
AAECC (2009) 20:427–445
DOI 10.1007/s00200-009-0106-4

Simplifying the signature in second-order unification

Jordi Levy · Mateu Villaret

Received: 14 May 2008 / Revised: 13 March 2009 / Published online: 4 September 2009
© Springer-Verlag 2009

Abstract Second-Order Unification is undecidable even for very specialized frag-
ments. The signature plays a crucial role in these fragments. If all symbols are monadic,
then the problem is NP-complete, whereas it is enough to have just one binary constant
to lose decidability. In this work we reduce Second-Order Unification to Second-Order
Unification with a signature that contains just one binary function symbol and con-
stants. The reduction is based on partially currying the equations by using the binary
function symbol for explicit application @. Our work simplifies the study of Sec-
ond-Order Unification and some of its variants, like Context Unification and Bounded
Second-Order Unification.

Keywords Second-Order Unification · Context Unification · Lambda calculus

Mathematics Subject Classification (2000) 03B40 · 03B15 · 68N18 · 03F03

This research has been partially supported by the research projects Mulog-2 (TIN2007-68005-C04-01)
and SuRoS (TIN2008-04547) funded by the CICyT.

J. Levy (B)
IIIA, CSIC, Campus de la UAB, Barcelona, Spain
e-mail: levy@iiia.csic.es
URL: http://www.iiia.csic.es/∼levy

M. Villaret
IMA, UdG, Campus de Montilivi, Girona, Spain
e-mail: villaret@ima.udg.edu
URL: http://ima.udg.edu/∼villaret

123



428 J. Levy, M. Villaret

1 Introduction

Second-Order Unification is undecidable even for very specialized fragments [11,
17,22]. The signature plays a crucial rule in this problem: Goldfarb’s undecidabil-
ity proof for Second-Order Unification [9,11] requires the use of a binary function
symbol, whereas the first known decidable fragment of Second-Order Unification was
Monadic Second-Order Unification, where function symbols can be at most unary
[8,13,19,32]. In this work we reduce Second-Order Unification to Second-Order Uni-
fication with a signature that contains constants (0-ary function symbols) and just one
binary function symbol. The reduction is based on partially currying terms.

Currying is usually defined as the encoding of n-ary application into unary applica-
tion. For instance, the curry form of a term like f (a, b) is ( f (a))(b), that in λ-calculus
is usually written as ( f a) b. We go a step further by making application explicit. Thus,
the curry form of the term f (a, b) is @(@( f, a), b), where @ denotes the explicit
application, hence a binary function symbol. When dealing with First-Order Unifi-
cation, this transformation reduces a unification equation to another one containing
only one binary symbol. The sizes of the new equation, and of the unifier, are linear
in the sizes of the original equation and original unifier. Therefore, from the point
of view of complexity there is not a significant difference, but in practical imple-
mentations this implies that terms can be represented as binary trees, and contexts
as subterms. This transformation has been shown useful in term indexing data struc-
tures [10].

When dealing with second-order terms, where variables can have arguments, the
transformation is not so obvious. We can curryfy constant symbol applications and
second-order variable applications, obtaining a first-order term. For instance, for
f (F(a), Y )

?= f (a, b), where F is a second-order variable and Y a first-order
one, we obtain @(@( f ′, @(F ′, a)), Y )

?= @(@( f ′, a), b), where now F ′ and Y
are both first-order typed. However, solvability of unification equations is not pre-
served by this transformation. In our example, the original equation has a solution
σ = [F �→ λx .x, Y �→ b], whereas its Curry form is unsolvable.

Another alternative is reducing Second-Order Unification to First-Order Unifica-
tion modulo β-equivalence. In our example, the application of σ to the Curry form
of the equation results in @(@( f ′, @(λx .x, a)), b) and @(@( f ′, a), b), which are
equivalent modulo the β-equivalence @(λx .t1, t2) = t1[x �→ t2]. However, the right-
hand side of β-equivalence is a meta-term. This means that this is not an instance of
E-Unification, where E is an algebraic theory.

A third alternative is adding all equations of explicit substitution [1], obtaining
an algebraic theory, and doing First-Order Unification modulo this theory. Roughly
speaking this is what is done in the so called Explicit Unification [3,7].

Here, we propose to curryfy function symbol applications, but not variable
applications. Therefore, the new equation we get is also second-order typed. For
instance, for F(G(a), b)

?= g(a), we get F(G(a), b)
?= @(g, a), that is also solv-

able. With this partial curryfication we do not reduce the order of the unifica-
tion equation (we reduce Second-Order Unification to a fragment of Second-Order
Unification), but we reduce the number of function symbols to just one: the

123



Simplifying the signature in second-order unification 429

application symbol @. This simplification in the signature is very interesting when
studying the un/decidability of Second-Order Unification and related problems.

The partial curryfication is a linear transformation. We prove that, when variables
do not touch, i.e. when terms do not have any variable just above another variable,
then the transformation preserves solvability of second-order equations. Hence, we
can P-reduce Second-Order Unification where equations satisfy this “no-touch”-con-
dition to Second-Order Unification with just one binary function symbol. In a second
step, we also prove that general Second-Order Unification can be NP-reduced to Sec-
ond-Order Unification where all equations are non-touching. Basically, the idea of
this second reduction is to guess a function symbol to separate touching variables.
Therefore, the composition of both reductions results into an NP-reduction that allows
us to simplify signatures, preserving decidability. With respect to complexity, since
the resulting reduction is NP, it can serve to investigate the complexity of the problems
using a simplified signature, whenever they are NP-hard.

Although Second-Order Unification was already known to be undecidable for just
one binary function symbol [9,11], applying the reduction described in this paper, to
the results of [22], we prove that Second-Order Unification is undecidable for equa-
tions with just one binary function symbol and one second-order variable occurring
four times.

The reduction also works for Context Unification [5,24,31] and for Bounded
Second-Order Unification [21,29]. Context Unification is a variant of Second-Order
Unification. Its decidability is still unknown. Roughly speaking the variant consists of
constraining unifiers to instantiate second-order variables by linear terms. The problem
has also several decidable fragments [16,20,28,30]. One of them is Word Unification
[12,25,27] where function symbols are at most unary.

