
Nominal Anti-Unification

Alexander Baumgartner1, Temur Kutsia1, Jordi Levy2 and Mateu Villaret3

1 Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria
2 Artificial Intelligence Research Institute, Spanish Council for Scientific Research (IIIA-CSIC),

Barcelona, Spain
3 Departament d’Informàtica i Matemàtica Aplicada, Universitat de Girona, Spain

1 Introduction

Equation solving between nominal terms has been investigated by several authors, who designed
and analyzed algorithms for nominal unification [3, 4, 15, 26], nominal matching [5], equivari-
ant unification [6], permissive nominal unification [8]. However, in contrast to unification, its
dual problem, anti-unification, has not been studied for nominal terms previously. In [18], it
is referred to as “the as-of-yet undiscovered nominal anti-unification”, which “could form a
fundamental component of a refactoring tool” for αProlog [7] programs.

Software refactoring is one of possible applications of anti-unification. This method, for-
mulated for different theories, has been successfully used in inductive logic programming [17],
cognitive modeling [24], analogy making [13], inductive program synthesis [12], proof general-
ization [27], mathematical reasoning [10, 11], etc. Nominal anti-unification can play a role in
extending some of these applications to the nominal setting. For instance, it can be useful to
generalize proofs done in nominal logic, or in doing analogical reasoning in mathematics, or in
adapting inductive program synthesis methods to αProlog programs, etc.

The anti-unification problem for two terms t1 and t2 is concerned with finding a generaliza-
tion term t such that t1 and t2 are substitutive instances of t. The interesting generalizations are
the least general ones (lgg). Plotkin [20] and Reynolds [22] initiated research on anti-unification
in the 1970s, developing algorithms for first-order terms. Since then, anti-unification has been
studied in various theories, including some of those with binding constructs: calculus of con-
structions [19], Mλ [9], second-order lambda calculus with type variables [16], simply-typed
lambda calculus where generalizations are higher-order patterns [2], just to name a few.

In this paper we address the problem of computing lgg’s for nominal terms-in-context, which
are pairs of a freshness context and a nominal term. It turned out that without a restriction,
there is no lgg for terms-in-context, in general. Therefore we restrict the set of atoms which
are permitted in generalizations to be finite. In this case, there exists a single lgg (modulo ')
and we design an algorithm to compute it. Computation of nominal lgg’s requires a solution
to the equivariance problem which aims at finding a permutation of atoms π for given terms t1
and t2 such that π applied to t1 is α-equivalent to t2 (under a given freshness context).

Various anti-unification techniques, such as first-order, higher-order, or equational anti-
unification have been used in inductive logic programming, logical and relational learning [21],
reasoning by analogy [13], program synthesis [23], program verification [16], etc. Nominal
anti-unification can, hopefully, contribute in solving similar problems in nominal setting.

The anti-unification algorithm has been implemented and is available from www.risc.jku.

at/projects/stout/software/nau.php. The implementation of the equivariance algorithm is
also accessible separately from www.risc.jku.at/projects/stout/software/nequiv.php.

1

www.risc.jku.at/projects/stout/software/nau.php
www.risc.jku.at/projects/stout/software/nau.php
www.risc.jku.at/projects/stout/software/nequiv.php

Nominal Anti-Unification Baumgartner, Kutsia, Levy, and Villaret

2 Nominal Terms

Nominal terms contain variables and atoms. Variables can be instantiated and atoms can be
bound. We have sorts of atoms ν and sorts of data δ as disjoint sets. Atoms (a, b, . . .) have
one of the sorts of atoms. Variables (X,Y, . . .) have a sort of atom or data. Nominal function
symbols (f, g, . . .) have an arity of the form τ1 × · · · × τn → δ, where δ is a sort of data and τi
are sorts given by the grammar τ ::= ν | δ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ.

