
Decidable and Undecidable Second-Order

Unification Problems?

Jordi Levy

Institut d’Investigació en Intel·ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas

http://www.iiia.csic.es/~levy

Abstract. There is a close relationship between word unification and
second-order unification. This similarity has been exploited for instance
for proving decidability of monadic second-order unification. Word uni-
fication can be easily decided by transformation rules (similar to the
ones applied in higher-order unification procedures) when variables are
restricted to occur at most twice. Hence a well-known open question
was the decidability of second-order unification under this same restric-
tion. Here we answer this question negatively by reducing simultaneous
rigid E-unification to second-order unification. This reduction, together
with an inverse reduction found by Degtyarev and Voronkov, states an
equivalence relationship between both unification problems.
Our reduction is in some sense reversible, providing decidability results
for cases when simultaneous rigid E-unification is decidable. This hap-
pens, for example, for one-variable problems where the variable occurs
at most twice (because rigid E-unification is decidable for just one equa-
tion). We also prove decidability when no variable occurs more than once,
hence significantly narrowing the gap between decidable and undecidable
second-order unification problems with variable occurrence restrictions.

1 Introduction

Word unification (Makanin, 1977; Schulz, 1991), linear second-order unifica-
tion (Levy, 1996), context unification (Comon, 1993; Schmidt-Schauß, 1995) and
second-order unification (Pietrzykowski, 1973) are closely related problems. The
relationship between word unification and linear second-order unification be-
comes clear when we codify a word unification problem, like F · a ·G ?= G · a ·F ,
as a linear second-order unification problem λx.F (a(G(x))) ?= λx.G(a(F (x))).
The relationship between word unification and second-order unification is not
so clear, but was used, for instance, to prove decidability of monadic second-
order unification (Farmer, 1988). Despite their similarities, word unification is
decidable (Makanin, 1977), second-order unification is undecidable (Goldfarb,
1981), and the question is open for linear second-order unification and context
unification (although it is conjectured to be decidable).

? This work was partially supported by the project MODEL (TIC97-0579-C02-01)
funded by the CICYT, and the ESPRIT Basic Research Actions CCL and CONSOLE

Decidability of word unification was an open question for a long time and its
proof (Makanin, 1977) involves a lot of technicalities. However, it is very easy to
prove that it is decidable when no variable occurs more than twice in a problem.
The same main ideas were used to prove that linear second-order unification and
context unification are decidable when no variable occurs more than twice (Levy,
1996). Thus, the arising question is, are these ideas applicable to second-order
unification? The answer is no. We prove this undecidability result by reduction of
another undecidable unification problem: simultaneous rigid E-unification (Gal-
lier et al., 1987; Degtyarev and Voronkov, 1996). This reduction, together with a
inverse reduction found by Degtyarev and Voronkov (Degtyarev and Voronkov,
1995), states a close relationship between both unification problems. More pre-
cisely, proves that both problems are polynomial-time equivalent. Based on the
preliminary version of this paper, Veanes (Veanes, 1998) also reproduces some
of the results we prove. Other result and ideas of this paper and (Veanes, 1998)
appeared in (Schubert, 1997), although this paper contains a gap.

Our reduction is in some sense reversible, providing decidability results for
cases when simultaneous rigid E-unification is decidable. This happens, for exam-
ple, for one (second-order) variable problems where the variable occurs at most
twice, since (non-simultaneous) rigid E-unification is decidable (Gallier et al.,
1988).

This paper proceeds as follows. In section 2 we introduce all the unification
problems we will deal with and some preliminary definitions and notation. In
section 3 we prove undecidability of second-order unification, when variables
are restricted to occur at most twice, by reduction from simultaneous rigid E-
unification. We started our research trying to prove the decidability of the prob-
lem. The difficulties we found to achieve this purpose suggested us how we could,
in fact, prove undecidability, and which undecidable problem we had to chose.
However, since simultaneous rigid E-unification is decidable for one equation, we
prove in section 4 decidability for one second-order variable problems. Addition-
ally, in section 4, we also prove decidability for problems where variables occur at
most once. This closes the gap between decidable and undecidable second-order
unification problems w.r.t. variable occurrence restrictions.