Bounded Second-Order Unification [21,29] is a decidable variant of Second-Order
Unification. It is like Second-Order Unification where possible instantiations of sec-
ond-order variables are constrained by limiting the number of occurrences of bound
variables. In [29] it is shown that Bounded Second-Order Unification can be NP-
reduced to the particular case where the limiting number is one and the arity of sec-
ond-order variables is also one. Again we show that only one binary function symbol
is required to study Context Unification and Bounded Second-Order Unification. This
allows researchers to concentrate on a simplified version of these problems, and pos-
sibly of other further variants.

Curryfication has already been useful to prove decidability of Sequence Unification
[14,15], an extension of First-Order Unification for unranked terms, where sequence
variables can be instantiated by sequences of terms.

Finally, the study of currying in Second-Order Unification problems could be also
of interest when considering terms with unranked signatures for information extraction
of XML documents. In fact, curryfication has been shown useful in querying unranked
trees and XML documents using tree automata [4,26].

This paper proceeds as follows. In Sect. 2 we introduce some assumptions and
considerations of the work. Most of our results hold for Second-Order and for Con-
text Unification, and sometimes we do not make the distinction explicit. In Sect. 3
we define the curry forms where only function symbol applications are made explicit
and show the limitations of the technique. In Sect. 4 we define a labeling on curry

123



430 J. Levy, M. Villaret

forms that is used to characterize “well-curried” terms, i.e. terms that are the curry
form of some well-built term. In Sect. 5 we present a property of some equations that
ensure that solvability is preserved by curryfication: when variables do not touch. In
Sect. 6 we prove our main result: Second-Order, Context and Bounded Second-Order
Unification can be reduced to a simplified form where only a single binary function
symbol and unary constants are used. We conclude in Sect. 7 showing the difficulties
of extending these results to higher-order problems. A preliminar version of this arti-
cle was presented at the 13th International Conference on Rewriting Techniques and
Applications, (RTA’02) with the title “Currying Second-Order Unification Problems”.

2 Preliminary definitions

We will use the standard notation and definitions of the simply typed lambda calculus
[2] and Higher-Order Unification [6].

Consider a set of types built over a finite set of base types b, with the grammar
τ ::= b|τ → τ . The order of a type is given by order(b) = 1 and order(τ1 → τ2) =
max{order(τ1) + 1, order(τ2)}, with the usual convention that → is associative to the
right. As in [11], we only use one base type o, and second-order types. Hence, every
type is either o (of order one), or of the form o → o → · · · → o (of order two), which
also means that we do not allow symbols or expressions of third or a higher-order
type. The order of a symbol is the order of its type. Any symbol of type o → · · · → o

︸ ︷︷ ︸

n+1
is said to have arity n. Hence, the arity of a symbol determines its type and order, and
we will usually specify the arity instead of the type of the symbols.

A second-order signature � is a finite disjoint union of finite sets of symbols
� = ⋃

n≥0 �n , where symbols f ∈ �n are said to be n-ary, denoted by arity( f ) = n.
We distinguish between constants, when their arity is 0, hence first-order typed, and
function symbols, when their arity is greater than 0, hence second-order typed. Simi-
larly, we define the set of variables X = ⋃

n≥0 Xn , and distinguish between first-order
variables (the set X0) and second-order variables (the rest of variables

⋃

n≥1 Xn). We
use lambda bindings and the usual notion of bound and free variables. For simplic-
ity, we assume that bound and free variables have distinct names, and use lower case
letters like x, y, z . . . for the bound variables (they are always first-order typed) and
upper case letters for free variables or unknowns. We typically use X, Y, . . . for free
first-order variables, F, G, . . . for second-order variables, and Z for indistinctively
first or second-order variables.

The set of well-typed terms T (�,X ) is defined as usual in the simply typed lambda
calculus. The order of a term is the order of its type. We use the compact notation
s(t1, . . . , tn) to denote (. . . (st1) . . . tn) for a term s of arity n, and λx1, . . . , xn · t to
denote λx1, . . . , λxn · t . When we say normal form we mean η-long β-reduced nor-
mal form, defined as usual. Since we do not consider third or higher-order constants,
first-order typed terms in normal form do not contain λ-abstractions, and second-order
typed terms only contain λ-abstractions in outermost positions. Notice that any term
in normal form can be written, with the compact notation, using the syntax t ::=
a|X | f (t1, . . . , tm)|F(t1, . . . , tm), for first-order typed terms, and s ::= λx1, . . . , xn · t

123



Simplifying the signature in second-order unification 431

for second-order typed terms, where a, X , and the xi ’s have arity zero and f and F
have arity m. Written in normal form, the term λx1, . . . , xn · t has arity n, when t has
not a lambda as outermost symbol. A term is first-order typed when it has arity zero,
and second-order typed when its arity is greater than zero. We typically use s, t, u, . . .

to denote indistinctively first or second-order typed terms, specifying the arity or order
when it is relevant. Thus, from the first-order perspective, we extend terms by allow-
ing second-order variables to be applied to arguments, and lambda abstractions in
outermost positions.

A second-order substitution σ is a set of (variable,term) pairs, like [Z1 �→
t1, . . . , Zn �→ tn], where Zi and ti have the same arity, and ti is said to be the instance
of Zi . Therefore, instances of second-order variables contain λ-abstractions. The set
{Z1, . . . , Zn} is called the domain of the substitution, and is denoted by Dom(σ ). The
application of a substitution σ to a term t in normal form is defined recursively as
follows

σ( f (t1, . . . , tn)) = f (σ (t1), . . . , σ (tn))

σ (X) =
{

t if the pair X �→ t is in σ

X otherwise

σ(F(t1, . . . , tn)) =
⎧

⎨

⎩

ρ(u) if the pairF �→ λx1 · · · λxn · u is in σ

where ρ = [x1 �→ σ(t1), . . . , xn �→ σ(tn)]
F(σ (t1), . . . , σ (tn)) otherwise

σ(λx1, . . . , xn · t) = λx1, . . . , xn · σ(t) assuming that xi �∈ Dom(σ )

Given two substitutions σ and ρ, their composition is defined by (σ ◦ ρ)(t) =
σ(ρ(t)), for any term t , and is also a substitution, hence Dom(σ ◦ρ) is finite. Given a
set of variables V and a substitution σ , the restriction of σ to the domain V is denoted
by σ |V . Given a set of variables V , we say that a substitution σ is more general w.r.t.
V than another substitution ρ, denoted σ 	V ρ, if there exists a substitution τ such
that ρ(Z) = τ(σ (Z)), for any variable Z ∈ V , i.e. ρ|V = (τ ◦ σ)|V . This defines a
preorder relation on substitutions.

