
Linear Second-Order Unification?

Jordi Levy

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
http://www-lsi.upc.es/~jlevy

Abstract. We present a new class of second-order unification problems,
which we have called linear. We deal with completely general second-order
typed unification problems, but we restrict the set of unifiers under con-
sideration: they instantiate free variables by linear terms, i.e. terms where
any λ-abstractions bind one and only one occurrence of a bound variable.
Linear second-order unification properly extends context unification stud-
ied by Comon and Schmidt-Schauß. We describe a sound and complete
procedure for this class of unification problems and we prove termination
for three different subcases of them. One of these subcases is obtained re-
quiring Comon’s condition, another corresponds to Schmidt-Schauß’s con-
dition, (both studied previously for the case of context unification, and
applied here to a larger class of problems), and the third one is original,
namely that free variables occur at most twice.

1 Introduction

It is well-known that second-order unification is undecidable. However, it is still
possible to obtain decidability for some restricted, although practical, classes of
problems. That is the case of Miller’s higher-order patterns. More recently, Comon
and Schmidt-Schauß have proposed a new class of second-order unification prob-
lems, called context unification. They have proved decidability of two different
subclasses of these problems, although it is not known if the whole class is de-
cidable. In this paper we extend this class of problems to what we call linear
second-order unification.

Historically, Robinson and Guard were the first who studied the higher-order
unification problem in the sixties. In fact, a student of Guard (Gould [4]), was
the first who found a complete second-order matching algorithm. Most of the re-
sults of second-order and higher-order unification problems were proved during
the seventies. Pietrzykowski [15] described a complete second-order unification
procedure, that was later extended to the higher-order case [7], and Huet [6] de-
fined preunification (lazy unification) and found a non-redundant procedure for
it. Most of the negative results were also discovered during this decade. Inde-
pendently, Lucchesi [11] and Huet [5] showed that third-order unification is not
decidable, later Goldfarb [3] showed that second-order unification is not decidable
either. In the nineties, Miller [13] found the first class of decidable higher-order

? This work was partially supported by the ESPRIT Basic Research Action CCL and
the project DISCOR (TIC 94-0847-C02-01) funded by the CICYT

unification problems, named higher-order pattern unification. Such patterns were
used by Nipkow [14] to propose a notion of higher-order rewriting, which lead to
quite some further research [16, 12, 10].

This paper deals with another class of higher-order unification problems that
has caught the attention of some researchers recently, the so called context unifica-
tion problems. This is an extension of first-order term unification where variables
may denote not only (first-order) terms, but also contexts —terms with a hole or
distinguished position—. Comon [1] studied these problems to solve membership
constraints. He proved that context unification is decidable, when any occurrence
of the same context variable is always applied to the same term. Schmidt-Schauß
[17] also studies the same problem, however he is interested in reducing the prob-
lem of unification modulo distributivity to a subset of such context unification
problems. He proves that context unification is decidable when terms are strati-
fied. Hence, stratified means that the string of second-order variables we find going
from the root of a term to any occurrence of the same variable, is always the same.
Finally, our interest on such problem comes from the extended critical pair prob-
lem. This problem arises when trying to apply rewriting techniques to automated
deduction in monotonic order theories, using bi-rewriting systems [8, 9].

However, we deal with an extension of the context unification problem, named
linear second-order unification. The generalization comes from two facts:

(i) we consider second-order terms (instead of first-order terms), thus expres-
sions may contain λ-bindings, and

(ii) second-order context variables are not restricted to be unary, they may
denote (second-order) terms with more than a hole or distinguished po-
sitions. In other words, second-order variables denote linear second-order
terms. Hence, a linear term is a term whose normal form only contains λ-
abstractions where the bound variable occurs once, and only once.

This generalization is motivated by the following problem. The unification
problem F (a) ?= G(f(a)) has two minimum linear second-order unifiers:

σ1 = [F 7→ λx . G(f(x))]
σ2 = [F 7→ λx . H(x, f(a))][G 7→ λx . H(a, x)]

However, if we restrict ourselves to unary second-order variables, we can not rep-
resent the second minimum unifier. Context unification is infinitary for most of
the problems.

This paper is structured as follows. Linear second-order unification problems
are defined in section 2. Section 3 describes a linear second-order unification pro-
cedure which is proved to be sound and complete in section 4. Then, we prove
decidability of such unification problems in three cases. Firstly, when no free vari-
able occurs more than twice (section 5), secondly when a variable is applied to the
same term in all its occurrences (section 6), and thirdly when we deal with strat-
ified terms (section 7). Some of the proofs are long and quite complex, therefore
in some cases we have included only a sketch of them.

2 Linear Second-Order Unification

In this section we define the linear second-order (LSO) typed λ-calculus, LSO-
unification, and we prove some of its main properties.

We are concerned with a set of types T =
⋃

n≥1 T
n, a set of second-order typed

variables V =
⋃

τ∈T 2 Vτ , and a set of third-order typed constants F =
⋃

τ∈T 3 Fτ

The inference rules defining well-typed linear-terms are the following ones.