2 Preliminary Definitions

We assume that the reader is familiar with unification problems, second-order
typed λ-calculus and related topics. Variables are denoted by capital letters
(X, Y, Z . . . when they are first-order, and F, G . . . when they are second-order
variables), constants are denoted by lower case letters (a, b . . . when they are 0-
ary constants, and f, g . . . for functions), terms by t, u, v, w . . . and substitutions
by Greek letters σ, ρ, θ Substitutions are represented by finite sets of variable-
term pairs, like σ = [X1 7→ t1] · · · [Xn 7→ tn]. The application of a substitution σ
to a term t is represented by σ(t). Notation t|p represents subterm at position p
of t, and t[u]p represents term t where subterm at position p has been replaced
by u. We assume that any term is second-order typed and is written in βη-long

normal form, i.e. any term has the form λx . a(t1, . . . , tn) where x is a (possibly
empty) list of first-order bound variables, a may be a (at most) third-order
constant, a second-order free variable or a first-order bound variable (in this
later case n = 0), and ti are also second-order terms in normal form.

2.1 Word Unification

It is easy to describe a complete1 (non-terminating) procedure for word unifica-
tion in terms of transformation rules (Gallier and Snyder, 1990). Any state of
the process is represented by a pair 〈S, σ〉, where S is the problem and σ the
substitution computed until that moment. We proceed by applying a substitu-
tion ρ, that transforms the pair into a new one 〈ρ(S), ρ◦σ〉 where ρ(S) can be
later simplified. At some point, more than a rule can be applicable, thus the
procedure is not deterministic. We distinguish two kinds of words, rigid words
(when they start by a constant, like a · w) and flexible words (when they start
by a variable, like X ·w). Therefore, we have three kinds of equations. For each
kind of equation, the set of applicable transformations are as follows:

Rigid-rigid equations, like a · w1
?= a · w2. Only simplification rule is appli-

cable
〈{a · w1

?= a · w2} ∪ S, σ〉 ⇒ 〈{w1
?= w2} ∪ S, σ〉

Rigid-flexible equations, like a ·w1
?= X ·w2. We can apply two different rules:

Projection rule to instantiate the variable on the head by the empty word
ρ = [X 7→ ε].

Imitation rule to instantiate ρ = [X 7→ a · X ′]. A fresh variable X ′ is
introduced, and the equation is transformed into a rigid-rigid equation
a · ρ(w1)

?= a · X ′ · ρ(w2) that is later simplified into ρ(w1)
?= X ′ · ρ(w2)

Flexible-flexible equations, like X · w1
?= Y · w2.

If X = Y , we can simplify the equation by removing both occurrences of the
variable to get w1

?= w2.
Otherwise we can instantiate one of the variables ρ = [X 7→ Y · X ′],
introducing a new fresh variable X ′. The equation is transformed into
Y · X ′ · ρ(w1)

?= Y · ρ(w2) and simplified into X ′ · ρ(w1)
?= ρ(w2).

If no variable occurs more than twice, after instantiating and simplifying
equations, no transformation rule increases the size of the problem (in term
of number of symbols). Since, there are finitely many unification problems of
a given size (up to variable renaming), we can easily prove decidability of the
problem (Schmidt-Schauß, 1995) under this two-occurrences restriction. In fact,
although word unification is infinitary2, we can prove that, under this restriction,
there exists a finite representation of the (maybe infinite) set of unifiers. For
instance, the problem X · a ?= a · X has infinitely many most general unifiers
[X 7→ a · · · · · a], but we can represent all them by a regular expression [X 7→
ε]◦[X 7→ a · X]∗.

1 Notice that this procedure computes all most general unifiers, but not only most
general unifiers.

2 We can have infinitely many most general unifiers for a given unification problem.

2.2 Second-order Unification

Pietrzykowski (Pietrzykowski, 1973) was the first to describe a complete second-
order unification procedure. The rules that this procedure uses are quite similar
to the rules we have described for word unification. We also distinguish be-
tween rigid and flexible second-order normal terms. Given a term in normal
form λx . a(t1, . . . , tn), if a is a constant or a bound variable, the term is said to
be rigid, and flexible if a is a free variable.

A second-order unification problem is a finite set {t1
?= u1, . . . , tn

?= un} of
pairs of second-order terms. For all our purposes, we can assume that our unifi-
cation problems do not contain third-order constants or λ-bindings, i.e. we can
assume that any term is first-order typed and has the form a(t1, . . . , tn), where
a is a second-order free variable or second-order constant, and ti are also first-
order terms. Goldfarb (Goldfarb, 1981) proved that second-order unification,
even under this restriction, is undecidable.

