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Abstract. Nowadays, Conflict-Driven Clause Learning (CDCL) tech-
niques are one of the key components of modern SAT solvers specialized
in industrial instances. Last years, one of the focuses has been put on
strategies to select which learnt clauses are removed during the search.
Originally, one need for removing clauses was motivated by the finite-
ness of memory. Recently, it has been shown that more aggressive clause
deletion policies may improve solvers performance, even when memory
is sufficient. Also, the utility of learnt clauses has been related to the
modular structure of industrial SAT instances.
In this paper, we show that augmenting SAT instances with learnt clauses
does not always make them easier for the SAT solver. In fact, it makes
worse the solver performance in many cases. However, we identify a set of
highly useful learnt clauses, and we show that augmenting SAT instances
with this set of clauses contributes to improve the solver performance in
many cases, especially in satisfiable formulas. These clauses are related
to the community structure of the formula, and they can be computed
in a fast preprocessing step. This would suggest that the community
structure may play an important role in clause deletion policies.

1 Introduction

Modern CDCL SAT solvers have been shown to be very efficient at solving in-
dustrial, or real-world, SAT instances. They integrate four major components:
conflict-driven clause learning [17], activity-based variable branching heuris-
tics [13], lazy data structures [13], and restarts [8]. In [10], it is empirically
shown that these four components contribute to such success, but clause learn-
ing is the most important. Most CDCL solvers learn just one clause each time
a conflict is found for the partially computed assignment. It has been observed
that not all learnt clauses have the same usefulness or relevance. Moreover, a
clause may be relevant at a certain instant of the search, but it may become use-
less later. Clause removal policies were initially proposed with the objective of
saving memory and speed up propagations by the solver [13, 7]. But the picture
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is more complex now. Since Glucose [2], aggressive clause removal policies are
essential ingredients of CDCL solvers (more than 95% of the learnt clauses can
be removed) and the initial arguments for clause database managements (unit
propagation speed and memory issues) do not completely hold anymore. The
intriguing question on how to predict efficiently and effectively the relevance of
new learnt clauses is still open.

The structure of a SAT instance may be modeled as a graph with variables as
nodes and clauses as edges. In [1], authors use this model to show that industrial
SAT instances usually exhibit a clear community structure, i.e., high modularity.
This means that we can find a partition of this graph into communities, with
many edges between nodes of the same community and few edges connecting
distinct communities. In [15], it is shown that the measure proposed in Glucose
(i.e., the Literal Block Distance or LBD) can be strongly related to the commu-
nity structure of the initial formula. However, this last result was just a one-way
observation of the CDCL SAT solvers behavior: while LBD seems related to the
number of communities in a learnt clause, it was not possible until now to exploit
this correlation the other way, i.e., by using the community structure to guide
the search in a CDCL SAT solver.

In this work, we show that community structure can be used to detect rele-
vant learnt clauses. In particular, we present a technique that uses this structure
to transform the formula adding learnt clauses, and hence guiding the search.
This causality is much stronger than the previous observed correlation. Although
we present our technique as a preprocessor for readability, our contribution is to
give empirical evidence that the community structure can be used to generate
relevant clauses, which is much stronger than identifying them (e.g., LBD is used
to rank existing clauses). This would suggest that the community structure may
play an important role in clause deletion policies.

Our preprocessor uses the community structure to split the instance into
disjoint subformulas, and augments it with the learnt clauses of solving pairs
of such subformulas. Intuitively, these clauses could be related to the notion of
glue clauses used in Glucose. Our inspiration comes from the observation that
clause learning destroys the (original) community structure of the instance. We
give empirical evidence about the commonly accepted claim that having more
learnt clauses does not always speed up the solving process. However, we show
that augmenting the instance with our technique works experimentally. This is
the case in several sets of industrial benchmarks and several CDCL SAT solvers.
Notice that augmenting a formula with learnt clauses is against the common
idea of preprocessing, which generally tries to reduce the instance.

The rest of this paper is structured as follows. After some preliminaries in
Section 2, we review in Section 3 some observations about the effect of clause
learning on the community structure of SAT instances. In Section 4, we provide
some insights on the relevance of clauses learnt by a CDCL solver. In Section 5,
we propose an algorithm that exploits the community structure to detect relevant
clauses, and evaluate its performance in Section 6. We review some related works
in Section 7, and we conclude in Section 8.
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2 Preliminaries

The Boolean Satisfiability Problem (SAT) is the problem of determining if the
variables of a propositional formula can be assigned in such a way that the
formula is evaluated as true. A literal is either a Boolean variable x or its
negation ¬x, a clause is a disjunction of literals, and a conjunctive normal form
(CNF ) instance is a conjunction of clauses.