{x ∈ Vτ}
x : τ

{c ∈ Fτ}
c : τ

x : τ t : τ ′

{x occurs once in t}
λx . t : τ → τ ′

t : τ → τ ′ u : τ

t(u) : τ ′

We say that t is a linear second-order (LSO) term if t : τ may be inferred
from these rules and τ ∈ T 2. Other concepts commonly used in λ-calculus, as free
variables FV , bound variables BV , etc. will be used throughout without previous
definition. Like in the simply second-order typed λ-calculus, we also consider the
β and η equations (λx . t)(u) =β t[x 7→ u] and λx . t(x) =η t. Notice that the
side condition x 6∈ FV(t) is not necessary in the η-equation because, if λx . t(x) is
well-typed, then this condition is ensured. Notice also that these equations, used
as rewriting rules, transform well-typed linear terms into linear terms with the
same type. The η-long β-normal form of a term t is denoted by t|βη and has the
form λx1 . . . xn . a(t1, . . . , tm), where a is called the head of the term and can be
either a free variable, a bound variable or a constant, a(t1, . . . , tm) is a first-order
typed term, and t1 . . . tm are also second-order normal terms. Moreover, if a is a
bound variable then m = 0. We require linearity to prove the following lemma.

Lemma 1. For any pair of LSO-terms t and u, if t =βη u then FV(t) = FV(u).

We consider any kind of second-order unification problem, and we only restrict
the set of possible unifiers.

Definition 2. A second-order unification (SOU) problem is a finite set of pairs
{t1

?= u1, . . . , tn
?= un}, where ti and ui are —not necessarily linear— second-

order typed terms, and have the same type, for any i ∈ [1..n].

A LSO-substitution σ is an idempotent and type preserving morphism between

terms such that its domain, defined by Dom(σ)
def

= {X | X 6= σ(X)}, is finite and
for any X ∈ Dom(σ), σ(X) is a βη-normal LSO-term.

As usual, given a pair of substitutions σ, ρ, we say that σ � ρ if there exists a
substitution τ such that ρ = τ◦σ. We say that σ is a minimum substitution (w.r.t.
a set of them) if for any other substitution ρ of the set we have σ � ρ or ρ 6� σ. The
set of free variables of a substitution is defined as FV(σ) =

⋃

X∈Dom(σ) FV(σ(X)).

Lemma 3. If the composition of two LSO-substitutions is idempotent, then it is
also an LSO-substitution. (Composition preserves linearity).

Given two terms t and u, there are finite many LSO-substitutions σ satisfying
t =βη σ(u) and Dom(σ) ⊆ FV(u).2

2 Notice that this is not true for non-linear substitutions: there are infinitely many
substitutions σ = [F 7→ λx . a,X 7→ t] satisfying σ(F (X)) = a.

Second part of this lemma suggests us that LSO-substitutions are specially
adequate for basing on it a definition of second-order rewriting systems.

3 A Linear Second-Order Unification Procedure

In this section we describe a sound and complete procedure for the LSO-unification
problem. This procedure is non-terminating in general, but remind that decid-
ability of LSO-unification and context unification are open problems. In following
sections we will use modified versions of this procedure to prove decidability of the
LSO-unification problem in some restricted cases. Thus, those modified versions
are terminating, although they are complete only for some subset of problems.

In the description of the procedure we use a compact notation based on
lists of indexes and indexed lists of indexes. We denote lists of indexes by cap-
ital letters P , Q, R,. . .For any list of indexes P = {p1, . . . , pn}, the expres-
sion a(bP) denotes a(bp1 , . . . , bpn

), and for any P -indexed list of indexes QP =

{Qp1 , . . . , Qpn
} = {{q1

1, . . . , q
m1
1 }, . . . , {q1

n, . . . , qmn
n }} the expression a(bP (cQP

))
denotes a(bp1(cq1

1
. . . cq

m1
1

), . . . , bpn
(cq1

n
. . . cq

mn
n

)). As usual, small letters like p de-

notes correlative lists of indexes [1..p], so a(bp) denotes a(b1, . . . , bp).
We also use the notation on transformations introduced by Gallier and Snyder

[2] for describing unification processes. Any state of the process is represented by
a pair 〈S, σ〉 where S = {t1

?= u1, . . . , tn
?= un} is the set of unification problems

still to be solved and σ is the substitution computed until that moment, i.e. the
substitution leading from the initial problem to the actual one. The initial state
is 〈S0, Id〉. The procedure is described by means of transformation rules on states
〈S, σ〉 ⇒ 〈S′, σ′〉. If the initial state can be transformed into a normal form where
the unification problem is empty 〈S0, Id〉 ⇒∗ 〈∅, σ〉 then σ is a solution –minimal
unifier– of the original unification problem S0.

We suppose that any term of the initial state is in βη-normal form, and that
after applying any transformation rule the new unification problem and the new
substitution are also βη-normalized. Therefore, we can suppose that any pair
t

?= u ∈ S has the form λxN . a(tP) ?= λxN . b(uQ) because, if t and u have the
same type, then they have the same number of more external λ-bindings. We give
the same name to these bound variables using α-conversion.

Definition 4. All problem transformation rules have the form:

〈S ∪ {t ?= u}, σ〉 ⇒ 〈ρ(S ∪ R), ρ◦σ〉

where, for each rule, the transformation t
?= u ⇒ R and the LSO-substitution ρ

are defined as follows.

