
Linear Second-Order Unification and Context

Unification with Tree-Regular Constraints ?

Jordi Levy1

Mateu Villaret2

1 IIIA, CSIC
Campus de la UAB, Bellaterra, Barcelona, Spain.

http://www.iiia.csic.es/~levy
2 IMA, UdG

Campus Montilivi, U. de Girona, Girona, Spain.
http://www.ima.udg.es/~villaret

Abstract. Linear Second-Order Unification and Context Unification
are closely related problems. However, their equivalence was never for-
mally proved. Context unification is a restriction of linear second-order
unification. Here we prove that linear second-order unification can be
reduced to context unification with tree-regular constraints.
Decidability of context unification is still an open question. We comment
on the possibility that linear second-order unification is decidable, if con-
text unification is, and how to get rid of the tree-regular constraints. This
is done by reducing rank-bound tree-regular constraints to word-regular
constraints.

1 Introduction

Context Unification (CU) [10, 11] is an extension of First-Order Unification
where, in addition to the first-order variables, we also have variables that de-
note contexts. These context variables are applied to arguments, thus the term
F (t) denotes any term containing t as a subterm, and F denotes the context
surrounding such subterm t. Linear Second-Order Unification (LSOU) [3, 5] is a
restriction of unification in Second-Order Simply Typed λ-Calculus, where only
linear terms are considered as possible instances of second-order variables. A lin-
ear term is a λ-term where the most external λ-bindings bound one and just one
occurrence of the variable. CU is a restriction of LSOU, therefore both problems
are between the decidable first-order unification problem and the undecidable
second-order one. The common assumption is that CU is decidable. This is be-
cause various restrictions of this problem [1, 3, 13–15] make it decidable, while
the same restrictions applied to second-order do not [4, 6]. It is also known that,
like for the word theory, the context theory is undecidable beyong this existential
fragment [9]. The natural question to ask is whether, if CU is decidable, then
LSOU will be. This is the main topic of the present paper.

? The first author is partially supported by the project MODELOGOS founded by
the CICYT.

CU is a restriction of LSOU where 1) third- or higher-order constants are
not allowed, 2) second-order variables are unary, and 3) there are no internal λ-
bindings, and external ones are only used to denote the parameter of a second-
order variable. The common belief was that third- or higher-order constants
do not play an important role w.r.t. the decidability of both problems, neither
the use of λ-bindings. The restriction of using unary context variables is not a
real restriction because we can replace binary (similarly for n-ary) variables like
F (t1, t2) by F0(f(F1(t1), F2(t2))) introducing a conjectured constant symbol f

(see Subsection 3.2 and [12]). However, the equivalence of both problems was
never formally proved.

The naive attempt to reduce LSOU to CU by replacing bound variables by
new constant symbols does not work. This is because we have to ensure that
substitutions avoid variable capture. For instance, the following LSOU problem

λx.f(x)
·
=lsou λx.f(Y)

is not solvable. The substitution σ = [Y 7→ x] gives us:

λx.f(x)
·
=lsou λy.f(x)

but both terms are not λ-equivalent, because an α-conversion is needed in order
to avoid the capture of variable x. However, applying the naive reduction to this
problem we get the following solvable CU problem:

f(cx)
·
=cu f(Y)

We can try to apply a more sophisticated reduction. Take the original LSOU
problem and substitute the bound variables by two distinct constants. However,
this method only works for the most external λ-bindings. Applying the reduction
to the following solvable LSOU problem with internal λ-bindings:

f(g(λx.x), a)
·
=lsou f(Y, Z)

we get the following unsolvable CU problem:

f(g(cx), a)
·
=cu f(Y, Z)

f(g(c′x), a)
·
=cu f(Y, Z)

Bindings can transform free variables into bound variables at different depths.
Somehow we have to ensure that if an instance of a (free) variable contains a
bound variable, then it also contains its corresponding λ-binding. For instance,
given the LSOU problem F (X)

·
=lsou g(λy.y, a) and the following substitutions:

σ1 = [X 7→ a, F 7→ λz.g(λy.y, z)]
σ2 = [X 7→ y, F 7→ λz.g(λy.z, a)]
σ3 = [X 7→ g(λy.y, a), F 7→ λz.z]

only σ1 and σ3 are unifiers. As we will show, such a restriction can be ensured
by means of tree automata [2], but it does not seem easy to be simply encoded
in terms of context equations.