If we are only interested in deciding if a problem has a solution or not,
and not in finding all its most general unifiers, we can simplify Pietrzykowski’s
procedure (notice that all flexible-flexible equations are solvable). These decision
procedures for unification problems are called pre-unification procedures. Huet
(Huet, 1975) was the first to describe a pre-unification procedure for typed λ-
calculus. The set of transformation rules for second-order pre-unification can be
easily derived from either Huet’s higher-order pre-unification procedure or from
Pietrzykowski’s second-order unification procedure. This set is as follows:

Simplification rule.

〈{a(t1, . . . , tn) ?= a(u1, . . . , un)} ∪ S, σ〉 ⇒ 〈
⋃

i∈[1..n]

{ti
?= ui} ∪ S, σ〉

Projection rule. If we have a rigid-flexible equation like λx . F (t1, . . . , tn) ?=
λx . g(u1, . . . , um) we can instantiate

[F 7→ λx1 . . . λxn . xi] for some i ∈ [1..n]

Imitation rule. Or, we can instantiate

[F 7→ λx1 . . . λxn . g(F ′
1(x1, . . . , xn), . . . , F ′

m(x1, . . . , xn))]

Proposition 1. The procedure based on the previous transformation rules is a
sound and complete pre-unification procedure for second-order unification.

The previous proposition ensures semi-decidability of second-order unifica-
tion, so when we say “undecidable” or “not decidable” we always mean semi-
decidable.

2.3 Simultaneous Rigid E-Unification

Simultaneous rigid E-unification was introduced in (Gallier et al., 1987) in order
to extend the tableau method, the method of matings and other proof methods
to first-order logic with equality. After some faulty proofs of its decidability, it
was proved to be undecidable in (Degtyarev and Voronkov, 1996). The (non-
simultaneous) rigid E-unification problem can be formulated as follows. Given a
finite set of first-order equations {ti

∼= ui | i ∈ [1..n]} and an equation v ∼= w,
decide if there exists a ground3 substitution θ such that the formula

θ(t1) = θ(u1) ∧ · · · ∧ θ(tn) = θ(un) ⇒ θ(v) = θ(w)

is provable in first-order logic with equality. An instance of the problem is de-
noted by t1 ∼= u1 ∧ · · · ∧ tn ∼= un `∀ v ∼= w, and is called a rigid equation.
Simultaneous rigid E-unification is formalised as the problem of finding a simul-
taneous solution for a finite set of rigid equations.

For simplicity, we will also introduce a different notion of rigid unification
called rigid O-unification. Given a rigid O-unification problem

∧

i∈[1..n] ti ⊆
ui `∀ v ⊆ w, we say it is solvable if there exists a ground substitution θ such

that the formula
(

∧

i∈[1..n] θ(ti) ⊆ θ(ui)
)

⇒ θ(v) ⊆ θ(w) is provable in first-

order logic with a monotonic pre-order relation, i.e. without considering the
symmetry rule.

Since a rewriting system defines a monotonic pre-order relation, we can
reformulate rigid O-unification as follows. Given a term rewriting system
{ti → ui | i ∈ [1..n]}, and a pair of terms v and w, decide if there exists
a substitution θ such that θ(v) →∗ θ(w) using the ground rewriting system
{θ(ti) → θ(ui) | i ∈ [1..n]}.

It is easy to prove decidability of rigid O-unification from decidability of rigid
E-unification, and to prove undecidability of simultaneous rigid O-unification
from undecidability of simultaneous rigid E-unification.

Proposition 2. Rigid E-unification is reducible to rigid O-unification. Simul-
taneous rigid E-unification is reducible to simultaneous rigid E-unification.

Proof: Replace every rigid equation
∧

i∈[1..n] ti
∼= ui `∀ v ∼= w by the rigid

inclusion
∧

i∈[1..n](ti ⊆ ui ∧ ui ⊆ ti) `∀ v ⊆ w

3 Reducing Simultaneous Rigid E-Unification to

Second-Order Unification

In this section we reduce simultaneous rigid O-unification to second-order unifi-
cation where second-order typed variables are restricted to occur at most twice
in the unification problem. This reduction is based in the following main lemma.

3 Requiring θ to be ground is not relevant since, if there exist a non-ground solution,
then there exists also a ground solution.