1. Rigid-rigid rule (or Simplification rule). If a is a constant, or a bound variable
then

λxN . a(tP) ?= λxN . a(uP) ⇒
⋃

i∈P

{λxN . ti
?= λxN . ui}

ρ = Id

2. Imitation rule. If a is a constant3 and F is a free variable, and {Ri}i∈P is a

3 Notice that if a is a bound variable and λxN . a(tP) is a LSO term, then P = ∅ and

P -indexed family of disjoint lists of indexes satisfying4
⋃

i∈P Ri = Q, then

λxN . a(tP) ?= λxN . F (uQ) ⇒
⋃

i∈P

{λxN . ti
?= λxN . F ′

i (uRi
)}

ρ = [F 7→ λyQ . a(F ′
P (yRP

))]

where {F ′
j}j∈Q are fresh free variables of the appropriate type that can be

inferred from the context.

3. Projection rule. If a is a constant or a bound variable and F is a free variable,
and a(tp) and u have the same type, then

λxN . a(tp)
?= λxN . F (u) ⇒ {λxN . a(tp)

?= λxN . u}
ρ = [F 7→ λy . y]

4. Flexible-flexible rule with equal heads (or Simplification rule). If F is a free
variable, then

λxN . F (tP) ?= λxN . F (uP) ⇒
⋃

i∈P

{λxN . ti
?= λxN . ui}

ρ = Id

5. Flexible-flexible rule with distinct-heads (or Distinct-heads rule). If F and G

are free distinct variables, P ′ ⊆ P and Q′ ⊆ Q are two lists of indexes,
and {Rj}j∈Q′ is a Q′-indexed and {Si}i∈P ′ a P ′-indexed family of disjoint
lists of indexes satisfying Rj and P ′ are disjoint, Si and Q′ are also disjoint,
(
⋃

j∈Q′ Rj) ∪ P ′ = P and (
⋃

i∈P ′ Si) ∪ Q′ = Q, then

λxN . F (tP) ?= λxN . G(uQ) ⇒
⋃

j∈Q′

{λxN . F ′
j(tRj

) ?= λxN . uj} ∪

⋃

i∈P ′

{λxN . ti
?= λxN . G′

i(uSi
)}

ρ = [F 7→ λyP . H ′(F ′
Q′ (yRQ′

) , yP ′)][G 7→ λzQ . H ′(zQ′ , G′
P ′(zSP ′

))]

where H ′, {G′
i}i∈P ′ and {F ′

j}j∈Q′ are fresh free variables of the appropriate
types. Notice that if Rj = ∅ then F ′

j is a first-order typed variable (resp. for
Si and G′

i).

Compared with the general second-order unification procedure [7], we avoid
the use of the prolific elimination and iteration rules, which always compromise
the termination of their procedure. It does not mean that our procedure termi-
nates, but it avoids many redundant states. Moreover, in contrast to Jensen and
Pietrzykowski’s procedure, our procedure only computes minimal unifiers.

To ensure that the final substitution is linear, we only instantiate free vari-
ables by linear terms. This means that when we apply imitation rule like [F 7→

λyQ . a(F ′
P (yRP

))], we have to make sure that the Q arguments of F are dis-
tributed among the F ′

P new variables. This imposes the restrictions {Ri}i∈Q are
disjoint lists of indexes and

⋃

i∈P Ri = Q. Notice that this condition ensures that

λyQ . a(F ′
P (yRP

)) is a linear term.

this situation is captured by the projection rule.
4 Union and comparison of lists of indexes is computed without considering their order.

4 Soundness and Completeness

In this section we schematize the proofs for soundness and completeness of our
procedure.

Theorem5. Soundness. For any second-order unification problem S0, if there
exists a derivation 〈S0, Id〉 ⇒∗ 〈∅, σ〉, then σ is a minimal linear second-order
unifier of S0.

Simplification steps preserve the set of minimum unifiers of an unification
problem. Imitation, projection and distinct-heads steps may be considered as the
composition of an instantiation and a simplification step, where the substitution
instantiates a free variable by a linear term. For instance, the imitation rule may
be decomposed as follows.

λxN . a(tP) ?= λxN . F (uQ) ⇒ λxN . a(tP) ?= λxN . a(F ′
P (uRP

)) Instantiation

⇒
⋃

i∈P {ti
?= F ′

i (uRi
)} Simplification

Now, taking into account that composition of linear substitutions is also a lin-
ear substitution (see lemma 3, taking into account that we only introduce fresh
variables, which ensures idempotence), it is not difficult to prove that the final
substitution is really a unifier.

Theorem6. Completeness. If σ is a minimum linear second-order unifier of
the second-order unification problem S0, then there exists a transformation se-
quence 〈S0, Id〉 ⇒∗ 〈∅, σ〉.

We can prove easily that whenever exists a minimum unifier σ of a unification
problem S0, we can generate a sequence of transformations:

〈S0, Id〉 ⇒ 〈S1, σ1〉 ⇒ · · · ⇒ 〈Sn, σn〉 ⇒ · · ·

satisfying σn � σ for any n ≥ 0. There are two possibilities, either this sequence
is infinite or its last state is 〈∅, σ〉.