A swapping (a b) is a pair of atoms of the same sort. A permutation is a sequence of swap-
pings. We use π, ρ to denote permutations. Nominal terms (t, s, r) are given by the grammar:

t ::= f(t1, . . . , tn) | a | a.t | π·X

The effect of swapping, and permutation application are defined in the standard way. The
inverse of a permutation π = (a1 b1) . . . (an bn) is the permutation (an bn) . . . (a1 b1), denoted
by π−1. We use Id for the empty permutation and write X as the shortcut of Id ·X.

For a set A, we denote by |A| its cardinality. The set of atoms of a term t or a permutation
π is the set of all atoms which appear in it and is denoted by Atoms(t), Atoms(π) respectively.
‖t‖

Abs
stand for the number of abstraction occurrences in t.

Suspensions are uses of variables with a permutation of atoms waiting to be applied once a
variable is instantiated. Occurrences of an atom a are said to be bound if they are in the scope
of an abstraction of a, otherwise are said to be free. We denote by FA(t) the set of all atoms
which occur freely in t: FA(f(t1, . . . , tn)) =

⋃n
i=1 FA(ti), FA(a) = {a}, FA(a.t) = FA(t) \ {a},

and FA(π·X) = Atoms(π). FA-s(t) is the set of all atoms which occur freely in t ignoring
suspensions: FA-s(f(t1, . . . , tn)), FA-s(a), FA-s(a.t) are defined like above but FA-s(π·X) = ∅.

Substitutions, denoted by σ, are defined in the standard way, and their application allows
atom capture, for instance, a.X{X 7→ a} = a.a. The identity substitution is denoted by ε.

A freshness constraint is a pair of the form a#X stating that the instantiation of X cannot
contain free occurrences of a. A freshness context is a finite set of freshness constraints. We
will use ∇ and Γ for freshness contexts. Atoms(∇) denotes the set of atoms of ∇.

We say that a substitution σ respects ∇, if for all X, FA-s(Xσ) ∩ {a | a#X ∈ ∇} = ∅.
The predicate ≈ stands for α-equivalence and was defined in [25,26] by the following theory:

∇ ` a ≈ a
∇ ` t ≈ t′

∇ ` a.t ≈ a.t′
a 6= a′ ∇ ` t ≈ (a a′)·t′ ∇ ` a#t′

∇ ` a.t ≈ a′.t′

a#X ∈ ∇ for all a such that π·a 6= π′ ·a
∇ ` π·X ≈ π′ ·X

∇ ` t1 ≈ t′1 · · · ∇ ` tn ≈ t′n
∇ ` f(t1, . . . tn) ≈ f(t′1, . . . , t

′
n)

where the freshness predicate # is defined by

a 6= a′

∇ ` a#a′
(π−1 ·a#X) ∈ ∇
∇ ` a#π·X

∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#f(t1, . . . tn) ∇ ` a#a.t

a 6= a′ ∇ ` a#t

∇ ` a#a′.t

Given a freshness context∇ and a substitution σ, we define∇σ as the minimal (with respect
to ⊆) freshness context such that for all a#X ∈ ∇ holds ∇σ ` a#Xσ. It can easily be derived
from the definition of the freshness predicate, if it exists. Otherwise it is undefined.

Theorem 1. σ respects ∇ iff ∇σ is defined.

A term-in-context, denoted by p, is a pair 〈∇, t〉 of a freshness context and a term. 〈∇, t〉
is more general than a term-in-context 〈Γ, s〉, written 〈∇, t〉 � 〈Γ, s〉, if there is a substitution
σ, which respects ∇, such that ∇σ ⊆ Γ and Γ ` tσ ≈ s. We write ∇ ` t � s if there exists a
substitution σ such that ∇ ` tσ ≈ s. We also write ∇ ` t ' s iff ∇ ` t � s and ∇ ` s � t.

