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Abstract. Context Unification is the problem to decide for a given set
of second-order equations E where all second-order variables are unary,
whether there exists a unifier, such that for every second-order variable
X, the abstraction λx.r instantiated for X has exactly one occurrence of
the bound variable x in r. Stratified Context Unification is a specializa-
tion where the nesting of second-order variables in E is restricted.

It is already known that Stratified Context Unification is decidable,
NP-hard, and in PSPACE, whereas the decidability and the complex-
ity of Context Unification is unknown. We prove that Stratified Context
Unification is in NP by proving that a size-minimal solution can be rep-
resented in a singleton tree grammar of polynomial size, and then apply-
ing a generalization of Plandowski’s polynomial algorithm that compares
compacted terms in polynomial time. This also demonstrates the high
potential of singleton tree grammars for optimizing programs maintain-
ing large terms.

A corollary of our result is that solvability of rewrite constraints is
NP-complete.

1 Introduction

Higher-order logic and higher-order deduction system (see e.g. [Dow01, PS99,
Pau94, And86, Hue75]) provide very expressive frameworks and highly devel-
oped tools for deduction. One of the operations used in different variants is
higher-order unification (see [Hue75, Dow01]). A specialization is second-order
unification, which in turn is a generalization of first-order unification, where
variables (i.e., second-order variables) at the position of function symbols are
permitted in equations. In solving an equation, the second-order variables can
stand for an arbitrary first-order term, with holes for plugging in the arguments,
which must be terms. In lambda-notation, a second-order variable may be instan-
tiated with a term λx1, . . . , xn . t, where t is a first-order term, and the variables
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xi also stand for first-order terms. It is known that second-order unification is
undecidable, even under severe syntactic restrictions [Gol81, Far91, LV00, LV02].

A variant of second-order unification is context unification, which is also a gen-
eralization of string unification, which is decidable [Mak77] and known to be in
PSPACE [Pla04]. Context unification is like second-order unification, where the
arity of second-order variables is one, and the possible instantiations of second-
order variables are restricted to abstractions where the number of occurrences
of the bound variable is one. It is currently open, whether context unification
is (un)decidable. A generalization is linear second-order unification, see [Lev96],
where context variables may have arity more than one, and λ-bindings and
bound variables may occur in the terms of the equations. It’s decidability is also
unknown. A decidable specialization of context unification is stratified context
unification (SCU) [SS02], which allows only equations, where the nesting of vari-
ables obeys a stratification property: For every variable Z, every two positions
p1, p2 of Z in terms in equations, the sequences of context variables on the paths
p1, p2 must be the same. It is known that SCU is NP-hard [SSS98] and that
the corresponding matching problem is NP-complete [SSS04]. There is a large
gap in its precise complexity, since the algorithm for SCU described in [SS02] is
non-elementary.

Context unification is also of practical use in computational linguistics
[NPR97a, EN00], mainly in the field of compositional semantics of natural lan-
guage. In fact, SCU subsumes dominance constraints, a first-order language that
is used to represent scope underspecification [NPR97b, NK01], which has an
NP-complete satisfiability problem [KNT98]. Another variant of context unifica-
tion with interest in computational linguistics is well-nested context-unification
[LNV05], which restricts the overlap of context variables in the solution; it was
recently shown to be in NP.

Another, different, variant of second-order unification with a related algorith-
mic solution is bounded second-order unification (BSOU), with its specializa-
tion monadic second-order unification. Both problems were recently shown to
be NP-complete [LSSV04, LSSV06], using similar methods as in this paper. The
difference between BSOU and SCU are semantic: in BSOU the second-order vari-
ables may also be instantiated by abstractions without occurrences of the bound
variable; and syntactic: the nesting of variables in BSOU may be arbitrary.

In this paper we prove that SCU is in NP, which means that it is NP-complete,
closing this complexity gap. The proof-method is interesting in itself: it uses so-
called singleton tree grammars (STG) [SS05, BLM05, Pla94, LSSV04] as a very
general mechanism for compressing terms, i.e. solutions. The known decision
algorithm for SCU is adapted and used for showing that the construction of a
compressed representation of a size-minimal solution leads to a polynomial-sized
STG. Using non-deterministic guessing and an algorithm that can compare com-
pressed terms in polynomial time shows that SCU is in NP. One contribution
of compression is to represent Cn with a number n bounded by the exponent of
periodicity in polynomial space. The second contribution, together with the im-
plicit representation of the equation during construction of the STG, is to show
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that the number of first-order variables remains polynomial. Then “in-NP”- re-
sult also implies that the complexity of rewrite-constraints is NP-complete (see
[NTT00]). The result also demonstrates the high potential of singleton tree gram-
mars for optimizing programs maintaining large terms. The upper complexity
bound for SCU also shows the practical potential of SCU, since there is a commu-
nity that has specialized on providing optimal programs that solve NP-complete
problems (see [SAT06]). However, the available upper bound on the order of the
involved polynomials is rather high: O(size(E)16) for the size of a compressed
size-minimal solution, and the upper bound for the time-complexity is further
increased by the equality-check.