Lemma 3 (Main Lemma). The rigid equation over the signature 〈Σ,X〉

t1 ⊆ u1 ∧ · · · ∧ tm ⊆ um `∀ v ⊆ w (1)

has a solution if, and only if, the following second-order equation

F (a(b, v), u1, . . . , um) ?= a(F (b, t1, . . . , tm), w) (2)

together with the following set of equations

X ?= Gx(f1(
−→
Yx), . . . , fN (

−→
Yx))

b ?= Gx(b, . . . , b)

}

∀X ∈ X . ∃i ∈ [1..m] . ui = X (3)

have a solution.
Where we have assumed

−→
Yx /∈ X are lists of first-order variables of the appropri-

ate length, a, b /∈ Σ and Σ = {f1, . . . , fN} is a finite signature.4

Example 4. The following rigid inclusion c ⊆ X `∀ f(c, c) ⊆ f(d, e), where
Σ = {c, d, e, f} and X = {X}, is solvable if, and only if, the following set of
second-order equations is solvable.

F (a(b, f(c, c)), X) ?= a(F (b, c), f(d, e))

X ?= Gx(c, d, e, f(Y 1
x , Y 2

x))

b ?= Gx(b, b, b, b)

In this case both systems are unsolvable. However, notice that the first equation
F (a(b, f(c, c)), X) ?= a(F (b, c), f(d, e)) alone, has a solution

[F 7→ λx, y . y][X 7→ a(c, f(d, e))]

To avoid this problem with variables occurring as the right-hand side of a
premise, like in this case X , we require equations (3).

Proof of Main Lemma:
Implication ⇒

Let θ be a solution of the rigid equation (1). Without lose of generality, we
can assume that θ is ground and the signature Σ only contains constant symbols
from equation (1). We can derive θ(v) ⊆ θ(w) from

∧

i∈[1..m] θ(ti) ⊆ θ(ui) using
only reflexivity, transitivity and monotonicity inference rules for the ⊆ binary
relation.

Using Birkhoff’s theorem, we can prove that there exist a sequence of terms
s1, . . . , sk+1 such that θ(v) = s1 and θ(w) = sk+1 and for any j ∈ [1..k] there
exist an ij ∈ [1..m] and a position pj of sj such that

sj+1 = sj [θ(uij
)]pj

sj |pj
= θ(tij

)

4 We can consider Σ as the set of constants f1, . . . , fN occurring in the original rigid
E-unification problem.

i.e. we can rewrite sj into sj+1 using tij
→ uij

as a rewriting rule at position pj .

Define the second-order substitution σ as follows:

σ(X) = θ(X) for X ∈ X
σ(F) = λx0, x1, . . . , xm . a(. . . a(a(x0, s1[xi1]p1), s2[xi2]p2) . . . , sk[xik

]pk
)

It is a straightforward exercise to prove that this substitution σ is a solution of
the second-order equation (2).

For any variable X satisfying ∃j ∈ [1..m] . ui = X define σx as follows.
Let fk ∈ Σ be the constant such that θ(X) = fk(s1, . . . , sp), for some terms
s1, . . . , sp, where p = arity(fk), (regard that θ is ground and the signature Σ
only contains constant symbols from equation (1)), then

σx(
−→
Yx) = −→s

σx(Gx) = λx0, x1, . . . , xN . xk

It is also straightforward to prove that σx◦σ satisfies equation (3) for X .

As far as these substitutions σ and σx, for any X , have disjoint domains,
the composition of all them σ◦ ◦x∈X σx solves all the second-order equations (2)
and (3).
Implication ⇐

Suppose that equation (2) is solvable. We can only apply the imitation or
projection rules, and by completeness of the pre-unification procedure, one of
the two problems that we obtain has to be solvable.

If we apply the projection rule, it has to be necessarily [F 7→ λx0, . . . , xm . x0].
Any other projection function would lead to ui

?= a(ti, w), and this equation
has no solution unless ui contains a (which is not the case because a /∈ Σ)
or ui is a variable. If ui = X , we have equations (3) written for X . The
only possible solutions for the second one of these equations b ?= Gx(b, . . . , b)
are [Gx 7→ λx1, . . . , xn . xk], for some k ∈ [1..N], and [Gx 7→ λx1, . . . , xn . b].
Applying any of this substitutions to the rest of equations X ?= a(ti, w)

and X ?= Gx(f1(
−→
Yx), . . . , fN (

−→
Yx)) results in the following unsolvable problems

{X ?= a(ti, w), X ?= fk(
−→
Yx)}, for some k ∈ [1..N], or {X ?= a(ti, w), X ?= b}.

Therefore, we can conclude that, after instantiating F by the only possible pro-
jection function, we obtain a(b, v) ?= a(b, w). Now, by simplification we obtain
v ?= w.

