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Trust models are mechanisms that predict behavior of potential interaction partners. They have been pro-
posed in several domains and many advances in trust formation have been made recently. The question
of comparing trust models, however, is still without a clear answer. Traditionally, authors set up ad hoc
experiments and present evaluation results that are difficult to compare – sometimes even interpret – in
the context of other trust models. As a solution, the community came up with common evaluation plat-
forms, called trust testbeds. In this paper we expose shortcomings of evaluation models that existing test-
beds use; they evaluate trust models by combining them with some ad hoc decision making mechanism
and then evaluate the quality of trust-based decisions. They assume that if all trust models use the same
decision making mechanism, the mechanism itself becomes irrelevant for the evaluation. We hypothe-
sized that the choice of decision making mechanism is in fact relevant. To test our claim we built a test-
bed, called Alpha testbed, that can evaluate trust models either with or without decision making
mechanism. With it we evaluated five well-known trust models using two different decision making
mechanisms. The results confirm our hypothesis; the choice of decision making mechanisms influences
the performance of trust models. Based on our findings, we recommend to evaluate trust models inde-
pendently of the decision making mechanism – and we also provide a method (and a tool) to do so.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the last decade, the internet has grown rapidly. This growth
spurred the development of collaborative applications, in which
different parties interact to fulfill their goals. Such cooperation is
often hard to establish, because participants have no assurance
that their interaction counterparts will honor agreements. To mit-
igate such risks, trust and reputation systems have shown promis-
ing results in many domains.

Trust models are mechanisms that enable parties to build trust;
a concept usually understood as a degree to which one party has
confidence in another within the context of a given purpose or
decision [1]. Trust models compute trust on behalf of their users
by using various information, such as opinions from other partici-
pants, their users’ own experiences, social-network information
and others. Trust models predict the quality of interactions by esti-
mating the future behavior of potential interaction partners. Thus a
good trust model should help its user to avoid participants that do
not honor agreements and advise her to select interaction partners
that honor them.

Computational trust modeling research began in the middle of
nineties. Since then, the research community has proposed many
solutions and a compilation of them can be found in surveys such
as [2–5]. These papers classify trust models into various categories
ranging from the type of information that they use to the tech-
niques that they deploy.

In this abundance of proposals a natural question emerged:
how does one evaluate and compare performances of trust mod-
els? Many researchers addressed this question by creating ad hoc
testing environments. In them, they compare their trust models
against the existing ones [6,7]. Such evaluation has almost become
a de facto standard when introducing new trust models. However,
it was soon realized that ad hoc evaluations are biased, since they
always cover a limited number of trust model’s aspects. In ad hoc
evaluations, authors’ proposals often come out as the best ones.
This is expected, since ad hoc evaluations are designed to empha-
size the features of new proposals. But for an evaluation to be com-
plete, it also has to include scenarios that violate assumptions
behind the model. A good evaluation has to show not only the vir-
tues of the model but also its faults.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2013.07.016&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2013.07.016
mailto:david.jelenc@fri.uni-lj.si
mailto:rhermoso@essex.ac.uk
mailto:jsabater@iiia.csic.es
mailto:denis.trcek@fri.uni-lj.si
http://dx.doi.org/10.1016/j.knosys.2013.07.016
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


148 D. Jelenc et al. / Knowledge-Based Systems 52 (2013) 147–164
An improvement over ad hoc evaluations comes in the form of
trust testbeds. A trust testbed is an independent and easy-to-use
platform for benchmarking trust models. The underlying idea is
that a neutral party provides the testbed that other researchers
can use to evaluate their own proposals against a set of well-de-
fined scenarios and metrics. The most known example of a trust
testbed is ART [8], but there are a few others that we describe in
the related work section.

Existing testbeds evaluate trust models with a similar evalua-
tion model. They provide an environment of agents that are of dif-
ferent quality as interaction partners. Within this environment
they configure one agent (in some cases several agents) to use
the selected trust model. The chosen agent then interacts with
other agents in the environment and in so doing it uses the tested
trust model to select interaction partners. The testbed evaluates
the trust model by measuring the utility that was obtained by the
agent that used the trust model. The actual meaning of this utility
differs between testbeds; it can be the amount of earnings in the
art appraisal contest [8] or the accuracy of routing packets in a
wireless sensor network [9]. The reasoning behind such evaluation
is that a good trust model should advise its agent better than a bad
one and, therefore, agents with good trust models should obtain
higher utilities than those that use bad ones.

The problem of such evaluation lies in the measured object.
Existing testbeds do not measure the output of trust models di-
rectly. Instead, they measure it indirectly by evaluating the quality
of decisions that agents make using those trust models (usually
they measure the quality of partner selections). The decisions, how-
ever, are seldom based only on the computed trust; agents often
incorporate other factors in their decision making processes. But
even in cases when trust is the only relevant factor, deciding with
whom to interact next may affect trust models, since it determines
the exploration vs. exploitation policy. We refer to the component
of an agent responsible for making such decisions as the decision
making mechanism. We claim that the indirect evaluation entails
an important concern; a good working trust model can be hindered
by a bad decision making mechanism or the other way around. This
would not be a problem if the trust models were presented together
with the decision making mechanism as a whole and what was
being evaluated was the pair (trust model, decision making mech-
anism). However, that is not the case. The trust model is usually
presented as an isolated oracle that is queried by the decision mak-
ing mechanism and no hints are provided about how the latter uses
the answers to those queries. Therefore, because evaluating trust
models with utility requires trust models to have a decision making
mechanism and because most trust model proposals lack it, exist-
ing testbeds have to combine trust models with their own ad hoc
versions of decision making mechanisms.

As we will show in this paper, such ad hoc pairing can be prob-
lematic, because some decision making mechanisms may be more
suitable for certain trust models and may not work well with others.
For instance, it can happen that using one trust model in combina-
tion with a decision making mechanism A could produce different
results than using the same trust model in conjunction with a deci-
sion making mechanism B. Something that looks as a minor imple-
mentation detail may completely swing the evaluation results.

The purpose of this paper is to demonstrate that in order to
evaluate trust models it is not enough to attach them to arbitrary
decision making mechanisms and measure the utility that their
owners obtain. We show that the choice of the decision making
mechanism will favor some models while being detrimental to
others and, therefore, the initial goal of comparing models in a neu-
tral environment becomes compromised. Given that, we claim that
it is improper to evaluate trust models by attaching them to arbi-
trary decision making mechanisms as it happens in current trust
testbeds.
To support the aforementioned claims, and as a second contri-
bution, we have developed a testbed platform, called the Alpha
Testbed (ATB). Its purpose is twofold: first, to create a measure-
ment apparatus to test our hypothesis, and second, to overcome
the problems of existing testbeds that pair trust models with deci-
sion making mechanisms for the sole purpose of evaluation. In
contrast, ATB can evaluate trust models with or without decision
making mechanisms. The second contribution is an evolved and
extended version of the work that was first presented in [10].

The paper is structured as follows. Section 2 describes the ele-
ments of trust models and defines several terms used throughout
the article. Section 3 presents the Alpha Testbed (ATB). Empirical
results are provided and discussed in Section 4, and ATB’s design
and extendability are depicted in Section 5. We compare our ap-
proach with others in Section 6 and conclude with Section 7.
2. Trust models

Trust is a complex concept that can be analyzed from several
perspectives. So before we discuss how to evaluate trust models,
we have to describe our understanding of trust models and define
several concepts that we use in the rest of the article.

Using common conceptions from existing surveys [2–5] and fol-
lowing a couple of standardization attempts [11,12], we treat trust
models as computational mechanisms that assign trust values to
third-party agents. Trust values are used to make different deci-
sions such as selecting partners to interact with in a commercial
exchange, changing a negotiation strategy or deciding who to ask
for opinions.

There is a great diversity of trust models and they can be clas-
sified considering different features. However, one of the aspects
that takes more relevance, specially when one talks about testbeds,
is the type of information from which they compute trust. Some use
experiences from previous interactions, some opinions from other
agents in the system, some analyze the underlying social network
of agents or study the information about the virtual organization to
which agents belong, and even more complex examples exist [5].
Many combine several types of information to achieve better esti-
mations. In this section, we describe the information context of a
trust model and provide some semi-formal definitions that we
use throughout the paper.
2.1. Information context of a trust model

Information context denotes the sources of information and the
flow of information from which a trust model computes trust. To
graphically depict an information context of a general-purpose
trust model, we build upon a schema that we partly borrow from
[11,13]. The schema – shown on Fig. 1 – is centered around the
agent that uses the trust model, called agent a. It shows three
information sources from which a’s trust model computes trust.
The agent can obtain information by interacting with agents, by
asking for opinions, or by using information from the environ-
ment. Because the first two information sources are the most com-
mon in current trust models, we highlighted them and
encapsulated other possible sources for trust computation in a spe-
cial component called environment; examples of such include the
analysis of social networks, information about the virtual organiza-
tions, etc.

Furthermore, agent a consists of the interpretation, the trust
model and the decision making mechanism sub-components. The
interpretation converts obtained information to a representation
that is compatible with the trust model (in the schema this corre-
sponds to converting interaction outcomes to experiences, ob-
tained opinions to opinions, and environmental information to



Fig. 1. Information context of a trust model. Agent Alpha uses a trust model that obtains information by (i) interacting with agents, by (ii) asking agents for opinions, and by
using other information from the (iii) environment. Agent then conveys the computed trust values to its decision making mechanism where they are used in various decision
making processes, such as deciding with whom to interact or who to ask for opinions.
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others). The trust model then uses this information to compute
trust values. These are then conveyed to the decision making
mechanism to (i) select interaction partners and to (ii) select opin-
ion providers (and in some cases offer opinions to other agents).
The decision making mechanism is usually very complex and while
trust values can be an important part of its input, the decision mak-
ing mechanism also considers other factors. They are, however, do-
main specific and often independent of the trust model, which is
why the majority of trust models do not provide any guidance on
how to use the computed values in the decision making process
[5].

As pointed out in the existing surveys, most trust models only
use experiences and opinions to compute trust. Because of this,
we shall restrict ourselves and in this paper investigate only such
models. We plan to extend our framework to accommodate trust
models that use other environmental information in the future.

2.2. Definitions

This section presents definitions of the most relevant concepts
that we use in the rest of the article.