2

On the other hand, context unification and word unification are also closely
related problems. Word unification is decidable [8], and can be enriched with
regular restrictions without loosing decidability [16]. Tree-regular languages are
to terms as regular languages to words. Therefore, if context unification turns out
to be decidable, then it seems reasonable to think that context unification could
be enriched with tree-regular restrictions without loosing decidability. To support
this hypothesis, we would like to prove that membership equations on tree-
regular languages can be reduced to membership equations on (word) regular
languages, by encoding terms as sequences of symbols (the traversal sequence).
Unfortunately, we can only prove this reduction for a certain subset of tree-
regular languages (what we call rank-bound tree-regular languages).

There is a proof that, if context most general unifiers are rank-bound, then
CU is decidable [7]. If most general context unifiers were proved to be rank-
bound, then tree-regular restrictions would also be rank-bound, and we would
also have the decidability of LSOU. We comment on this possibility at the be-
ginning of Section 4.

This paper proceeds as follows. After introducing some basic definitions in
Section 2, we reduce LSOU to CU with tree-regular constraints in Section 3. In
Section 4 we reduce rank-bound tree-regular restrictions to word-regular restric-
tions. Finally, in Section 5 we discuss whether this results could be extended to
linear third- or higher-order unification.

2 Preliminaries

Let Σ be a simply typed signature where first-order constants are denoted by
a, b, . . ., and higher-order constants by f, g, h, Let X be an enumerable set of
simply typed variables where first-order variables are denoted by capital letters
X, Y, Z, ..., second-order variables by F, G, H, ... and bound variables by lower-
case letters x, y, z, Types and their orders are defined as usual in the simply
typed λ-calculus. For simplicity, we can assume that there is only one base type.
Other types are built as τ1 → τ2 where τ1 and τ2 are types. A term t is said
to have arity n if t : τ1 → · · · τn → τ0 where τ0 is a base type. Second-order
terms are also standard: terms constructed using constants and bound variables
of any order, but free variables of order at most two. Normal terms (β-reduced,
η-expanded terms) have the form λx.f(t1, ..., tn) where x is a list of bound
variables, f is either a bound, a free variable or a constant, and t1, ..., tn are
normal terms. If t1 : τ1, ..., tn : τn then f : τ1 → ... → τn → τ0 where τ0 is a base
type; and, if x1 : τ ′

1, ..., xm : τ ′
m then λx.f(t1, ..., tn) : τ ′

1 → ... → τ ′
m → τ0. Notice

that, as we are in second-order, if f is a free second-order variable then τ1, ..., τn

are base types. A term λx.f(t1, ..., tn) is said to be linear if, written in normal
form, any bound variable xi ∈ x occurs once and just once in f(t1, ..., tn). Notice
that t1, ..., tn are not required to be linear.

A linear second-order unification (LSOU) problem is a pair1 t
·
=lsou u of

terms (not necessarily linear). A solution σ of a LSOU problem is a second-

1 Notice that a set of equations is equivalent to just one equation.

3

order substitution such that σ(t) and σ(u) are λ-equivalents, and σ(X) is a
linear term for any free variable X .

A context unification (CU) problem is a pair t
·
=cu u of terms that does

not contain λ-bindings neither constants of order higher than two, and where
second-order variables are unary. A solution σ of a CU problem t

·
=cu u is a

second-order substitution such that σ(t) = σ(u), and σ(X) is a linear term that
does not contain n-ary (n > 1) variables, for any free variable X .

A CU problem with tree-regular constraints is a CU problem t
·
=cu u with

a tree-regular constraint v ∈ A.2 A solution is a ground substitution σ solving
the CU problem, and satisfying σ(v) ∈ L(A).

For simplicity we assume that the signature of the problem allows us to
ensure the existence of a ground solution whenever a solution exists. Notice that
this fact can always be ensured if we extend the signature Σ ensuring that it
contains at least a constant a : τ0 for any base type τ0 and a binary function
f : τ1 → τ2 → τ0 for any base types τ0, τ1 and τ2.

3 From Linear Second-Order Unification to Context

Unification with Tree-Regular Constraints

In this section, we prove that LSOU can be reduced to CU plus tree-regular
constraints. This reduction is done in two steps. In subsection 3.1 we reduce the
LSOU problem to the n-ary context unification problem by removing λ-bindings
and constants with order higher than two. We obtain a context unification prob-
lem with n-ary contexts, i.e., second-order variables of arity n, plus tree-regular
constraints. In subsection 3.2 we translate n-ary contexts to (1-ary) contexts.