A Second-Order Unification problem E is a pair of first-order terms (or equation),
denoted by t ?= u. Notice that all variable occurrences of t ?= u are free. A substitution
σ is said to be a unifier (or solution) of a Second-Order Unification equation t ?= u if
σ(t) = σ(u), i.e. if σ(t) and σ(u) are identical. Most general unifiers of E are unifiers
that are minimal w.r.t. 	FV (E).

A Context Unification problem is also a pair of first-order terms over a second-order
signature. In the area of Context Unification, second-order variables are called context
variables. A context substitution is a second-order substitution [Z1 �→ t1, . . . , Zn �→
tn] where, for all second-order term ti = λx1 · · · λxn · u, every x j occurs exactly once
in u, i.e. where instances of context variables must be linear. Then, a context unifier of a
Context Unification equation t ?= u is a context substitution σ satisfying σ(t) = σ(u).
Sometimes, Context Unification is defined restricting context variables to be unary.
Here we consider n-ary variables, and use bound variables to denote the “holes” of
the context. For more detailed comments and comparison between these approaches
to Context Unification see [31].

123



432 J. Levy, M. Villaret

A Bounded Second-Order Unification problem is also a pair of first-order terms
over a second-order signature, and a number m. A bounded second-order substitution
is a second-order substitution [Z1 �→ t1, . . . , Zn �→ tn] where, for all second-order
term ti = λx1, . . . , xn · u, every x j occurs at most m times in u. If the value of m is
given in unary encoding, then Bounded Second-Order Unification can be NP-reduced
to the particular case where m = 1 [29]. Therefore, we will consider only this special
case.

Notice that second-order, context and bounded second-order equations have the
same presentation. Moreover, any solvable context equation is a solvable bounded
second-order equation, and any solvable bounded second-order equation is a solvable
second-order equation.

If nothing is said, the signature of an equation is given by the set of constants that
it contains and a denumerable infinite set of variables, for every arity. For technical
reasons we also assume that the signature contains, at least, a binary function symbol
and a constant (that can be added if the equation does not contain any).

The following is a basic property of most general second-order, context and bounded
unifiers that will be required in some proofs.

Lemma 1 Let t ?= u be a second-order equation, and σ be a most general second-
order [context or bounded second-order] unifier. Then, for any variable Z , σ (Z) does
not contain constants not occurring in the equation t ?= u.

Proof Suppose that a most general unifier σ introduces a constant f not occurring
in the equation. Then, we can replace every occurrence of this constant by a fresh
variable F of the same arity. This would result into another unifier σ ′ that is strictly
more general than σ : we have σ = [F �→ λx1 · · · λxn · f (x1, . . . , xn)] ◦ σ ′|

FV (t ?=u)
,

but σ �	
FV (t ?=u)

σ ′. This would contradict the fact that σ is most general. Moreover, σ ′
is a context [bounded second-order] unifier, if σ is a context [bounded second-order]
unifier. 
�

Notice that this property is true for Context Unification thanks to the fact that we
allow n-ary context variables (see [31]), otherwise it would not be true.

3 Currying terms

In this section we formally define our curryfication transformation and characterize
the terms in curry-form that are well-curried, i.e. the ones that are curried forms of
some term.

Definition 1 Given a second-order signature � = ⋃

n≥0 �n , the curried signature
�c = ⋃

n≥0 �c
n is defined by

�c
0 =

⋃

n≥0

�n

�c
2 = {@}

�c
n = ∅ for n �= 0, 2

123



Simplifying the signature in second-order unification 433

The currying function C : T (�,X ) → T (�c,X ) is defined recursively as follows:

C(a) = a

C(x) = x

C(X) = X

C( f (t1, . . . , tn)) = @(
n· · · @( f, C(t1))

n· · ·, C(tn))

C(F(t1, . . . , tn)) = F(C(t1), . . . , C(tn))

C(λx1, . . . , xn · t) = λx1, . . . , xn · C(t)

for any constant a ∈ �0, bound variable x , free first-order variable X , function symbol
f ∈ �n , and second-order variable F ∈ Xn .

Definition 2 Given a signature �, and a term t ∈ T (�c,X ), we say that t is well-
curried w.r.t. �, if C−1(t) is defined, i.e. if there exists a term u ∈ T (�,X ) such that
C(u) = t .

Lemma 2 Given a signature �, and a substitution σ , the substitution σC defined by
σC(F) = C(σ (F)), for all F ∈ Dom(σ ), satisfies C(σ (t)) = σC(C(t)).

Proof By structural induction on t . 
�
This substitution lemma allows us to conclude the following result.

Lemma 3 (Soundness) If the second-order [context, bounded] equation t ?= u over
� is solvable, then the second-order [context, bounded] equation C(t) ?= C(u) over
�c is also solvable.

Proof Let σ be a unifier of t ?= u. We have σC(t) = C(σ (t)) = C(σ (u)) = σC(u).
Therefore, the substitution σC is a unifier of C(t) ?= C(u). The proof can be represented
graphically by means of the commutativity of the following category diagram. 
�

The inverse implication in the previous lemma is not true, as shown in Example 1.
The reason is that the currying function is not onto.