Time and services. We represent time with a totally ordered
discrete set T of time values (ticks) ti 2 T ; i 2 N; ti < tiþ1. Addi-
tionally, we denote the available set of service types with S.
Agents. The agent that uses the trust model is called agent a.
We denote the rest of the agents in the system with set A. This
set can change, because agents may leave and join the system.
To denote the set of agents at a given time t 2 T , we use AðtÞ.
Experiences. An experience e 2 E is a record of an interaction
between a and some other agent. We denote an experience as
a tuple e = ha, s, t, ki, where k 2K represents the assessment
with which a evaluates the performance of the service provider
a 2 A for performing service s 2 S at time t 2 T . We denote the
set of all experiences with E.
Trust values. A trust value s 2H represents a’s trust towards a
particular agent. We denote a trust value as a tuple s = ha, s, xi,
where x 2X represents a’s trust degree towards agent a 2 A
for service s 2 S. A trust degree is a value with which a
expresses the level of trust towards other agents. While we
do not assume any particular type of trust degrees, we require
that the set X be totally ordered. This means that any two trust
degrees have to be mutually comparable. Analogously, we
denote the set of all possible trust values with H.
Opinions. An opinion o 2 O is a statement about trust that
someone gave to a about a third-party. We denote an opinion
as a tuple o = hao, ap, s, t, x, ui, where x 2X represents the trust
degree that agent ao 2 A told a to have towards agent ap 2 A for
service s 2 S. Symbol t 2 T denotes the time at which the opin-
ion was given, while u 2 [0, 1] denotes the level of uncertainty
of agent ao about this opinion. Similarly, O denotes the set of
all possible opinions.
Trust model. A trust model is computational device that com-
putes a’s trust towards other agents. We define a trust model
as a function TrustModel : T � PðEÞ � PðOÞ ! PðHÞ that maps
a point in time t 2 T , a set of experiences eset 2 PðEÞ and a set
of opinions oset 2 PðOÞ to a set of trust values sset 2 PðHÞ, thus
sset = TrustModel(t, eset, oset).

3. The Alpha testbed

This section proposes a simulation-based testbed, which we
named Alpha Testbed (ATB, http://atb.fri.uni-lj.si). In ATB, one
agent, named agent Alpha (a), uses the tested trust model while
other agents are simulated. During evaluation, ATB generates data
that a conveys to its trust model. The data consists of experiences
from past interactions and opinions from other simulated agents in
the system. ATB can evaluate both the output of a’s trust model
and the decisions that agent a makes. In the following subsections,
we describe how ATB operates during the evaluation, how it gen-
erates experiences and opinions and how it evaluates trust models.

3.1. Evaluation protocol

ATB can evaluate two types of trust models; those that have a
decision making mechanism and those that do not. The type of
trust model thus determines the protocol and the metrics that will
be used in the evaluation. In this context, the term evaluation pro-
tocol describes the sequence of steps that are carried out at each
tick of the simulation run.

3.1.1. Trust models without decision making mechanism
Trust models without decision making mechanism are trust

models that provide rules, formulas or algorithms describing how
to compute trust, but at the same time they provide no guidance
on how to use that information in decision making processes. Such
trust models are the most common in the literature. To evaluate
them, we have to give them experiences, and for creating those,

http://atb.fri.uni-lj.si
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someone has to select interaction partners. Existing testbeds solve
this by pairing trust models with ad hoc decision making mecha-
nisms. A common example is to select the agent to whom the trust
model assigned the highest trust degree. As we show later (see Sec-
tion 4), such pairing can be problematic, because some decision
making mechanisms may be more suitable for certain trust models
and may not work well with others.

When ATB evaluates trust models without decision making
mechanisms, the interaction partners are not determined by an
ad hoc decision making mechanism. Instead they are determined
by the parameters of the evaluation run. Such parametrization
has two notable benefits: first it assures that trust models are eval-
uated isolated from the decision making mechanism, and second, it
assures that all trust models are evaluated with the same input.
The latter is essential if evaluation is to be fair. When a testbed
pairs a trust model with an ad hoc decision making mechanism,
it violates this principle. For instance, two trust models may com-
pute different trust values and although they apply the same deci-
sion making to those values, the selection of interaction partner
can be different. If this happens, the two trust models will obtain
different experiences and from then on, they will compute trust
from different data. The results of such evaluation thus become
ambiguous. But if the interaction partners (and thus experiences)
are determined externally, every trust model receives the same in-
put, which means that we can easily compare performances.

In this protocol, ATB evaluates trust models by evaluating the
accuracy of computed trust values (we discuss accuracy in depth
in Section 3.5.1). The evaluation protocol thus consists of the fol-
lowing steps:

1. ATB notifies the trust model of a new time tick.
2. ATB generates opinion tuples and conveys them to the trust

model.
3. ATB selects an agent as the current interaction partner, gen-

erates an experience tuple, and conveys it to the trust model.
4. The trust model computes trust values and submits them to

ATB.
5. ATB evaluates computed trust values.

This sequence of steps is repeated for every tick. Notice that the
testbed conveys the same opinion and experience tuples to every
trust model.

3.1.2. Trust models with decision making mechanism
Contrary to previous case, trust models with decision making

mechanism are trust models that provide both (i) rules, formulas
or algorithms describing how to compute trust, and also (ii) hints
on how to use that information in the decision making processes.
The evaluation protocol and the used metrics differ, depending
on what the decision making mechanism does. When it only se-
lects interaction partners, we have mode A, and when the decision
making mechanism also suggests who to ask for opinions, we have
mode B. The evaluation protocol for mode A is the following.

1. ATB notifies the trust model of a new time tick.
2. ATB generates opinion tuples and conveys them to the trust

model.
3. The trust model selects an agent as the interaction partner

and announces it to ATB.
4. ATB generates an experience tuple for the selected agent,

and conveys the tuple to the trust model.
5. The trust model computes trust values and submits them to

ATB.
6. ATB evaluates the computed trust values.
7. ATB evaluates the utility that was obtained in the

interaction.
This sequence is repeated at every tick. Because here the selec-
tion of interaction partners is determined by the decision making
mechanism (and not by the testbed as in the previous protocol),
ATB also evaluates the quality of partner selections with utility
metric (for a comprehensive explanation of utility see Sec-
tion 3.5.2). The evaluation protocol for mode B is similar, however,
it includes two additional steps (shown in italics):

1. ATB notifies the trust model of a new time tick.
2. The trust model selects which agents to ask for opinions and

announces them to ATB.
3. ATB generates opinion tuples and conveys them to the trust

model.
4. The trust model selects an agent as the interaction partner

and announces it to ATB.
5. ATB generates an experience tuple for the selected agent,

and conveys the tuple to the trust model.
6. The trust model computes trust values and submits them to

ATB.
7. ATB evaluates the computed trust values.
8. ATB evaluates the utility that was obtained in the interaction.
9. ATB evaluates the endured cost when fetching requested opinions.

These steps are repeated at every tick. Because in mode B trust
models also decide who to ask for opinions, ATB additionally eval-
uates the costs associated with obtaining the required opinions (for
detailed description of opinion cost metric see Section 3.5.3). The
distinction between modes A and B allows us to evaluate trust
models whose decision making mechanism only selects interaction
partners separately from those trust models whose decision mak-
ing mechanism also provides guidance on who to ask for opinions.
We made this distinction, because few trust models define how to
select interaction partners and even fewer define who to ask for
opinions. Modes allow ATB to cover both cases.

3.2. Generating experiences

Having defined the evaluation protocols, we continue with
describing the procedure that ATB uses to create experiences.
Agent a gets experiences when it interacts with other agents.
When interacting, agents provide services and the quality of these
provided services reflects the quality of the agents. So to describe
the creation of experiences, we must explain what we mean by
the quality of agents and explain precisely how interactions reflect
this quality.

3.2.1. Capabilities of agents for providing services
We model the quality of agents as service providers using the

notion of capability.

Definition 1 (Capability). Capability of agent a 2 A for service
s 2 S at time t 2 T represents that agent’s ability and willingness
to provide a quality service to agent a. We express capability as a
real number from [0, 1], where 0 and 1 represent the lowest and
highest values, respectively. The capability is thus a mapping
Capability : A� S � T ! ½0;1�.

Capabilities represent the actual quality of agents in interac-
tions. Interacting with an agent whose capability is high yields
more utility than interacting with an agent whose capability is
low. We use capabilities as a basis (i) to model interactions (to con-
struct a’s experience) and (ii) to simulate opinions that agents give
to a. Moreover, the actual capabilities are only known by the test-
bed and are never revealed to a. Agent a can only infer them from
interactions or when agents provide opinions about other agents.
Therefore we use capabilities as an integral part of the evaluation.
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3.2.2. Modeling interactions
We model interactions between a and the other agents by gen-

erating experience tuples. An experience e = ha, s, t, ki is a record of a
past interaction, where a denotes the providing agent, and symbols
s, t and k denote the type of service, time of interaction and the
assessment of the interaction, respectively. Trust models represent
assessments with different formats; some use binary, some
discrete, some continuous scales and even other approaches exist.
In trying to be general, ATB internally represents assessments
as real numbers from [0, 1], where 0 and 1 represent the
worst and best assessment, respectively. We call these internal
assessments interaction outcomes. If a trust model represents
assessments in a way that is different from interaction outcomes,
it has to convert interaction outcomes to its own domain of
assessments [14].

To create an experience tuple, ATB computes the interaction
outcome from the capability of the agent that provides the service.
But to simulate a realistic setting, a particular interaction outcome
could be different than the actual capability of the providing agent.
The difference, however, should not be substantial and in the long
run, interaction outcomes should resemble the actual capabilities
of agents; the difference should amount only to the noise. There-
fore ATB generates interaction outcomes with a pseudo-random
generator. The generator uses a probability density function
(PDF) that is parametrized with two parameters: (i) the capability
of the agent that provides the service and (ii) the parameter that
controls the noise. For this purpose we use the PDF of a normal dis-
tribution that is truncated on [0, 1].

pðx; l;rÞ ¼
e
�ðx�lÞ2

2r2

R 1

0
e
�ðt�lÞ2

2r2 dt

0 6 x 6 1

0 else

8>><
>>:

The shape of this PDF is determined by the mean l and the
standard deviation r. To model an interaction outcome between
a and agent a for service s at time t, we invoke a pseudo-random
generator and set the parameter l to the capability of the provid-
ing agent, thus l = Capability(a, s, t), while we can set r to an arbi-
trary value that is fixed for all agents. For instance, Fig. 2 shows
PDFs for three agents with capabilities 0.1, 0.5 and 0.9, respec-
tively. The r is set to 0.15 in all three cases.
Fig. 2. ATB uses truncated normal distribution to generate interaction outcomes.
The mean, l, is set to the capability of an agent, while the standard deviation, r, is
set to an arbitrary value that controls the noise. Here we show agents with
capabilities of 0.1, 0.5 and 0.9, while r is set to 0.15 in all three cases.
3.3. Generating opinions

Other agents in the system can provide opinions about third-
parties to agent a. In fact, those opinions would be a combination
of two factors; the trust models that other agents use and their
honesty towards agent a. Because we wish to investigate the per-
formance of a’s trust model and minimize the impact of other fac-
tors, we simulate the trust models of other agents. To model the
honesty of other agents we use deception models.

3.3.1. Modeling trust between other agents
We model trust between other agents in the system with opin-

ions. An opinion is defined as a tuple o = hai, aj, s, t, x, ui, where x
denotes the trust degree of ai towards aj for service s at time t. Var-
iable u denotes how uncertain is agent ai about the given opinion;
values 0 and 1 denote complete certainty and uncertainty, respec-
tively. Because trust models represent trust degrees, like assess-
ments, with different formats, ATB internally represents trust
degrees with real values from [0, 1], where 0 and 1 represent the
lowest and the highest degrees, respectively. If a trust model uses
a different representation of trust degrees, it has to convert inter-
nal trust degrees to its own domain (recall Fig. 1).