Now, we can prove that no such infinite sequences exist. In first-order we can
define the size of a substitution as size(σ) =

∑

X∈Dom(σ) σ(X), where the size of
a term is the number of applications it contains. Then, we can prove that each
new instantiation increases this size, i.e. if σ � ρ then size(σ) ≤ size(ρ). This is
not true in second-order because we can instantiate a second-order variable by a
function which disregards its parameters5. This is not true in linear second-order
unification either, due to the projection rule. Fortunately, in our case we can avoid
this problem defining the size of a substitution w.r.t. another substitution.

Definition 7. The size of a term t w.r.t. a substitution ρ is defined as follows

size(λxP . a(tQ), ρ) =
∑

q∈Q

size(tq, ρ)+

{

0 if a is a free variable and ρ(a) = λx . x

#Q otherwise

5 In this case we could define the size of a term as the number of applications contained
in its βη-normal form.

where #Q is the cardinality of Q, and the size of a LSO-substitutions is defined
as follows

size(σ, ρ)
def

=
∑

X∈Dom(σ)

size(σ(X), ρ)

Lemma 8. For any LSO-term t and LSO-substitutions σ, ρ and τ we have

size(t , τ◦ρ) ≤ size(ρ(t) , τ)
size(σ , τ◦ρ) ≤ size(ρ◦σ , τ)

Although projection steps do not increase the size of the unifier computed till
that moment, they decrease the free arity of the problem, defined as arity(S) =
∑

X∈FV(S) arity(X) where as usual the arity of a variable X is the maximal num-

ber of parameters it admits.6

Finally, we can define the size of a state 〈Sn, σn〉, of our particular sequence of
transformations, w.r.t. the unifier σ as a triplet where first and second component
are integers and the third component is a multiset of integers:

size(〈Sn, σn〉) = min
{τ | σ=τ◦σn}

〈arity(Sn), size(σ, Id) − size(σn, τ),
⋃

t
?
=u∈Sn

{size(t, τ), size(u, τ)}〉

Now we have to prove that if 〈Sn, σn〉 ⇒ 〈Sn+1, σn+1〉 then size(〈Sn, σn〉) >

size(〈Sn+1, σn+1〉), where > is a lexicographic ordering, and third components of
the triplet are compared using the usual multiset ordering. We may check that
any projection step strictly reduces the free arity of the problem, whereas any
other transformation does not change it. For imitation steps and flexible-flexible
steps the result depends on the size of the variable (or variables) being instan-
tiated before and after applying the transformation step. If it does not increase,
then the size of the substitution remains unchanged but the size of the problem
decreases. If it increases, although the size of the problem increases, the size of
the substitution also increases (the difference size(σ, Id)−size(σn, τn) decreases).
For simplification steps, σn = σn+1, the substitution does not change but the size
of the problem decreases (maybe its free arity, too).

Notice that this result proves the completeness of the unification procedure, but
not its termination and, therefore, not the decidability of the unification problem.
The function size could be used to prove the termination of the procedure if we
would be able to fix an upper bound size(σ, Id) ≤ MAX for the size of one of the
minimum unifier of a unification problem, if it has any.

5 A Termination Result

In the following we will prove that our procedure always finishes for a very useful
case: if no free variable occurs more than twice in an unification problem. This
fact is related with the termination of the naive string unification procedure when
variables occurs at most twice [18].

Theorem 9. Termination. If no free variable occurs more than twice in a linear
second-order unification problem, then this unification problem is decidable.

6 If X : τ1 → . . . → τn → τ and τ is a first-order type, then arity(X) = n.

To prove this theorem we define the following size function, where we suppose
that any term is normalized previously to compute its size.

size(λx1 . . . xn . a(t1, . . . , tp)) = p +
∑p

i=1 size(ti)

size({t1
?= u1, . . . , tn

?= un}) =
∑n

i=1 size(ui) + size(ti)

We prove now that if 〈S, σ〉 ⇒ 〈S ′, ρ◦σ〉 and any free variable appears at most
twice in S then size(S′) ≤ size(S) and any free variable also appears at most
twice in S′. There are five cases. Here we only show the case of flexible-flexible
steps with distinct-heads.

λxN . F (tP) ?= λxN . G(uQ) ⇒
⋃

j∈Q′ {λxN . F ′
j(tRj

) ?= λxN . uj} ∪
⋃

i∈P ′ {λxN . ti
?= λxN . G′

i(uSi
)}

ρ = [F 7→ λyP . H ′(F ′
Q′(yRQ′

) , yP ′)][G 7→ λzQ . H ′(zQ′ , G′
P ′(zSP ′

))]

The size of the problem decreases in #P + #Q−
∑

i∈P ′ #Si −
∑

j∈Q′ #Rj =
#P ′ +#Q′ and is increased in #Q′ for any instantiation of F and in #P ′ for any
instantiation of G. Therefore, in the worst case, the size of the problem remains
equal. It is also easy to see that in the worst case we introduce two occurrences of
each one of the fresh variables H ′, {F ′

i} and {G′
j}.

Finally, taking into account that for any finite signature and given size there
are finitely many unification problems, it easy to see that it is enough to control
loops to ensure the termination of the procedure described in the previous sections.

6 Extension of Comon’s Decidability Result

To extend Comon’s condition [1] to linear second-order unification we have to
consider non-unary free variables and λ-bindings. The later makes necessary to
introduce λ-equivalent terms.