The paper is structured as follows: After an introduction and the preliminary
definitions to explain the basic notions, in Section 3 the compression method
using singleton tree grammars (STGs) is described, which permits to represent
exponentially large and also exponentially deep terms in polynomial space al-
lowing sharing of terms and contexts. We provide a road-map of the proof in
Section 4. In Section 5 we introduce generalized stratified equations. In Sec-
tions 6 and 7 it is shown, how the non-elementary SCU decision algorithm can
be adapted to the compression method. In Section 8 we summarize the estima-
tions and obtain the result that SCU is in NP.

2 Preliminary Definitions

We consider one base (first-order) type o, and second-order types with the syntax
τ ::= o → o | o → τ , with the usual convention that → is associative to the right.
We use a signature Σ =

⋃
i≥0 Σi, where constants of Σi are i-ary, and a set of

variables X =
⋃

i=0,1 Xi, where variables of Xi are also i-ary. Variables of X0
are therefore first-order variables and those of X1 are second-order typed and
called context variables. We assume that the signature contains at least one 0-ary
constant. We denote variables with capital letters Z if it may be first-order as well
as context variables, and use the convention that X, Y mean context variables,
and x, y, z mean first-order variables. Constants are denoted by lower-case letters
a, b, f, g . . . respectively. Second-order terms are denoted as s, t, u, v, . . . . The set
of variables occurring in terms or other syntactic objects is denoted as FV (·).
A term without occurrences of free variables is said to be ground. The size of
a term t is denoted |t| and defined as its number of symbols when written in
βη-normal form. We use positions in terms, denoted p, q, as sequences of non-
negative integers following Dewey notation. In f(t1, . . . , tn) or X(r), respectively,
the position of the function symbol and the context variable is 0 and the position
of the ith argument is i. The symbol at position 0 is also called the head of the
term. The empty word is notated ε, p ≺ q denotes the prefix relation, p · q the
concatenation, and t|p the subterm at position p of t.

For ease of notation, we denote linear second-order terms λx.t, where x has
exactly one occurrence in t as t[·], where [·] indicates the position of the variable,
also called hole. We call these terms also contexts. We denote contexts by upper
case letters C, D. If the term s or context D, respectively, is plugged into the
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hole of C[·], we denote the result as the term C[s] or the context C[D], also
denoted as C · D. The position of the hole in a context D is called main path,
denoted mp(D), and the length of the main path is called the main depth of D.
If D1 = D2[D3] for contexts Di, then D2 is called a prefix of D1, and D3 is called
a suffix of D1. Concatenation C1[. . . [Cn] . . .] is written C1 · . . . ·Cn. The notation
Dn for a context D and n ∈ IN means concatenation of n copies of the context
D. If t = D[s], then D is a prefix context of the term t. A subcontext of a context
or term is a prefix of some suffix or a prefix context of some subterm. Second-
order substitutions denoted by greek letters σ, θ, . . . , are functions from terms
to terms, defined as usual, where we in addition assume that context variables
can only be instantiated with contexts. The application of a substitution σ to a
term t is written σ(t), where we always assume that the result is beta-reduced.

An instance of the stratified context unification problem (SCU) is a set of
equations E = {t1

?= u1, . . . , tn
?= un} where ti and ui are second-order terms of

type o, i.e. terms not containing λ-abstractions. In addition, for every variable
Z ∈ FV (E) and every two positions p1, p2 of Z in terms in equations, the
sequence of context variables on the path p1, p2 is the same. Here we mean that
X is on the path p in t, iff for some prefix p′ of p, t|p′ is of the form X(r). The
size of an equation E is denoted as |E| and is its number of symbols. We assume
that equations are symmetric. A substitution σ is said to be a unifier of E, iff
for all i : σ(ti) = σ(ui). A unifier σ is said to be a solution of E, iff for all i :
σ(ti) and σ(ui) are ground. It is easy to see that the following holds:

Lemma 2.1. Let σ be a solution of the SCU-problem E.

– If E contains a function symbol f with ar (f) ≥ 2, then there is also a
solution σ′, such that every function symbol g with ar(g) ≥ 1 occurring in
σ′(E), also occurs in E.

– If for all function symbols f occurring in E we have ar(f) ≤ 1, if σ(E)
contains function symbols not in E and h is a function symbol with ar (h) =
2, then there is also a solution σ′, such that for every function symbol g with
ar(g) ≥ 1 occurring in σ′(E): either g = h holds, or g occurs in E.