If we apply the imitation rule, we obtain:

F1(a(b, v), u1, . . . , um) ?= a(F1(b, t1, . . . , tm), F2(b, t1, . . . , tm))

F2(a(b, v), u1, . . . , um) ?= w

where F1 and F2 are both fresh variables.

If this system is solvable, then the first equation –which is quite similar to
the original one– has to be also solvable. We can repeat the same argument for
this equation. Iterating this argument, we can conclude that: there exist a k ≥ 0
such that, after applying k times the imitation rule to the first equation, and

later the projection and the simplification rules, the system we get is solvable.
The system will be:

v ?= F1(b, t1, . . . , tm)

F1(a(b, v), u1, . . . , um) ?= F2(b, t1, . . . , tm)

F2(a(b, v), u1, . . . , um) ?= F3(b, t1, . . . , tm)
· · ·

Fk(a(b, v), u1, . . . , um) ?= w

for k > 0, and u ?= w for k = 0.
Solvability of one of these system ensures that there exist a ground sub-

stitution σ such that σ(v) can be rewritten into σ(F1(a(b, v), u1, . . . , um)) in
one parallel rewriting step, and σ(F1(a(b, v), u1, . . . , um)) can be rewritten into
σ(F2(a(b, v), u1, . . . , um)), etc. using ground rewriting rules: σ(b) → σ(a(b, v)),
σ(t1) → σ(u1), . . . , σ(tm) → σ(um). Again, Birkhoff’s theorem proves that we
can deduce:

σ(b) ⊆ σ(a(b, v)) ∧ σ(t1) ⊆ σ(u1) ∧ · · · ∧ σ(tm) ⊆ σ(um) ` σ(v) ⊆ σ(w)

in first-order logic with a monotonic pre-order relation ⊆. Therefore, the rigid
equation:

b ⊆ a(b, v) ∧ t1 ⊆ u1 ∧ · · · ∧ tm ⊆ um `∀ v ⊆ w

has a solution. As far as a and b do not occur in ti, ui, v and w, we do not need
to assume b ⊆ a(b, v) in that derivation. Therefore, we can also prove that the
rigid equation (1) has a solution.

Theorem 5. There is an effective method that reduces simultaneous rigid E-
unification to second-order unification, where second-order variables are re-
stricted to occur at most twice in a unification problem and no equation contains
more than one second-order variable.

Proof: We have already seen that simultaneous rigid E-unification is reducible
to simultaneous rigid O-unification. Now, lemma 3 can be easily extended to
reduce simultaneous rigid O-unification to second-order unification.

Suppose we have a system of n rigid equations, over a first-order signature
〈Σ,X〉,

ti1 ⊆ ui
1 ∧ · · · ∧ timi

⊆ ui
mi

`∀ vi ⊆ wi

for i ∈ [1..n].
We define a new second-order signature

〈Σ ∪ {a, b},X ∪
⋃

x∈X

j∈[1..N]

{Y j
x } ∪

⋃

i∈[1..n]

{F i} ∪
⋃

x∈X

{Gx}〉

where, apart from the constants and variables we already had, we have intro-
duced a new constant symbol b, a new binary function symbol a, N first-order

variables for each variable X ∈ X , where N = max{arity(f) | f ∈ Σ}, a second-
order variable F i, with arity mi + 1, for each rigid equation of the system, and
a second-order variable Gx with arity cardinality of Σ, for each variable X ∈ X .

We can effectively construct a second-order unification problem, containing
the following second-order equation for each rigid equation:

F i(a(b, vi), ui
1, . . . , u

i
mi

) ?= a(F i(b, ti1, . . . , t
i
mi

), wi)

and the following equations

X ?= Gx(f1(
−→
Yx), . . . , fN (

−→
Yx))

b ?= Gx(b, . . . , b)

for any variable X ∈ X satisfying ∃i ∈ [1..n] . ∃j ∈ [1..mi] . u
i
j = X .

An extension of main lemma can be used to prove the equivalence be-
tween this system and the original simultaneous rigid equations. Notice that
any second-order variable F i or Gx in the equations occurs only twice and there
are not equations containing more than one second-variable.

Since there exist a reduction (Degtyarev and Voronkov, 1995) from second-
order unification to simultaneous rigid E-unification we have the following corol-
lary.

Corollary 6. Second-order unification, simultaneous rigid E-unification, and
second-order unification where second-order variables are restricted to occur at
most twice and equations to do not contain more than one second-order variable,
are all three equivalent.
The second-order unification problem is undecidable, even if we restrict second-
order variables to occur at most twice, and equations to do not contain more
than one second-order variable.

