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Abstract
Trust models as thus far described in the literature can be seen as a monolithic structure: a trust model is provided with a
variety of inputs and the model performs calculations, resulting in a trust evaluation as output. The agent has no direct method
of adapting its trust model to its needs in a given context. In this article, we propose a first step in allowing an agent to reason
about its trust model, by providing a method for incorporating a computational trust model into the cognitive architecture of
the agent. By reasoning about the factors that influence the trust calculation the agent can effect changes in the computational
process, thus proactively adapting its trust model. We give a declarative formalization of this system using a multi-context
system and we show that three contemporary trust models, BRS, ReGReT and ForTrust can be incorporated into a BDI
reasoning system using our framework.
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1 Introduction

Research into trust models is currently an active topic in the domain of multi-agent systems (MAS).
Many computational trust models have been proposed [27], based on theoretical foundations from
many different disciplines. For example, some trust models have cognitive foundations [8, 14, 30],
others are based on mathematical methods, such as statistical models [36, 37] or game theory [2] and
still others use a social network-oriented approach [11] or are oriented towards specific applications,
such as negotiation [35] or the semantic web [34]. These trust models have in common that they
are computational methods for calculating an agent’s trust in a trustee based on the agent’s own
interactions with the trustee, as well as on information that is available in the environment about the
trustee. Such information may be direct communications from other agents in the system, giving their
own trust evaluations of the trustee; it may be reputation information; or it may be any other source
of information available in the system. The trust model then aggregates this information, using the
chosen mathematical method, and calculates the evaluation of the trustee.

The problem with the trust models discussed so far in the literature is that an agent is unable to
change its trust model if it discerns a change in the environment. If we were to view the trust model
from the agent’s perspective, it would appear to be a ‘black box’with as input the various information
sources and as output an evaluation of how trustworthy the trustee is. However, as argued in [4], trust
is not just an evaluation of a trustee, but an integral part of the decision making process of an agent
in a social environment. For a trust evaluation to be meaningful in this process, it may be necessary
to customize the evaluation process to the decision that is being made. This is especially so in an
open MAS, where the environment may change.
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As an example, consider the following situation. An agent has the task of routinely buying items
on an electronic marketplace and to decide, by using its trust model, which seller to interact with. In
general, the agent’s owner requires the agent to buy items as cheaply as possible and does not mind
if, to achieve this, the item is delivered late. However, one day the agent is assigned specifically to
buy an item prioritizing speedy delivery. This is problematic if the agent’s trust model is hard coded
to disregard delivery speed when evaluating salesmen. Traditionally, evaluating single interactions
is not considered to be a part of a trust model, which is generally defined as an aggregation method to
determine the trust evaluation of an agent based on various different information sources. However, at
this level the same thing can happen. For instance, if the agent’s environment contains mostly truthful
agents it will be able to use reputation information. However, if the environment changes and most
agents are liars, the agent using reputation information is misguided. Some models are equipped
to deal with these changes, but still do so reactively [36, 37]. If the agent knows the environment
has changed it cannot proactively adapt its trust model. Such issues arise at all levels during trust
computation and can be triggered by changes in the beliefs and the goals of an agent. Contemporary
trust models are not equipped to deal with this type of proactive adaptation, in which the agent’s goals
and beliefs can precipitate a change in the way an agent calculates its trust evaluations. Furthermore,
because trust models are treated as a black box, their integration into a cognitive agent also does not
allow for proactive adaptation.

In this article, we present an agent model capable of reasoning about trust and proactively changing
its trust model to reflect this reasoning. We do not present a new trust model, but rather propose an
extended BDI framework designed to work with existing models. We provide a method for integrating
computational trust models into a cognitive agent model. We do this by considering the trust model
in as declarative a way as possible, while still relying on the underlying computational process for
calculating trust evaluations. While this does not provide the agent with introspection into the actual
computational mechanism its trust model uses, it opens the black box of trust sufficiently to allow
the agent to proactively adapt its model. Because of the way that trust is fitted into the multi-context
model, it is possible to plug in different trust models quite easily.