An undirected weighted graph G is a pair G = (V,w), where V is the set of
nodes, and w : V × V → R

+ is the edge-weight function that satisfies w(x, y) =
w(y, x).

The Variable Incidence Graph (VIG) of a SAT instance Γ is the graph whose
nodes represent the variables of Γ , and there exists an edge between two variables
if they both appear in a clause c. A clause with l literals results into

(

l

2

)

edges.
Thus, to give the same relevance to all clauses, edges have a weight w(x, y) =
∑

c∈Γ

x,y∈c

1/
(

|c|
2

)

, where |c| = l is the length of the clause c.

The community structure of a graph is usually measured using the notion
of modularity [14]. Defined for a graph G and a partition P of its vertexes into
communities, the modularityQ (see Eq. 1) measures the fraction of internal edges
(edges connecting vertexes of the same community) w.r.t. a random graph with
same number of vertexes and same degree. This avoids that the best partition
is the one made up by an only community containing all vertexes.

Q(G,P ) =
∑

Pi∈P

∑

x,y∈Pi

w(x, y)

∑

x,y∈V

w(x, y)
−









∑

x∈Pi

deg(x)

∑

x∈V

deg(x)









2

(1)

The modularity of a graph is the maximal modularity for any possible parti-
tion: Q(G) = max{Q(G,P ) | P}. This optimal modularity will be in the range
[0, 1]. Computing the modularity of a graph is NP-hard [5]. Due to its com-
plexity, instead of computing the (exact) modularity, most of methods in the
literature approximate a lower-bound in the value of Q, trying to find a parti-
tion that maximizes this value. One of the most accurate and fastest algorithms
is the Louvain method [4], extensively used to compute the modularity of large
real-world networks.

In this work, we use the Louvain method to compute a partition of the
formula into disjoint subformulas (i.e., sets of clauses). The cost of this algorithm
depends on the number of nodes of the graph. We run this algorithm on the VIG,
which is one of the graph representation of the formula with smallest number of
nodes4, and we assign each clause to the most frequent community among its
variables (randomly assigned in case of ties). We have observed that this formula
partitioning (using the VIG) is similar to the one obtained using other graph
models, but its computation is much faster.

4 In other models, clauses are represented as nodes in the graph.
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Fig. 1. Graph of communities of the instance ibm-2002-22r-k60: original formula
(left), solved formula considering small learnt clauses (center), and solved formula
considering small and medium-sized learnt clauses (right). Nodes and edges are ac-
cordingly scaled by community size and weight, respectively.

3 Clause Learning Destroys the Community Structure

In this section, we review some observations about the community structure of
real-world SAT formulas, clause learning, and the relation between them.

Industrial SAT instances have been shown to have a very clear community
structure, with modularity Q in the VIG higher to 0.7 in most of the cases. Recall
that the maximum value of Q is 1. This means that we can find a partition of
their variables into communities, such that clauses mainly constraint variables
of the same community. However, this partition is destroyed by the addition of
learnt clauses [1], as we will see in this section.

In order to represent how this (initial) community structure is destroyed by
the effects of clause learning, we can use the graph of communities5. This graph
is built as follows: all nodes of the VIG (variables) that belong to the same
community are merged into a single node in the graph of communities, and
weighted edges are updated accordingly.6 In Fig. 1 (left), we represent the graph
of communities of the industrial formula ibm-2002-22r-k60. This instance has a
modularity Q = 0.91 and 35 communities. Glucose solved this formula keeping a
total of 504964 learnt clauses. We can recompute the graph of communities after
adding some of these learnt clauses to the original instance. In Fig. 1 (center and
right), we represent the graph of communities after adding small learnt clauses
(up to 10 literals), and medium-sized learnt clauses (up to 50 literals), respec-
tively.7 In these graphs of communities, the node size is scaled according to the
number of variables that belong to each community. Also, edges are scaled by
their weights. Notice that edges weights are computed using the weights of the

5 We cannot directly represent the VIG due to its large number of nodes (variables).
6 The weight of the edge connecting communities A and B is the addition of the
weights of the edges connecting one node from A and one node from B.