4 Decidability Results

In this section we prove decidability of second-order unification problems only
containing one second-order variable, which occurs at most twice. The impossi-
bility to prove this result for more than one variable suggested us how to prove
undecidability (in the previous section). It also helped us establish a relation-
ship between second-order unification and simultaneous rigid E-unification. Ad-
ditionally, we also prove decidability for problems not containing any repeated
variable.

If we compare second-order unification rules with word unification rules, in
section 2, at first sight it seems that the two-occurrences restriction is going to
carry over, like in the word unification case. The simplification and projection
rules always decrease the size of a problem. However, in this case, application of
imitation rule can increase the size of a problem, even if we restrict variables to
occur at most twice.

For instance, if we apply imitation rule to

F (t1, t2)
?= g(F (u1, u2), v)

we obtain a bigger problem (in term of number of symbols)

F ′
1(t1, t2)

?= g(F ′
1(u1, u2), F

′
2(u1, u2))

F ′
2(t1, t2)

?= v

Moreover, since some terms are duplicated (like t1, t2, u1, u2), second-order
variables of these terms may occur now more than twice!

We can overcome the second problem by assigning a directed acyclic graph
(DAG) to each problem to avoid duplication of terms. In our example we would
have:

F g

t1 t2 F v

u1 u2

��	 @@R ��	 @@R

��	 @@R

v F ′
2 F ′

1
g

t1 t2 F1 F2

u1 u2

?
HHHj

���� ? ��	 @@R

?
HHHj

���� ?

F (t1, t2)
?= g(F (u1, u2), v)

F ′
1(t1, t2)

?= g(F ′
1(u1, u2), F

′
2(u1, u2))

F ′
2(t1, t2)

?= v

Then, we can define the size of a problem as a pair (number of constant
occurrences, number of variable occurrences) of its assigned DAG. We compare
these pairs using a lexicographic order. Since the simplification rule always re-
moves two constant occurrences, it always decreases the size of the problem. The
projection rule removes a variable occurrence and does not increase the number
of constant occurrences. However, the imitation rule may increase the number
of variable occurrences (although, if no variable occurs more than twice, it never
increases the number of constant occurrences). This proves the following lemma.

Lemma 7. Any infinite transformation sequence contains infinitely many imi-
tation steps.

To characterise non-terminating transformation sequences we have to study
the imitation rule in detail. When we apply the imitation rule to a rigid-flexible
equation F (t1, . . . , tn) ?= g(u1, . . . , um), the occurrence of g on the right hand
side of the equation is removed, i.e. the equation is replaced by new equations
F ′

i (t1, . . . , tn) ?= ui for i ∈ [1..m]. And, if there exists another occurrence of F
in another term, an occurrence of g is added to this term. Thus, we can see the
imitation rule as moving constant occurrences from one place to another. This
image can help to characterise non-terminating sequences as follows.

Definition 8. We say that a unification problem is in normal form if it does
not contain any rigid-rigid equation. Notice that, given a solvable unification

problem, we can always find an equivalent problem in normal form by repeatedly
applying simplification rule.
We say that two variables F and G are equivalent in an unification problem
S, noted F ∼= G, if for some substitution θ, the normal form of θ(S) contains a
flexible-flexible equation of the form F (t1, . . . , tn) ?= G(u1, . . . , um).
We say that a variable F is connected with another variable G in a unification
problem S, noted F � G, if for some substitution θ, the normal form of θ(S)
contains an equation of the form F (t1, . . . , tn) ?= v, where v contains the variable
G, and it is not in the head of v.
Let

∼=� denote the relation ∼=∗
◦

� . We say that a unification problem contains
a variable cycle if there is a non-empty sequence of variables such that F1

∼=�

F2
∼=� · · ·

∼=� Fn.

In our example F (t1, t2)
?= g(F (u1, u2), v), we have F � F , therefore, it

contains a variable cycle.

Theorem 9. Any infinite transformation sequence is generated by a problem
containing a variable cycle.
Therefore, it is decidable whether a second-order unification problem not con-
taining variable cycles has a unifier.

Proof: By lemma 7 we know that any infinite sequence contains infinitely many
imitation steps. Since initially there are finitely many variables, and when we
instantiate one variable we only introduce finitely many new fresh variables, we
can conclude that, some variable F of the original problem is involved in an
infinite sequence of chained imitation steps:

· · · [F 7→ λx . g1(. . . , F1(x), . . .)] · · · [F1 7→ λx . g2(. . . , F2(x), . . .)] · · ·

Assume F is one of the maximal (w.r.t. the relation
∼=�) variables involved in one

of such chained sequences. This is always possible unless the relation is cycling.
Firstly, we will prove that some variable G satisfying F

∼=� G is also involved
in one of such infinite sequences of chained imitation steps.