2

Nominal Anti-Unification Baumgartner, Kutsia, Levy, and Villaret

Example 1. We give some examples to demonstrate the relations we have just defined:

• 〈{a#X}, f(a)〉 ' 〈∅, f(a)〉. We can use {X 7→ b} as substitution applied to the first pair.
• 〈∅, f(X)〉 � 〈{a#Y }, f(Y)〉 with σ = {X 7→ Y }, but not 〈{a#Y }, f(Y)〉 � 〈∅, f(X)〉.
• 〈{a#X}, f(X)〉 6� 〈{a#X}, f(a)〉. Notice that σ = {X 7→ a} does not respect {a#X}.
• 〈{b#X}, (a b)·X〉 � 〈{c#X}, (a c)·X〉 with the substitution σ = {X 7→ (a b)(a c)·X}.

A term-in-context 〈Γ, r〉 is called a generalization of two terms-in-context 〈∇1, t〉 and 〈∇2, s〉
if 〈Γ, r〉 � 〈∇1, t〉 and 〈Γ, r〉 � 〈∇2, s〉. It is the least general generalization (lgg) of 〈∇1, t〉 and
〈∇2, s〉 if there is no generalization 〈Γ′, r′〉 of 〈∇1, t〉 and 〈∇2, s〉 which satisfies 〈Γ, r〉 ≺ 〈Γ′, r′〉.

Note that if we have infinite number of atoms in the language, the relation ≺ is not well-
founded: 〈∅, X〉 ≺ 〈{a#X}, X〉 ≺ 〈{a#X, b#X}, X〉 ≺ · · · . As a consequence, two terms-in-
context may not have an lgg and not even a minimal complete set of generalizations:1

Example 2. Let p1 = 〈∅, a1〉 and p2 = 〈∅, a2〉 be two terms-in-context. Then in any com-
plete set of generalizations of p1 and p2 there is an infinite chain 〈∅, X〉 ≺ 〈{a3#X}, X〉 ≺
〈{a3#X, a4#X}, X〉 ≺ · · · , where {a1, a2, a3, . . .} is the set of all atoms of the language. Hence,
p1 and p2 do not have a minimal complete set of generalizations.

Theorem 2. The problem of anti-unification for terms-in-context is of nullary type.

However, if we restrict the set of atoms which can be used in the generalizations to be finite,
then the anti-unification problem becomes unitary.

We say that a term t (resp., a freshness context∇) is based on a set of atoms A iff Atoms(t) ⊆
A (resp., Atoms(∇) ⊆ A). A term-in-context 〈∇, t〉 is based on A if both t and ∇ are based
on it. A permutation is A-based if it contains only atoms from A. An A-based lgg of A-based
terms-in-context p1 and p2 is an A-based term-in-context p, which is a generalization of p1 and
p2 and there is no A-based generalization p′ of p1 and p2 which satisfies p ≺ p′.

3 Nominal Anti-Unification Algorithm

Our anti-unification problem is parametric on the set of atoms we consider as the base, and
finiteness of this set is essential to ensure the existence of an lgg. The problem we would like
to solve is the following:

Given: Two nominal terms t and s of the same sort, a freshness context ∇, and a finite set of
atoms A such that t, s, and ∇ are based on A.

Find: A term r and a freshness context Γ, such that the term-in-context 〈Γ, r〉 is an A-based
least general generalization of the terms-in-context 〈∇, t〉 and 〈∇, s〉.

The triple X : t , s, where X, t, s have the same sort, is called the anti-unification equation,
shortly AUE, and the variable X is called a generalization variable. We say that a set of AUEs P
is based on a finite set of atoms A, if for all X : t , s ∈ P , the terms t and s are A-based.

The anti-unification algorithm is formulated in a rule-based way and depends on two global
parameters, a finite set of atoms A and a freshness context ∇. It works on tuples of the form
P ; S; Γ; σ, where P and S are sets of AUEs, Γ is a freshness context and σ is a substitution.
P , S, ∇, and Γ are A-based and ∇ does not constrain generalization variables. Furthermore if
X : t , s ∈ P ∪ S, then this is the sole occurrence of X in P ∪ S. The rules are the following:

1The definition of minimal complete sets of generalizations is standard. For a precise definition, see, e.g. [1,14].