7 As each clause of length l generates
(

l

2

)

edges, it is hard to compute these graphs
using long clauses.
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Fig. 2. Impact of adding learnt clauses on modularity, in instances E05X15 (left) and
isqrt1 32 (right). Each point (x, y), with y measured in the left Y axis, represents a
clause learnt at instant x and increasing Q on y. We also represent the evolution of the
modularity Q (using the right Y axis).

VIG (i.e., taking into account the length of the clauses). As it is stated in [1],
the community structure is clear in all of these three graphs. However, as we
consider more learnt clauses, we can observe two phenomena. First, the number
of communities (number of nodes in the graph of communities) decreases. This
means that variables that originally belonged to distinct communities are now
grouped into the same community. Second, the weight of the inter-communities
edges increases. Therefore, from the two previous effects, we observe that the
solver prefers to learn clauses containing variables of distinct (original) commu-
nities (also stated in [1]). This means that, in general, clause learning contributes
to decrease the modularity.

A question now is: are there some learnt clauses that contribute to increase
the modularity even when most of them do not? In order to answer this ques-
tion, we can measure the increase of the modularity ∆Q that each learnt clause
produces. Notice that ∆Q is positive when most of the new edges generated by
such clause connect nodes (variables) of the same community. Otherwise, ∆Q
is negative. After an extensive experimentation, we see that, in general, learnt
clauses produce a very small decrease of the modularity (i.e., ∆Q < 0, in most
cases). In Fig. 2, we represent this analysis for the industrial instances E05X15
and isqrt1 32. Each point (x, y), with y measured in the left Y axis, represents
a clause learnt at instant x and increasing Q on y. We also represent (using
the right Y axis) the value of the modularity Q using the original partition of
variables, along the execution. We can see that, even when some learnt clauses
contribute to increase the value of Q, most of them do not (i.e., ∆Q < 0),
and thus Q tends to decrease. Due to space limitations, we only represent this
analysis in two benchmarks. However, we observed similar results in most indus-
trial SAT instances studied. Therefore, we can conclude that, in general, learnt
clauses contribute to destroy the (original) community structure of the formula.
It is not due to some particular clauses but rather a general phenomenon of the
learning mechanism.
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Fig. 3. Scatter plots of solving original instances (first step) versus generating and
solving formulas augmented with learnt clauses (second plus third steps), at p =
25%, 50%, 75% and 99%.

4 On the Relevance of Learnt Clauses

In this section, we try to answer the following question: if we augment the original
formula with a set of learnt clauses obtained from some CDCL solver, will this
contribute to solve the formula faster? In order to answer this question, we first
introduce the notion of relevant clauses.

Definition 1. Given a SAT solver S, a formula Γ , and a set of clauses ϕ, we
say that ϕ is relevant for Γ and S, if ϕ is a logical consequence of Γ and Γ ∪ϕ
is easier to solve for S than Γ .

Notice that in this definition we neglect the time needed to compute ϕ.
Obviously, previous definition is informal. In order to experimentally validate
if a set of clauses is relevant, we have considered a significant set of industrial
instances.

In a first experiment, we select the set of instances of the application track
of the SAT Competition 2013 solved in less than one hour. Notice that this set
contains both satisfiable and unsatisfiable instances. This experiment is divided
in three steps. In all of them, we use the CDCL SAT solver MiniSAT [7].

First step: we compute the number of conflicts c needed to solve the formula
in an arbitrary run.

6
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Fig. 4. Scatter plots of solving original instances (first step) versus solving formulas
augmented with learnt clauses (third step), at p = 25%, 50%, 75% and 99%.

Second step: we repeat the same execution stopping the search after a
certain number of conflicts p · c (where 0 < p < 1), and we generate a new
instance augmenting the original formula with the learnt clauses stored in the
solver at that instant.

Third step: we solve the augmented formula generated in the previous step.

We could think that the third step is just the continuation of the second step
due to a restart after p · c conflicts. But this is far from being true. First, CDCL
SAT solvers do have more contextual information than learnt clauses, such as the
activity counters, status of restarts, etc. It is also interesting to notice that the
phase caching scheme [16] is not saved in the third step: a learnt clause could
have been responsible for a propagation, and thus responsible for setting the
phase caching scheme when backtracking, but this learnt clause could have been
removed. Second, the learnt clauses used to generate the augmented formula will
be treated as original clauses in the third step, i.e., they cannot be removed by
the solver.