ATB creates opinions by generating internal trust degrees with a
pseudo-random generator. The generator uses a PDF of a truncated
normal distribution that is parameterized with the capability of the
agent who is the object of the opinion. So to compute the internal
trust degree of agent ai towards aj for service s and at time t, we in-
voke the pseudo-random generator and set the mean to l = Capa-
bility(aj, s, t), while we use the standard deviation, r, to control the
uncertainty of the opinion; we use small values when agent ai

knows agent aj very well, and larger values when contrary is the
case.

This way of generating opinions assures three things. First, it as-
sures that agents provide opinions with varying accuracy; some
agents may know specific agents better than others. Second, it as-
sures that opinions vary even when they are given by agents that
know the chosen agent in the same amount. And third, it assures
that the evaluated trust model does not interfere with the creation
of opinions; the same opinions are generated in every evaluation
regardless of the evaluated trust model.

3.3.2. Modeling deception
It is reasonable to expect that in an open environment at least

some agents will provide false opinions. To model such agents,
ATB uses deception models [15]. Deception models determine
which opinions will be reported to a and in what form. They can
alter opinions in three ways; they can change internal trust de-
grees, they can delete opinions or they can leave them unchanged.

A deception model is a mapping d: [0, 1] ? [0, 1] that trans-
forms the internal trust degree into a trust degree that will be gi-
ven to a. In their proposal, Yu and Sing [15] used four deception
models; truthful, complementary, exaggerated positive and exag-
gerated negative. The truthful model does not alter trust degrees;
it accounts for agents that are honest at providing opinions. In
the complementary model, agents report opinions with the com-
plementary trust degrees, while in the exaggeration models agents
either overestimate (positive exaggeration) or underestimate (neg-
ative exaggeration). If a deception model is not assigned (that is,
Dðai; aj; s; tÞ ¼ ;) this means that at time t and for service s agent
ai will not provide an opinion about agent aj. This covers the exam-
ples where agents are either unwilling to provide opinions or are
unaware of that agent’s existence. A graphic representation of
models is given in Fig. 3.

We are adding a random model to the set of existing deception
models. In random model, agents provide opinions with trust de-
grees that are selected at random from a uniform distribution.
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Set D represents an example set of deception models that can be
used in an evaluation. In our case we have D ¼ fdt ; dc; dpe; dne; drg,
where every model is defined as follows (parameter 0 6 j 6 1 de-
notes the exaggeration coefficient; Fig. 3 uses j = 0.25):

� truthful model dt(x) = x;
� complementary model dc(x) = 1 � x;
� positive exaggeration model dpe(x) = x � (1 � j) + j;
� negative exaggeration model dne(x) = x � (1 � j);
� random model dr ¼ Uð0;1Þ;

Deception models in D constitute the most common ways of
providing opinions in an open multi-agent environment: there
are some agents that provide honest opinions, some that lie exten-
sively [15] and some that are biased in either positive or negative
direction [16]. Random model simulates the most unpredictable
agents whose opinions are the least reliable, while the lack of
deception model assignments accounts for the scarcity of opinions.

ATB assigns a deception model to every agent in the system. The
assignment depends on which agent the opinion is about, the ser-
vice, and the time, thus Deception : A�A� S � T ! D. This way a
particular agent can vary its honestly in time, between services and
even between agents.

Finally, we also use deception models to simulate discriminat-
ing behavior of agents as service providers. When an agent be-
haves differently towards a than it behaves towards other
agents, then the opinions of other agents about this particular pro-
vider become lies from a’s standpoint. For a, there is no difference
between an agent providing a false opinion about a third-party,
and an agent providing a truthful opinion about the same-third
party, if the third party discriminates. In either case, the opinion
is of no use to a.
3.4. Evaluation scenario

While the preceding sections describe capabilities, deception
models, and procedures that use them to generate experiences
Fig. 3. Modeling deception with deception models. If an agent’s actual trust degree
towards some agent is 0.20, a truthful agent will report 0.20, while agents with
complementary, positive exaggeration and negative exaggeration deception models
will report 0.80, 0.40 and 0.15, respectively.
and opinions, this section describes a component of the testbed
that ties all these concepts together – evaluation scenarios. An
evaluation scenario represents the entire surroundings of agent
a; it describes other agents and their behavior. More specifically,
a scenario determines the following:

Agent population. A scenario determines the set of agents in
the system, A, and it also determines how the set changes as
the evaluation progresses; the set may change because some
agents may leave and new may enter the system.
Assignment of capabilities. A scenario assigns capabilities and
manages their changes. This includes defining and managing
the set of available services, S.
Assignment of deception models. A scenario assigns deception
models and manages their changes.
Selection of interaction partners. When evaluating trust mod-
els without decision making mechanisms, the scenario deter-
mines interaction partners of agent a. When the contrary is
the case, this task is delegated to a’s decision making
mechanism.
Selection of opinion providers. When evaluating trust models
without decision making mechanisms or when the decision
making mechanisms do not suggest who to ask for opinions
(mode A), the scenario determines the opinions that are given
to agent a. When the contrary is the case (mode B), this task
is delegated to a’s decision making mechanism.

Scenarios provide flexibility for constructing evaluation envi-
ronments; they can be used to reproduce various attacks on trust
models. For instance, in a white-washing attack [1] an agent, called
attacker, abuses the system by letting its trust degrade and then
escapes the consequences by re-entering the system with a fresh
identity. In ATB, one would represent this attack by carefully
manipulating the set of agents and assignment of capabilities.
For instance, in the beginning the attacker would have a high capa-
bility, but as the attack progresses, the attacker’s capability would
be lowered. Once a would no longer select the attacker as the
interaction partner, the scenario would remove the attacker and
create a new agent with a different identity but with the same
behavior. A more sophisticated scenario might create an additional
cast of colluding attackers that would falsely promote the attacker
to maximize the damage.

Another way of looking at scenarios is to consider the entire
evaluation as a game. The game is played between the scenario
and agent a. The scenario controls the system and knows every-
thing, while agent a knows nothing at the beginning, but senses
the environment (via experiences and opinions) and uses the
tested trust model to infer trust.

3.5. Metrics

ATB provides several metrics and their use depends on the eval-
uated trust model. The following subsections explain metrics and
their use.

3.5.1. Accuracy
When evaluating trust models without decision making mech-

anism, ATB evaluates the correctness of the computed trust val-
ues. Because capabilities define the quality of agents, we can
evaluate trust values by measuring the similarity between them
and the actual capabilities of agents. One way of doing it would
be to compute a standard forecast error metric, such as the mean
absolute error, between the estimated trust degrees and the capa-
bilities of agents. However, this would require that all trust mod-
els represent trust degrees as real values from [0, 1]. While some
models represent trust degrees in this format, others use different
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representations. In Section 2 we noted that the set of trust de-
grees should be totally ordered. This means that any trust model
– regardless of its domain of trust degrees – should be able to
rank agents by their trust degrees. Therefore, we propose to com-
pute accuracy by evaluating the rankings of agents that emerge
from trust estimations. The idea is to compare rankings that
emerge from trust degrees with the ranking that emerges from
capabilities. For this purpose, we can use any metric that com-
putes distances between rankings.

Definition 2 (Accuracy). Let Trust(a, s, t) denote the trust degree
that agent a has towards agent a 2 A for service s 2 S at time t 2 T .
We define Concordant : S � T ! N0 as a function that returns the
number of pairwise comparisons of agents by their trust degrees
that are concordant with the pairwise comparisons of agents by
their capabilities.

Concordantðs; tÞ ¼
X

ai ;aj2AðtÞ
Capabilityðai ;s;tÞ>Capabilityðaj ;s;tÞ

½Trustðai; s; tÞ > Trustðaj; s; tÞ�

Similarly, we define a function Discordant : S � T ! N0 that returns
the number of pairwise comparisons of agents by their trust de-
grees that are discordant with the pairwise comparisons of agents
by their capabilities.

Discordantðs; tÞ ¼
X

ai ;aj2AðtÞ
Capabilityðai ;s;tÞ>Capabilityðaj ;s;tÞ

½Trustðai; s; tÞ < Trustðaj; s; tÞ�

Finally, we define Accuracy : S � T ! ½0;1� as a metric that returns
the level of similarity between trust degrees and capabilities of
agents. We evaluate accuracy at every tick t 2 T and for every type
of service s 2 S.

Accuracyðs; tÞ ¼ 1
2
þ Concordantðs; tÞ � Discordantðs; tÞ

jAðtÞj � ðjAðtÞj � 1Þ

The accuracy from above is a slight variation of Kendall’s Tau-A
metric. Our modification only scales the result from its original do-
main of [�1, 1] to [0, 1]. Score 1 accounts for perfect estimations,
where the ranking of agents by trust degrees completely agrees
with the ranking of agents by their capabilities. This means that
the trust model works flawlessly. Score 0 means that trust estima-
tions are the exact opposite of capabilities. In such case, the trust
model is harmful. It suggests its user to interact with agents that
have low capabilities and dissuades her from interacting with
those whose capabilities are high. When the result is 0.5, the trust
model bears no information; it is not beneficial, but it is also not
harmful. Result 0.5 means that trust estimations and capabilities
are uncorrelated. This result is obtained if, for instance, the trust
model assigns the same trust degree to all agents.

Example. Say we have a set of agents, A ¼ fa1; a2; a3g, with the
following capabilities: Capability(a1) = 0.1, Capability(a2) = 0.5 and
Capability(a3) = 0.9. (For simplicity, assume constant capabilities
and only one type of service, thus we omit the time and service
parameters.) Additionally, say we test a trust model that uses qual-
itative trust degrees X = {bad < average < good}. Now, imagine that
the trust model computes the following: Trust(a1) = average,
Trust(a2) = bad and Trust(a3) = good. In this case, the trust model
computes trust degrees that impose a different ranking of agents
than that imposed by capabilities:

� Agent ranking by trust degrees: a2 < a1 < a3;
� Agent ranking by capabilities: a1 < a2 < a3.

We compute the accuracy of the trust model in three steps.
First, we compute the number of concordant trust degrees.
Concordant ¼ 1 Trustða1Þ<Trustða3Þ½ � þ 1 Trustða2Þ<Trustða3Þ½ � ¼ 2

Second, we compute the number of discordant trust degrees.

Discordant ¼ 1 Trustða1Þ>Trustða2Þ½ � ¼ 1

Finally, we compute the accuracy of the computed trust values.

Accuracy ¼ 1
2
þ 2� 1

3 � ð3� 1Þ ¼
2
3

Kendall’s Tau-A from Definition 2 is only one possible metric to
measure the accuracy of rankings. We could easily use Spearman’s
footrule or any other suitable replacement [17]. In fact, ATB has sev-
eral accuracy metrics already implemented and new ones can be
easily added as plug-ins. But in this paper, we shall only use Ken-
dall’s Tau-A.

3.5.2. Utility
When a trust model provides a decision making mechanism

that selects interaction partners, we can evaluate the combined
performance of the pair (trust model, decision making mecha-
nism). The standard way of evaluating this combination is to mea-
sure the utility that agent a collects in interactions.

Definition 3 (Utility). Let Partner(s, t) denote the agent that a
selected as interaction partner for service s 2 S at time t 2 T . We
define Utility : S � T ! ½0;1� as a metric that for a given service s 2 S
returns the relative amount of utility thata obtained up to time t 2 T .