3

Nominal Anti-Unification Baumgartner, Kutsia, Levy, and Villaret

Dec: Decomposition

{X : h(t1, . . . , tm) , h(s1, . . . , sm)} ·∪P ; S; Γ; σ =⇒
{Y1 : t1 , s1, . . . , Ym : tm , sm} ∪ P ; S; Γ; σ{X 7→ h(Y1, . . . , Ym)},

where h is a function symbol or an atom, Y1, . . . , Ym are fresh variables of appropriate sorts.

Abs: Abstraction

{X : a.t , b.s} ·∪P ; S; Γ; σ =⇒ {Y : (c a)·t , (c b)·s} ∪ P ; S; Γ; σ{X 7→ c.Y },
where Y is fresh, c ∈ A such that ∇ ` c#a.t and ∇ ` c#b.s.
Sol: Solving

{X : t , s} ·∪P ; S; Γ; σ =⇒ P ; S ∪ {X : t , s}; Γ ∪ Γ′; σ,

if neither Dec nor Abs is applicable, where Γ′ = {a#X | a ∈ A ∧ ∇ ` a#t ∧ ∇ ` a#s}.
Mer: Merging

P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ; σ =⇒
P ; {X : t1 , s1} ∪ S; Γ{Y 7→ π·X}; σ{Y 7→ π·X},

where π is an A-based permutation such that ∇ ` π·t1 ≈ t2, and ∇ ` π·s1 ≈ s2.

Given a finite set of atoms A, an A-based freshness context ∇, and two nominal A-based
terms t and s, to compute an A-based generalization for 〈∇, t〉 and 〈∇, s〉, we start with
{X : t , s}; ∅; ∅; ε, where X is a fresh variable, and apply the rules (don’t care) nondeter-
ministically as long as possible. We denote this procedure by N , and say that the final state
is reached when no more rule is applicable. The final state is of the form ∅;S; Γ;σ, where Mer
does not apply to S and we say that the result computed by N is 〈Γ, Xσ〉.

Note that the Dec rule works also for the AUEs of the form X : a , a. In the Abs rule, it is
important to have the corresponding c in A. If not then the Sol rule takes over.

Example 3. We illustrate N on a couple of examples:

• Let t = f(a, b), s = f(b, c), ∇ = ∅, and A = {a, b, c, d}. Then N performs the following
transformations:

{X : f(a, b) , f(b, c)}; ∅; ∅; ε =⇒Dec

{Y : a , b, Z : b , c}; ∅; ∅; {X 7→ f(Y, Z)} =⇒2
Sol

∅; {Y : a , b, Z : b , c}; {c#Y, d#Y, a#Z, d#Z}; {X 7→ f(Y,Z)} =⇒Mer

∅; {Y : a , b}; {c#Y, d#Y }; {X 7→ f(Y, (a b)(b c)·Y)}

Hence, p = 〈{c#Y, d#Y }, f(Y, (a b)(b c)·Y)〉 is the computed result. It generalizes the
input pairs: p{Y 7→ a} � 〈∇, t〉 and p{Y 7→ b} � 〈∇, s〉. The substitutions {Y 7→ a} and
{Y 7→ b} can be read from the final store. Note that 〈{c#Y }, f(Y, (a b)(b c)·Y)〉 would be
also an A-based generalization of 〈∇, t〉 and 〈∇, s〉, but it is strictly more general than p.

• Let t = f(b, a), s = f(Y, (a b)·Y), ∇ = {b#Y }, and A = {a, b}. Then N computes the
term-in-context 〈∅, f(Z1, (a b)·Z1)〉 which generalizes the input pairs.

• Let t = f(a.b,X), s = f(b.a, Y), ∇ = {c#X}, and A = {a, b, c, d}. Then N computes the
term-in-context p = 〈{c#Z1, d#Z1}, f(c.Z1, Z2)〉 which generalizes the input: p{Z1 7→
b, Z2 7→ X} = 〈∅, f(c.b,X)〉 � 〈∇, t〉 and p{Z1 7→ a, Z2 7→ Y } = 〈∅, f(c.a, Y)〉 � 〈∇, s〉.