3.1 Reducing Linear Second-Order Unification to n-ary Context
Unification plus Tree-Regular Constraints

The translation from LSOU to n-ary CU has to remove λ-bindings from terms.
Bound variables will be replaced by new constants. In second-order λ-calculus, λ-
bindings of normal terms are always just below higher-order constants or bound
variables, or are the most external symbol. They are never just below free vari-
ables. We can eliminate external λ-bindings by extending the signature Σ with
an appropriate new unary constant o (if it does not contain any one) and translat-

ing the equation λx.s
·
=lsou λy.t into o(λx.s)

·
=lsou o(λy.t). This new problem

does not have external λ-bindings and is equivalent to the original one.
The elimination of internal λ-bindings is performed in three steps:

First, we conjecture an α-conversion of bound variables in order to allow unifi-
cation when they are later translated into constants in the following step. Notice
that the second step of this translation procedure depends on the “names” of
these bound variables.

2 Notice that a set of tree-regular constraints is equivalent to just one constraint.

4

Second, let B ⊂ X be a finite set of variables and let A ⊂ Listsof (B) be a finite
set of lists of variables from B. We define a translation function transA,B that
replaces any occurrence of a variable of B by a new first-order constant, and
any occurrence of a λ-abstraction, whose list of bound variables is in A, also by
a new constant. This set B will be the set of bound variables of the unification
problem resulting from step 1, and A will be the set of lists of variables used in
the λ-abstractions.

The signature Σ′ of the resulting n-ary CU problem also depends on the set
B of bound variables conjectured in the previous step, and on the set A of lists
of bound variables of the λ-abstractions. It is defined as follows: Σ ′ contains
the same constants as Σ, but every constant h or bound variable z, with order
higher than two, is replaced in Σ ′ by a new second-order constant h′ or cz,
respectively. The arity of h′ (similarly for cz) is equal to the arity of h plus its
number of non-first-order arguments. Any non-first-order n-ary argument of h

with type τ1 → · · · → τn → τ0 is replaced by two first-order arguments, one
with a new special type o, and the other with the base type τ0. For instance, if
h : τ1 → (τ2 → τ3) → τ4 then h′ : τ1 → o → τ3 → τ4. The signature Σ′ also
contains a new constant symbol b[x1,...,xn] of type o, for every list [x1, ..., xn] ∈ A,
and a new constant symbol cx, for every variable x ∈ B. The set of variables of
the resulting problem is X ′ = X\B.

Let t ∈ T (Σ,X) be a term, B ⊂ X a set of variables, and A ⊂ Listsof (B) a
set of lists of variables from B. The term transA,B(t) ∈ T (Σ′,X ′) is defined by:

transA,B(c) = c

transA,B(f(t1, ..., tn)) = f(transA,B(t1), ..., transA,B(tn))

transA,B(X) =

{

X if X 6∈ B

cX if X ∈ B

transA,B(F (t1, ..., tn)) =

{

F (transA,B(t1), ..., transA,B(tn)) if F 6∈ B

cF (transA,B(t1), ..., transA,B(tn)) if F ∈ B

transA,B(h(t1, ..., tn, λx1.u1, ..., λx � .um)) = ...

= h′(transA,B(t1), ..., transA,B(tn), b �
1
, transA,B(u1), ..., b ��� , transA,B(um))

transA,B(z(t1, ..., tn, λx1.u1, ..., λx � .um)) = ...

= cz(transA,B(t1), ..., transA,B(tn), b �
1
, transA,B(u1), ..., b � � , transA,B(um))

transA,B(λx.t) = λx.transA′,B\ � (t)

In the fifth and sixth case, for constants h and variables z with order higher
than two, we assume for simplicity that non-first-order parameters are in the
last positions. The constant h′ is the second-order constant associated to h, cz

is the constant associated to the variable z, and b ��� is the constant associated to
the list of variables x � ∈ A of the λ-binding λx � . If, for some i ∈ [1..m], x � 6∈ A,
then the translation is undefined. In the last case, A′ is the set of lists A where
any list containing variables from x has been removed. Notice that most external
λ-bindings are not removed by this translation.

5

Third, we introduce a set of tree-regular restrictions over the instantiations of
variables to prevent them from containing constants associated to bound vari-
ables from B without its corresponding λ-bindings.

The tree automata AA,B = 〈Σ,Q,Qf , ∆〉 that characterises the set of terms
that do not contain these bound variables from B in free positions is defined as
follows.

– The signature contains the set of constants Σ ′. Remember that Σ′ allows us
to ensure that, if a certain CU problem S is solvable then, S has a ground
solution.

– The set of states is Q = {qX |X ⊆ B} ∪ {pX |X ∈ A}; where B is the set of
bound variables and A is the set of λ-bindings.