Definition 10. Given two LSO-terms λx1, . . . , xn . t and λy1, . . . , ym . u, we
say that they are λ-equivalent, noted λx1, . . . , xn . t =λ λy1, . . . , ym . u, if
λx1, . . . , xn . t|βη =α λz1, . . . , zn−m, y1, . . . , ym . u|βη, where we suppose that n ≥
m and {z1, . . . , zn} 6⊆ FV(u).

Given a normalized unification problem S, we say that it satisfies the extended
Comon’s condition if, for any pair of occurrences of a free variable F , they are
in two subterms F (t1, . . . , tn) and F (u1, . . . , un) satisfying λxN . F (t1, . . . , tn) =λ

λyM . F (u1, . . . , un), where xN and yM are respectively the sequence of λ-bindings
above these subterms.

Notice that λ-equivalence is an extension of α-conversion between βη-normal
terms. We can prove that Comon’s condition is also enough to ensures decidability
in the more general linear second-order unification setting.

Theorem11. Termination II. Any linear second-order unification problem sat-
isfying the extended Comon’s condition is decidable and finitary.

To ensure the termination of our unification procedure we have to apply a
kind of problem normalization before any transformation. This is equivalent to
working with generalized equations like it is done in A-unification [18]. We deal

with sequences of equalities t1
?= · · · ?= tn and we concatenate any pair of sequence

sharing two λ-equivalent terms. Thus, apart from the normalization procedure
described in section 2, we will apply the following concatenation rule:

{t1
?= · · · ?= tn , u1

?= · · · ?= um}∪S ⇒ {t1
?= · · · tn

?= λxN . u2
?= · · · ?= λxN . um}∪S

whenever t1 =α λxN . u1, i.e. whenever t1 =λ u1.

This normalization procedure and Comon’s condition ensures that no free vari-
able F occurs in the outermost head of more than one term, although F may occur
below the head of other terms.

Definition 12. Given a unification problem S, let ≈S be the reflexive-transitive
closure of the relation defined by: if t =λ u or t

?= u ∈ S then t ≈S u, for any
pair of terms t and u. Consider the finite set of ≈S-equivalence classes of terms
containing a term of S or a subterms of one of them.

Let �S be the relation, on this set of classes of terms, defined by the transitive
closure of the strict subterm relation: [λxN . a(tP)] �S [λxN . ti] for any i ∈ P and
any term λxN . a(tP) of S.

Since there are finitely many classes of terms, �S is either cycling or well-
founded. Definitions of ≈S and �S are invariants for concatenation of generalized
equations (normalization of unification problems), moreover any two terms be-
longing to the same generalized equation are ≈-equivalent. Finally, if σ is a unifier
of S and t ≈S u then σ(t) and σ(u) have the same size (number of applications),
and, if t �S u then the size of σ(t) is greater or equal to the size of σ(u). This fact
allows us to prove the following lemma, which characterizes two possible situations
we have to consider.

Lemma 13. For any unification problem S, either a) the relation �S is irreflexive
and therefore well-founded, or b) any unifier σ of S satisfies σ(F) = λx . x for some
free variable F .

In case b) of the lemma the only chance to get a solution is applying —after
maybe some simplification steps— the projection rule to a free variable involved in
a � cycle, i.e. if we have [λxN . F (t)] �S [λxN . t] �S · · · �S [λxN . F (t)], then any
unifier σ of S, if there is any7, satisfies σ(F) = λx . x. As we know, projection rule
strictly decreases the free arity of the problem, whereas any other transformation
rule preserves it. This allows us to define a well-founded lexicographic ordering on
unification problems where first component is free arity.

In case a) if S satisfies Comon’s condition and �S is not cycling, we can
prove that —after applying some simplification steps— there exists a free variable
occurring in the head of a term and no occurring elsewhere. We will try to find
an instantiation for this variable. Suppose we decide to apply imitation rule, and
such variable is F . This imitation rule may be extended to deal with generalized

7 Some unification problems, like {λx . F (x) ?= λx . a(G(x)), λy . G(y) ?= λy . b(F (y))},
defining a cycling �S relation, have no solutions, even if we try instantiate F or G by
λx . x.

equations as follows.

λxN . a(tP) ?= λxN . F (uQ) ?= v1
?= . . .

?= vr

⇓
λxN . a(tP) ?= v1

?= . . .
?= vr ∪

⋃

i∈P {λxN . ti
?= λxN . F ′

i (uRi
)}

Most important thing is noticing that no instantiation is necessary on such
transformation step because F occurs only once. After normalizing the new prob-
lem, new equations λxN . ti

?= λxN . F ′
i (uRi

) may be appended to other generalized
equations, however this is not a problem because �S is invariant for such process.
Moreover, although we have modified the unification problem, the (finite) set of
≈-equivalence classes of terms does not change (or it has decreassed if v1

?= · · · vr

is empty). We have introduced two different kinds of new terms: λxN . ti and
λxN . F ′

i (uRi
), but both of them belong to already taken into account classes of

equivalences. Furthermore, subterms of these new terms are also subterms of other
old terms. However, the relation �S has changed, for any transformation S ⇒ S ′

we have �S⊆�S′ . (Notice that now [λxN . ti] = [λxN . F ′
i (uRi

)] �S′ [λxN . uRi
]).