Theorem 3. Let t, s be terms and ∇,Γ be freshness contexts, all based on a finite atoms set A.

• Termination: The procedure N terminates on any input.

4

Nominal Anti-Unification Baumgartner, Kutsia, Levy, and Villaret

• Soundness: If {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ; σ is a derivation obtained by an execution
of N , then 〈Γ, Xσ〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉.

• Completeness: If 〈Γ, r〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉, then there exists
a derivation {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ′; σ obtained by an execution of N , such
that 〈Γ, r〉 � 〈Γ′, Xσ〉.

• Uniqueness: Let {X : t , s}; ∅; ∅; ε =⇒+ ∅; S1; Γ1; σ1 and {X : t , s}; ∅; ∅; ε =⇒+

∅; S2; Γ2; σ2 be two maximal derivations in N . Then 〈Γ1, Xσ1〉 ' 〈Γ2, Xσ2〉.

Now we study how lgg’s of terms-in-context depend on the set of atoms they are based on.

Lemma 1. Let A1 and A2 be two finite sets of atoms with A1 ⊆ A2 such that the A1-based
terms-in-context 〈∇, t〉 and 〈∇, s〉 have an A1-based lgg 〈Γ1, r1〉 and an A2-based lgg 〈Γ2, r2〉.
Then Γ2 ` r1 � r2.

In general, we can not replace Γ2 ` r1 � r2 with Γ2 ` r1 ' r2 in Lemma 1. Consider
for instance the example t = a.b, s = b.a, ∇ = ∅, A1 = {a, b}, and A2 = {a, b, c}. Then for
〈∇, t〉 and 〈∇, s〉, 〈∅, X〉 is an A1-based lgg and 〈{c#X}, c.X〉 is an A2-based lgg. Obviously,
{c#X} ` X � c.X but not {c#X} ` c.X � X.

We say that a set of atoms A is saturated for A-based t, s and ∇, if

|A \ (Atoms(t) ∪Atoms(s) ∪Atoms(∇))| ≥ min{‖t‖
Abs
, ‖s‖

Abs
}.

Lemma 2. Under the conditions of Lemma 1, if A1 is saturated for t, s,∇, then Γ2 ` r1 ' r2.

4 Deciding Equivariance
Computation of π in the condition of the rule Mer above requires an algorithm that solves the
following problem: Given a finite set of atoms A, terms t and s, and a freshness context ∇,
all based on A, find an A-based permutation π such that ∇ ` π·t ≈ s. This is the problem of
deciding whether t and s are equivariant with respect to ∇ and A.

We describe a rule-base algorithm, which we call E , that solves this problem by effectively
computing the corresponding permutation. It works on tuples of the form E; ∇; A; π (called
systems). E is a set of equivariance equations of the form t ≈ s where t, s are nominal terms.
∇ is a freshness context, and A is a finite set of atoms which are available for computing π.
The latter holds the permutation to be returned in case of success.

The algorithm is split into two phases. In phase 1, function applications, abstractions, and
suspensions are decomposed as long as possible. Phase 2 is the permutation computation.

Phase 1 – Dec-E: Decomposition

{f(t1, . . . , tm) ≈ f(s1, . . . , sm)} ·∪E; ∇; A; Id =⇒ {t1 ≈ s1, . . . , tm ≈ sm} ∪ E; ∇; A; Id .

Phase 1 – Alp-E: Alpha Equivalence

{a.t ≈ b.s} ·∪E; ∇; A; Id =⇒ {(a ć)·t ≈ (b ć)·s} ∪ E; ∇; A; Id ,

where ć is a fresh atom of the same sort as a and b.

Phase 1 – Sus-E: Suspension

{π1 ·X ≈ π2 ·X} ·∪E; ∇; A; Id =⇒ {π1 ·a ≈ π2 ·a | a ∈ A ∧ a#X 6∈ ∇} ∪ E; ∇; A; Id .