– There is a single final state Qf = {q∅}
– The set of transitions ∆ is defined as follows:

• For any first-order constant a ∈ Σ ′ not associated to a variable from B:

a → q∅

• For any first-order constant cx associated to a bound variable x ∈ B and
any first-order constant b � associated to a list of bound variables y ∈ A:

cx → q{x}

b � → p �

• For any second-order constant f ∈ Σ ′ not associated to a variable from B

and, for any constant cx associated to a bound variable x ∈ B, and states
qA1

, . . . , qAn
:

f(qA1
, ..., qAn

) → qA1∪...∪An

cx(qA1
, ..., qAn

) → q{x}∪A1∪...∪An

• For any second-order constant h′ ∈ Σ′ associated to a higher-order con-
stant h ∈ Σ and, for any second-order constant cz ∈ Σ′ associated to a
higher-order bound variable z ∈ B:

h′(qA1
, ...qAn

, pB1
, qC1

, ..., pBm
, qCm

) → qD

cz(qA1
, ...qAn

, pB1
, qC1

, ..., pBm
, qCm

) → qE

where
D =

⋃

i∈[1..n] Ai ∪
⋃

j∈[1..m](Cj \ Bj)

E = {z} ∪
⋃

i∈[1..n] Ai ∪
⋃

j∈[1..m](Cj \ Bj)

Notice that the Bk’s are treated in the transitions as sets but they denote
lists: λx, y is not the same λ-abstraction as λy, x, so they have distinct
associated constants but here are treated as the same set.

Then, we introduce a set of tree-regular restrictions over the solution σ of
the translated problem.

– For any first-order variable X , the restriction σ(X) ∈ L(AA,B)

6

– For any second-order variable F , the restriction σ(F (a1, ..., an)) ∈ L(AA,B),
where ai ∈ Σ′ are first-order constants of the appropriate types.

Example 1. Given the problem f(X, X)
·
=lsou f(g(λx.F (x)), F (g(λy.y))) we

can conjecture the following α-equivalent problem (this is the only solvable one)

f(X, X)
·
=lsou f(g(λx.F (x)), F (g(λx.x))) and translate it into the following

context unification problem with tree-regular constraints

f(X, X)
·
=cu f(g′(b[x], F (cx)), F (g′(b[x], cx)))

σ(X) ∈ L(A{[x]},{x})
σ(F (a)) ∈ L(A{[x]},{x})

where the tree automata A{[x]},{x} is defined by

a → q∅ b[x] → p{x}

f(qA, qB) → qA∪B cx → q{x}

g′(pA, qB) → qB\A

In the following lemmas we assume that all bound variables are in B and
bindings in A.

Lemma 1. For any second-order substitution σ satisfying σ(X) does not con-
tain variables of B in free positions, and the domain of σ neither contains vari-
ables of B, let τ = transA,B(σ) be the context substitution defined by τ(X) =
transA,B(σ(X)). Then, for any term t we have

transA,B(σ(t)) = τ(transA,B(t))

Lemma 2. For any second-order term t the set of free variables of t and B are
disjoint if and only if transA,B(t) ∈ L(AA,B).

Theorem 1. A LSOU problem s
·
=lsou t is unifiable if and only if there exists

an α-equivalent unification problem s′
·
=lsou t′ such that

transA,B(s′)
·
=cu transA,B(t′)

and the corresponding tree-regular constraints are solvable. Here, B is the set of
bound variables of s′ and t′, and A is the set of lists of bound variables corre-
sponding to λ-abstractions of s′ and t′.

Corollary 1. Linear second-order unification is reducible to n-ary context uni-
fication plus tree-regular constraints.

3.2 Reducing n-ary context unification to (1-ary) context
unification

In this subsection we reduce the n-ary CU problem to the (1-ary) CU problem.
The same main ideas are also used in other previous papers, like [12]. Given an

7

n-ary context unification problem S over a signature Σ, if Σ does not contain an
n-ary constant with n ≥ 2 and a first-order constant, we enlarge it with them.
We construct a new context unification problem S ′ by iteratively applying the
following rule, until all non-unary context variables of the problem disappear.

For any n-ary context variable F with n ≥ 2, we guess a p-ary constant
symbol g, with p ≥ 2, from the signature. Then, we guess a partition of {1, . . . , n}
into p ≤ n many disjoint subsets such that

⋃

i∈[1..p]{c
i
1, . . . , c

i
qi
} = {1, . . . , n},

and at least two of them are non-empty. We instantiate F by the following
substitution:

[F 7→ λx1 · · ·λxn.F0(g(F1(xc1

1

, . . . , xc1
q1

), . . . , Fp(xc
p

1

, . . . , xc
p
qp

)))]

where F0, . . . , Fp are (maybe non-unary) context or first-order variables.