Utilityðs; tÞ ¼
P

ti6tCapabilityðPartnerðs; tiÞ; s; tiÞP
ti6t max

a2AðtiÞ
Capabilityða; s; tiÞ

The utility measures a’s relative performance in selecting qual-
ity interaction partners. In the numerator, we sum the capabilities
of a’s interaction partners from the beginning of the evaluation to
the most recent tick. In the denominator, we sum the capabilities
of the most capable agents for the same period. If a constantly se-
lects the most capable agents as interaction partners the Utility is
constantly 1. Notice that the utility has a ‘memory’; the most re-
cent value encapsulates all previous partner selections.

Example Let us reuse the set of agents and assignment of capa-
bilities from previous example. (Again, assume static capabilities
and only one service type, thus we can omit time and service from
Capability(a, s, t) notation and service from Partner(s, t) notation.) If
a selects the following agents as interaction partners Part-
ner(1) = a1, Partner(2) = a2 and Partner(3) = a3, we compute a’s util-
ity at time 3.

Utility ¼ Capabilityða1Þ þ Capabilityða2Þ þ Capabilityða3Þ
Capabilityða3Þ þ Capabilityða3Þ þ Capabilityða3Þ

¼ 0:10þ 0:50þ 0:90
0:90þ 0:90þ 0:90

¼ 0:55

Like accuracy, utility from Definition 3 is only one possible met-
ric to measure the quality of decisions. We could have used any
other implementation.

3.5.3. Opinion cost
When the decision making mechanism not only selects the

interaction partners but also determines who to ask for opinions,
ATB can also measure the cost of obtaining opinions.

Definition 4 (Opinion cost). Let ORðs; tÞ denote the set of opinion
requests that a generated for service s at time t. Each opinion
request is represented as a tuple hao, ap, s, ti, where ao denotes the
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agent that provides the opinion, ap the agent that the opinion is
about and symbols s and t denote the service and time, respec-
tively. We define the OpinionCost : S � T ! N0 as a metric that for
a given service s 2 S returns the number of opinions that a
requested at time t 2 T .

OpinionCostðs; tÞ ¼ jORðs; tÞj

The OpinionCost above simply returns the number of opinions
that agent a requests from other agents. Such number can be inter-
preted in various ways, for instance as the level of congestion in
the communication network that the trust model causes with its
opinion requests.
Table 1
The computation of trust and the changes in accuracy and utility for the walk-through
example. The italic values show changes in trust estimations.

Time (t) Trust(ax, t) Accuracy (t) Utility (t)

a1 a2 a3 a4 a5

0 0.50 0.50 0.50 0.50 0.50 0.50 0.00

1 0.37 0.50 0.50 0.50 0.50 0.70 0.10
2 0.37 0.42 0.50 0.50 0.50 0.85 0.18
3 0.37 0.42 0.50 0.50 0.50 0.85 0.28
4 0.37 0.42 0.50 0.58 0.50 0.85 0.39
5 0.37 0.42 0.50 0.58 0.66 1.00 0.51
6 0.37 0.42 0.50 0.58 0.75 1.00 0.59
7 0.37 0.42 0.50 0.58 0.80 1.00 0.65
8 0.37 0.42 0.50 0.58 0.83 1.00 0.69

Fig. 4. Accuracy and utility for the trust model in the walk-through example. The
values in the legend represent the average accuracy and the most recent utility.
3.5.4. The use of metrics
Accuracy, utility and opinion cost allow us to benchmark differ-

ent aspects of trust models. Accuracy measure the quality of trust
values, utility measures the quality of trust-based decisions, and
opinion cost measures the consumption of resources when obtain-
ing opinions (like the communication overhead). Sometimes these
metrics may contradict each other. For instance, to compute more
accurate trust values an agent may have to interact with low qual-
ity agents. But interacting with low quality agents will result in
lower utility gains. Alternatively, the agent could ask for more
opinions, but in a highly deceitful environment this would not
help. Specifically, accuracy and utility measure a’s tendencies be-
tween exploration and exploitation. To obtain higher accuracy on
one hand, agent a has to interact with unknown agents; it has to
explore the space of interaction partners. But on the other hand,
using the existing knowledge and exploiting it by interacting with
highly capable agents will lead a to higher utility gains. A good
decision making mechanism should balance the actions of an agent
to get good results for every metric.

3.6. A walk-through example

The following example demonstrates how an evaluation run
looks in practice. We have an environment of five agents
A ¼ fa1; a2; a3; a4; a5g with corresponding capabilities Capabil-
ity(a1) = 0.10, Capability(a2) = 0.25, Capability(a3) = 0.50, Capabil-
ity(a4) = 0.75 and Capability(a5) = 1.00 (for simplicity, agents have
static capabilities and only one service exists, which is why we
omit time and service parameters from Capability(a, s, t) notation
and service from Partner(s, t) notation). Agent a uses a trust model
that has a decision making mechanism that selects interaction
partners, but does not determine who to ask for opinions. This
example thus demonstrates ATB’s mode A. The trust model com-
putes trust degrees on scale [0, 1], while the decision making
mechanism determines the following sequence of partner selec-
tions: Partner(1) = a1, Partner(2) = a2, Partner(3) = a3, Part-
ner(4) = a4, Partner(5) = a5, Partner(6) = a5, Partner(7) = a5 and
Partner(8) = a5. Table 1 shows the evolution of trust model estima-
tions and the changes in accuracy and utility metrics.

In the beginning, the trust model assigns a default value, 0.50,
to all agents, which results in Accuracy(0) = 0.50. Because a has
not interacted with anyone yet, the utility remains Utility(0) = 0.00.
At t = 1 agent a interacts with a1. Since that agent is of poor quality
as interaction partner (Capability(a1) = 0.10), agent a lowers its
trust degree from 0.50 to 0.37 (we are not concerned with how ex-
actly a updates trust degrees, only that they change; we italicized
changes in trust degrees in Table 1). This change increases both,
the accuracy and the utility; the first rises to 0.70 and second to
0.10. Similarly, at t = 2 agent a interacts with a2 and changes its
trust degree from 0.50 to 0.42. This correction lifts accuracy to
0.85, while the utility rises to 0.18. Similar procedure repeats at
every tick.
Two observations can be made from this example. First, the
accuracy depends on the relative order of agents and not on the
absolute similarity between trust degrees and capabilities. This is
evident from t = 5 onward, where as trust degree toward agent a5

becomes more and more similar to a5’s capability, the accuracy re-
mains the same. Second, once a begins selecting the most capable
agent as the interaction partner (a5), the utility starts to converge
towards 1.

Finally, when we present results in Section 4.5, we plot both
metrics; Fig. 4 shows accuracy and utility for this walk-through
example. The figure is a prototype of how we present results later.
To ease comparison between different trust models, we compute a
representative number for each metric. For accuracy, we compute
an average value, 0.86, while for utility, we take the most recent re-
sult, Utility(8) = 0.69. This is because of the utility’s nature, as given
in Definition 3, that already includes all past partner selections,
whereas the accuracy evaluates rankings for a particular tick. The
representative numbers are shown in the legend.
4. Empirical evaluation

In this section, we describe how we used ATB to evaluate a set
of five well-known trust models. The purpose of the evaluation is
twofold, firstly to test the hypothesis claiming that attaching arbi-
trary decision making mechanisms to trust models can produce



1 Alternatively, we could devise this number from the opinion’s uncertainty, 0.05,
where low uncertainties would indicate a high number, and high uncertainties a low
number of interactions. But since we generate all opinions with the same level of
uncertainty, this would add unnecessary complexity.
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ambiguous results and secondly, to demonstrate that ATB can be
used with a wide spectrum of existing trust models. In this section
we first state the hypothesis and propose a plan to test it, then we
successively describe the used trust models, the used decision
making mechanisms and the evaluation scenario. Finally, we pres-
ent the results and discuss them.

4.1. Hypothesis and testing plan

We claim that some decision making mechanisms are more suit-
able for certain trust models and may not work well with others. To
test this hypothesis, we have devised two experiments; in the first,
we paired trust models with one decision making mechanism, and
in the second with a different one. We reasoned that if our hypoth-
esis was incorrect, we would get the same results in every experi-
ment regardless of the decision making mechanism used. By the
same results, we refer to the same ranking of trust models by their
performances. However, if the results between experiments dif-
fered, our hypothesis must hold.

The decision making mechanisms were used only to select
interaction partners. This meant using ATB in mode A, thus mea-
suring accuracy and utility. More specifically, we compared accu-
racy and utility between trust models when using the first
decision making mechanism, against accuracy and utility when
using the other one.

4.2. Trust models

We chose the following trust models: Beta Reputation System
[18], Travos [6], EigenTrust [19], and trust models of Abdul-Rah-
man and Hailes’ [20], and Yu, Singh and Sycara’s [21]. This selec-
tion represents enough diversity to cover both centralized and
decentralized approaches, both qualitative and quantitative infor-
mation representations and both types of trust models; those that
have and those that do not have a decision making mechanism at-
tached. In the next sections, we briefly describe these trust models.
We do not focus on their details – for the details see the references
to the publications associated to each model – but on their imple-
mentation within ATB. We describe the adapters for converting
generated experiences and opinions to the formats that are com-
patible with the selected trust models; we describe the implemen-
tation of the ‘‘Interpretation’’ component from Fig. 1. Moreover, we
have implemented trust models using recommended parameter
values wherever given in the original publications or trying to find
a sensible value for those that were omitted.

4.2.1. Beta reputation system (BRS)
Beta reputation system (BRS) [18] uses the expected value of

the beta distribution to represent trust. Because of this, its trust de-
grees are real numbers from [0, 1]. BRS computes trust from
agent’s own experiences and from opinions from third-parties.
Such information comes in the form of 2-tuples hr, si that represent
the amount of positive and negative feedback, respectively. In ATB,
we compute these tuples from experience (opinion) tuples by set-
ting r to the actual interaction outcome (trust degree), and setting s
to its complement. For instance, we convert an experience tuple ha,
s, t, 0.8i into ha, s, t, h0.8, 0.2ii.

BRS uses a simple discounting procedure for handling false
opinions. The discounting is based on the level of trust the BRS
places in the agents that provide opinions. For instance, if BRS con-
siders an agent to be very untrustworthy as a service provider, it
heavily discounts its opinions. Such assumption is sometimes
called trust transitivity, because it states that if an agent is trust-
worthy to provide a certain service it can also be trusted to provide
good (honest) opinions.
4.2.2. Abdul-Rahman, Hailes (ARH)
The trust model proposed by Abdul-Rahman and Hailes (ARH)

[20] uses qualitative information for computing and representing
trust. In ARH, domains of trust degrees and assessments are the
same: X = K = {vb < b < g < vg}, where elements denote ‘very bad’,
‘bad’, ‘good’ and ‘very good’ degrees (assessments), respectively.
We compute these values by dividing the interval [0, 1] into four
sub-intervals. We tried three mappings: ARHL: [0.00, 0.10) ? ‘vb’,
[0.10, 0.25) ? ‘b’, [0.25, 0.50) ? ‘g’, [0.50, 1.00] ? ‘vg’; ARHM:
[0.00, 0.25) ? ‘vb’, [0.25, 0.50) ? ‘b’, [0.50, 0.75) ? ‘g’, [0.75,
1.00] ? ‘vg’; and ARHH: [0.00, 0.50) ? ‘vb’, [0.50, 0.75) ? ‘b’,
[0.75, 0.90) ? ‘g’, [0.90, 1.00] ? ‘vg’. For instance, the interpreta-
tion components of ARHL, ARHM, and ARHH, convert an interaction
outcome 0.50 into ‘vg’, ‘g’, and ‘b’, respectively. The letters L, M, and
H stand for mapping names; low, middle, and high.