At some point of the transformation sequence, the problem contains, at least,
one rigid-flexible pair F (. . .) ?= g1(t1, . . . , tm). Otherwise, the imitation step
[F 7→ λx . g1(. . . F1(x) . . .)] would never been applied. By applying this imita-
tion step to this problem, we replace this equation by a finite set of equations
containing F1(. . .)

?= ρ(ti) for some i ∈ [1..m]. Notice that an occurrence of the
function symbol g1 is removed when we replace g1(t1, . . . , tm) by ρ(ti) on the
right-hand side of equations. Therefore, since there are finitely many occurrences
of function symbols in g1(t1, . . . , tm), we can not repeat this process infinitely
many times, unless some variable G occurring in ti is also involved in an infinite
sequence of chained imitation steps. If G is a variable of the original problem,
we have F � G, and the work is done. Otherwise, let G′ be the variable of
the original problem that originates the chained sequence where G is involved.
We can prove that initially there is an equation containing both F and G′, and
either F � G′, F ∼= G′ or G′ � F . In the first case the work is done. The last

case is not possible because we have assumed that F is maximal. In the second
case we can repeat the same reasoning for G′. At some point we have to find a
variable G′′ such that F ∼= G′

∼=� G′′. Otherwise it is not possible to have F � G
at some point of the transformation sequence.

Now we can repeat the same argument for G, or G′ or G′′. Since originally
there are finitely many variables, this process allows us to construct a cycle

F
∼=�

∗

H
∼=�

∗

◦
∼=� H for some variable H of the original problem. Moreover H is

involved in an infinite sequence of chained imitation steps.

A direct consequence of this theorem is the following decision result.

Corollary 10. It is decidable whether a second-order unification problem, where
no second-order variable occurs more than once, has a unifier.

Proof: Ii is not difficult to prove that, if no variable is repeated, we can not have
any cycle.

We can also prove this result directly. If no variable is repeated, no transfor-
mation rule can increase the size of the problem. However, we still have to prove
that no transformation rule can duplicate a variable occurrence. This is true if
we represent the unification problem as a DAG.

If we have multiple occurrences of a variable, we have to deal with infinite
transformation sequences. This does not seems easy. We only have been able to
do that when the problem only contains a second-order variable and this variable
only occurs twice.

Theorem 11. It is decidable whether a second-order unification problem, con-
taining a single second-order variable and where this variable only occurs twice,
has a unifier.

Proof: The only possible cycle F � F is generated if we have an equation
λx . F (t1, . . . , tn) ?= v where F occurs in v.

For simplicity, we will assume that only one function symbol g occurs between
the root of v and F . Without loss of generality, we will assume that F occurs
in the first argument of v. We can have other more complex situations, but
they can also be proved to be decidable using the same main ideas. Under these
simplifications, we only need to consider the following equation.

F (t1, . . . , tn) ?= g(F (u1, . . . , un), v1, . . . , vm)

We can repeat the same argument as in the proof of lemma 3. If this equation
has a solution, since it is a rigid-flexible equation, we can obtain another solvable
system after applying the imitation rule k many times to the first equation and
later the projection rule, for some k ≥ 0. If we only apply imitation rule, we
can generate an infinite transformation sequence. However, if the problem has a
solution, there is a finite sequence of transformations leading to a set with only
flexible-flexible equations. Therefore, at some point we have to apply projection
rule to the first equation. The problem is that we can not conjecture when!

After these k many imitation steps, and a projection step, we get a system
which is equivalent to the following one.

ti
?= g(ui, X1, . . . , Xm)

X1
?= F

(p)
0 (u1, . . . , un)

. . .