Example 2. Consider the following n-ary context unification problem:

X(Y (a, b))
·
=lsou Y (X(a), b) (1)

where one of its infinitely many minimal solutions is (see Figure 1):

σ = [X 7→ λx.Z(Z(x, b), b),
Y 7→ λx, y.Z(Z(Z(Z(x, b), y), b), b)]

(2)

where Z is a fresh context variable. We enlarge our signature to Σ ′ = {a, b, g},
where g is a new binary constant. Now, we can guess a partition of {1, 2} into
two disjoint subsets {1} and {2}, where both are non-empty, and instantiate Y

by:
τ = [Y 7→ λx1, x2.Y0(g(Y1(x1), Y2(x2)))]

We obtain a new problem (see Figure 2):

X(Y0(g(Y1(a), Y2(b))))
·
=cu Y0(g(Y1(X(a)), Y2(b))) (3)

which is also solvable, and only contains (unary) context variables.

Theorem 2. n-ary context unification is NP-reducible to (1-ary) context unifi-
cation.

4 Translating Tree-Regular Constraints to Regular

Constraints over Traversal Sequences

The decidability of context unification with tree-regular constraints, as well as
the decidability of context unification, are still open problems. There is a proof
that, if most general context unifiers are rank-bound, then CU is decidable [7].
However, it is not known if most general context unifiers are in general rank-
bound. In this section we will show that, if this is the case, then the decidabil-
ity proof of context unification could be extended to context unification with

8

a b

b

b

b

b

Z

Z

Z

Z

Z

Z b

Z

a

b

b

b

b

b

b

Z

Z

Z

Z

Z

X (Y (a, b)) Y (X (a), b)

Fig. 1. A solution of the LSOU problem (1)

tree-regular constraints. Therefore, linear second-order unification would also be
decidable.

This mentioned proof is based on a reduction of context unification to word
unification with regular constraints [16], where terms are translated into se-
quences of symbols (traversal sequences). In the following we present the main
ideas of this reduction.

Definition 1. Given a signature 〈Σ,X〉, we define the extended signature

ΣΠ = {fρ | f ∈ Σ ∪ X ∧ ρ ∈ Πarity(f)}

where Πn is the group of permutations over n elements.

A sequence s ∈ (ΣΠ)∗ is said to be a traversal sequence of a term t, noted
s ∈ trav(t), if:

1. s = t when t = c is a 0-ary symbol

2. s = fρsρ(1) · · · sρ(n) when t = f(t1, . . . , tn) being si traversal sequences of ti
for any i ∈ [1..n], and ρ ∈ Πn a permutation.

Any traversal sequence of a term characterises this term. We use an extended
signature with permutations in order to allow us the use of distinct traversals,
i.e. the traversals of subterms in distinct possible orders.

Definition 2. The rank of a term, rank(t), is defined by rank(a) = 0, for any
constant a, and rank(f(t1, ..., tn)) = c where c is the minimum integer satisfying:
there exists a permutation τ of indices 1, ..., n such that, for any i ∈ [1..n],
rank(tτi

) ≤ c − n + i.

9

a

b

b

b

b

b

b a b

b

b

b

b

b

g

g

g

g

g

g

g

g

g

g

g

g

X (Y0 (g (Y1 (a), Y2 (b)))) Y0 (g (Y1 (X (a)), Y2 (b)))

Fig. 2. A reduction of the LSOU problem (1) to context unification

This definition is bizarre, but it can be simplified for binary trees as follows:3

rank(a) = 0

rank(f(t1, t2)) =

{

rank(t1) + 1 if rank(t1) = rank(t2)
max{rank(t1), rank(t2)} otherwise

The rank of a term allows us to define a normal traversal.

Definition 3. Given a term t, its normal traversal sequence NF(t) is defined
recursively as follows:

1. If t = a then NF(t) = a.
2. If t = f(t1, . . . , tn) then let be ρ ∈ Πn the permutation satisfying

i < j ⇒
(

rank(tρ(i)) < rank(tρ(j))
∨rank(tρ(i)) = rank(tρ(j)) ∧ ρ(i) < ρ(j)

)

Then, NF(t) = fρ NF(tρ(1)) · · · NF(tρ(n)).

Notice that a restriction on the rank of a tree does not imply a restriction
on its size. The following conjecture states that the rank of any most general
context unifier is bound:

Conjecture 1. For any solvable context unification problem t
·
= u and m.g.u. σ,

we have
rank(σ(t)) ≤ φ(size(t

·
= u))

where φ is a computable function.

3 Alternatively, we can also define the rank of a binary tree t as the depth of the
maximum complete tree t′ (a tree where all leaves are at the same depth) such that
there exist an injective morphism from t′ to t.