Example 1 The following second-order equation

g(F(G(a)), F(a), G(a))
?= g( f (a, b), H(a, b), H(X, a))

123



434 J. Levy, M. Villaret

does not have context unifiers. However, its Curry form

@(@(@(g, F(G(a))), F(a)), G(a))
?= @(@(@(g, @(@( f, a), b)), H(a, b)), H(X, a))

has the following context unifier

σ = [F �→ λx .@(x, b), G �→ λx .@( f, x), H �→ λxy.@(x, y), X �→ f ]

Similarly, the following second-order equation

g(F(G(a)), F(G(a′)), F(a), F(a′), G(a), G(a′))
?= g( f (a, b), f (a′, b), H(a, b), H(a′, b), H(X, a), H(X, a′))

does not have second-order unifiers, whereas its curry form does. Moreover, the equa-
tion does not have any bounded second-order unifier, but its curry form does.

In the previous example, σ(F), σ (G), σ (H) and σ(X) are not “well-curried”, i.e.
they are not the curry form of any well-typed term. For instance, σ(F) = λx .@(x, b)

is the curry form of λx . x(b), but this term is third-order typed (and F is a second-order
typed variable), and σ(G) = λx . @( f, x) is the curry form of λx . f (x), but f has two
arguments. This disallows us to reconstruct a unifier for the original equation from the
unifier we get for its curry form.

We can also see that the original unification equations contain variables that “touch”.
For instance, F touches G in F(G(a)), and H touches X in H(X, a). In the next sec-
tions we will prove, for Second-Order, for Context, and for Bounded Second-Order
Unification, that, if no variable touches any other variable, then solvability of the
equations is preserved in both directions by our currying transformation. We will also
show how to reduce Second-Order, Context and Bounded Second-Order Unification
to equations accomplishing such property.

4 Labeling terms

The first step to find a sufficient condition ensuring that the currying function preserves
satisfiability is to characterize well-curried terms. This is done by labeling application
symbols @ with the arity of their left argument, and using a hat to mark the roots of
right arguments. If left arguments have positive arity, and right arguments and the root
have arity zero, then the term is well-curried (see Definition 2).

123



Simplifying the signature in second-order unification 435

Definition 3 Given a signature � = ⋃

n≥0
�n , the curried and labeled signature �cl =

⋃

n≥0 �cl
n is defined by:

�cl
0 =

⋃

n≥0

�n

�cl
2 = {@l , ̂@l |l ∈ Z}

�cl
n = ∅ for n �= 0, 2

The labeling function L : T (�c,X ) → T (�cl ,X ) adds labels to the @’s. It is
defined by the following rules:

1. If the left child of an @ is the constant f corresponding to an n-ary symbol
f ∈ �n , then it has label l = arity( f ) − 1 = n − 1.

2. If the head of the left child of an @ is a variable Z ∈ X , or a bound variable, then
it has label −1, regardless what the arity of the variable is.

3. If the head of the left child of an @ is another @ with label n, then it has label
n − 1.

The labeling function ̂L : T (�c,X ) → T (�cl ,X ) is defined using the three
previous rules plus the following one:

4. If an @ is the head of the right child of another @, or it is the head of the child of
a variable, or it is the root of the term, then, apart from the label, it also has a hat.

Notice that the terms of T (�cl ,X ) are second-order typed terms.

Example 2 The ̂L-labeling of the term

@(@(@(g, @(@( f, a), b)), @(a, b)), @( f, a)),

used in Example 1 (see Fig. 1) as follows (see Fig. 2).

Fig. 1 Common instance of the curried second-order equation of Example 1

123



436 J. Levy, M. Villaret

Fig. 2 Representation of the bad-curried labelled term ̂@0(@1(@2(g, ̂@0(@1( f, a), b)), ̂@−1(a, b)),
̂@1( f, a))

Notice that labels can be negative numbers. These negative labels can not appear
in labeling of well-curried terms.

Based on these labels, it is easy to characterize well-curried terms.

Lemma 4 Given a signature �, a term t ∈ T (�c,X ) is well-curried if, and only if,
the following two conditions are satisfied

1. ̂L(t) does not contain application symbols with negative labels, i.e. @−n, with
n > 0) and

2. ̂L(t) does not contain application symbols with hat and non-zero labels, i.e. ̂@n

with n �= 0.

Proof For the left-to-right implication, if t is well-curried, then there exists a term
u such that C(u) = t . By induction on the structure of u, we can prove easily that t
satisfies the two conditions.

To prove the right-to-left implication, assume that the labeling ̂L(t) does not contain
@−n , with n > 0, or ̂@n , with n �= 0. Then, any @ symbol is in a sequence of the form:

123



Simplifying the signature in second-order unification 437

where ̂@0 is the head of the right child of another @, or of the child of a variable F , or it
is the root of the term. We can prove, by the definition of currying, that this is the curry-
ing of f (C−1(t1), . . . , C−1(tn)) ∈ T (�,X ), because f has n arguments and arity n. 
�

5 When variables do not touch

In this section, we introduce a “no-touch”-condition ensuring that, when we have a
unifier for C(t) ?= C(u), we can find a unifier for t ?= u. The strategy to prove this
result is summarized in the following diagram:

The proof has two parts. First, we find a sufficient condition that makes the right
square commute (Lemma 7). The proof of this commutativity is similar to the proof
of Lemma 2. We define a function on substitutions that maps σC into ̂L(σC) = σ

̂L,
as follows: σ

̂L(F) = ̂L(σC(F)), for each variable F ∈ Dom(σC). Then, when the
“no-touch”-condition is satisfied, labelling and instantiation commute and we have

σ
̂L(̂L(C(t))) = ̂L(σC(C(t)))

This ensures that we map any unifier of C(t) ?= C(u) into a unifier of ̂L(C(t)) ?=
̂L(C(u)). Second, we prove that, when the right square commutes, then the left one
also commutes (Lemma 8). The commutativity of the left square ensures that the cur-
rying transformation preserves satisfiability, and allows us to translate any unifier of
the curryfied equation C(t) ?= C(u) into a unifier of t ?= u.