Summing up, term λxN . F (uQ) has been replaced (from a generalized equa-
tion) by several �S-strictly smaller terms (introduced in other generalized equa-
tions), and �S has been replaced by a bigger relation �S′ over the same set of
classes of terms. Something similar applies to the distinct-heads rule. This fact
and the reduction of free arity due to projection rule may be used to define a well-
founded ordering on unification problems, and conclude that linear second-order
unification under Comon’s restriction is finitary.

7 Decidability Result for Stratified Terms

Schmidt-Schauß [17] describes another class of decidable context unification prob-
lems, called stratified second-order unification. Hence, a stratified second-order
term is a second-order typed term where the string or sequence of second-order
variables we find going from the root of the term to an occurrence of a second-
order variable is always the same, for any occurrence of this variable. We can
represent these stratification of second-order variables as a set of trees (i.e. as a
forest). This is an example of stratified term and its corresponding forest:

f(F (H(b)) , G(a) , F (g(H(b) , I(a))))
H I

F G
��@@

The restriction on the string of each variable is extended to all the occur-
rences of such variable in a unification problem. This introduces a new prob-
lem, because such restriction neither is stable for instantiations nor for simpli-
fications. For instance, term F (G(a)) becomes non-stratified after applying sub-
stitution [F 7→ λx . G(x)], and the stratified unification problem {F (G(a)) ?=

F (H(a)), F (G(a)) ?= f(a)} is transformed into the non-stratified unification prob-

lem {G(a) ?= H(a), F (G(a)) ?= f(a)} after simplification. The second problem
suggests us to generalize the definition of stratified problem. Moreover, we have
also to generalize it to consider non-unary free variables.

Definition 14. Given a set of variables V , a stratified forest is a set of trees W

where, for any n-ary variable F ∈ V , we have n distinct nodes F 1, . . . , F n such
that, either all them are roots of some tree, or all them are sons of the same father.
A βη-normal term t is a stratified term w.r.t. (a position p = [] of) a stratified
forest W if for any free variable F of t we have:

(i) if the corresponding nodes F 1, . . . , F n are roots of trees of W , then no free
occurrence of F is below any other free variable occurrence of t,

(ii) if the corresponding nodes F 1, . . . , F n are sons of another node Gi of W ,
then any free occurrence of F is in the ith argument of an occurrence of G

and there is no other free variable occurrence between these occurrences of
F and G.

We define a position p of a forest W , denoted by W |p, recursively as follows.

(i) {t1, . . . , tn}|[]
def
= {t1, . . . , tn}

(ii) {t1, . . . , tn}|[p1,...,pm]
def
= {u1, . . . , up}|[p2,...,pm] where p1 ∈ [1..n] and

u1, . . . , up is the list of subtrees of tp1 .

(Notice that, in order to define positions in a forest, we have to suppose a certain
ordering on trees and subtrees).
A βη-normal term t is a stratified term w.r.t. a position p of a stratified forest W ,
if t is a stratified term w.r.t. the forest W |p.
Given a unification problem S, we say it is a stratified unification problem if there
exists a forest W such that for any t

?= u ∈ S, terms t and u are both stratified
w.r.t. the same position p of W . For any stratified problem S there exists a unique
minimum —the one which has less nodes— forest WS, called the associated forest
of S.

Theorem 15. Termination III. It is decidable whether a stratified unification
problem has a solution or not. Moreover, we can find the complete set of minimum
unifiers, although the unification problem may be infinitary.

I

G1 G2

F 1 F 2

H
��@@ On the left there is an example of stratified forest of V =

{F, G, H, I}, where F and G are binary variables and H

and I are unary variables.

The following are examples of stratified terms w.r.t. (the position p = [] of)
this stratified forest.

F (f(G(a, b) , G(I(a), b)) , H(a)) F (a, H(b))

The following are examples of stratified terms

G(I(a), b) f(H(a) , g(H(b))) g(I(a))

w.r.t. positions [1], [2] and [1, 1] respectively, of the same forest. The unification
problem {G(I(a), b) ?= g(I(a))} is not stratified because, although both terms are
stratified, they are stratified w.r.t. two different positions.

Notice that any term without free variables is a stratified term w.r.t. any
position of any stratified forest. However, such terms may be suppressed from any
unification problem using a second-order matching algorithm.

Since for any n-ary variable F there are only n nodes F 1, . . . , F n in the strat-
ified forest and all them are sons of the same father or roots, we can not have a

stratified term with an free occurrence of F below any other free occurrence of
the same variable F .

We will give now some results which will allow us to prove termination of a
modified version of our unification procedure when we deal with stratified unifi-
cation problems.

Lemma16. Any substitution applied by the unification procedure transforms a
stratified unification problem S w.r.t. a forest WS, into another stratified unifica-
tion problem S′ w.r.t. a new forest WS′ , such that WS′ has less or as many nodes
as WS.

Let us see how imitation rule transforms these stratified forests. We take P =
[1..p] and Q = [1..q] for simplicity. Given a family of disjoint lists of indexes
{Ri}i∈[1..p] satisfying

⋃

i∈[1..p] Ri = [1..q]. The substitution applied by this rule is
written as follows.