10

Traversal sequences of rank-bound terms and regular language are related.
For any signature Σ and bound n, there exists a regular language Rn

Σ such that,
for any n-rank-bound term t there exists a traversal sequence w ∈ trav(t) with
w ∈ Rn

Σ . We can restrict the choice of the traversal sequence to the traversal
normal form. Thus, the set of traversal normal forms of rank-bound terms is a
regular language. For instance, for a signature with a constant a and a binary
function f , any term satisfying rank(t) ≤ 1 has a traversal belonging to:

R1 ≡ ((f [1,2] | f [2,1]) a)∗ a

and those satisfying rank(t) ≤ 2 have a traversal belonging to:

R2 ≡ ((f [1,2] | f [2,1]) R1)∗ a

This allows us to reduce any CU problem, like X(f(Y (a), Z(b)))
·
=cu Y (f(X(a), Z(b)))

to some word unification problem plus traversal equations, like:

X0 f [1,2] Y0 a Y1 Z0 b Z1 X1
·
=wu Y ′

0 f [1,2] X ′
0 a X ′

1 Z ′
0 b Z ′

1 Y ′
1

X0 c X1 ≡ X ′
0 c X ′

1

Y0 c Y1 ≡ Y ′
0 c Y ′

1

Z0 c Z1 ≡ Z ′
0 c Z ′

1

where the words X0 and X1 encode a traversal sequence of the context X , and
X ′

0 and X ′
1 another traversal of X . The intended meaning of w1 ≡ w2 is: w1

and w2 are similar traversal sequences of the same term. By similar we mean
that we can bound the number of permutations in which w1, w2 and NF(t)
differ, where w1, w2 ∈ trav(t). If the rank of this term is bound, then we can
non-deterministically reduce these traversal equations to word equations plus
regular restrictions like

X0 c X1
·
=wu X ′

0 c X ′
1 X0 c X1 ∈ Rφ(size)

Y0 c Y1
·
=wu Y ′

0 c Y ′
1 Y0 c Y1 ∈ Rφ(size)

Z0 c Z1
·
=wu Z ′

0 c Z ′
1 Z0 c Z1 ∈ Rφ(size)

The restriction X0 c X1 ∈ Rφ(size) ensures that the instances we find for these
words are really traversal sequences.

In what follows we show how membership equations on tree-regular languages
of rank-bound terms can be reduced to membership equations on (word) regular
languages. We start by defining rank-bound tree automata.

Definition 4. For any tree automata A = 〈Σ,Q,Qf , ∆〉, and any state qi ∈ Q,
we define4

rank(qi) = max{rank(t) |t ∈ L(〈Σ,Q, {qi}, ∆〉)}

For any tree automata A = 〈Σ,Q,Qf , ∆〉, we define

rank(A) = max{rank(qi) | qi ∈ Qf}

A tree automata A is said to be bound if rank(A) < ∞.

4 Notice that 〈Σ,Q, {qi}, ∆〉 is similar to A but with a unique final state qi.

11

Notice that the rank of the states of a tree automata satisfies the following
property

– for any state q having only transitions like c → q, where c ∈ Σ is a 0-ary
constant, rank(q) = 0,

– for any accessible state q0 having transitions like f(q1, q2) → q0, where f ∈ Σ

is a binary function, we have:

rank(q0) ≥

{

max{rank(q1), rank(q2)} if rank(q1) 6= rank(q2)
rank(q1) + 1 if rank(q1) = rank(q2)

We translate tree-regular restrictions to (word) regular restrictions over traver-
sal sequences of terms. For simplicity assume that any symbol of the signature
is, at most, binary. The result can easily be extended to any signature.

For any rank-bound tree automata A = 〈Σ,Q,Qf , ∆〉, and any state q ∈ Q,
we define a regular language Rq satisfying Rq ∩ trav(t) 6= ∅, for any term t ∈
L(〈Σ,Q, {q}, ∆〉), and Rq ⊆

⋃

{trav(t) | t ∈ L(〈Σ,Q, {q}, ∆〉)}.
We will construct the automata that recognises Rq using the following rules.

Assume that Rq′ is already computed for any state q′ ∈ Q with rank(q′) <

rank(q). Let be n = rank(q). The automata Rq has a pair of states pi and pf

for any state p of the tree automata satisfying rank(p) = n, and some additional
states that we will specify later. The initial state of Rq is qi, and there is a single
final state and it is qf . The set of transitions of Rq is defined as follows.