The sufficient condition we find to ensure the commutativity of the right square is
based on the following definition.

Definition 4 Given a term t ∈ T (�,X ), we say that two variables F, G ∈ X touch,
if t contains a subterm of the form F(t1, . . . , G(u1, . . . , um), l . . . , tn). Similarly,
F, X ∈ X touch if t contains a subterm of the form F(t1, . . . , X, . . . , tn).

The non-touch condition prevents that non-well-curried terms recombine to well-
curried terms after applying a substitution.

Example 3 In the second-order equation of Example 1, the variable F touches G, and
the variable H touches X . Therefore, this example does not satisfy the “no-touch”-
condition. The labelling of the substitution σ results on

σ
̂L =

[

F �→ λx .@̂−1(x, b), G �→ λx .̂@1( f, x), H �→ λxy.@̂−1(x, y), X �→ f
]

123



438 J. Levy, M. Villaret

that is not a unifier of ̂L(C(t)) ?= ̂L(C(u)). In particular, we have three different terms:

σ
̂L(̂L(C(t))) = ̂@0(@1(@2(g, @̂−1(̂@1( f, a), b)), @̂−1(a, b)), ̂@1( f, a))

σ
̂L(̂L(C(u))) = ̂@0(@1(@2(g, ̂@0(@1( f, a), b)), @̂−1(a, b)), @̂−1( f, a))

̂L(σC(C(t))) = ̂L(σC(C(u)))

= ̂@0(@1(@2(g, ̂@0(@1( f, a), b)), @̂−1(a, b)), ̂@1( f, a))

Before proving the commutativity of the right diagram (Lemma 7), we prove a
weaker version of this result using L instead of ̂L as labelling function. First we prove
that substitutions and labelling (without hats) commute (Lemma 5). Second, we prove
that we can transform every most general unifier of C(t) ?= C(u) into a most general
unifier of ̂L(C(t)) ?= ̂L(C(u)) (Lemma 6).

Lemma 5 Let t be a term where variables do not touch, and σC a second-order [con-
text, bounded] substitution on �c. The second-order [context, bounded] substitution
σL defined by σL(F) = L(σC(F)), for each variable F ∈ Dom(σC), satisfies

σL(L(C(t))) = L(σC(C(t)))

Proof Since σC and σL only differ in the introduction of labels, if σC is a context
[bounded] substitution, then σL is also a context [bounded] substitution.

By the same reason, σL(L(C(t))) and L(σC(C(t))) have the same form, except for
the labels. Therefore, we only have to compare the labels of the corresponding @’s in
both terms. Taking a particular @ occurrence in σL(L(C(t))) and L(σC(C(t))), there
are two cases:

1. If the occurrence of the @ is outside the instance of any variable, then this @
already occurs in C(t), and it is in a sequence of the form (see proof of Lemma 4):

where the occurrence of the f (corresponding to an n-ary function symbol), and
all the @’s occurring between the particular @ and f , already occurred in C(t)
(they have not been introduced by an instantiation either). Thus, the particular

123



Simplifying the signature in second-order unification 439

@ gets the same label in σL(L(C(t))) as in L(σC(C(t))), because this label only
depends on the left descendants, and they have not been introduced by σC or σL.

2. If the @ is inside the instance of a variable F , we have to prove that it gets the same
label in σL(L(F(C(t1), . . . , C(tn)))) as in L(σC(F(C(t1), . . . , C(tn)))). For the
first term we have σL(L(F(C(t1), . . . , C(tn)))) = σL(F)(σL(L(C(t1))), . . . ,
σL(L(C(tn)))) = L(σC(F))(σL(L(C(t1))), . . . , σL(L(C(tn)))). For the sec-
ond term we have L(σC(F(C(t1), . . . , C(tn)))) = L(σC(F)(σC(C(t1)), . . . ,
σC(C(tn)))). Therefore, in the first case we label σC(F) before applying the sub-
stitution (so we have bound variables in the place of the arguments), whereas in
the second case we label σC(F) after applying the substitution (so we already
have the arguments C(ti )). As we will see, in both cases the labels we get are the
same. The root of one of the arguments C(ti ) can be a left descendant of the @,
and its label will depend on such argument. However, if variables do not touch,
the head of any argument ti of F is a constant or a function symbol. Therefore,
the head of C(ti ) is either a 0-ary constant a or an @ with label 0. Hence, the
labels of the ancestors of the argument inside σC(F) will be the same if we replace
the argument by a bound-variable, and the label of the corresponding @ inside
σL(F) will be the same.


�
Lemma 6 If the variables of the second-order equation t ?= u do not touch, and σC
is a most general second-order [context, bounded] unifier of C(t) ?= C(u), then the
substitution σL defined by σL(F) = L(σC(F)), for each variable F ∈ Dom(σC), is
a most general second-order [context, bounded] unifier of the equation

L(C(t)) ?= L(C(u))

Proof By Lemma 5, we have σL(L(C(t))) = L(σC(C(t))) and σL(L(C(u))) =
L(σC(C(u))). As σC(C(t)) = σC(C(u)), we can conclude that σL is a unifier of
L(C(t)) ?= L(C(u)).

Given a unifier σL of L(C(t)) ?= L(C(u)), we can find a unifier σC of C(t) ?= C(u)

by removing labels. Moreover, if σ ′
L is more general than σL, then by removing the

labels from σ ′
L we get a unifier more general than the one resulting from removing the

labels of σL. Therefore, if σC is most general for C(t) ?= C(u), then σL is also most

123



440 J. Levy, M. Villaret

general for L(C(t)) ?= L(C(u)), otherwise, there would be a unifier more general than
σL, and removing labels we could obtain a unifier more general than σC . 
�
Lemma 7 If the variables of t ?= u do not touch, and σC is a most general second-
order [context, bounded] unifier of C(t) ?= C(u), then the substitution σ

̂L defined by
σ

̂L(F) = ̂L(σC(F)), for each variable F ∈ Dom(σC), satisfies

σ
̂L(̂L(C(t))) = ̂L(σC(C(t)))

and is a most general second-order [context, bounded] unifier of the equation

̂L(C(t)) ?= ̂L(C(u))

Proof First, we prove that σ
̂L(̂L(C(t))) = ̂L(σC(C(t))).