ARH copes with liars by using a mechanism capable of correct-
ing opinions. For instance, ARH can learn if an agent consistently
badmouths other agents and adjusts its opinions accordingly.
Additionally, ARH is the only tested trust model that separates
trust by service types. This feature, however, is not highlighted in
our experiments, because we used a scenario with only one type
of service.

4.2.3. Yu, Singh, Sycara (YSS)
Yu, Singh and Sycara (YSS) [21] proposed a trust model for

large-scale P2P systems. Since their trust model represents trust
degrees and assessments as real values from [0, 1], we did not have
to make any conversion.

YSS computes trust from experiences and opinions. In so doing,
it computes confidence in its experiences, and if that confidence is
sufficient, opinions are discarded. If confidence is not sufficient,
YSS computes trust by combining experiences with opinions. The
latter are discounted by using a variation of the weighted majority
algorithm. This algorithm simply halves the credibility of agents,
whose opinions turn out to be incorrect. This way liars lose credi-
bility quickly. When computing trust from experiences, YSS pro-
vides two methods, simple averaging and exponential averaging.
In our experiments, we used simple averaging.

4.2.4. Travos (TRA)
Travos (TRA) is a trust and reputation model for agent-based

virtual organizations [6]. Similar to BRS it is based on the beta dis-
tribution and represents trust degrees as its expected value. More-
over, feedback in Travos is also represented in the form of 2-tuples
hm, ni, but contrary to BRS, Travos uses binary interaction out-
comes. Thus h1, 0i represents a satisfactory and h0, 1i an unsatis-
factory interaction. The interpretation component computes
these tuples by thresholding the interaction outcomes; if the out-
come reaches the threshold, we get h1, 0i, if not, h0, 1i. Like ARH,
we present three thresholds; TRAL thresholds at 0.25, TRAM at
0.50, and TRAH at 0.75.

Travos expects opinions as tuples hr, si that contain the number
of positive, r, and negative, s, past interactions. When a receives an
opinion, say hai, aj, s, t, 0.60, 0.05i, the interpretation component
simulates a number of interactions, 10 in our case,1 of ai with aj

by using truncated normal distribution. It sets the mean to the opin-
ion’s internal trust degree, 0.60, and the standard deviation to the
same value that is used for generating experiences, 0.10. Each sam-
pled number is then compared against the threshold to determine
whether the interaction is satisfactory. This procedure assures that
a obtains the same tuple – adjusted for the correctness of the given
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opinion – that would have been obtained if agent ai had interacted
with aj 10 times and then reported the number of positive and neg-
ative interactions. For instance, with threshold 0.50, the opinion
above would most likely be transformed into hai, aj, s, t, h8, 2i, 0.05i.

Like YSS, Travos computes confidence in its experiences and if
confidence is not sufficient, it combines experiences with opinions.
Additionally, it also uses a complex mechanism to reduce the effect
of false opinions. If an opinion provider is deemed as a liar, Travos
reduces the weight of its opinions. This principle is very similar to
the one that is used by YSS, however, its implementation is quite
different. While YSS uses a variant of the weighted majority algo-
rithm, Travos manipulates parameters of the beta distribution.
4.2.5. EigenTrust (ET)
EigenTrust (ET) [19] is a trust model for P2P networks. It com-

putes global trust values based on opinions from all peers in the
system. An important aspect of EigenTrust is the notion of special
peers that are pre-trusted. The trust in those peers has to be accu-
rate, otherwise EigenTrust’s computation method does not con-
verge. Since EigenTrust paper does not specify how to determine
such peers, we used the approach from Personalized EigenTrust
[22], where each peer computes its own set of pre-trusted peers
based on its own experiences.

EigenTrust uses binary interaction outcomes and computes lo-
cal trust values in the form of net difference between the number
of positive and negative interactions. If the difference is negative –
more negative than positive interactions – EigenTrust assigns a lo-
cal trust value of 0 to such peer. Because of this, it is said that Eig-
enTrust does not measure negative trust [23], since it cannot
differentiate between peers with whom it has had bad experiences
from those with whom it has not interacted. In ATB, we convert
information for EigenTrust the same as for Travos; we create a bin-
ary experiences by thresholding, while we use the same procedure
to create opinions – EigenTrust also exchanges opinions in the
form of tuples that contain the number of positive and negative
past interactions. As with Travos, we present results for thresholds
0.25, 0.50, 0.75 by denoting them with ETL, ETM, ETH, respectively.
EigenTrust does not have any special mechanism to deal with false
opinions. Similar to BRS, it considers trust to be transitive, and sim-
ply discounts opinions based on the level of trust it has in agents as
service providers.
4.3. Decision making mechanisms

Of the aforementioned trust models, only EigenTrust provides a
decision making mechanism. Moreover, it provides not one, but
two mechanisms: a maximal selection and a probabilistic selec-
tion. The maximal selection selects the most trusted agent as the
interaction partner, whereas the probabilistic selection selects ran-
domly, but the probability of selecting a particular agent coincides
with its trust level. This allows every agent to be selected, while
assuring that highly trusted agents are selected more frequently.
Maximal selection thus ensures maximum utility gains, while the
probabilistic selection balances utility gains and exploration.

We used these two decision making mechanisms to test the
hypothesis; we simply paired them with the tested trust models.
The pairing was straightforward, except in the case of ARH. Be-
cause this model uses qualitative trust degrees, we had to create
their numerical counterparts when making probabilistic selections.
For this purpose, we mapped qualitative values to the lower
bounds of the intervals to which they belong; for instance ‘vg’
maps to 0.50 in ARHL, to 0.75 in ARHM, and to 0.90 in ARHH.
4.4. Evaluation scenario

We have evaluated trust models in a Simple scenario, which we
describe below. Note that this is only one scenario and that the re-
sults reflect the performance of models under these specific condi-
tions; to thoroughly evaluate all aspects of trust models, one
should evaluate models in several scenarios, probing their resil-
ience against various attacks and similar. However, this is not the
purpose of this paper; we merely wish to show that decision mak-
ing mechanisms can influence the performance of trust models and
we use a minimal example to demonstrate the claim.

� The scenario contains 100 agents whose capabilities are
assigned randomly using a uniform distribution. The set of
agents and their capabilities remains unchanged during the
entire evaluation run. Additionally, the scenario allows only
one type of service.
� When assigning deception models, the scenario follows a tran-

sitive notion of trust. This means that the scenario assigns
truthful deception models to agents whose capabilities are high
and complementary deception models to agents whose capabil-
ities are low. More precisely, the probability of assigning a
truthful deception model is directly proportional to the capabil-
ity of the agent that provides the opinion. The scenario assigns
deception models at the beginning of the experiment and the
assignments remain unchanged throughout the evaluation run.
� The scenario assumes full connectivity; every agent has an

opinion about every other agent in the system.
� Each run lasts for 500 ticks. This gives models enough time to

converge, and our experiments show that results are stable
even if we prolong runs.
� The scenario generates experiences with a standard deviation of

0.10. When generating opinions, however, the standard devia-
tion is set to 0.05 and, for simplicity, the same standard devia-
tion is used for generating all opinions. We generate opinions
with a lower deviation, to model that opinions, when truthful,
are more accurate than a single experience.

4.5. Results

We have repeated each evaluation 30 times with different ran-
dom seeds. We averaged the results and created average runs that
are shown on Figs. 5–9. Each figure consists of part (a) and part (b).
The first shows the results when using the maximal selection,
while the second shows the results when using the probabilistic
selection. Figures show the evolution of accuracy and utility, while
the legends contain the representative values for each metric (in
brackets). The results are summed up in Table 2.

When computing average runs we also computed standard devi-
ations. They are drawn in light grey and they appear in lower parts
of figures. To get an overall sense of a deviation, we computed a
simple average of values on the deviation curves. They are also
shown in the legends.

4.6. Discussion

The results supports the hypothesis that the decision making
mechanism can influence the performance of trust models. If we
rank trust models by their performances measured with utility,
we get different results depending on which decision making
mechanism trust models use. This can be seen by comparing the
third and the fifth column of Table 2. For instance, when models
use the middle thresholds (M) and we measure the utility, the best
trust model with maximal selection is YSS, while the best model
with probabilistic selection is EigenTrust. Moreover, we can com-
pute correlation between results; Kendall tau rank correlation
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Fig. 5. Abdul-Rahman, Hailes with mappings of ARHM. (a) Maximal selection. (b) Probabilistic selection.

(a) (b)

Fig. 6. Beta reputation system. (a) Maximal selection. (b) Probabilistic selection.
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coefficient yields �0.2, which means that results actually show
week inverse correlation. The hypothesis also holds when we com-
pare performances with different thresholds; the correlations are
0.5 and �0.1 when thresholds are low (L) and high (H), respec-
tively. If we compare performances measured with accuracy (the
second and the fourth column in Table 2) the correlations for
low, medium and high thresholds are 0.6, 0.4, and 0.6, respectively.
This is a bit better, but the decision making mechanism still affects
the results.

Models with thresholds, ARH, ET, and TRA, achieve the highest
accuracy with medium (M) thresholds, while their utility rises as
thresholds increase. Since medium thresholds divide the interval
[0, 1] equidistantly, and since capabilities are assigned uniformly
over [0, 1], equidistant sub-intervals provide models with the best
data for estimations. For instance, if threshold is 0.75 then 75% of
agents provide unsatisfactory interactions; while such agents have
different capabilities, models hardly spot the difference between
them. However, high thresholds help models estimate highly capa-
ble agents more accurately, which increases utility; it is easier to
differentiate between highly capable agents if thresholds are high.
This shows how models can be tweaked to achieve higher utility
while lowering their accuracy. If we measured only utility, this
observation would remain hidden.

When a uses the maximal selection it achieves higher utility.
This is expected since probabilistic selection inevitably sometimes
selects agents whose capabilities are low. However, when a uses
probabilistic selection, trust models achieve substantially higher
accuracy. This is also expected since probabilistic selection implies
more exploring.

The results variate more when using maximal selection. This is
especially evident with BRS and EigenTrust (Figs. 6 and 7). High
variance comes from not exploring enough and not having enough



(a) (b)

Fig. 7. EigenTrust with threshold 0.50 (ETM). (a) Maximal selection. (b) Probabilistic selection.

(a) (b)

Fig. 8. Travos with threshold 0.50 (TRAM). (a) Maximal selection. (b) Probabilistic selection.
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local estimations. This has a domino effect in the aforementioned
trust models. Because they use the transitive notion of trust, they
weigh opinions based on the level of trust they put in opinion pro-
viders. If trust in the latter is incorrect – more likely, if agent does
not explore enough – the mistakes propagate to opinions, which
makes final trust estimations even more inaccurate.