ρ = [F 7→ λyq . a(G1(yr1
1
, . . . , yr1

n1
), . . . , Gp(yr

p

1
, . . . , yr

p
np

))]

where Ri
def
= {ri

1, . . . , r
i
ni
} and {Gj}j∈[1..p] are fresh free variables. Nodes corre-

sponding to F have to be substituted by nodes corresponding to the Gi, in the new
forest, as it is shown in figure 1. In the same figure we show also how projection
rule and distinct-heads rule transform stratified forests.

Imitation rule:

��
��

HH
HH

F 1 · · ·F q
��QQ

�
�
A
A
1 �

�
A
Aq

;
��

��
HH

HH

���� ��@@
PPPP

G1
1
· · ·G

n1
1 G1

p · · ·G
np
p

�
�
A
A

r1
1 �

�
A
A

r1
n1 �

�
A
Arp

1 �
�
A
Arp

np

Projection rule:

��
��

HH
HH

�
�
A
A
t

F
; ��

��
HH

HH

�
�
A
A
t

Distinct-heads rule:

��
��

HH
HH

���� ��@@
PPPP

F 1 · · ·F p
G1 · · ·Gq

�
�
A
A
1 �

�
A
Ap �

�
A

A
1 �

�
A

Aq

;

��
��

HH
HH

�

��
Q
QQ

```````̀
H1 · · · Hm · · · Hm+1 · · · Hm+n

�
�

A
Aq1 �

�
A

Aqm �
�
A
Ap1 �

�
A
Apn

HH HH HH HH
XXXX

XXXX
XXXX

XXXX
I1
1
...In1

1 I1
m
...Inm

m J1
1
...Jm1

1 J1
n
...Jmn

n

�
�
A
A

r1
1 �
�
A
A

r1
n1 �

�
A
Arm
1 �
�
A
Arm

nm �
�

A
A

s1
1 �

�
A

A
s1

m1 �
�

A
Asn
1 �

�
A

Asn
mn

Fig. 1. Forest transformation obtained for each one of the transformation rules.

Notice that not all new Gi appear in the new forest, only the second-order
typed ones, i.e. those which satisfy Ri 6= ∅.



The restriction on the family of indexes Ri ensures that
∑p

i=1 ni = q and
⋃

i∈[1..p] Ri = {r1
1 . . . r1

n1
. . . r

p
1 . . . rp

np
} is a permutation of [1..q], therefore the num-

ber of nodes, even the shape of the tree, do not change. Nodes F 1, . . . , F q have
been replaced by nodes G

j
i , and subtrees below them have been permuted and

reallocated below new nodes.

Notice that when a subtree of W is reallocated in W ′ then, except in the case
of projection rule, it either goes to a deeper position or remains in the same forest
level. This allows to prove the following lemma.

Lemma 17. If S is a stratified unification problem w.r.t. a position p of W , then
ρ(S) is a stratified unification problem w.r.t. a position p′ of W ′ such that either

(i) p = p′, or

(ii) p′ is shorter than p, if ρ is the substitution corresponding to a projection
step,

(iii) p and p′ have the same length, if ρ corresponds to an imitation step,

(iv) p′ is longer or has the same length than p, if ρ corresponds to a distinct-heads
step.

This lemma suggests us to define a notion of depth level of a stratified term.

Definition 18. Term t is said to be a n-level stratified term w.r.t. a forest W ,
noted depth(t, W ) = n, if it is a stratified term w.r.t. a position p of W and
length(p) = n.

We associate a multiset of integers to each stratified unification problem S

w.r.t. a forest W , defined as follows

depth(S, W ) = {Nod − depth(t, W ) | t
?= u ∈ S ∧ u

?= t ∈ S}

where Nod is the number of nodes of W (i.e. the maximum depth W can reach).

After showing how imitation, projection and distinct-heads rules transform a
stratified forest, let us analyze what happens with simplification rules.

Lemma 19. If λxN . a(tP ) ?= λxN . a(uP ) are both stratified term w.r.t. a position
p of a forest W , then so they are λxN . ti

?= λxN . ui, for any i ∈ P .

If λxN . F (tP ) ?= λxN . F (uP ) are both stratified term w.r.t. a position p of a
forest W , then λxN . ti

?= λxN . ui are both stratified terms w.r.t. a position p′ of
W , where length(p′) = length(p) + 1, for any i ∈ P .

If we consider each problem transformation as an instantiation followed by a
simplification, then this two lemmas allow us to define an ordering on unification
problems taking into account the following facts.

(i) Each projection step strictly decreases the size (number of nodes) of the
associated stratified forest of a problem, whereas the rest of rules preserve
this size.

(ii) Each flexible-flexible step with equal heads or distinct-heads strictly decrease
the depth level of any unification problem S, whereas the rest of rules also
decrease or preserve this depth level.

(iii) Each rigid-rigid step strictly decreases the size of a unification problem.



We can conclude that any non-terminating transformation sequence of a strat-
ified unification problem contains infinitely many imitation steps. We can go a bit
farther and state the following theorem.

Theorem20. Any infinite sequence of transformations of stratified unification
problems contains an infinite subsequence of imitation steps of the form:

λxN . a(tp)
?= λxN . F (uq) ⇒ {λxN . ti

?= λxN . F ′
i (u1, . . . , uq)}∪

⋃

j∈P∧j 6=i{λxN . tj
?= λxN . Fj}

ρ = [F 7→ λyQ . a(F ′
1, · · · , F

′
i−1, F

′
i (y1, ..., yq), F

′
i+1, · · · , F

′
p)]

for some i ∈ [1..p] such that F occurs free in ti, and no other free variable occurs
between the root of ti and this occurrence of F .

Once we have characterized the only type of infinite transformation sequences
we can have, we substitute them by a single transformation rule without losing
completeness property of the procedure. This rule will be the only source of in-