– E is unifiable iff E is solvable.

It is reasonable to assume that the maximal arity of function symbols is not
greater than size(E). In this case the necessary transformations in the proof of
Lemma 2.1 can be done in O(size(E)). Note that the second case occurs in the
equation X(a) ?= Y (b), with a solution {X �→ f(b, [·]), Y �→ f([·], a)}, but there
is no solution using only the symbols occurring in the equation.

It is not a restriction to assume that E contains at least one binary function
symbol by adding f(x, y) = f(x, y) to E for a binary function symbol f if
necessary. This also allows to restrict E to consist of just one equation.

A solution σ of E is said to be size-minimal if it minimizes
∑

Z∈FV (E) |σ(Z)|
among all solutions of E. Size-minimal solutions of a SCU-problem satisfy the
exponent of periodicity lemma [Mak77, KP96, SSS98, SS02]:

Lemma 2.2 ([SS02]). There exists a constant α ∈ R such that, for every SCU-
problem E, every size-minimal solution σ, every variable X (or x, respectively),
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contexts u, v and term w, if σ(X) = λy . u vn(w), or if σ(x) = u vn(w), and v
is not empty, then n ≤ 2α|E|.

In the following, we denote by eop(σ) the maximal n such that for nontrivial D,
Dn([·]) is a subcontext of σ(x) or σ(X)(a) for variables x, X .

3 Singleton Tree Grammars

We define singleton tree grammars as a generalization of singleton context free
grammars (SCFG) [LSSV04, Pla94], extending the expressivity of SCFGs by
terms and contexts. This is consistent with [SS05] and [BLM05], and also with
the context free tree grammars in [CDG+97], however, it is a special case.

Definition 3.1. A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN , Σ, R), where T N are tree nonterminals, CN are context nontermi-
nals, and Σ is a signature of function symbols and constants (the terminals),
such that the sets T N , CN , Σ are pairwise disjoint. The set of nonterminals N
is defined as N = T N ∪ CN . The rules in R may be of the form:

– A ::= f(A1, . . . , An), where A, Ai ∈ T N , and f ∈ Σn.
– A1 ::= C[A2] where A1, A2 ∈ T N , and C ∈ CN .
– C ::= [·].
– C1 ::= C2C3, where Ci ∈ CN .
– C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), where Ai ∈ T N , C ∈ CN , [·] is the

hole, and f ∈ Σ an n-ary function symbol.

Let D′ >G D′′ for two nonterminals D′, D′′, iff D′ ::= t, and D′′ occurs in t. The
STG must be non-recursive, i.e. the transitive closure >∗

G must be terminating.
Furthermore, for every non-terminal N there is exactly one rule having N as left
hand side. Given a term t with occurrences of nonterminals, the derivation by
G is an exhaustive iterated replacement of the nonterminals by the correspond-
ing right hand sides, using the convention for second-order terms. The result is
denoted as wG,t. In this case we also say, that G defines wG,t. Ê If the grammar
G is clear, we omit the index in our notation. As a short hand for mp(wC) we
use mp(C) for context nonterminals C.

We will also allow variables Z from X0 and X1 in the grammar. The convention
is that in case there is a rule with left hand side Z, then it is a nonterminal,
otherwise we treat Z as terminal.

Definition 3.2. The size |G| of a grammar (STG) G is the number of its rules.
The depth of a nonterminal D is defined as the maximal number of >G-steps
from D. The depth of a grammar is the maximum of the depths of all nonter-
minals, denoted as depth(G).

As a generalization of the theorem in Plandowski [Pla94, Pla95], in [SS05] and
[BLM05], there are proofs of the following theorem, (where we have to simplify
away the occurrences of holes):
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Theorem 3.3. Given an STG G, and two tree nonterminals A, B from G, it is
decidable in polynomial time depending on |G| whether wA = wB.

The following lemmas state how the size and the depth of the grammar are
increased by extending the grammar with concatenations, exponentiation, pre-
fixes and suffixes of contexts. The depth/size bounds for these operations are
related to balancing conditions for trees. When using log, we mean the binary
logarithm. The proofs of the following three lemmas are easy and can be copied
from the corresponding proofs for SCFGs in the forthcoming journal version
of [LSSV04].

Lemma 3.4. Let G be an STG defining the contexts D1, . . . , Dn for n ≥ 1. Then
there exists a STG G′ ⊇ G that defines the context D1 · · · · · Dn and satisfies
|G′| ≤ |G| + n − 1 and depth(G′) ≤ depth(G) + 
log n�.

Lemma 3.5. Let G be an STG defining the context D. For any n ≥ 1, there ex-
ists an STG G′ ⊇ G that defines the context Dn and satisfies |G′| ≤ |G|+2 �log n
and depth(G′) ≤ depth(G) + 
log n�.

