|, an upper bound is depth(G) = depth(G0) + O(|E0|2).

(vi) Size of the grammar, |G|: There are the following possibilities:

|G′| = |G| +O(|E|(depth(G) + log |E|)) (simplification, Lemma 6.2),
|G′| ≤ |G| + depth(G) (small component, Lemma 6.6),
|G′| = |G| +O(depth(G) + #Eq(E)

+ log eop(σ)) (cycles, Lemma 6.12),
|G′| ≤ |G| + #Eq(E) depth(G) (rewriting, Lemma 7.4).

We know that the maximal number of rewriting steps is |E0|2 and the maximal number
of small component, simplification, and cycle steps is at most |E0|. We also have
log eop(σ) = O(|E0|), |E| = O(|E0|3), and #Eq(E) = O(|E0|). Together with the
upper bound on depth(G), this gives an upper bound (simplification is responsible for
the dominating terms):

|G′| = |G0| + |E0| O(|E0|3(depth(G) + log |E0|3)),
+ |E0| depth(G),
+ |E0| O(depth(G) + |E0|),
+ 6|E0|2 |E0| depth(G),

= |G0| + O(|E0|4 depth(G0) + |E0|6).

(vii) Size of the compacted solution, |ρ|: We have to represent the instantiation of
at most |E0| variables, where the size of each instantiation is bounded by the number
of rewriting steps. This gives O(|E0|3).

All the transformations are sound according to Lemma 7.2. Now, if the compacted
equations are not simplified, we can always simplify them. If they are simplified,
either there is a cycle, or a solution with small components, or we can rewrite the
equations.
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8. Main results and some remarks. Theorem 7.7 states that, given a compact
representation 〈E,G〉 of a set of equations, we can build a new singleton grammar G′

of polynomial size defining all components of the compact representation of a size-
minimal solution. The final step is to use Plandowski’s theorem (Theorem 4.2) to
check that the polynomial-sized guessed substitution is really a unifier.

Main Theorem 8.1. Solvability of compact representations of basic MSOU prob-
lems is NP-complete.

Proof. Theorem 7.7 shows that for every compact representation 〈E,G〉 of a basic
MSOU problem and every size-minimal solution σ, there is compacted solution 〈ρ,G′〉
that represents σ, where G′ is a singleton grammar of polynomial size in |E| + |G|
and |ρ| is also polynomial in |E|.

Thus we can guess a polynomial-sized singleton grammar G′ and a compacted
solution ρ as above, and then test whether 〈ρ,G′〉 is a solution of 〈E,G〉. We can
replace every variable occurrence in E by its instantiation in ρ, then normalize both
sides of each equation si

?= ti, to obtain s′i
?= t′i, and, finally, extend G′ to obtain G′′

by Lemma 4.4, generating s′1 # · · · # s′n and t′1 # · · · # t′n, where # is a new constant
symbol. Then, the test for solvability is an equality test w.r.t. the singleton grammar
G′′, which can be performed in polynomial time by Plandowski’s theorem (see The-
orem 4.2). This shows that the problem is in NP. Together with the NP-hardness of
the problem, which was proved in [22], this leads us to conclude that the problem is
NP-complete.

Corollary 8.2. Monadic second-order unification is NP-complete.
Proof. The proof follows from Theorem 8.1 and Proposition 3.1.
Corollary 8.3. Monadic second-order matching is NP-complete.
Proof. The proof follows from Theorems 2.6 and 8.1.
Remark 1. Theorem 7.7 clarifies the increase of the size of the grammar rep-

resenting a size-minimal solution of some compacted equations, after instantiating
N variables. This theorem fixes the increase w.r.t. the size of the equations, the
logarithm of the upper bound on the exponent of periodicity, and the depth of the
grammar. The question is then, Could we avoid the use of the depth of the grammar?
The answer is no. For instance, Lemma 4.6 says that, if we want to define a prefix
of some word defined by a grammar G, in the worst case, we can keep the depth,
but we may need to increase the size of G′ as |G′| ≤ |G| + depth(G). If we use
only the size of the grammar to characterize it, then in the worst case we may be
forced to duplicate the size of the grammar |G′| ≤ 2 |G|. Each time that we instan-
tiate a variable, it can be necessary to define a new prefix; therefore, in the worst
case, the size of the resulting grammar would be 2N , being N ≤ |E| the number of
variables.

The combined use of size and depth allows us to keep track of balancing conditions
of singleton grammars as trees and also to provide tighter measures.

Remark 2. Our method computes a compact representation of a size-minimal
solution. This means that every solvable MSOU problem has at least one solution
that can be represented by a polynomial-sized grammar. Our method can easily be
extended to compute a compact representation of any solution; however, there is no
longer any size-bound. If one is interested in representing all solutions, then our
method does not help, since singleton grammars do not support the representation of
infinite sets of words; e.g., the representation of {(a b)n |n ∈ N} is not possible. Note
that there is already an investigation of a representation of sets of solutions using
words with exponents for MSOU (see [2]).
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9. Conclusions. In this paper we proved in Corollary 8.2 that monadic second-
order unification (MSOU) is in NP using a result of Plandowski about context-
free grammars [17, 18] and the exponential bound on the exponent of periodicity
[23, 22]. These results, together with the NP-hardness of the problem [22], prove
its NP-completeness. As we mention in the introduction, MSOU is a specialization
of bounded second-order unification (BSOU) [22], a variant of second-order unifica-
tion, where instantiations of second-order variables can use their argument a bounded
number of times. During revision of this paper we were able to apply variants of
this method to prove that BSOU [11] and stratified context unification [12] are also
NP-complete.

Acknowledgment. We acknowledge the meticulous reading and helpful com-
ments of the anonymous referees, which helped us to improve the presentation of the
paper.
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