Abdul-Rahman, Hailes and Yu, Singh, Sycara perform steadily
with both decision making mechanisms. Both models achieve
higher utility when using maximal selection and higher accuracy
when using probabilistic selection. YSS’s mechanism for dealing
with false opinions seems to be particularly effective even with
maximal selection. ARH uses qualitative values and its accuracy
therefore limits around 0.86. This is expected since ARH labels
agents that have similar capabilities with the same qualitative
trust degree. For instance, ARHM considers all agents whose capa-
bilities fall inside [0.50, 0.75) equally trustworthy.
The decision making mechanism strongly influences the perfor-
mance of Beta reputation system (BRS); BRS’s accuracy rises from
0.70 to 0.92 when we switch from maximal to probabilistic selec-
tion. The reason for such difference lies in its opinion discount
mechanism that requires some exploring in the beginning. Since
maximal selection does not allow it, the combination of BRS and
maximal selection is prone to errors.

Interestingly, when paired with probabilistic selection, BRS
achieves high accuracy, but very low utility. This is counter-intui-
tive; good estimations should intuitively lead to good selections.
To explain this, we have to look into BRS’s computation method.
In gross simplification, BRS assigns a default trust value of 0.5 to
every agent. When the feedback is positive, BRS increments the
trust value, but if the feedback is negative, BRS decrements it. In
other words, every trust value starts with 0.5 and then moves
either up or down. Because of this, all trust values are clustered



(a) (b)

Fig. 9. Yu, Singh, Sycara. (a) Maximal selection. (b) Probabilistic selection.

Table 2
Summary of results. The choice of decision making mechanism influences the
performance of trust models. The choice of mappings and thresholds is also
influential; as trust models increase thresholds, they increase utility, but accuracy
peaks when thresholds are in the middle (M); the numbers in parenthesis therefore
show rankings with middle thresholds.

Trust model Maximal selection Probabilistic selection

Accuracy Utility Accuracy Utility

ARHL 0.62 0.79 0.75 0.62
ARHM 0.77 (2) 0.87 (2) 0.81 (4) 0.67 (2)
ARHH 0.73 0.94 0.78 0.74
BRS 0.68 (3) 0.79 (3) 0.92 (2) 0.56 (5)
ETL 0.49 0.50 0.65 0.58
ETM 0.62 (4) 0.58 (5) 0.72 (5) 0.71 (1)
ETH 0.57 0.79 0.59 0.85
TRAL 0.48 0.65 0.83 0.53
TRAM 0.55 (5) 0.78 (4) 0.87 (3) 0.60 (4)
TRAH 0.54 0.96 0.67 0.68
YSS 0.91 (1) 0.95 (1) 0.96 (1) 0.65 (3)
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around 0.5, which means that numerical difference between the
most trusted and the least trusted agent is rather small. When
selections are probabilistic, highly trusted agents have only a
slightly better chance of being selected than the highly distrusted
ones. This means that highly capable agents are not selected as of-
ten as they would have been if trust values were more dispersed.
This is the reason why BRS achieves low utility despite having high
accuracy.

Travos varies in performance; with maximal selection its accu-
racy is poor and while probabilistic selections do increase it, Travos
achieves good accuracy only with medium thresholds. But when
thresholds are high, Travos collects the most utility with maximal
selections (0.96), although YSS (0.95) and ARHH (0.94) trail closely.
In this case, Travos is able to select good partners in spite having
low overall accuracy; its trust estimations towards highly capable
agents – capabilities from [0.80, 1.00] – are accurate, while estima-
tions towards remaining agents are not. This results from having a
high threshold and from Travos’ opinion discount mechanisms;
only highly capable agents produce satisfactory interactions and,
consequently, Travos learns to correctly discount only highly posi-
tive opinions.
Travos also suffers from using binary values that carry less
information than real ones. Because of this, Travos may sometimes
fall in a local trap. A local trap occurs when a trust model estimates
a certain agent is the most trustworthy and it keeps selecting that
agent as the interaction partner, although that agent may not be
the most capable one. Say an agent has a capability 0.75 and Travos
uses threshold 0.50. If at the beginning – when Travos does not
know how to discount opinions – opinions suggest that this agent
is the most trustworthy, Travos will select it as the interaction
partner. The interaction will most likely be positive and Travos will
actually increase the trust value towards that agent. In the next
tick, the situation will repeat. And again in the successive ticks.
Eventually this agent will have the maximal possible trust value;
even though there are other agents with higher capabilities. But
if the threshold is high, only highly capable agents will produce po-
sitive interactions, so such cases are less likely to evolve. Alterna-
tively, the local trap can be avoided if the model explores enough
(like it happens with probabilistic selection).

The decision making mechanism most notably influences the
results of EigenTrust. When using maximal selection EigenTrust
collects the least utility, but when paired with probabilistic selec-
tion EigenTrust achieves the best score. This is because EigenTrust
requires some exploration, which is not available when using max-
imal selection. In this case, EigenTrust produces extreme results;
they are either very good or they are very bad (few are in between).
However, the results on average are worse than from any other
model. But when we combine it with probabilistic selection, Eigen-
Trust achieves the best utility.

Like BRS, EigenTrust’s good result with probabilistic selection is
counter-intuitive. While having good utility, EigenTrust achieves
very poor accuracy; how can a trust model make good selections
if its computations are off? Again, the explanation is hidden in
the trust model’s computation procedure. EigenTrust is known
for not measuring negative trust. In ATB, this translates into giving
local trust score 0 to every agent whose capability is below 0.5. In
other words, EigenTrust considers agents as completely untrust-
worthy if their capabilities are below 0.5. Once EigenTrust labels
such agents with local trust value 0, they get a near 0% chance of
being selected when selections are probabilistic. This means that
EigenTrust can only select agents, who have above average capabil-
ities, which inherently leads to higher utility gains. But at the same
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time EigenTrust cannot accurately rank agents whose capabilities
are below 0.5, which leads to low accuracy. This duality is shown
in Fig. 10.

This is a telling example how measuring utility gives only par-
tial results; utility only evaluates the quality of selections, while
the accuracy evaluates the quality of all trust estimations.

We highlight the results in the following points.

1. Decision making mechanism plays an important role in the
evaluation of trust models, because it determines the ratio
between exploration and exploitation. This can influence
the performance of trust models.

2. Some decision making mechanisms are more suitable for
certain trust models and do not work well with others. Forc-
ing arbitrary selection procedures on trust models can thus
yield ambiguous results.

3. Utility metrics only evaluate the quality of partner selections
and ignore the remaining trust estimations. We advocate for
metrics like accuracy that evaluate the entire output of trust
models.

5. Implementation

This section shows an architectural overview of ATB and de-
scribes how ATB could be extended to accommodate trust models
that compute trust from other information sources.

5.1. Architecture

ATB consists of four basic components: an evaluation protocol, a
scenario, a trust model, and a set of metrics. In brief, the scenario
generates information from which the trust model computes trust
that is then evaluated by various metrics. The evaluation protocol
binds these components together by defining when and how they
communicate. The evaluation protocol is instantiated and ran by
an infrastructure facility. The architecture of ATB is shown on
Fig. 11.

As the infrastructure we use Repast Simphony framework [24].
It provides basic facilities needed for a simulation, such as time
management, graph plotting, batch-run support, and similar. Note
(a)

Fig. 10. EigenTrust is unable to evaluate negative trust. Estimations towards agents with
quite accurate. (a) Maximal selection. (b) Probabilistic selection.
that the infrastructure only invokes the evaluation protocol and it
is otherwise completely detached from other components.

Evaluation protocols, recall Section 3.1, determine the steps of
the evaluation run. They also serve as an intermediary between
trust models, scenarios and metrics. Evaluation protocols therefore
define the types of scenarios, trust models and metrics that can be
used together. For instance, the evaluation protocol for mode B re-
quires the type of scenario that generates experiences for selected
interaction partners and opinions from selected opinion providers,
the type of a trust model that selects both interaction partners and
opinion provides, and the types of metrics that evaluate accuracy,
utility and opinion cost. In ATB, defining the types of components
means defining their Java interfaces; specifying their methods.
Being an intermediary, the evaluation protocol also defines data
structures that are exchanged between components.

Trust models are represented as implementations of interfaces
that are specified in evaluation protocols. Typical methods of trust
models include processExperiences(), processOpinions(),
getTrust() and similar. If a trust model does more than compute
trust (if it selects interaction partners for instance) it should have
methods like getNextInteractionPartner().

Scenarios are also implementations of interfaces specified in
evaluation protocols. A scenario would have methods like gener-

ateExperiences(), generateOpinions(), getCapabili-

ties() and similar. Scenarios should generate experiences and
opinions as described in Sections 3.2 and 3.3, however, a developer
is free to use different approaches – the only limitation is the
expressiveness of the Java language. Internally, scenarios must
handle the population of agents, assignment of their capabilities
and deception models as well as other aspects of the agents.

Similarly, metrics are implementations of interfaces specified in
evaluation protocols. Often a metric will take a piece of informa-
tion from the scenario (like capabilities) and a piece of information
from the trust model (like trust) and then evaluate those pieces in
some form. For instance, the accuracy in Definition 2 computes
correlation between capabilities and trust.

Since implementations of trust models, scenarios and metrics
are simple Java classes, ATB can load them dynamically as plug-
ins. All a developer has to do is (i) implement a component’s inter-
face, (ii) annotate the implementation with a standard Service Pro-
(b)

low capabilities (left) are very inaccurate, while remaining estimations (right) are



Fig. 11. The high-level components of ATB: an evaluation protocol, a scenario, a
trust model and a set of metrics. The scenario generates information from which the
trust model computes trust, while the metrics evaluate it. The evaluation protocol
links these components together and the infrastructure instantiates and runs the
evaluation protocol.
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vider configuration file [25] and package it in a JAR, and (iii) place
the JAR inside ATB’s classpath.
5.2. Extendability or how to evaluate different kinds of trust models

ATB can cover a variety of trust models; besides those presented
in Section 4 even more recent proposals such as HABIT from Teacy
et al. [26] or TRR from Rosaci et al. [27] seem to be testable with
ATB’s design. However, such models need to be compatible with
existing evaluation protocols. But if a researcher wishes to evaluate
a trust model that is not compatible with those protocols, she
needs to devise a new one. Here we describe how one would devise
an evaluation protocol – as well as other components – to evaluate
trust models that use information from social networks.

We motivate the design on the case of Regret by Sabater and
Sierra [28]. Regret is a trust model that estimates trust from expe-
riences, opinions, and social relations between agents. The latter
are represented as directed and weighted graphs called socio-
grams. Regret uses sociograms to decide who to ask for opinions
and how to assign weights to opinion providers.

First, a researcher would have to define a new data type to rep-
resent sociograms. Next, she would have to define a new type of
scenario that generates sociograms; let us call it sociogram-en-
abled scenario. Its interface might extend the interface for scenario
in mode B by adding a method named generateSociograms().
Analogously, the researcher would define an interface for a socio-
gram-enabled trust model; it would contain a method likely
named processSociograms(). Finally, the researcher would cre-
ate a new evaluation protocol that queries the sociogram-enabled
scenario for opinions, experiences, and sociograms and then con-
veys them to the sociogram-enabled trust model. As metrics, exist-
ing solutions would all be feasible.