Lemma 3.6. Let G be an STG defining the context D or term t. For any
nontrivial prefix, suffix or subterm D′ of the context D, and for every sub-
term t′ of the term t or context D, there exists an STG G′ ⊇ G that defines
D′ or t′, respectively, and satisfies |G′| ≤ |G| + depth(G) and depth(G′) =
depth(G).

Lemma 3.7 covers the case that the main path of the desired prefix context of a
term t deviates from the paths as given in the STG. The näıve construction may
lead to an exponential blow-up. This case does not occur for words in SCFGs and
requires an extra treatment. The prefix context of a context can be constructed
as for words, whereas the same construction idea used for constructing a prefix
context of a term t may lead to an exponential blow-up for several extensions,
since too much rules are required. Hence this case requires an extra treatment.

Lemma 3.7. Let G be an STG defining the term t. For any nontrivial prefix
context D of the term t, there exists an STG G′ ⊇ G that defines D and satisfies
|G′| ≤ |G| + 2 depth(G) (log(depth(G)) + 1) and depth(G′) ≤ depth(G) + 2 +
log(depth(G)),

Proof. Let A be the non-terminal symbol defining the term t = wA and let p be
a position in wA that is the position of the hole of the desired context D. First
we show by induction that we can generate a list of context nonterminals that
can be concatenated to construct D. The induction is on depth(A).

The base case is that |p| = 0 at some depth. In this case the empty context
is the result, which is omitted in the list. For the induction step we consider the
different possibilities for rules:

1. The rule is A ::= f(A1, . . . , An) and p = kp′. Then we return the context
defined by the rule C1 ::= f(A1, . . . , [·]k, . . . , An), and the list for Ak, p′.
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2. The rule is A ::= C[A2]. There are some subcases:
If p is a prefix of mp(C), then return C1, constructed such that p = mp(C1)
using Lemma 3.6.
If p is within A2, and p = p1p2, where p1 = mp(C), then we return C, and
the list of contexts generated for A2, p2.
The position p is within C. Then let p = p1p2p3, where p1 is the maximal
common prefix of p and mp(C), and |p2| = 1. Then construct C1 for the
prefix of wC with p1 = mp(C1) by Lemma 3.6. Let p1k with k ∈ N be a
prefix of mp(C). Let C3 be a new symbol defining the subcontext of wC

starting at position p1k using Lemma 3.6. Moreover, there is a defined rule
C2 ::= f(B1, . . . , [·]k, . . . Bn), corresponding to the subcontext of wC for
position p1, whose existence can be verified by induction. Since p2 �= k, we
have to define the following new symbols and rules: A3 ::= C3[A2], C4 ::=
f(B1, . . . , [·]p2 , . . . , Bk−1, A3, Bk+1, . . . , Bn). Then return C1, C4 and the list
generated for Bp2 , p3.

Summarizing, we obtain a list of contexts of length at most 2depth(G), which
can be concatenated defining a new symbol CD. An upper bound on the total
number of new rules is (2 log(depth(G)) + 2) ∗ depth(G), since the induction
hypothesis in case 2 is called for depth(A) − 2. Notice that the depth of all the
contexts that we build up is bounded by depth(G)+1 because of the construction
of C4, hence the depth of CD is at most depth(G) + 2 + log(depth(G)), which is
the depth contribution of the final concatenation. �

3.1 Estimations for Several Grammar Extensions

Definition 3.8. Let G, G′ be STGs, let M ∈ IR with M ≥ 2. Then we write
G →sd(M) G′ for a grammar extension by size and depth, iff

|G′| ≤ |G| + 3 log(depth(G))depth(G) + 2M

depth(G′) ≤ depth(G) + log(depth(G)) + M

As an abbreviation, we write G →k
sd(M) G′, iff G →sd(M) G1 . . . Gk−1 →sd(M) G′

for appropriate STGs Gi and an integer k ≥ 2.

Proposition 3.9. Let G, G′ be STGs, let M ∈ IR, such that G →n
sd(M) G′. Then

with M ′ = max(M, depth(G)) and β(M, n) := (n + 2)M ′ + n log(M ′) + n2:

|G′| ≤ |G| + 3nβ(M ′, n) log(β(M ′, n)) + 2Mn
depth(G′) ≤ β(M ′, n)

Proof. Let G = G0, G1, . . . Gn = G′ be a sequence of STGs, such that for every
i = 0, . . . , n − 1: Gi →sd Gi+1. To verify the bound for depth(Gn), let di :=
depth(Gi), i = 1, . . . , n. Then di+1 = di+log(di)+M , which implies depth(Gn) ≤
d0+nM+