Since we limited the number of conflicts to p · c in the second step, you could
expect to need around (1−p) ·c conflicts to complete the search in the third step.
Surprisingly, in our experiments, this is true when the instance is unsatisfiable,
but not when it is satisfiable. If the formula is satisfiable, the aggregated runtime
of generating the augmented formula (second step) and solving it (third step)
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is usually higher than the runtime required to solve the original instance (first
step).

Let us present these observations in detail. In Fig. 3, we present the scatter
plot of the runtime of solving the original formula (first step) versus gener-
ating and solving the augmented formula (second plus third steps), with p =
25%, 50%, 75% and 99%, and distinguishing SAT and UNSAT instances. In un-
satisfiable instances, there is almost no difference (i.e., almost all points are on
the diagonal). On the contrary, in satisfiable formulas the differences are much
bigger (almost all points are far from the diagonal). Moreover, as we increase p,
solving original instances is faster than generating and solving their correspond-
ing augmented formulas (almost all points are above the diagonal). In Fig. 4, we
present the scatter plots of solving the original formula (first step) versus just
solving the augmented formula (third step). Notice that in this case, we do not
take into account the runtime needed to generate these augmented instances.
However, even in this case, solving some satisfiable augmented instances takes
more time than solving their corresponding original formulas.

We have observed that augmenting an instance with learnt clauses does not
always contribute to make it easier, when the formula is satisfiable. Let us con-
jecture why. First, although adding learnt clauses helps to reduce the search
space, there are other key components, such as the activity counters and the
phase component caching. These heuristics are set to their optimal8 values after
a certain number of conflicts. The phase component caching may play a crucial
role here, since the solver may use this information to keep the solution to a sub-
problem. Therefore, even if we have an oracle providing a set of learnt clauses,
this does not mean that you will find a satisfying assignment faster. Also notice
that the status of the activity counters cannot be reproduced from this set of
learnt clauses. These counters depend on all clauses learnt during the execution
of a solver, but some of them may have been removed, and therefore they do
not belong to the provided set anymore. Second, in [18] it was shown that the
runtime of solving unsatisfiable formulas is much more robust than for satisfiable
ones. Shuffling the instance may have an important impact on satisfiable prob-
lems, but not on unsatisfiable ones: the effort to find the UNSAT answer (and
the size its proof) are always of the same order. If we try to link our result to
this work, we think a reasonable explanation is the following one. For satisfiable
instances, the solver is mostly starting again the whole search, trying to learn

the correct phase component caching values. In this case, adding learnt clauses
can slightly help, but the overall process is dominated by the high discrepancy
of CPU time needed for satisfiable problems when shuffling the instance. For
unsatisfiable instances, this shows that the solver is continuing the same proof.

Therefore, even when adding learnt clauses does not always help in satisfiable
instances, is it possible to find a set of highly useful clauses that makes these
formulas easier? In the next section, we will show that we can use the community
structure to identify some clauses that are indeed relevant for those instances,
i.e., they help to solve satisfiable instances faster.

8 In order to guide the search to a satisfying assignment.
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Algorithm 1: Modularity-based SAT Instance Preprocessor (modprep)

Input: SAT Instance Γ

Output: SAT Instance Γ ′

Γ ′ := Γ ;1

C := communityStructure(Γ );2

foreach pair (ci, cj) of connected communities of C do3

Solver s;4

s.solve(ci ∪ cj);5

if s == UNSAT then6

return ∅;7

Γ ′ := Γ ′ ∪ s.learntClauses8

return Γ ′;9

5 Detecting Relevant Learnt Clauses

Learnt clauses are redundant by definition, hence not strictly necessary. How-
ever, they can help to prevent exploring the same unsatisfiable subspaces during
the search. Moreover, their role could be to guide the solver in building the
UNSAT proof by resolution. It is essential here to see CDCL SAT solvers as a
combination of backtrack search algorithms (where learnt clauses are used to
prevent exploring the same search space) and resolution proof engines (where
learnt clauses are used to derive new learnt clauses).