– Base case, for any state p ∈ Q satisfying rank(p) = n, and any transition
a → p ∈ ∆ we add a transition:

a

p i p f

from pi to pf labelled with a.
– Inductive case 1, for any state p0 with rank(p0) = n and any transition

f(p1, p2) → p0 satisfying rank(p2) < rank(p1) ≤ rank(p0)
5

p i
0

p i
2

p f
2

f

0
pp f

1

[2,1]

p i

1
Rp

2

f

we can assume that Rp2
is already computed. We add a copy of the automata

Rp2
, i.e. a copy of all its states and transitions (these are the unspecified

additional states). We also add a transition from pi
0 to the initial state of

the copy Rp2
labelled with f [2,1], a λ-transition from the final state of Rp2

to pi
1, and another from p

f
1 to p

f
0 .

For any transition f(p1, p2) → p0 satisfying rank(p1) < rank(p2) ≤ rank(p0)
we do something similar using the label f [1,2]

5 Notice that if rank(p1) = rank(p2) = rank(p0) then rank(p0) = ∞ and the tree
automata would be non-rank-bound. Thus the existence of a bound n for the rank
of the tree automata is crucial in our translation.

12

– Inductive case 2, for any state p0 with rank(p0) = n and any transition
f(p1, p2) → p0 satisfying rank(p1) < rank(p0) and rank(p2) < rank(p0)

f
[1,2]

p f

022
pRp

1
f

1
pRip

1
i
2

p p fp i
0

we can assume that Rp1
and Rp2

have been already computed. We add a
copy of each one of these automata, a transition from pi

0 to the initial state
of Rp1

labelled with f [1,2], a λ-transition from the final state of Rp1
to the

initial state of Rp2
, and another from the final state of Rp2

to p
f
0 .

Notice that with these cases, transitions like f(q, q) → q are not considered,
because this means that rank(q) = ∞, and q can not lead to a final state. The
final automata associated to A consists of an initial state q0, a copy of Rq for
any final state q ∈ Qf , a λ-transitions from q0 to each one of the initial states
of the Rq’s. The set of final states is the set of final states of the Rq ’s.

Example 3. The tree automata defined by the following transitions
0 → qN , pair(qN , qN) → qP , nil → qL,

s(qN) → qN , cons(qP , qL) → qL

is translated into the following regular automata:

[1,2]
[1,2]

R R

R

Rq qP

i

L

q

q

P

suc

f

N

fi
L

q

iqf

0

qN

q

q

0

suc

N N

q

cons

N

q
P

i
pair

N
q

L
f

nil

The term cons(pair(suc(suc(0)), suc(0)), cons(pair(suc(0), 0), nil)) recognised
by the tree automata, has a traversal sequence

cons[1,2] pair[1,2] suc suc 0 suc 0 cons[1,2] pair[1,2] suc 0 0 nil

recognised by the regular automata.

Theorem 3. For any tree-regular language L(A) of a rank-bound tree automata
A, let L(B) be the regular language recognised by the automata B resulting from
applying the previous translation. The following properties hold.

1. If t ∈ L(A) then there exist a sequence l ∈ L(B) such that l ∈ trans(t).

13

2. If l ∈ L(B) then there exist a term t ∈ L(A) such that l ∈ trans(t).

The set of terms satisfying rank(t) ≤ n defines a tree-regular language. More-
over, this language can be recognised by a rank-bound tree automata An. For
instance, if Σ = {a, b, h(), f(,)}, then

An =

Σ = {a, b, h(), f(,)}, Q = {q0, ..., qn, qn+1}, Qf = {q0, ..., qn},

∆ =

a → q0, b → q0,

h(qi) → qi for any i ∈ [0..n + 1]
f(qi, qj) → qmax{i,j} for any i, j ∈ [0..n + 1] with i 6= j

f(qi, qi) → qi+1 for any i ∈ [0..n]
f(qn+1, qn+1) → qn+1

Definition 5. A tree-regular language L is said to be n rank-bound if for any
term t ∈ L we have rank(t) ≤ n.

Theorem 4. Any rank-bound regular language is recognised by a rank-bound
tree automata. The language recognised by a rank-bound tree automata is a rank-
bound tree-regular language.

5 Extending the Results to Higher-Order Unification

In Section 3 we have shown how linear second-order unification can be reduced
to context unification with tree-regular constraints. In this section we discuss
whether this result could be extended to linear higher-order unification.