∑
(log(di)). Using log(di+a) ≤ log(di)+a/di, it follows that log(di+1)−

log(di) ≤ 1 for i ≥ 2. Then we obtain depth(Gn) ≤ d0 + nM + n(2 + log(M ′)) +
n2 ≤ (n + 2)M ′ + n log(M ′) + n2. The bound for |Gn| can be derived from |Gn|
≤ |G0| + 3

∑
i

(
log(β(M ′, n)) ∗ β(M ′, n)

)
+ 2Mn. �
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Corollary 3.10. Let G be an STG, and G′ be constructed from G by n gram-
mar extensions according to Lemmas 3.4, 3.5, 3.6 and 3.7. Assume M =
max (
log(eop)�, k), where k is the maximal number of concatenated nontermi-
nals in Lemma 3.4, and the exponent in 3.5 is bounded by eop. For an initial
system of equations E0, let M = O(|E0|), |G| = O(|E0|), depth(G) = O(|E0|),
and n = O(|E0|h), where h > 1. Then

4 Overview of the Proof Idea

Given a solvable stratified equation, we show that we can construct a polynomial-
sized solution and test it also in polynomial time. The second part, i.e. the test,
is delegated to STGs. Showing the first part is the new contribution: Given a
solvable stratified equation, the idea is to first fix a size-minimal solution σ, and
then to compute a compressed representation. The algorithm in [SS02] is used,
however, using a representation, where nonterminals from an STG and variables
are also allowed in equations as abbreviations for larger terms. The solution σ
will be used as a guide to perform a step-by-step computation of a representation
of the solution σ together with an STG. We do not care about the efficiency of
this algorithm, since only the size of the computed representation is of interest.

The computation will proceed as follows: After some initialization, the state
consists of three components: an equation E, an STG G, and the solution σ.
Variables from E may be terminals or non-terminals in the STG. As in [SS02],
there will be a distinction between the cases:

1. there is no chain of equations that constitutes a cycle, or
2. there is at least one cycle of equations.

If FV (E) is empty, the construction is finished. In the first case, we extend the
partial solution by using a decomposition-like detection of decomposable sube-
quations. In the second case, we use the algorithm in [SS02] and show that a
cycle allows to compute a complete instantiation of at least one context vari-
able. The algorithm will terminate and constructs an at most polynomial size
representation of σ by an STG.

5 Generalized Stratified Equations

In the following we compact partial solutions as well as equations using STGs,
where STG-symbols are permitted in equations. We also allow rules of the form
C ::= C′, which does not extend the expressive power, since it can be easily
removed later by the appropriate replacements in the STG.

5.1 Basic Definitions

Definition 5.1. Let G be an STG, and E be a single stratified equation, where
symbols from G are permitted in E. Then (E, G) is a generalized stratified equa-
tion (GSE). We denote the set of variables occurring in E after expansion of
nonterminals using G by FV G(E), where the variables that are nonterminals in
G are not considered.
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We fix a size-minimal solution σ0 for the initial stratified equation Einitial =
{u1

?= u2}, and denote its size by M0, and the exponent of periodicity bound of
σ0 according to Lemma 2.2 by eop. Let W := FV (Einitial). The partial solution,
denoted by θ, is always given by the right hand sides in G of the variables in W ,
i.e. by θ(Z) := wZ for all Z ∈ W . The corresponding initial GSE is (E0, G0),
where G0 encodes the terms u1, u2 as tree nonterminals U1, U2, and E0 := {U1

?=
U2}. The initial state of the construction is ((E0, G0), σ0). A solution σ of an
intermediate GSE (E, G) is called correct, iff σθ(Z) = σ0(Z) for all variables
Z ∈ W . The construction of the solution uses a state ((E, G), σ) where σ is a
correct solution. For all correct solutions σ, we will have eop(σ) ≤ eop, since all
concerned subcontexts are also subcontexts of σ0(Z) for Z ∈ W .

A surface position in a term t is a position p in t, such that for all prefixes p′

of p: t|p′ has a function symbol as head. We denote wUi as wi for i = 1, 2 in the
following. We repeat the definitions in [SS02] adapted to our representation.

Definition 5.2 (cycles). Let (E, G) be a GSE. Let the surface equations of
(E, G) be all equations w1|p

?= w2|p, that can be derived by decomposition from
w1

?= w2, where p is a surface position of w1 and w2. We denote the surface
equations by surfE(E). Let ≈ be an equivalence relation on FV G(E) gener-
ated by all the relations x ≈ Y for surface equations x ?= Y (s), x ≈ y for
surface equations x ?= y, and X ≈ Y for surface equations X(s) ?= Y (t).
Let � on FV G(E) be defined as follows: x � Z if x ?= s is in surfE(E), the
head of ws is a function symbol, and Z occurs in ws at a surface position, i.e.
there is some surface position p such that ws|p = Z(r) for some r; X � Z

if X(r) ?= s is in surfE(E) and the head of ws is a function symbol. Let �
be the smallest preorder generated by ≈ and �. If for all Z1, Z2 ∈ FV G(E):
Z1 � Z2 implies that Z1 �� Z2, then (E, G) is cycle-free, otherwise, (E, G) is
cyclic.