In Section 3, we present our abstract view of what a trust model is and the properties we assume
a computational trust model has. This is needed to understand how we incorporate trust models into
an extended BDI framework, which forms the main body of this article. In Section 4, we present
the various logics we use and the basic BDI framework we extend. Section 5 describes the first part
of this extension: a manner of specifying a trust model to allow the agent to reason about it, while
Section 6 introduces the mechanics for performing this reasoning. Finally, we demonstrate how the
system allows an agent to reason about its trust model, using three of the best known contemporary
trust models, in Section 7.

2 Background

The idea of integrating the trust model into the cognitive process of an agent is not new. There
are various different methods for representing this cognitive process, but the integration of trust
into this process is done mainly for BDI agents. BDI stands for Beliefs-Desires-Intentions and is
a logical model for designing intelligent agents [28]. The beliefs represent the agent’s knowledge
about its environment, the desires the state of the environment the agent desires to achieve and the
intentions represent the plans it intends to perform to achieve its desires. The BDI model has met
with considerable success and many systems for implementing intelligent agents follow this model
to some degree or another [1, 7]. From the point of view of trust, it offers clear advantages: by
providing a crisp definition of the agent’s beliefs and its goals, the role trust plays can be made
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explicit, incorporating it into the logical framework. There are different ways of doing so, and thus
trust is treated differently by different models.

The work that deals with an integration of trust into a BDI agent can be divided roughly into two
different approaches. The first is computational trust models that, for the most part, take a belief-
centric approach to trust. These allow for direct integration into the agent. The second approach is
a more logic-oriented approach and these works provide formal logics for reasoning about trust,
although they do not go into detail on how a computational model should compute these evaluations.

2.1 Cognitive computational trust models

Castelfranchi and Falcone [4] describe the socio-cognitive underpinnings of trust and show its
functioning through experimentation using a computational model. This is a very belief-centric
model in which trustworthiness is treated as a belief with a specific method for updating it. Decisions
are taken in a normal manner, choosing whom to interact with based on the agent’s beliefs. The belief
base contains trust evaluations as well as the intermediate beliefs resulting from the computational
process. Because the trust evaluations and decision process are all based upon the belief base, adapting
the model to a changing environment, for which the evidence will also be collected in the agent’s
belief base, seems possible; however, this step is not addressed in [4]. This model is one of the
inspirations for our work, and the two should be largely compatible: Castelfranchi and Falcone’s
model could serve as the adaptive trust model, while the work we present here allows for explicit,
proactive adaptation. Burnett et al. take a very different approach and emphasize trust as a tool in
fulfilling plans [2]. They assume agents need to delegate tasks and discuss the role trust and reputation
play in deciding whom an agent should optimally delegate tasks to. They assume different agents
will perform differently at the various tasks and thus agents’ trustworthiness depends partially on
what task they need to perform. This is quite similar to the idea of role-based trust, but is integrated
into the decision-making process of the agent. This is somewhat similar to the approach we take, in
which the goal and plan of the agent can influence the computation of the trustworthiness of an agent,
but their approach focuses purely on the decision of delegating and do not deal with other cognitive
aspects of trust. Specifically they do not use the beliefs of an agent.

BDI+Repage [25] attempts to take a more comprehensive approach, by integrating the Repage
reputation model [30] into the cognitive process of a BDI agent. While this is an interesting approach,
it leaves the Repage model as a black box; specifying only how Repage should be connected to the
various inputs and how the outputs of the calculation should be dealt with in the belief base. As
such it does not allow for reasoning about how to evaluate reputation, just about what to do with the
evaluations after Repage has calculated them. This system presents the basic idea we build upon: it
uses a multi-context system [10] to represent the BDI agent and reputation model, which provides a
clear way of integrating a trust or reputation model into the cognitive agent architecture. However,
it does not provide the mechanism needed to actually reason about the trust model and represents
the trust computation in a single, monolithic context. We propose a more sophisticated method of
representing the trust model in a BDI agent, which allows an agent to reason about and adapt its trust
model.