Xm
?= F

(p)
m (u1, . . . , un)

F
(p)
1 (t1, . . . , tn) ?= F

(p−1)
1 (u1, . . . , un)

· · ·

F
(p)
m (t1, . . . , tn) ?= F

(p−1)
m (u1, . . . , un)

F
(p−1)
1 (t1, . . . , tn) ?= F

(p−2)
1 (u1, . . . , un)

· · ·

F
(p−1)
m (t1, . . . , tn) ?= F

(p−2)
m (u1, . . . , un)

· · ·

F
(1)
1 (t1, . . . , tn) ?= v1

· · ·

F
(1)
m (t1, . . . , tn) ?= vm

for some i ∈ [1..n].
Applying the same ideas as in section 3, we can prove that solvability of this

system is equivalent to solvability of the following rigid equation:

σ(t1) ⊆ σ(u1) ∧ · · · ∧ σ(tn) ⊆ σ(un) `∀ σ(v1) ⊆ σ(X1) ∧ · · · ∧ σ(vm) ⊆ σ(Xm)

for some σ being unifier of ti
?= g(ui, X1, . . . , Xm) for some i ∈ [1..n]. There are

finitely many of such unifiers. The problem has been reduced to solvability of
finitely many instances of a rigid equation, which is decidable.

For more complex cycle situations (not considered in this proof) we get a
similar rigid equation.

5 Conclusions and Further Work

Since Goldfarb proved the undecidability of the second-order unification problem
(Goldfarb, 1981), very few decidable and undecidable subclasses of second-order
unification problems have been found. Here we have characterised decidability
for classes defined in terms of number of occurrences per variable.

Moreover, we have stated a very close relationship between the simultaneous
rigid E-unification and the second-order unification problems. This relationship
allows us to translate some decidability/undecidability results from one class of
problems to the other.

In (Levy, 1996) we proved that linear second-order unification is decidable
when no second-order variable occurs more than twice. Here, we have proved
that, under this same restriction, second-order unification is undecidable. This
establishes a clear difference between this two apparently similar problems. No-
tice that second-order unification is undecidable, whereas linear second-order
unification has been conjectured to be decidable.

Acknowledgements

I would like to acknowledge M. Bonet, A. Rubio, M. Villaret and all the anony-
mous referees of this paper for their comments and support, and specially to
R. Nieuwenhuis for suggesting me the possible relationship between the problem
I tried to prove decidable and the simultaneous rigid E-unification problem.

References

Comon, H. (1993). Completion of rewrite systems with membership constraints.
Technical report, CNRS and LRI, Université de Paris Sud.

Degtyarev, A. and Voronkov, A. (1995). Reduction of second-order unification
to simultaneous rigid E-unification. Technical Report 109, Computer Science
Department, Uppsala University.

Degtyarev, A. and Voronkov, A. (1996). The undecidability of simultaneous rigid
E-unification. Theoretical Computer Science, 166(1-2):291–300.

Farmer, W. M. (1988). A unification algorithm for second-order monadic terms.
Annals of Pure and Applied Logic, 39:131–174.

Gallier, J. H., Raatz, S. and Snyder, W. (1987). Theorem proving using rigid
E-unification: Equational matings. In Proc. IEEE Conf. on Logic in Computer
Science, LICS’87, pages 338–346.

Gallier, J. H., Narendran, P., Plaisted, D. and Snyder, W. (1988). Rigid E-uni-
fication is NP-complete. In Proc. IEEE Conf. on Logic in Computer Science,
LICS’88, pages 338–346.

Gallier, J. H. and Snyder, W. (1990). Designing unification procedures using
transformations: A survey. Bulletin of the EATCS, 40:273–326.

Goldfarb, W. D. (1981). The undecidability of the second-order unification prob-
lem. Theoretical Computer Science, 13:225–230.

Huet, G. (1975). A unification algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1:27–57.

Levy, J. (1996). Linear second-order unification. In 7th Int. Conf. on Rewriting
Techniques and Applications, RTA’96, volume 1103 of LNCS, pages 332–346,
New Jersey, USA.

Makanin, G. S. (1977). The problem of solvability of equations in a free semi-
group. Math. USSR Sbornik, 32(2):129–198.

Pietrzykowski, T. (1973). A complete mechanization of second-order logic. J. of
the ACM, 20(2):333–364.

Schmidt-Schauß, M. (1995). Unification of stratified second-order terms. Tech-
nical Report 12/94, Johan Wolfgang-Goethe-Universität, Frankfurt, Germany.

Schubert, A. (1997). Second-order unification and type inference for church-
style polymorphism. Technical Report TR 97-02(239), Institute of Informatics,
Warsaw University.

Schulz, K. U. (1991). Makanin’s algorithm, two improvements and a gener-
alization. Technical Report CIS-Bericht-91-39, Centrum für Informations und
Sprachverarbeitung, Universität München.

Veanes, M. (1998). The relation between second-order unification and simultane-
ous rigid E-unification. Technical Report MPI-I-98-2-005, Max-Planck Institut
für Informatik.