A cycle is a sequence of surface equations, which in expanded form is as follows:
Z1(. . .)

?= D1(Z2(. . .)), Z2(. . .)
?= D2(Z3(. . .)), . . . , Zh(. . .) ?= Dh(Z1(. . .)), where

Zi may be context-variables or first-order variables, Di is a context for all i, and at
least one Di is a nontrivial context. The indicated occurrences directly correspond
to the definition of ≈ and �. However, note that there may be different occurrences
of the Zi on the right hand side, and that Di may not be unique. The length of the
cycle is the number of the equations occurring in it.

Lemma 5.3 (Occurs-check). In a solvable GSE (E, G), there is no cycle
where all variables Z1, . . . , Zh are first-order variables.

We define an ordering that will be reduced by mimicking the SCU-algorithm
from [SS02] and use it for the construction of a representation of σ0.

Definition 5.4. Given a GSE (E, G), the measure μ(E) is the lexicographic
combination 〈μ1(E), μ2(E), μ3(E)〉 of the following components:

1. μ1(E) = |FV G(E)|.
2. μ2(E) = 0 if (E, G) is cyclic, and 1, otherwise.
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3. μ3(E) = μ1(E)−|{[Z]≈ | Z ∈ FV G(E)}| if E is not cyclic, and 0 otherwise.
4. μ4(E) is the number of variables in FV G(E) that are not �-maximal.

The transformations will never increase |FV G(E)| and they will transform a
stratified equation into a stratified equation (see [SS02]).

6 GSE Without Cycles

The SCU-algorithm in [SS02] treats systems of equations without cycles by iter-
atedly guessing and instantiating parts of the solution σ. The potential number
of these guessing, instantiating and decomposition steps in that paper may be
exponential. We have to avoid steps that lead to unnecessary constructions of
symbols and rules in G. Hence we have to adapt the algorithm given in [SS02]
to our compressing method. Let a var-term be a term of the form x or X(r).

Algorithm 6.1 (Rule: Transform-non-cyclic GSE). Let (E, G) be a non-cyclic
GSE with E = {U1

?= U2}, wi = wUi , for i = 1, 2, and let σ be a correct
solution. Depending on E, there are several possibilities:

1. w1, w2 are ground and w1 = w2. Then stop further instantiation.
2. There is a context variable X ∈ FV G(E) with σ(X) = [·]. Then add X ::= [·]

to G.
3. Assume cases (1) and (2) are not applicable.

Let p be a surface position in w1 and w2 such that p is a position of a
first-order variable in w1 or w2 which is also in FV G(E). Also assume that
w1|p �= w2|p. W.l.o.g. let w1|p be the first order variable, say x. Add a
nonterminal A defining w2|p, and add x ::= A to the grammar.

4. Assume that the cases (1) – (3) are not applicable. Then let V be a �-
maximal ≈-equivalence class in FV G(E), that is in addition not �-minimal.
Note that V consists only of context variables. Let s be a term with a function
symbol as head (such an s must exist), such that there is a surface position
p and w1|p = s, and w2|p = X(r) for some X ∈ V .
Let q be the maximal position such that q is a prefix of all main paths of
σ(X) for all X ∈ V , and such that q is a surface position in s. There are
some subcases:
(a) q is the main path of some context σ(X) where X ∈ V . Then construct

As with wAs = s, and the symbol C for the prefix of As with main path
q. For all X ∈ V , add X ::= CX ′ or X ::= C to G, where the X ′ are
new context variables. The latter case is used iff σ(X) has main path q.

(b) If s|q is a var-term, then construct As with wAs = s, and the prefix
symbol C of As with main path q. For all X ∈ V , add X ::= CX ′ to G.

(c) Case (4a) does not apply and s|q is not a var-term. This is the sit-
uation where the contexts go into different directions. Then let V =
{X1, . . . , Xn} and for all i = 1, . . . , n let qi be a position of length 1,
such that qqi is a prefix of the main path of σ(Xi). Construct As with
wAs = s, and for every i = 1, . . . , n the prefix context Ci of As with
main path qqi. For all Xi ∈ V , add Xi ::= CiX