We already know that both terms have the same form and the same labels, thus we
only have to prove that they have the same hats. Again, there are two cases:

– If the occurrence of the @ is outside the instance of any variable, then the only
situation we have to consider is the following. If the @ has as father a variable
F in C(t), and after instantiation, it becomes a left child of an @ inside σ

̂L(F),
then it will loose the hat. However, if variables do not touch in the equation, this
situation is not possible: As C(t) and C(u) are trivially well-curried, by Lemma 4,
L(C(t)) and L(C(u)) will not contain @’s with negative labels. Let σL be the most
general unifier of L(C(t)) ?= L(C(u)) given by Lemma 6. Now, by Lemma 1, as
σL is a most general unifier, for any variable F, σL(F) will not contain @’s with
negative labels, either. We can conclude then that the head of any argument ti of
F cannot be a left child of an @, because, as the heads of σL(ti ) have zero label
or are 0-ary constants, this situation would introduce a negative label in some @
inside σL(F).

– If the occurrence of the @ is inside the instance of a variable F , then we have to
prove that the fact that @ has a hat or not, does not depend on the arguments of
F . This is obvious because this fact does not depend on the descendants of the @.

Finally, using the same argument as in Lemma 6, we conclude that σ
̂L is a most

general unifier of ̂L(C(t)) ?= ̂L(C(u)). 
�
Once we have proved the commutativity of the right diagram, we can prove the com-

mutativity of the left diagram, i.e. the completeness of the currying transformation: if
variables do not touch, then the transformation preserves solvability of equations.

Lemma 8 (Completeness) If the variables of t ?= u do not touch, and σC is a most
general second-order [context, bounded] unifier of C(t) ?= C(u), then the substitution
defined by σ(F) = C−1(σC(F)) for each variable F ∈ Dom(σC), satisfies

C(σ (t)) = σC(C(t))

and is a most general second-order [context, bounded] unifier of t ?= u.

123



Simplifying the signature in second-order unification 441

Proof Let σ
̂L be the most general unifier of the equation ̂L(C(t)) ?= ̂L(C(u)) given

by Lemma 7. As C(t) and C(u) are well-curried, by Lemma 4, they do not contain
negative labels nor hats over non-zero labeled @’s. Then, by Lemma 1, σ

̂L does not
introduce such kind of labels or hats. Therefore, as σ

̂L(F) is defined as the label-
ing of σC(F), using again Lemma 4, σC(F) will be well-curried, and we can define
σ(F) = C−1(σC(F)) for each variable F ∈ Dom(σC).

By the properties of the currying, this substitution satisfies C(σ (t)) = σC(C(t)).
This allows us to conclude that it is a unifier of t ?= u.

The proof for its most-generality follows the same argument as in Lemma 6. 
�

6 Main results

In this section we prove that Second-Order, Context and Bounded Second-Order Uni-
fication can be reduced to their corresponding version where variables do not touch.
This concludes that the three problems can be reduced to the fragment with just one
binary symbol and constants.

Theorem 1 Decidability of Second-Order Unification can be NP-reduced to decid-
ability of Second-Order Unification with just one binary function symbol, and con-
stants.

Proof By Lemmas 3 and 8, we know that, when variables do not touch, satisfiability
of second-order problems is preserved by currying. Now, we will prove that we can
NP-reduce solvability of Second-Order Unification to solvability of the corresponding
problems without touching variables.

The reduction algorithm guesses a substitution ρ as follows. For every n-ary var-
iable F of the original unification problem (notice that n can be 0), we guess one of
the following possibilities:

– Projection: F �→ λx1 · · · xn .xi , for some i ∈ {1, . . . , n}.
– Instantiation: F �→ λx1 · · · xn . f (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)), for some

function symbol f ∈ �m occurring in the original unification problem, and m fresh
free variables F1, . . . , Fm of arity n.
Notice that first-order variables are instantiated using this rule for n = 0 by
f (X1, . . . , Xm) for some function symbol f ∈ �m and fresh first-order variables
X1, . . . , Xm .

Then the solvability of a problem t ?= u is reduced to solvability of ρ(t) ?= ρ(u).
Obviously, this reduction can be performed in polynomial non-deterministic time,
and the resulting problem satisfies that variables do not touch.

Since the new problem is an instance of the original one, if the new problem is
solvable, then the original one is also solvable.

If the original problem t ?= u is solvable, then there is an appropriate guessing of ρ

that results in another solvable problem ρ(t) ?= ρ(u). Let σ be a most general unifier
of t ?= u. The substitution ρ can be constructed as follows. For every variable F of
the original problem, let σ(F) = λx1 . . . xn .t be written in normal form. Taking t as
a tree, descend from the root to the left-most leaf, discarding free variables, until you

123



442 J. Levy, M. Villaret

get a bound variable xi , a 0-ary variable or a function symbol f (this must be a symbol
occurring in the problem, by Lemma 1). Then the instantiation F �→ λx1 . . . xn .xi , if
we find a bound variable xi , F �→ λx1 . . . xn .a for some fixed constant a, if we find a
first-order variable, or F �→ λx1 . . . xn . f (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)), if we
find a subterm like f (t1, . . . , tm), results in a solvable problem that can be constructed
using projection and instantiation. 
�

Corollary 9 of [22] (see also [23]) states that Second-Order Unification is undecid-
able even for problems with just one second-order variable and 4 occurrences of this
variable. Theorem 1 and this corollary provides us the following result.

Corollary 1 Second-Order Unification is undecidable for one binary function symbol
and one second-order variable occurring four times.

Theorem 2 Decidability of Context Unification can be NP-reduced to decidability of
Context Unification with just one binary function symbol, and constants.

Proof Again, by Lemmas 3 and 8, we know that, when variables do not touch, sat-
isfiability of Context Unification problems is preserved by currying. Now, we will
prove that we can NP-reduce solvability of Context Unification to solvability of the
corresponding problems without touching variables.