Once the new interfaces and new evaluation protocol have been
defined, the researcher would have to implement Regret as a plug-
in. Finally, she would have to implement (at least) one sociogram-
enabled scenario. Naturally, the implementation would have to be
aware of sociograms; the scenario would have to generate capabil-
ities and deception models appropriately, so that the information
encoded in sociograms would be meaningful.

Note that the work described above is more involved than
implementing new trust models, scenarios or metrics. However,
it can be done without modifying existing code (except for a few
configuration settings).
6. Related work

In this section we first survey the existing testbed proposals.
Then we compare ATB’s main characteristics with existing solu-
tions. Finally, we discuss ATB’s limitations.
6.1. An overview of existing testbeds

Many researchers, for instance [6,7], built their own ad hoc test-
ing environment to show how effective their proposals are. Such
tools can demonstrate the effectiveness of the proposed models,
however, they cannot be used as general purpose testbeds, since
they are model specific; they evaluate specific aspects of trust
models. Moreover, most ad hoc implementations are not publicly
available, which makes it even more difficult to compare results.

Few researchers have addressed the problem of building a gen-
eral purpose testbed. The Agent Reputation and Trust (ART) test-
bed [8] has been a courageous and well-known initiative to fill
this gap. Authors proposed a testbed, in which agents enact the
role of art appraisers. Agents estimate the worth of paintings by
either using their own judgment (determined by the testbed) or
by asking other agents for help. Agents can use trust models to i)
evaluate how other agents can help them in estimating prices of
paintings and, to ii) decide how opinions from other agents can
help them in finding additional appraisers. During evaluations
the testbed pays agents for their appraisals in proportion to how
accurate their appraisals are. Moreover, agents can use earnings
to purchase opinions or appraisals from other agents and thus im-
prove the quality of their own appraisals. At the end of the compe-
tition, the agent with the most earnings wins.

The setting of ART testbed is a good example of a competitive
multi-agent environment, in which agents need complex reasoning
to perform well. During the evaluation, agents have to appraise
paintings, query other agents for appraisals, and buy and sell rep-
utation information. They can use (or not) the trust model in any or
every task, which blurs trust model’s effect in the final evaluation.
The ART authors themselves pointed out [29] that the most suc-
cessful competitors did not concentrate much on developing trust
models, but more on deciding how to invest their earnings. Be-
cause the evaluation domain was complex, the competitors of
ART competition shifted their focus from working on trust models
to trying to boost the overall performance of their agents. Thus the
results did not reflect the quality of the trust model but the overall
reasoning capabilities of the agent that used it.

The success of ART testbed inspired Kerr and Cohen to create a
more general and focused testbed: Trust and Reputation Experi-
mentation and Evaluation Testbed (TREET) [30]. TREET simulates
a marketplace where sellers and buyers exchange items. Buyers
are motivated by the value of items, while sellers are motivated
by the profit they make from sales. Sellers can cheat by not ship-
ping the item and so increasing their profits. While TREET defines
items that each seller can sell at the beginning, buyers get a differ-
ent shopping list in each tick of the simulation. Buyers then use
trust models to select the most trustworthy sellers. TREET also
models the information lag by not letting buyers know whether
they have been cheated until some time has passed. Based on this
feedback, buyers update trust calculations. These are then used for
selecting sellers in the future. The main metric in TREET is the ratio
of sales (profits) between honest and cheating sellers.

According to its authors, TREET resolves many limitations of
ART; it supports both centralized and decentralized systems, al-
lows collusion attacks to be easily implemented and does not im-
pose the format of trust values. However, like ART, TREET is very
domain specific and, more importantly, its metrics do not evaluate
the quality of computed trust, but the quality of trust-based deci-
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sions; the quality of selecting honest buyers. In so doing, the
authors used the maximal partner selection procedure.

TRMSim-WSN [9,31] is a dedicated testbed for benchmarking
trust and reputation models intended for wireless-sensor networks
(WSNs). The testbed creates a WSN, equips nodes with trust mod-
els and defines which sink-nodes will behave benevolently and
which maliciously. Then it simulates WSN traffic. The nodes have
to send packets to benevolent sink-nodes and avoid malicious
ones. Testbed’s main metric is accuracy, which tells the percentage
of nodes that send packets to benevolent sinks.

Metrics in TRMSim-WSN are inherently based on decision mak-
ing. However, in comparison to ART testbed, calculated trust is the
only considered factor. While it is not specifically mentioned
(although it can be inferred from inspecting TRMSim-WSN’s source
code) the testbed allows trust models to use their own selection
procedures. TRMSim-WSN has a similar limitation as TREET; it is
highly domain oriented and it evaluates the quality of trust-based
decisions.

In the domain of P2P networks, West et al. introduced a P2P
simulator (P2P-Sim) [23]. P2P-Sim is a trust management simula-
tor that simulates a P2P network. In these networks, each peer
has a trust management system that helps it to avoid peers that
share corrupt files. The P2P-Sim is based on the trace/simulator
paradigm. This means that the scenario of the evaluation is defined
in a trace file that is generated before the simulation. Traces con-
tain information about the number of network nodes, their behav-
ior models, the files they currently have and the files that they wish
to obtain. Once a trace is generated, the simulator loads it and as-
signs the tested trust model to every node in the P2P network. Dur-
ing simulation, nodes download files while using their trust
models to find the most trustworthy peers. The performance of a
trust model is measured with the effectiveness metric, which is de-
fined as the proportion of valid downloads over all attempted
downloads between peers that the testbed defines as good nodes.

P2P-Sim is well-documented, comes with good examples and
has a very clear and straightforward metric. Its authors acknowl-
edge that one of its limitations is that the simulated networks
are closed meaning that nodes cannot dynamically leave or enter
the network. Additionally, trust models need a partner selection
procedure in order to select a peer to download from. Hence
P2P-Sim measures the quality of trust-based decisions and not
the quality of trust estimations. Moreover, we think that P2P-Sim
models malicious nodes inappropriately. While good nodes down-
load from the most trustworthy peers, malicious nodes – in their
quest to further pollute the network – download from the least
trustworthy ones. This is inappropriate, because the actual level
of maliciousness depends on the performance of the trust model.
If a trust model is bad at measuring negative trust (such as Eigen-
Trust), then malicious nodes are not as effective as they would be if
they used a trust model without such a limitation. This means that
trust models are not tested under the same conditions.

Recently, Chandrasekaran and Esfandiari [32] proposed a novel
testbed evaluation model that is based on graph theory. Their idea
is to construct three directed graphs successively, namely, a feed-
back graph, a reputation graph and a trust graph. In all graphs, ver-
texes represent agents, while the interpretation of edges varies
between graphs. In the feedback graph, edges represent feedback
from past interactions. Using a reputation algorithm, this graph
is converted to the reputation graph. The reputation graph is a di-
rected weighted graph, where edges represent local trust values.
Finally, using a trust algorithm the reputation graph is converted
to a trust graph. The trust graph is a normal directed graph, where
edges between agents represent (binary) trust. An edge from agent
a to agent b means that agent a fully trusts agent b, an absence of
an edge implies that a totally distrusts b. Once the trust graph is
constructed, they plan to launch an attack and then recalculate
the three graphs. As a metric, they propose to evaluate changes
in the trust graph, after the attack has been launched.

Their proposal is interesting because it is general. However, at
the time of this writing, the model is purely theoretical and no
experimental results exist yet. Thus its usefulness remains to be
proven. Additionally, the authors acknowledge that constructing
a trust graph is something that few proposals provide. To remedy
that, they propose their own implementations of trust algorithms
that would be applicable to any existing trust model. While this
is not the same as ad hoc implemented partner selection proce-
dures, ad hoc implemented trust algorithms – that are not part
of the original proposals – have the potential to influence results.

Very recently, Salehi-Abari and White [33] introduced a frame-
work for a distributed analysis of reputation and trust (DART). They
base their approach on games of iterated and generalized prisoner
dilemma. DART arranges agents into a dynamic and undirected
graph, where nodes represent agents and edges between agents
indicate that agents can interact and communicate. Every agent
thus maintains a list of connections to other agents, known as its
neighborhood. An agent then plays rounds of iterated prisoner di-
lemma games with agents that are part of its neighborhood. The
outcomes of these games represent direct interactions. Addition-
ally, every agent can ask its neighbors for opinions about third-par-
ties or it can ask its neighbors about direct interactions that they
had with third-parties. Finally, an agent can suggest its neighbor
to include another agent into its neighborhood or, analogously,
an agent can accept such an invitation from a neighbor. For making
such decisions agents use perception models (trust or reputation
models) and various policies. The main metrics are the utility that
the agents obtain in direct interactions and the number of agents
that the agents remove from their neighborhoods. On a system le-
vel, DART offers a view of the society in the form of a graph. This
can be used to see whether the tested agents allow bad agents in
their neighborhoods and similar.

DART provides a flexible, multi-faced and general environment
for evaluating performance of agents. However, its evaluation
model concentrates around trust-based decisions. In DART, every
agent has a perception model and a set of policies. Agents thus
combine information from perception models with policies to
reach various decisions. And there are many decisions to be made:
how to play in PD games, who to ask for opinions, when to add or
remove an agent from a neighborhood, when to lie, when to tell the
truth and similar. Such tight coupling between perception models
and policies blurs the effect of the perception model on the final
agents performance; it is hard to tell whether the measured perfor-
mance is due to the well functioning of the perception model, to
the chosen policies, or to both. Because certain policies may favor
some trust models, as we have shown in this paper, such evalua-
tion can yield ambiguous results. However, due to its generality,
DART is a good framework for evaluating the combined perfor-
mance of perception models and policies. If a trust model comes
with a set of such policies, DART would be a good tool to test it.

The overview above reveals that testbeds use different metrics.
We can classify them into two groups, individual metrics and system
metrics. Individual metrics measure the performance of one entity
using a trust model, whereas system metrics benchmark the perfor-
mance of the entire system, where trust model is used by several
entities. An example of the individual metric are the earnings of an
agent in the ART testbed, while the accuracy of routing in a WSN
or the ratio of valid file downloads in a P2P network are instances
of system metrics in TRMSim-WSN and P2P-Sim, respectively.

6.2. Comparing ATB against existing testbeds

ATB most differs from existing testbeds in three ways: how it
evaluates trust models, how it controls the environment of other
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agents, and how it operates in a general domain. We discuss these
differences below.

Existing testbeds use a similar evaluation model; they measure
the quality of trust-based decisions that agents with trust models
make – they do not evaluate the calculated trust directly. The prob-
lem with evaluating decisions is that they can only be taken if the
trust model has a decision making mechanism that determines
how to incorporate calculated trust in decision making processes.
This is rare and therefore testbeds combine trust models with ad
hoc decision making mechanisms to overcome this problem. As
we have shown, the election of decision making mechanism does
matter and can influence the evaluation results. ATB differs be-
cause it does not require a decision making mechanism for evalu-
ation. However, if a trust model does have a decision making
mechanism, ATB can evaluate the combined effect of the trust
model and the decision making mechanism.