Phase 2 – Rem-E: Remove

{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; π, if π·a = b.

Phase 2 – Sol-E: Solve

{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; (π·a b)π, if π·a, b ∈ A and π·a 6= b.

5

Nominal Anti-Unification Baumgartner, Kutsia, Levy, and Villaret

The input for E is initialized in the Mer rule, which needs to compute an A-based permutation
π for A-based context ∇ and two AUEs X : t1 , s1 and Y : t2 , s2. The system is initialized
by {t1 ≈ t2, s1 ≈ s2}; ∇; A; Id . First we apply the rules of phase 1 exhaustively and afterwards
Rem-E and Sol-E are applied as long as possible. If the final system is the success state ∅; ∇; A; π,
then we say that E computes the permutation π. Otherwise it has the form E; ∇; A; π with
E 6= ∅ to which no rule applies. It is transformed into ⊥, called the failure state.

Example 4. We illustrate the algorithm E on examples and consider the equivariance problems:

• For E = {a ≈ a, a.(a b)(c d)·X ≈ b.X}, A = {a, b, c, d}, and ∇ = {a#X}, we derive

{a ≈ a, a.(a b)(c d)·X ≈ b.X}; {a#X}; {a, b, c, d}; Id =⇒Alp-E

{a ≈ a, (a é)(a b)(c d)·X ≈ (b é)·X}; {a#X}; {a, b, c, d}; Id =⇒Sus-E

{a ≈ a, é ≈ é, c ≈ d, d ≈ c}; {a#X}; {a, b, c, d}; Id =⇒2
Rem-E

{c ≈ d, d ≈ c}; {a#X}; {b, c, d}; Id =⇒Sol-E
Rem-E ∅; {a#X}; {b}; (c d).

• For E = {a.b.(a b)(a c)·X = b.a.(a c)·X}, A = {a, b}, and ∇ = ∅, E returns Id .

Theorem 4. Let t, s be terms and ∇ be a freshness context, all based on a finite set of atoms A.

• Termination: The procedure E terminates on any input.
• Soundness: Let {t ≈ s}; ∇; A; Id =⇒∗ ∅; ∇; B; π be a derivation in E, then π is an
A-based permutation such that ∇ ` π·t ≈ s.

• Completeness: If ∇ ` ρ·t ≈ s for some A-based permutation ρ, then there is a derivation
{t ≈ s}; ∇; A; Id =⇒∗ ∅; Γ; B; π, obtained by E, such that π·a = ρ·a for all a ∈ FA(t).

Theorem 5. The equivariance algorithm E has O(n2) space and time complexity and the anti-
unification algorithm N has O(n4) time and O(n2) space complexity, where n is the input size.

Acknowledgment

This research has been partially supported by the project HeLo (TIN2012-33042) and by the
Austrian Science Fund (FWF) with the project SToUT (P 24087-N18).

References

[1] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. A modular equational generalization algo-
rithm. In M. Hanus, editor, LOPSTR, volume 5438 of Lecture Notes in Computer Science, pages
24–39. Springer, 2008.

[2] A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. A variant of higher-order anti-unification.
In F. van Raamsdonk, editor, RTA, volume 21 of LIPIcs, pages 113–127. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[3] C. Calvès. Complexity and Implementation of Nominal Algorithms. PhD thesis, Kings College
London, 2010.

[4] C. Calvès and M. Fernández. A polynomial nominal unification algorithm. Theor. Comput. Sci.,
403(2-3):285–306, 2008.

[5] C. Calvès and M. Fernández. Matching and alpha-equivalence check for nominal terms. J. Comput.
Syst. Sci., 76(5):283–301, 2010.

[6] J. Cheney. Equivariant unification. JAR, 45(3):267–300, 2010.