finitary solutions of this class of problems. Notice that all pairs involved in such
infinite sequences must be treated together, so this new rule is a bit complex
and we have no room here to describe it in detail. We will do that in the case
of A-unification, using the parallelism existing between A-unification and linear
second-order unification.

We have, in general, a set of unification pairs

{F · α1
?= β1 · F · δ1 , · · · , F · αn

?= βn · F · δn}

where greek letters represent sequences of symbols and F does not occur in them.
Moreover, βi does not contain any variable occurrence. There are two kinds of
solution for F .

If there exists a decomposition of βi = γi · ηi and there exists an exponent ni

such that (βi)
ni · γi = ω1 for any i ∈ [1..n] then substitution [F 7→ ω1] transforms

the previous problem into

{α1
?= η1 · γ1 · δ1 , · · · , αn

?= ηn · γn · δn}

If additionally there exists another exponent mi such that (βi)
mi = ω2 for any

i ∈ [1..n] then [F 7→ (ω2)
p · ω1] transforms the original problem into the same

new one, for any value of p. Therefore, this second kind of solutions is infinitary
because the value of p is not fixed.

Finally, it can be proved that the existence of such decompositions and expo-
nents is decidable, even in the more complex case of linear second-order unification.

8 Conclusions

In this paper we have extended decidability results of Comon [1] and Schmidt-
Schauß [17] for context unification to a proper extension of this unification prob-
lem, that we have called linear second-order unification, where n-ary free vari-
ables and λ-bindings are allowed. We have also described a complete unification
procedure for this problem on which we have based all our decidability proofs.
These proofs are completely independent from those given by Comon and Schmidt-
Schauß.



This class of unification problems has good chances to become the basis of a
notion of second-order rewriting. Then it would be interesting to find termina-
tion orderings and a critical pairs lemma for them. Decidability of general linear
second-order unification problems, like decidability of general context unification
problems, still remain as open questions.

References

1. H. Comon. Completion of rewrite systems with membership constraints, part I:
Deduction rules and part II: Constraint solving. Technical report, CNRS and LRI,
Université de Paris Sud, 1993. (To appear in J. of Symbolic Computation).

2. J. H. Gallier and W. Snyder. Designing unification procedures using transforma-
tions: A survey. Bulletin of the EATCS, 40:273–326, 1990.

3. W. D. Goldfarb. The undecidability of the second-order unification problem. Theo-

retical Computer Science, 13:225–230, 1981.
4. W. E. Gould. A Matching Procedure for ω-Order Logic. PhD thesis, Princeton

Univ., 1966.
5. G. Huet. The undecidability of unification in third-order logic. Information and

Control, 22(3):257–267, 1973.
6. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Sci-

ence, 1:27–57, 1975.
7. D. C. Jensen and T. Pietrzykowski. Mechanizing ω-order type theory through uni-

fication. Theoretical Computer Science, 3:123–171, 1976.
8. J. Levy and J. Agust́ı. Bi-rewriting, a term rewriting technique for monotonic order

relations. In 4th Int. Conf. on Rewriting Techniques and Applications, RTA’93,
volume 690 of LNCS, pages 17–31, Montreal, Canada, 1993.

9. J. Levy and J. Agust́ı. Bi-rewriting systems. J. of Symbolic Computation, 1996. (To
be published).

10. C. Loŕıa-Sáenz. A Theoretical Framework for Reasoning about Program Construc-

tion based on Extensions of Rewrite Systems. PhD thesis, Univ. Kaiserslautern,
1993.

11. C. L. Lucchesi. The undecidability of the unification problem for third-order lan-
guages. Technical Report CSRR 2059, Dept. of Applied Analysis and Computer
Science, Univ. of Waterloo, 1972.

12. O. Lysne and J. Piris. A termination ordering for higher-order rewrite systems. In
6th Int. Conf on Rewriting Techniques and Applications, RTA’95, volume 914 of
LNCS, Kaiserslautern, Germany, 1995.

13. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. of Logic and Computation, 1:497–536, 1991.

14. T. Nipkow. Functional unification of higher-order patterns. In 8th IEEE Symp. on

Logic in Computer Science, LICS’93, pages 64–74, Montreal, Canada, 1993.
15. T. Pietrzykowski. A complete mechanization of second-order logic. J. of the ACM,

20(2):333–364, 1973.
16. C. Prehofer. Solving Higher-Order Equations: From Logic to Programming. PhD

thesis, Technische Universität München, 1995.
17. M. Schmidt-Schauß. Unification of stratified second-order terms. Technical Report

12/94, Johan Wolfgang-Goethe-Universität, Frankfurt, Germany, 1995.
18. K. U. Schulz. Makanin’s algorithm, two improvements and a generalization. Tech-

nical Report CIS-Bericht-91-39, Centrum für Informations und Sprachverarbeitung,
Universität München, 1991.



This article was processed using the LaTEX macro package with LLNCS style