ATB also differs in managing other agents – agents that only pro-
vide data to the agents that are being evaluated. Existing testbeds
usually provide a multi-agent system or an agent-based simula-
tion, where other agents reason, sense, and communicate. Some-
times other agents even use tested trust models to strengthen
their benevolence or malevolence; for instance in P2P-Sim all
agents use trust models, because malicious agents purposely
download content from – according to their trust models – the
least trustworthy peers to further pollute the network. In such
environments, the agent being evaluated is part of the system; it
receives information from other agents and also provides them
with information. Other agents can then adjust their behavior
accordingly. The point here is that the tested trust model – or
the agent that is using it – influences the behavior of other agents.
Different trust models will influence other agents differently, and
consequently, different trust models will be evaluated under dif-
ferent conditions. In ATB, the only real agent is agent Alpha, other
agents are simulated. They behave according to their capabilities,
deception models and other scenario parameters; other agents
do not reason, sense or communicate. In effect, they are puppets
obeying their master, the scenario. Notice that in experiments de-
scribed in Section 4, all trust models received exactly the same
opinions – the experiences differed, however, because a was al-
lowed to select interaction partners. Had we evaluated trust model
with evaluation protocol designed for trust models without deci-
sion making mechanism (described in Section 3.1.1), agent a
would receive the same opinions and experiences, regardless of
its trust model.

Finally, ATB also does not enforce any particular domain, such
as an electronic commerce or a P2P network. Instead, it provides
general and abstract information that can be fed to various trust
models, even if they were intended for different domains. While
ATB is not the only general testbed, for instance the testbed from
Chandrasekaran and Esfandiari [32] and DART [33] are also gen-
eral, many other proposals are domain specific.

6.3. Potentially untestable trust models and other limitations of ATB

While ATB has notable benefits, it is also limited in certain as-
pects. This section thus discusses ATB’s limitations. First, being
general, ATB cannot accommodate domain specific peculiarities
of trust models. For instance, in Regret [28] the transaction out-
comes consists of seller’s tendencies to overcharge, to deliver late
and to deliver low-quality items. Each of this aspects has a certain
value and Regret defines ways how to combine them in the final
assessment; ATB does not support such sub-assessments.

Second, because only one agent, a, uses the tested trust model
and all other agents are simulated, there is no sense in using sys-
tem-level metrics – that is metrics that benchmark the perfor-
mance of the entire system. Introducing such metrics is sensible
only if all agents use the tested trust model. However, as described
in previous section, if other agents use the tested trust model (or
any other signal from the evaluated trust model), this means that
the trust model interferes with the evaluation. Different trust mod-
els will interfere differently, which means that different trust mod-
els will be evaluated in different conditions. Moreover, to
benchmark the entire system, agents need more than trust models;
they have to be full-blown agents with reasoning capabilities that
go beyond trust estimations.

Finally, ATB is unfit to evaluate trust models that either (i) rep-
resent information (opinions, experiences) in formats that substan-
tially differ from the ones used in ATB, or trust models that (ii)
exchange or compute opinions with special protocols that cannot
be straightforwardly recreated by interpretation components. An
example of the first limitation are trust models that represent
opinions with various ontological structures, while an example of
the second limitation, are trust models that expect opinions to be
computed with certain – usually trust model specific – procedures;
such trust models usually expect that all agents use the same trust
model. For instance, in our evaluation we converted opinions for
models YSS, ARH and BRS straightforwardly, while opinions for
Travos and EigenTrust required additional work in the interpreta-
tion component.
7. Conclusion

In this paper we exposed several limitations in the existing trust
evaluation techniques. We argued that their main drawbacks are
their evaluation methods that evaluate trust models indirectly by
evaluating the quality of trust-based decisions. To reach those,
testbeds pair trust models with ad hoc decision making mecha-
nisms. We hypothesized that results of such evaluations can be
ambiguous, because some decision making mechanisms might be
more suitable for certain trust models and might not work well
with others.

We created a new trust testbed, the Alpha testbed, that can
evaluate trust models in three ways: when a trust model is without
a decision making mechanism, ATB evaluates the quality of com-
puted trust values; when a trust model has a decision making
mechanism that only selects interaction partners, ATB additionally
evaluates the quality of trust-based decisions, and finally; when a
trust model has a decision making mechanism that besides select-
ing interaction partners also determines who to ask for opinions,
ATB also evaluates – besides the quality of computed trust and
the quality of trust-based decisions – the cost of fetching requested
opinions. Using ATB, we tested our hypothesis on five trust models.
We made two separate evaluations, in which we changed the deci-
sion making mechanism that trust models used. We found out that
the performance of trust models depended on the election of the
decision making mechanism. We attributed this mostly to the fact
that decision making mechanism determines the ratio between
exploration and exploitation of trust models, which is essential
for their well-functioning. These results confirmed our hypothesis
and given that, we claim that it is only valid to evaluate the pair of
(trust model, decision making mechanism) if they are proposed to-
gether as a whole. If that is not the case, trust models should not be
evaluated by coupling them with arbitrary decision making mech-
anisms. Instead, they should be evaluated independently of the
decision making mechanism as it is possible with ATB.

To the best of our knowledge, existing solutions evaluate trust
models by measuring the quality of trust based decisions and not
the quality of the calculated trust. In this regard, ATB is the first
that evaluates calculated trust directly while not enforcing any
specific trust degree representation (except that trust degrees have
to be mutually comparable). Moreover, we are also the first to
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empirically support the claim that evaluating trust models by eval-
uating decision making mechanisms can lead to ambiguous results.

Currently, the testbed can evaluate trust models that compute
trust only from experiences and opinions. Because some models
also use additional information, such as the information from the
social networks or virtual organizations, we plan to extend ATB
to accommodate such models. Additionally, as we opensource
the implementation, we are setting up a web page that shall hope-
fully serve as a forum for other potential ATB users. This page could
connect researchers and enable them to share their own imple-
mentations of trust models, metrics and evaluation scenarios. An
idealized goal is to create a corpus of testing artifacts that may
serve as a bench-marking suite for trust models; something similar
to the publicly available data sets in the pattern recognition
community.
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[13] D. Trček, An integrative architecture for a sensor-supported trust management
system, Sensors (2012).

[14] I. Pinyol, J. Sabater-Mir, G. Cuni, How to talk about reputation using a common
ontology: from definition to implementation, in: Ninth Workshop on Trust in
Agent Societies, 2007.

[15] B. Yu, M.P. Singh, Detecting deception in reputation management, in:
Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, 2003.

[16] P. Resnick, R. Zeckhauser, Trust among strangers in Internet transactions:
empirical analysis of eBay’s reputation system, in: The Economics of the
Internet and E-Commerce, Emerald Group Publishing Limited, 2002.

[17] R. Kumar, S. Vassilvitskii, Generalized distances between rankings, in:
Proceedings of the 19th International Conference on World Wide Web, 2010.

[18] A. Jøsang, R. Ismail, The beta reputation system, in: Proceedings of the 15th
Bled Electronic Commerce Conference, 2002.

[19] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algorithm for
reputation management in p2p networks, in: Proceedings of the 12th
International Conference on World Wide Web, 2003.

[20] A. Abdul-Rahman, S. Hailes, Supporting trust in virtual communities, in:
Proceedings of the 33rd Annual Hawaii International Conference on System
Sciences, 2000.

[21] B. Yu, M.P. Singh, K. Sycara, Developing trust in large-scale peer-to-peer
systems, in: IEEE First Symposium on Multi-Agent Security and Survivability,
2004.

[22] N. Chiluka, N. Andrade, D. Gkorou, J. Pouwelse, Personalizing eigentrust in the
face of communities and centrality attack, in: IEEE 26th International
Conference on Advanced Information Networking and Applications (AINA),
2012.

[23] A.G. West, S. Kannan, I. Lee, O. Sokolsky, An evaluation framework for
reputation management systems, in: Z. Yan (Ed.), Trust Modeling and
Management in Digital Environments, IGI Global, 2010.

[24] M.J. North, T.R. Howe, N.T. Collier, J.R. Vos, A declarative model assembly
infrastructure for verification and validation, in: Advancing Social Simulation:
The First World Congress, 2007.

[25] Oracle, Jar file specification – service provider, Java SE 6 Documentation, 2011.
[26] W.T.L. Teacy, M. Luck, A. Rogers, N.R. Jennings, An efficient and versatile

approach to trust and reputation using hierarchical bayesian modelling,
Artificial Intelligence (2012).

[27] D. Rosaci, G.M.L. Sarné, S. Garruzzo, Integrating trust measures in multiagent
systems, International Journal of Intelligent Systems (2012).

[28] J. Sabater, C. Sierra, Reputation and social network analysis in multi-agent
systems, in: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1, 2002.

[29] M. Gómez, J. Sabater-Mir, J. Carbó, G. Muller, Analysis of the agent reputation
and trust testbed Inteligencia Artificial, Revista Iberoamericana de Inteligencia
Artificial (2008).

[30] R. Kerr, R. Cohen, Treet: the trust and reputation experimentation and
evaluation testbed, Electronic Commerce Research (2010).

[31] F.G. Mármol, G.M. Pérez, Trust and reputation models comparison, Internet
Research (2011).

[32] P. Chandrasekaran, B. Esfandiari, A model for a testbed for evaluating
reputation systems, in: IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), 2011.

[33] A. Salehi-Abari, T. White, Dart: a distributed analysis of reputation and trust
framework, Computational Intelligence (2012).

http://refhub.elsevier.com/S0950-7051(13)00218-9/h0005
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0005
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0010
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0010
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0015
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0015
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0020
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0020
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0025
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0025
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0030
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0030
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0030
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0035
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0035
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0040
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0040
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0040
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0045
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0045
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0050
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0050
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0050
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0050
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0055
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0055
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0055
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0055
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0060
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0060
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0060
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0065
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0065
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0070
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0070
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0070
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0075
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0075
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0080
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0080
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0085
http://refhub.elsevier.com/S0950-7051(13)00218-9/h0085

	Decision making matters: A better way to evaluate trust models
	1 Introduction
	2 Trust models
	2.1 Information context of a trust model
	2.2 Definitions

	3 The Alpha testbed
	3.1 Evaluation protocol
	3.1.1 Trust models without decision making mechanism
	3.1.2 Trust models with decision making mechanism

	3.2 Generating experiences
	3.2.1 Capabilities of agents for providing services
	3.2.2 Modeling interactions

	3.3 Generating opinions
	3.3.1 Modeling trust between other agents
	3.3.2 Modeling deception

	3.4 Evaluation scenario
	3.5 Metrics
	3.5.1 Accuracy
	3.5.2 Utility
	3.5.3 Opinion cost
	3.5.4 The use of metrics

	3.6 A walk-through example

	4 Empirical evaluation
	4.1 Hypothesis and testing plan
	4.2 Trust models
	4.2.1 Beta reputation system (BRS)
	4.2.2 Abdul-Rahman, Hailes (ARH)
	4.2.3 Yu, Singh, Sycara (YSS)
	4.2.4 Travos (TRA)
	4.2.5 EigenTrust (ET)

	4.3 Decision making mechanisms
	4.4 Evaluation scenario
	4.5 Results
	4.6 Discussion

	5 Implementation
	5.1 Architecture
	5.2 Extendability or how to evaluate different kinds of trust models

	6 Related work
	6.1 An overview of existing testbeds
	6.2 Comparing ATB against existing testbeds
	6.3 Potentially untestable trust models and other limitations of ATB

	7 Conclusion
	Acknowledgments
	References