′
i to G where X ′

i are new
context variables.
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5. Assume that the cases (1) – (4) are not applicable. Let V = {X1, . . . , Xn}
be a �-maximal ≈ −equivalence class in FV G(E), that is in addition �-
minimal. Note that V consists only of context variables. For i = 1, . . . , n let
qi be a position of length 1 that is a prefix of σ(Xi). Minimality of σ0 implies
that |{qi | i = 1, . . . , n}| ≥ 2. Since σ(Xi) �= [·], there is a function symbol
f , also occurring in E, which is the head of all σ(Xi). Construct the context
symbols Ci with rules Ci ::= f(Ai,1, . . . , [·]qi , . . . , Ai,n), where qi is the first
integer on the main path of σ(Xi). The symbol Ai,j stands for a constant aj ,
if for all i: σ(Xi)|j = aj ∈ Σ0. Let J ⊆ {1, . . . , n} be the indices, for which
this is false. Note that |J | ≥ 2. For indices j ∈ J , let Ai,j be new first-order
variables. Define the rules Xi ::= Ci(X ′

i) for new context variables X ′
i.

Since we have added first-order variables, we apply now the decomposition
in (3) for all positions of Ai,j for j ∈ J , successively, until for every first-
order variable Ai,j , there is a rule in G. These rules are only of the form
Ai,j ::= Ai′,j or Ai,j ::= X ′

i′(r).

In every case, we define the new solution σ′(Z) := σ(r) for variables Z, if Z ::= r
is the new rule for Z, perhaps in several steps.

Case (5) is the key difference between SCU and context unification: in SCU
the context variables Xi are only at the surface, and so an instantiation can
be guessed, whereas in CU the occurrences of Xi may also be elsewhere, and
guessing and instantiating these variables in general makes no progress in solving
the equation.

Theorem 6.2. If ((E, G), σ) is a GSE with a correct solution σ, then the trans-
formations in (Transform-non-cyclic GSE) are correct. The order μ is strictly
decreased. The number of grammar extensions of a single execution can be esti-
mated for the different cases as follows:

(2) requires 1 extension step, (3) requires 2 extension steps, (4) requires at most
2+2M0 extension steps, and (5) requires at most 2M0 +M2

0 grammar extension
steps.1

Proof. The standard cases for correctness follow from [SS02]. The only non-
standard case is in case (5). If there is an equivalence class V = {X1, . . . , Xn}
that is �-maximal and �-minimal, consisting only of context variables, and
σ(Xi) is not trivial for all i, then the common prefix of the holes of all σ(Xi)
must have length 0, since σ0 was chosen as size-minimal. Hence the algorithm
part (5) covers all cases. Moreover, the class V will be replaced by at least two
≈-classes after the execution. Since also the number of variables is not increased,
in this case, μ(·) is strictly decreased. μ(·) is also strictly decreased in all other
cases: Either a cycle is introduced, or the number of variables is strictly decreased
in cases (2), (3), and (4a). In case (4b), the number of non-maximal variables is
strictly decreased, and in case (4c), the number of equivalence classes is increased,
hence μ3 is strictly decreased.
1 M0 := |E0| is defined in subsection 5.1.
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The number of grammar extensions as given in the theorem can be checked
by simply scanning the cases of the algorithm. �

7 GSE with Cycles

Given a cyclic GSE (E, G) and a solution σ, we mimic the algorithm in [SS02].
A cycle K in the expanded representation is of the form

X1(s1)
?=D1(X2(t1)), . . . , Xh−1(sh−1)

?=Dh−1(Xh(th−1)), Xh(sh) ?= Dh(X1(th))

provided there are no first-order variables in the cycle. Note that the contexts
Di are not necessarily unique, since there may be further occurrences of Xi+1,
respectively X1 in Dh.

We use the measure χ(K) = (χ1(K), χ2(K)) for a cycle K as above, where
χ1(K) is the length of the cycle K, and χ2(K) is h minus the maximal number
i, such that D1, . . . , Di are trivial contexts, perhaps after a rotation of the cycle.

Algorithm 7.1 (Rule: Solve-cycle). This step is applied to a cycle K that is min-
imal w.r.t. χ. There are four cases.

1. There is a first-order variable in the cycle. Then apply step (3) of rule 6.1.
2. There is a context-variable X with σ(X) = [·]. Then apply step (2) of rule

6.1 to eliminate one context variable.
3. Some Di for i �= h is nontrivial and (1) and (2) do not apply. Then let

k be the minimal index such that Dk is nontrivial. Let q be the maximal
common prefix of mp(Dk) and of mp(σ(Xi)) for i = 1, . . . , k. Construct C
that represents the prefix context of Dk with hole at position q, and add
Xi ::= CX ′

i for i = 1, . . . , k.
4. The cases (1) – (2) do not apply, and only Dh is nontrivial. Then let q be

the maximal common prefix of mp(Deop +1
k ) and mp(σ(Xi)) for i = 1, . . . , h.

Construct C0 as the subcontext of Deop +1
k with hole at position q.