The reduction works as follows. We construct a substitution ρ, guessing, for every
n-ary variable F of the original problem (notice that n can be zero), one of the following
possibilities:

– Projection: F �→ λx .x , if it is unary.
– Instantiation:

F �→ λx1 . . . xn . f (F1(xπ(1), . . . , xπ(r1)), . . . , Fm(xπ(rm−1+1), . . . , xπ(n)))

for some function symbol f ∈ �m occurring in the original unification problem,
some permutation π over n, and some values 1 ≤ r1 ≤ · · · ≤ rm−1 ≤ n, and
being m = arity( f ), and F1, . . . , Fm fresh free variables of appropriate arity.

Notice that these substitutions preserve linearity of context variables instantiations.
Again, this reduction can be performed in polynomial non-deterministic time, and the
resulting problem satisfies that variables do not touch.

Since the new problem is an instance of the original one, if the new problem is
solvable, then the original one is also solvable.

Now, like in the second-order case we prove the other direction. However, in this
case assuming that the signature � contains, at least, a binary function symbol (say h)
and a 0-ary constant (say a) is crucial because our proof will consider ground unifiers
(that map variables to terms without free occurrences of variables).

Let the original problem t ?= u be solvable, and σ be a most general unifier. Let
σ ′ = τ ◦ σ be a ground unifier, where τ maps free n-ary (n ≥ 1) variables occurring
in σ(t) to λx1 . . . xn .h(x1, h(x2, h(. . . , h(xn, a) . . .))) and maps the 0-ary variables
occurring in σ(t) to a, for some binary function symbol h and constant a from �.

Now, guided by substitution σ ′, by applying the projection and instantiation rules
to the original problem, we can build a solvable Context Unification problem where
variables do not touch: for every free variable F in the original problem

123



Simplifying the signature in second-order unification 443

– if σ ′(F) = λx1 . . . xn . f (t1, . . . , tm), then to obtain the new problem we instan-
tiate F by λx1 . . . xn . f (F1(xπ(1), . . . , xπ(r1)), . . . , Fm(xπ(rm−1+1), . . . , xπ(rm ))),
where {π(ri−1 + 1), . . . , π(ri )} is the set of indices of bound variables from
x1, . . . , xn occurring in ti . Notice that n = 0 is a particular case that deals with
first-order variables.

– Otherwise, if σ ′(F) = λx .x , then instantiate F by λx .x .

Then, the substitution that maps the free variables Fi , occurring in the new prob-
lem where variables do not touch, to the terms λxπ(ri−1+1) . . . xπ(ri ). ti , is obviously a
solution of the new problem. 
�
Example 4 We present an example of how the reduction from Context Unification to
non-touching Context Unification works.

The equation F(X, Y )
?= G(Z) has touching variables. Consider the following most

general unifier σ = [G �→ λx .F(F ′(x), Y ) , X �→ F ′(Z)]. As described in the proof
of Theorem 2, assuming that we have a binary function symbol h and a constant a in the
signature, we can construct the substitution τ = [F �→ λx, y.h(x, h(y, a)) , F ′ �→
λx .h(x, a) , Z �→ a , Y �→ a], such that σ ′ = τ ◦ σ is a (non-most-general) ground
unifier. Guided by σ ′, we can construct the substitution ρ that would have to be guessed
by the reduction algorithm:

ρ = [ F �→ λx, y.h(F1(x), F2(y)), G �→ λx .h(G1(x), G2), X �→ h(X1, X2),

Y �→ a, Z �→ a]

Therefore, solvability of F(X, Y )
?= G(Z) is reduced to solvability of ρ(F(X, Y )

?=
G(Z)), i.e. h(F1(h(X1, X2)), F2(a))

?= h(G1(a), G2). Since ρ is more general that
σ ′ w.r.t. the variables of the original equation, and σ ′ solves the original equation, we
can find a substitution that solves the new equation.

Theorem 3 Decidability of Bounded Second-Order Unification can be NP-reduced
to decidability of Bounded Second-Order Unification with just one binary function
symbol, and constants.

Proof Again, by Lemmas 3 and 8, we know that, when variables do not touch, satisfi-
ability of Bounded Second-Order Unification problems is preserved by currying. The
proof of the NP-reducibility of solvability of Bounded Second-Order Unification to
solvability of the corresponding problems without touching variables is like the proof
of Theorem 2. We only have to change the instantiate rule:

For every n-ary variable F of the original problem, we guess one of the following
possibilities (notice that n can be zero):

– Project: F �→ λx .x , if it is unary.
– Instantiate:

F �→ λx1 . . . xn . f (F1(xπ(1), . . . , xπ(r1)), . . . , Fm(xπ(rm−1+1), . . . , xπ(rm )))

for some m-ary function symbol f ∈ �m occurring in the original unification
problem, some permutation π over rm ≤ n, some values 1 ≤ r1 ≤ · · · ≤ rm ≤ n,
and being F1, . . . , Fm fresh free variables of appropriate arity.

123



444 J. Levy, M. Villaret

Notice that these rules do not need to preserve linearity of bounded second-order
variables instantiations, as far as we consider a permutation of rm ≤ n many bound
variables. The rest of the proof is similar as for the Context Unification case. 
�

7 Conclusions

Our technique serves for reducing decidability of Second-Order Unification, Context
Unification and Bounded Second-Order Unification to their corresponding versions
where just one binary function symbol is considered. This simplifies the study of these
problems. The same technique could be applied to other variants of Second-Order Uni-
fication like Well-Nested Context Unification [18], Stratified Context Unification [28],
and Sequence Unification [15].