In the early versions of CDCL solvers, memory was an important issue [13, 7].
Therefore, some heuristics were proposed to remove useless clauses. Moreover, it
is important to correctly manage the learnt clauses database in order to maintain
a good unit propagation speed. More recently [2], some clause removal policies
have been proposed. They aggressively remove most of the learnt clauses (95%
of the learnt clauses can be removed). The proposed strategy is now one of the
standards in CDCL engines. Thus, this policy is not only about maintaining
good unit propagation rates, but also to guide the solver to some easier proofs.
In Glucose, it was proposed to consider the number of decision levels occurring
in a learnt clause as a measure of its quality (this was called Literal Block
Distance, LBD, lower is better). The idea was that literals propagated at the
same decision level were tightly connected and may often be propagated again
and again together. Clauses of LBD 2 (called glue clauses) are kept forever in
Glucose. Recently [15], it was shown that the LBD value was correlated to the
number of communities of the clause. In this section, we show that community
structure can be used to detect relevant learnt clauses.

In Alg. 1, we propose a technique presented as a preprocessing step, called
Modularity-based SAT Instance Preprocessor (modprec). It augments the orig-
inal formula with some learnt clauses based on its community structure. This
algorithm proceeds as follows. First, it computes the community structure of
the original formula (line 2), as described in Section 2. Recall that each commu-
nity represents a set of clauses of the original instance. Then, for each pair of

9



connected communities9, it creates a subformula containing both communities,
and solves it (line 5). If this subformula is UNSAT, it returns the empty clause.
Otherwise, the original instance is augmented with the clauses the solver learnt
for solving such subformula (line 8). Finally, it returns the augmented instance.

Notice that the previous algorithm imposes a very strong condition, which
is solving all subformulas between two connected communities and keeping all

learnt clauses found in this process. This could be further refined. Moreover, this
preprocessing step could be heuristically applied during the search in the flavor
of inprocessing approaches [9].

Although we will show in next section that this approach works experimen-
tally, we may wonder why these learnt clauses indeed improve the performance
of the solver. It is worth noticing that, by construction, these learnt clauses are
usually composed of at most 2 communities, and thus are clearly related to the
notion of glue clauses aforementioned. In addition, as we showed in Section 3,
learnt clauses contribute to destroy the original community structure. In order
to do this, we first need to connect pairs of communities, then triples of commu-
nities, and so forth; since we learn clauses that connect all communities (i.e., the
whole formula) and we derive the empty clause. Therefore, we do not want to
erase the base of this process (clauses connecting pairs of communities). Notice
that a solver not aware of the community structure may remove them, unless,
as we do, these clauses are added in a preprocessing step as original clauses. i.e.,
the solver will not remove them.

In this work, we only consider learnt clauses connecting pairs of communities
at the preprocessing step, and not triples or higher arities. This is because the
combinatorial space for pairs can be managed efficiently by the SAT solver. For
bigger arities, we would need some additional filtering criterion, or working on
a parallel solver (discussed in Section 8).

6 Experimental Evaluation

In this section, we present an experimental evaluation of the modularity-based
preprocessor presented in the previous section. All experiments were run in a
cluster of 9 nodes IBM dx360 M2, each of them with 32GB of RAM and 2
processors Intel(R) Xeon(R) CPU L55202.27 GHz, limiting all experiments to a
single core and to a maximum of 4GB of RAM. We use four representative CDCL
SAT solvers: MiniSAT [7], Lingeling [3], Glucose [2], and MiniSAT-blbd [6].
MiniSAT is one of the most popular CDCL SAT solvers, while the three others
were the best ranked solvers in the application track of the last SAT Competition
2014: Lingeling won both the UNSAT and the SAT+UNSAT tracks, MiniSAT-
blbd won the SAT track, and Glucose was the second classified in the UNSAT
track.

First, we evaluate how expensive is running the preprocessor described in
Alg. 1 on a set of industrial SAT instances. We use the 300 application instances

9 Two communities are connected if there exists at least one variable appearing in
both of them.
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Fig. 5. Evaluation of application instances of the SAT Competition 2011, distinguishing
satisfiable instances (top) and unsatisfiable instances (bottom), for Glucose, Lingering,
MiniSAT-blbd, and MiniSAT; with and without using our preprocessor.

of the SAT Competition 2011. Notice that Alg. 1 can be split into two steps:
i) partitioning the input formula into subformulas; and ii) solving them.