(a) The position q is the main path of some σ(Xi) where i = 1, . . . , h. For all
i = 1, . . . , h add Xi ::= C0X

′
i or Xi ::= C0 to G; the latter if σ(Xi) = C0.

(b) Otherwise, for i = 1, . . . , h let qqi be the prefix of mp(σ(Xi)) with |qi| =
1. Note that all contexts σ(Xi)|q have the same function symbol f as
head, which also occurs in E. Construct the contexts symbols Ci with
rules Ci ::= f(xi,1, . . . , [·]qi , . . . , xi,n), and C′

i ::= C0Ci, where xi,j are
fresh first-order variables. Define the rules Xi ::= C′

i(X
′
i) for new context

variables X ′
i. Then apply the step (3) of rule 6.1 several times until all

the variables xi,j are instantiated.

Theorem 7.2. Given a GSE (E, G) with cycles and a solution σ with eop(σ) ≤
eop. Then it is possible to construct a GSE (E′, G′), such that μ1(E′, G′) <
μ1(E, G), and there are at most O(M4

0 ) grammar extension steps necessary until
this happens, and there is a correct solution σ′ with eop(σ′) ≤ eop.
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Proof. Since we have mimicked the algorithm in [SS02], we have only to check
the number of grammar-extension steps. In every step, a cycle can be chosen
that is χ-minimal. We estimate the number of applications until μ1(·) is strictly
decreased. First, the number of applications of (Solve-cycle) is at most M2

0 , since
in case μ1(·) is unchanged, χ of a minimal cycle is strictly decreased, which fol-
lows from [SS02]. The number of grammar-extension of one application can be
estimated as follows: The construction of Ci requires O(M0) grammar exten-
sions, the removal of the variables in case (4b) requires O(M2

0 ) extensions. Since
we have at most M2

0 executions and every execution requires O(M2
0 ) grammar

extensions, we have O(M4
0 ) as an upper bound. �

8 Upper Bound on the Complexity of Stratified Context
Unification

Lemma 8.1. There are at most O(M3
0 ) steps that strictly decrease the order μ.

Proof. Three components in the lexicographic ordering are at most M0, and the
remaining one is bound by a constant.

Summarizing the estimations results in a NP upper bound:

Theorem 8.2. Stratified context unification is in NP.

Proof. Given a solvable stratified context unification problem Einitial of size M0
and a size-minimal solution σ0, we know that there is an upper bound on the
exponent of periodicity, denoted as eop, which is of order O(M0). Theorem 7.2
shows that there are at most O(M0 ∗ M4

0 ) grammar extensions due to cyclic
GSE. Theorem 6.2 and Lemma 8.1 show that there are at most O(M3

0 ∗ M2
0 )

grammar extensions due to non-cyclic GSE.
This means the number of grammar extensions is of order O(M5

0 ). Since the
initial grammar has size and depth of order O(M0), Corollary 3.10 shows that
the size of the final STG is of order O(M3∗5+1

0 ) = O(M16
0 ).

Now the complexity estimation is as follows: Given Einitial, we compute E0, G0
as above. Then we guess a solution θ represented by an STG that is an extension
of G0 of size at most O(M16

0 ). The variables can be used exactly as we had done
it in the computation. The final equation is of the form U1

?= U2 where U1, U2
are defined by the STG. Rules of the form C ::= [·], and C ::= C′, which may be
generated by the guessing can easily be removed by performing the appropriate
replacements in the STG. Now Theorem 3.3 (see [SS05, BLM05]) shows that
we can decide equality of U1, U2 in polynomial time. This shows that stratified
context unification is in NP. �

Corollary 8.3. Stratified context unification is NP-complete and solvability of
rewrite constraints (as defined in [NTT00]) is NP-complete.

Proof. The first claim follows from Theorem 8.2 and from NP-hardness shown
in [SSS98]. The second claim follows from the equivalence proof in [NTT00].
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It is not clear whether unifiability of generalized stratified context-unification
problems (E, G) is in NP, since the usual encoding does not produce a stratified
unification problem. However, the following is easy:

Corollary 8.4. Unifiability of generalized SCU-problems is in NEXPTIME.

Proof. We can first expand the equation to get rid of the STG, which results in
an at most exponentially large SCU-problem, and then we apply Theorem 8.2.

9 Conclusion and Further Research

We have shown that stratified context unification is NP-complete by exploiting
compaction of terms and polynomial comparison of the compactions using sin-
gleton tree grammars. This also determines the complexity of rewrite constraints
to be NP-complete. The result in this paper is a hint that the complexity of dis-
tributive unification, which was shown to be decidable in [SS98], may also be in
NP, since the algorithm can be seen as an extension of the algorithm for SCU.
The compressing mechanism via STGs deserves further investigations to obtain
better bounds for the operations on STGs.
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