The extension of our technique to third-order and higher orders sets out some dif-
ficulties. First, we must deal with instances of variables that are not connected. For
instance, the following problem:

f (F(λx .g(x), a), F(λx .g′(x), a′)) ?= f ( f (g(h(a)), a), f (g′(h(a′)), a′))

is solved by the substitution:

F �→ λxy. f (x(h(y)), y)

where the instance of the third-order variable F is split into two pieces f and h. In
such situations we have to guarantee that these pieces do not touch, to avoid that these
splitting points could cut a left chain of @’s.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.: Explicit substitutions. J. Funct. Prog. 1(4), 375–
416 (1998)

2. Barendregt, H.P.: The Lambda Calculus—it’s Syntax and Semantics. North-Holland, Amsterdam
(1984)

3. Bjorner, N., Muñoz, C.: Absoulte explicit unification. In: Proceedings of the 11th International Con-
ference on Rewriting Techniques and Applications, RTA’00, LNCS, vol. 1833, pp. 31–46, Norwich
(2000)

4. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree automata. In: Pro-
ceedings of the 15th International Conference on Rewriting Techniques and Applications, RTA’04,
LNCS, vol. 3091, pp. 105–118. Springer (2004)

5. Comon, H.: Completion of rewrite systems with membership constraints. J. Symb. Comput. 25(4), 397–
453 (1998)

6. Dowek, G.: Higher-order unification and matching. In: Robinson, A., Voronkov, A. (eds.) Handbook
of Automated Reasoning vol II, Chapter 16, pp. 1009–1062. Elsevier, Amsterdam (2001)

7. Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions. Inf. Comput.
157, 183–235 (2000)

8. Farmer, W.M.: A unification algorithm for second-order monadic terms. Ann. Pure Appl.
Logic. 39, 131–174 (1988)

9. Farmer, W.M.: Simple second-order languages for wich unification is undecidable. Theor. Comput.
Sci. 87, 173–214 (1991)

123



Simplifying the signature in second-order unification 445

10. Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. In: Proceedings of the 1st Internetional
Conference on Automated Reasoning, LNCS, vol. 2083, pp. 242–256 (2001)

11. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor. Comput.
Sci. 13, 225–230 (1981)

12. Gutiérrez, C.: Satisfiability of equations in free groups is in PSPACE. In: ACM (ed.) Proceedings of the
32nd Annual ACM Symposium on Theory of Computing, STOC’00, pp. 21–27. ACM Press (2000)

13. Huet, G.: A unification algorithm for typed λ-calculus. Theor. Comput. Sci. 1, 27–57 (1975)
14. Kutsia, T.: Solving equations with sequence variables and sequence functions. J. Symb. Comput.

42(3), 352–388 (2007)
15. Kutsia, T., Levy, J., Villaret, M.: Sequence unification through currying. In: Proceedings of the 18th

International Conference on Rewriting Techniques and Applications, RTA’07, LNCS, vol. 4533, pp.
288–302. Springer (2007)

16. Levy, J.: Linear second-order unification. In: Proceedings of the 7th International Conference on
Rewriting Techniques, LNCS, vol. 1103, pp. 332–346, New Brunswick (1996)

17. Levy, J.: Decidable and undecidable second-order unification problems. In: Proceedings of the 9th
International Conference on Rewriting Techniques and Applications, RTA’98, LNCS, vol. 1379, pp.
47–60, Tsukuba (1998)

18. Levy, J., Niehren, J., Villaret, M.: Well-nested context unification. In: Proceedings of the 20th Inter-
national Conference on Automated Deduction, CADD-20, LNAI, vol. 3632, pp. 149–163, Springer
(2005)

19. Levy, J., Schmidt-Schauß, M., Villaret, M.: Monadic second-order unification is np-complete. In: Pro-
ceedings of the 15th Interantional Conference on Rewriting Techniques and Applications, RTA’04,
LNCS, vol. 3091, pp. 55–69, Aachen (2004)

20. Levy, J., Schmidt-Schauß, M., Villaret, M.: Bounded second-order unification is np-complete. In: Pro-
ceedings of the 17th International Conference on Rewriting Techniques and Applications, RTA’06,
LNCS, vol. 4098, pp. 400–414, Seattle (2006)

21. Levy, J., Schmidt-Schauß, M., Villaret, M.: Stratified context unification is np-complete. In: Proceed-
ings of the 3rd International Conference on Automated Reasoning, IJCAR’06, LNCS, vol. 4130, pp.
82–96, Seattle (2006)

22. Levy, J., Veanes, M.: On unification problems in restricted second-order languages. In: Annual Con-
ference of the European Association of Computer Science Logic, CSL’98, Brno, Czech Republic
(1998)

23. Levy, J., Veanes, M.: On the undecidability of second-order unification. Inf. Comput. 159(1–2), 125–
150 (2000)

24. Levy, J., Villaret, M.: Context unification and traversal equations. In: Proceedings of the 12th Interna-
tional Conference on Rewriting Techniques and Applications, RTA’01, LNCS, vol. 2041, pp. 169–184,
Utrecht (2001)

25. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math. USSR Sbornik
32(2), 129–198 (1977)

26. Niehren, J., Planque, L., Talbot, J.-M., Tison, S.: N-ary queries by tree automata. In: Proceedings of
the 10th International Symposium on Database Programming, DBPL’05, LNCS, vol. 3774, Springer
(2005)

27. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In: IEEE (ed.) Proceed-
ings of the 40th Annual Symposium on Foundations of Computer Science, FOCS’99, pp. 495–500.
IEEE Computer Society Press, New York City (1999)

28. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Logic Comput. 12, 929–
953 (2002)

29. Schmidt-Schauß, M.: Decidability of bounded second-order unification. Inf. Comput. 188(2), 143–
178 (2004)

30. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two context variables is
decidable. J. Symb. Comput. 33(1), 77–122 (2002)

31. Villaret, M.: On some variants of second-order unification. PhD Thesis, Technical University of
Catalonia (2004)

32. Zhezherun, A.P.: Decidability of the unification problem for second order languages with unary func-
tion symbols. Kibernetika (Kiev) 5, 120–125 (1979). Translated as Cybernetics 15(5), 735–741 (1980)

123


	Simplifying the signature in second-order unification
	Abstract
	1 Introduction
	2 Preliminary definitions
	3 Currying terms
	4 Labeling terms
	5 When variables do not touch
	6 Main results
	7 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