We compute the community structure as described in [1]10. For this set of
300 application instances, this tool is able to correctly compute the community

10 Tool available in http://www.iiia.csic.es/~jgiraldez/software.
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structure of 298 instances. This process is, in general, very fast. The average,
median and maximum runtimes are respectively 12.6, 4.3 and 294.5 seconds.

Then, we solve all subformulas using MiniSAT. This step is performed on
the 298 industrial formulas, with an average, median and maximum runtime
of 78.0, 21.8 and 975.8 seconds, respectively. The average, median, maximum
and minimum number of clauses that our preprocessor learnt is 11243.9, 512,
794950 and 1 clauses, respectively. A natural question now is if the number of
clauses learnt with this preprocessor depends on the solver used to solve such
subformulas. We run again this step using Glucose instead that MiniSAT. Notice
that Glucose uses a more aggressive clause removal policy. However, we observe
that this solver learns, in general, a similar number of clauses as MiniSAT, and
needs a similar runtime to solve these subformulas. This is because the input
subformulas are, in general, very easy.

In the next experiment, we evaluate the performance of the mentioned solvers,
with and without using the presented preprocessor (referred in the plots as
<solver> and modprep+<solver>, respectively). In Fig. 5, we represent the plots
of this evaluation (solvers with and without using the preprocessor) for the indus-
trial instances of the SAT Competition 2011, distinguishing between satisfiable
and unsatisfiable instances. We represent a cactus plot (i.e., the maximum run-
time of solving a set of instances) with logarithmic Y axis. The timeout is set
to 25000 seconds (the timeout usually used in competitions is 5000 seconds).
We remark that the reported runtime when the preprocessor is used include the
runtime of computing the community structure and the runtime of solving all
subformulas. We observe that using our preprocessor with MiniSAT, Glucose or
MiniSAT-blbd improves their performance in satisfiable instances. Moreover, in
unsatisfiable instances, Glucose also improves its performance. Interestingly, for
this timeout of 25000 seconds, enhancing a solver with our preprocessor results
into the best choice for solving satisfiable instances (using MiniSAT-blbd) and
unsatisfiable instances (using Glucose). More interestingly, the solver MiniSAT-
blbd enhanced with our preprocessor also results into the best technique to solve
satisfiable instances when a timeout of 5000 seconds is considered (similar to the
timeout used in the competition). It is worth noting that, for very easy instances,
the overhead of the preprocessor (i.e., computing the community structure and
solving all subformulas) does not compensate.

We want to validate if the previous results also hold in a different set of indus-
trial instances. We repeat the same experiment11 for the set of 300 application
instances of the SAT Competition 2014. In Fig. 6, we represent the cactus plot of
this experiment, distinguishing between satisfiable and unsatisfiable instances.
Again, we observe that Glucose and MiniSAT-blbd improve their performance
in both satisfiable and unsatisfiable instances when the preprocessor is used. In
fact, MiniSAT-blbd enhanced with our technique is the best solver in satisfi-
able instances. Interestingly, these solvers also improve their performance using
a shorter timeout of 5000 seconds. For instance, in our cluster MiniSAT-blbd
solves 97 SAT instances, while this solver enhanced with our preprocessor solves

11 Excluding MiniSAT.
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Fig. 6. Evaluation of application instances of the SAT Competition 2014, distinguishing
satisfiable instances (top) and unsatisfiable instances (bottom), for Glucose, Lingering,
and MiniSAT-blbd; with and without using our preprocessor.

111. This difference is significant in the context of competitions. Also, Glucose
solves 194 SAT+UNSAT instances, while using our technique with this solver
results into a total of 206 SAT+UNSAT solved instances. Again, this difference
is significant. However, our preprocessor does not improve the performance of
Lingeling.
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Fig. 7. Evaluation of random and sequential partitions, distinguishing between satis-
fiable (left) and unsatisfiable formulas (right), using the set of industrial instances of
the SAT Competition 2011, and solved by Glucose.

Finally, we want to check if a random partition of the formula would have
the same effect as the partition provided by the community structure. For every
instance, we compute a random partition of the formula with the same number
of components as in the community structure. Also, we compute a sequential
partition, where all variables of a component have sequential indexes. Then, we
repeat all the experimentation with these random and sequential partitions. In
Fig. 7, we show the cactus plot of the results on the set of industrial instances of
the SAT Competition 2011. As expected, none of these methods performs better
than either our proposed technique or solving the original instances.