Higher-order unification can be defined as the problem of finding a substitu-
tion σ making the normal form of two instances of terms σ(s) and σ(t) equal.
When we try to find such a substitution we have to take into account how this
terms will β-reduce after being instantiated. The problem is simple in linear
second-order. We know that any instance of F (t1, ..., tn), after β-reduction, will
contain σ(ti) as subterms, and representing σ(F (t1, ..., tn)) as a tree, all nodes
corresponding to σ(F) will be connected, forming a context. In third-order the
situation is more complicate. First, we have to require instances of variables to be
linear in all λ-bindings, i.e. not only in the most external λ-bindings. If we apply
the substitution F 7→ λy.λz.g1(y(g2(z))) to F (λx.f(x), a) we get g1(f(g2(a))).
The nodes corresponding to F are no longer connected: σ(F) is broken into
pieces, and some of the arguments can also disappear. Each one of such pieces
forms a kind of context. For instance, if F : (o → o) → o → o, any instance of
F (t1, t2) has one of the following forms:

0F
0F 0F

F1
F1

t1 t2 1 2tt t1

t2

14

Each one of these situations is captured respectively by:

F 7→ λx.λy.F0(λz.x(z), y)
F 7→ λx.λy.F0(λz.x(F1(z)), y)
F 7→ λx.λy.F0(λz.x(F1(y, z)))

In this example, F0 is still a third-order typed variable. Moreover, the first
instantiation is F 7→ F0 in normal form, so it subsumes the other two. The second
one is equal to the first one, if z contains a single variable and we instantiate
F1 7→ λz.z. In fact, this classification only makes sense if we translate F0 into
a context variable using the method described in Section 3 for higher-order
constants. We would get:

F 7→ λx.λy.F ′
0(dz , x(cz), y)

F 7→ λx.λy.F ′
0(X � , x(F1(c �)), y)

F 7→ λx.λy.F ′
0(X � , x(F1(y, c �)))

The variable X � encodes the binding λz. If we were able to know a priori
how long and, with which types, can be these λ-bindings, then the translation
would not seem much more complicate than in the second-order case.

Acknowledgements We thank M. Bonet and all the anonymous referees for
their helpful comments on the paper.

References

1. H. Comon. Completion of rewrite systems with membership constraints. J. of

Symbolic Computation, 25(4):397–453, 1998.
2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

3. J. Levy. Linear second-order unification. In 7th Int. Conf. on Rewriting Techniques

and Applications, RTA’96, volume 1103 of LNCS, pages 332–346, New Jersey, USA,
1996.

4. J. Levy. Decidable and undecidable second-order unification problems. In 9th Int.

Conf. on Rewriting Techniques and Applications, RTA’98, volume 1379 of LNCS,
pages 47–60, Tsukuba, Japan, 1998.

5. J. Levy and J. Agust́ı. Bi-rewrite systems. J. of Symbolic Computation, 22:279–314,
1996.

6. J. Levy and M. Veanes. On the undecidability of second-order unification. Infor-

mation and Computation, 2000. (to appear).
7. J. Levy and M. Villaret. On the decidability of context unification. Technical

report, IIIA, CSIC, 2000.
8. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.

USSR Sbornik, 32(2):129–198, 1977.
9. J. Niehren, M. Pinkal, and P. Ruhrberg. On equality up-to constraints over finite

trees, context unification, and one-step rewriting. In 14th International Confer-

ence on Automated Deduction, CADE-14, volume 1249 of LNCS, pages 34–48,
Townsville, North Queensland, Australia, 1997.

15

10. M. Schmidt-Schauß. An algorithm for distributive unification. In 7th Int. Conf.

on Rewriting Techniques and Applications, RTA’96, volume 1103 of LNCS, pages
287–301, New Jersey, USA, 1996.

11. M. Schmidt-Schauß. A decision algorithm for distributive unification. Theoretical

Computer Science, 208:111–148, 1998.
12. M. Schmidt-Schauß. Decidability of bounded second-order unification. Technical

Report Frank-report-11, FB Informatik, J.W. Goethe Universität Frankfurt, 1999.
13. M. Schmidt-Schauß. A decision algorithm for stratified context unification. Tech-

nical Report Frank-report-12, FB Informatik, J.W. Goethe Universität Frankfurt,
1999.

14. M. Schmidt-Schauß and K.U. Schulz. On the exponent of periodicity of minimal
solutions of context equations. In 9th Int. Conf. on Rewriting Techniques and

Applications, RTA’98, volume 1379 of LNCS, pages 61–75, Tsukuba, Japan, 1998.
15. M. Schmidt-Schaußand K.U. Schulz. Solvability of context equations with two

context variables is decidable. In Conference on Automated Deduction, CADE’99,
LNCS, pages 67–81, 1999.

16. K. U. Schulz. Makanin’s algorithm, two improvements and a generalization. Techni-
cal Report CIS-Bericht-91-39, Centrum für Informations und Sprachverarbeitung,
Universität München, 1991.

16