[7] J. Cheney and C. Urban. alpha-Prolog: A logic programming language with names, binding and
a-equivalence. In B. Demoen and V. Lifschitz, editors, ICLP, volume 3132 of Lecture Notes in
Computer Science, pages 269–283. Springer, 2004.

6

Nominal Anti-Unification Baumgartner, Kutsia, Levy, and Villaret

[8] G. Dowek, M. J. Gabbay, and D. P. Mulligan. Permissive nominal terms and their unification:
an infinite, co-infinite approach to nominal techniques. Logic Journal of the IGPL, 18(6):769–822,
2010.

[9] C. Feng and S. Muggleton. Towards inductive generalization in higher order logic. In D. H.
Sleeman and P. Edwards, editors, ML, pages 154–162. Morgan Kaufmann, 1992.

[10] M. Guhe, A. Pease, A. Smaill, M. Mart́ınez, M. Schmidt, H. Gust, K.-U. Kühnberger, and
U. Krumnack. A computational account of conceptual blending in basic mathematics. Cogni-
tive Systems Research, 12(3-4):249–265, 2011.

[11] M. Guhe, A. Pease, A. Smaill, M. Schmidt, H. Gust, K.-U. Kühnberger, and U. Krumnack.
Mathematical reasoning with higher-order anti-unifcation. In Proceedings of the 32nd Annual
Conference of the Cognitive Science Society, pages 1992–1997, 2010.

[12] E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An explanation based
generalization approach. Journal of Machine Learning Research, 7:429–454, 2006.

[13] U. Krumnack, A. Schwering, H. Gust, and K.-U. Kühnberger. Restricted higher-order anti-
unification for analogy making. In M. A. Orgun and J. Thornton, editors, Australian Confer-
ence on Artificial Intelligence, volume 4830 of Lecture Notes in Computer Science, pages 273–282.
Springer, 2007.

[14] T. Kutsia, J. Levy, and M. Villaret. Anti-unification for unranked terms and hedges. In
M. Schmidt-Schauß, editor, RTA, volume 10 of LIPIcs, pages 219–234. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011.

[15] J. Levy and M. Villaret. Nominal unification from a higher-order perspective. ACM Trans.
Comput. Log., 13(2):10, 2012.

[16] J. Lu, J. Mylopoulos, M. Harao, and M. Hagiya. Higher order generalization and its application
in program verification. Ann. Math. Artif. Intell., 28(1-4):107–126, 2000.

[17] S. Muggleton. Inverse entailment and progol. New Generation Comput., 13(3&4):245–286, 1995.

[18] D. Mulligan. Extensions of Nominal Terms. PhD thesis, School of Math. and Comp. Sci., Heriot-
Watt University, Edinburgh, 2011.

[19] F. Pfenning. Unification and anti-unification in the calculus of constructions. In LICS, pages
74–85. IEEE Computer Society, 1991.

[20] G. D. Plotkin. A note on inductive generalization. Machine Intel., 5(1):153–163, 1970.

[21] L. D. Raedt. Logical and Relational Learning. Springer, 2008.

[22] J. C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. Machine
Intel., 5(1):135–151, 1970.

[23] U. Schmid. Inductive Synthesis of Functional Programs, Universal Planning, Folding of Finite
Programs, and Schema Abstraction by Analogical Reasoning, volume 2654 of Lecture Notes in
Computer Science. Springer, 2003.

[24] A. Schwering, U. Krumnack, K.-U. Kühnberger, and H. Gust. Syntactic principles of heuristic-
driven theory projection. Cognitive Systems Research, 10(3):251–269, 2009.

[25] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In M. Baaz and J. A. Makowsky,
editors, CSL, volume 2803 of Lecture Notes in Computer Science, pages 513–527. Springer, 2003.

[26] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theor. Comput. Sci., 323(1–
3):473–497, 2004.

[27] C. Walther and T. Kolbe. Proving theorems by reuse. Artif. Intell., 116(1-2):17–66, 2000.

7

	Introduction
	Nominal Terms
	Nominal Anti-Unification Algorithm
	Deciding Equivariance