Notice that in the previous experiment, the average, median, maximum and
minimum number of clauses learnt by our preprocessor was respectively 4015.12,
28, 209085 and 0 clauses using the random partition, and 35360, 987, 951839
and 0 clauses using the sequential partition. Recall that using the community
structure, our preprocessor learnt in average, median, maximum and minimum a
total of 11243.9, 512, 794950 and 1 clauses, respectively. Therefore, with random
components the number of learnt clauses is smaller than using the community
structure, whereas with sequential components this number is bigger. This sug-
gests that the partition used to create the subformulas is more important than
the number of clauses learnt by the preprocessor.

7 Related Work

A pioneering work on using community structure to speed-up solvers was pre-
sented in [12]. In particular, they proposed to solve Maximum Satisfiability for-
mulas by partitioning them according to the community structure and adding
incrementally to the MaxSAT solver the sets of clauses related to communities.

In [11], it is shown that learnt clauses are most likely to be composed by
variables on the fringes between communities. Interestingly enough, this con-
firms that the learning scheme tends to destroy the community structure: adding
clauses with internal variables of communities would increase the clustering into
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communities. However, adding links between clusters by linking variables on
their fringes seems to be more efficient.

As already mentioned, our work is also related to the work in [15]. Our current
work contributes to confirm this by suggesting that good clauses are composed of
variables from a few communities but, for the first time, it was possible to guide
a CDCL SAT solver by the community structure of the formula. In particular,
we think we were able to guide the solver to learn a set of initial glue clauses.

8 Conclusions and Future Work

In this paper, we use the community structure of industrial SAT instances to
identify a set of highly useful learnt clauses. We show that augmenting a SAT
instance with clauses learnt by the solver during its execution does not always
mean to make the instance easier, especially in the case of satisfiable instances.
However, we also show that augmenting the formula with a set of clauses based
on the community structure of the formula improves the performance of the
solver in many cases. Interestingly, this improvement is especially relevant in
satisfiable instances. In particular, we use the set of clauses learnt from solving
all subformulas consisting in pairs of connected communities.

We implement this approach as a preprocessor, and we show that it works
experimentally on some representative sets of industrial instances, especially
in satisfiable formulas. Interestingly, the SAT solver MiniSAT-blbd, which was
the winner of the satisfiable track of the last SAT Competition 2014, enhanced
with our technique improves its performance. It is also the case of Glucose,
which improves its performance when it is enhanced with our technique in both
satisfiable and unsatisfiable instances. To the best of our knowledge, this is the
first time that community structure has been used to improve the performance
of a CDCL SAT solver.

An important development of our work could be the design of a parallel
solver. Each core could work only on a subset of the initial clauses, without
communications. This could also allow us to extend our approach to tuples of
communities instead of pairs of communities.

Our approach can also be improved by trying to guess which pairs of com-
munities are important to work on. We are currently investigating this. At last,
it is also important to link the community structure of formulas with their ini-
tial problem and generation. Linking the original problem with the detected
communities is also an ongoing work.

15



Bibliography
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[7] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. of SAT’03. pp.
502–518 (2003)

[8] Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search
through randomization. In: Proc. of the Fifteenth National Conf. on Ar-
tificial Intelligence, AAAI’98. pp. 431–437 (1998)

[9] Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Proc. of IJ-
CAR’12. pp. 355–370 (2012)

[10] Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the
anatomy of modern SAT solvers. In: Proc. of SAT’11. pp. 343–356 (2011)

[11] Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances.
In: Proc. of CP’12. pp. 348–356 (2012)

[12] Martins, R., Manquinho, V.M., Lynce, I.: Community-based partitioning
for MaxSAT solving. In: Proc. of SAT’13. pp. 182–191 (2013)

[13] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an efficient SAT solver. In: Proc. of DAC’01. pp. 530–535 (2001)

[14] Newman, M.E.J., Girvan, M.: Finding and evaluating community structure
in networks. Phys. Rev. E 69(2), 026113 (2004)

[15] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.:
Impact of community structure on SAT solver performance. In: Proc. of
SAT’14. pp. 252–268 (2014)

[16] Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme
for satisfiability solvers. In: Proc. of SAT’07. pp. 294–299 (2007)

[17] Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

[18] Simon, L.: Post mortem analysis of SAT solver proofs. In: Proc. of POS’14.
pp. 26–40 (2014)


	Using Community Structure to Detect Relevant Learnt Clauses  