2.2 Logics for reasoning about trust

Liau presented a modal logic for explicitly reasoning about trust [19]. The modal logic used is
specifically intended for reasoning about beliefs and information and shows how interesting and
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desirable properties of trust emerge from basic axioms about the logic. Dastani et al. [6] extend the
logic to deal with topical trust, leading to the logic being able to infer trust evaluations about specific
topics, or tasks. However, these logical models do not give a definition of the computational process.
Trust is an abstract concept and, if certain axioms about it are true, then other properties can be
proved. This makes it possible to show the consequences of specific types of trust, such as if trust
is transitive, or symmetric. However, it says nothing about whether actual methods of computing
trust fulfill such properties. An approach that attempts to rectify this somewhat is ForTrust [20]. This
logic integrates trust into a BDI logic and, while using a different logic, also allows for the proving
of certain properties of trust from the basic axioms of the logic. However, in this case, the axioms
used are quite practically oriented and there are implementations of ForTrust [14, 18]. We show that
these implementations can also be modelled within our framework in Section 7.2.

An entirely different approach to reasoning about trust is taken by Parsons et al. [24], who
use argumentation as their method for reasoning about information and integrate trust into the
argumentation framework, in order to decide whether or not an argument is acceptable. The work
then describes some axioms of argumentation and trust to prove desirable properties of the reasoning,
similar to Liau’s approach. These logic-based approaches differ significantly from our approach, in
which we assume a computational trust model is given and provide a methodology for adapting this
computational method. Specifically, our aim is to give a declarative description of a computational
trust model and allow the agent to reason about this: we take a bottom-up approach, starting with a
computational trust model, rather than a top-down approach in which desirable properties are derived,
regardless of whether these are based on realistic assumptions or not.

3 Trust models

In this article, we focus on how an individual agent can reason about its trust model and as such
we require the agent to have access to its own trust model. Centralized reputation systems, such as
eBay [22] or SPORAS [40], are not considered within this article, despite specifying a function for
calculating the trust evaluation, because they do not allow the agent to change the way this calculation
is done and thus reasoning about it is pointless. This is not to say that we disregard all reputation
mechanisms: those that do not rely on a centralized approach, but are designed so reputation is
calculated in a distributed manner, such as Yu and Singh’s model [39], can be incorporated into a
reasoning system. In this approach, we coincide with the view adopted by Pinyol [26], who argues
that the difference between computational trust and reputation models is not clear, and that many
reputation models in fact give an evaluation of agents that can equally well be interpreted as a trust
evaluation.

3.1 Algorithmic nature of trust models

When talking about trust in a multi-agent system, the first thing to note is that we are talking about trust
in computational entities and not humans. As a result, any model of trust we take under consideration
should be a computational model. With this we mean that the description of the trust model must define
an algorithm for obtaining a trust evaluation from a set of inputs. An algorithm is a computational
method for computing the output of a partial function: given an input in the function’s domain for
which the function is defined, the algorithm computes a unique output in the function’s range. In the
most abstract sense, a trust model is thus a Turing computable function.
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Property 1 (Functional nature of trust models)
A trust model, as we understand it, is a computational process defined by a Turing machine and
as such is a method for calculating the output of a function.

3.2 Parameterization

The goal of this article is to allow the agent to reason about its trust model. As such, the above
criteria that the model is a Turing computable function is not enough. The agent needs some way
of reasoning and adapting the function. However in this work we are not interested in adapting the
algebraic operations used, but rather, within the limitations of the algebraic operations, adapt the
available parameters. For example, if the trust model uses a weighted average to calculate the output,
we do not wish to replace this operation: the model should use the weighted average. However, what
we might want to adapt are the weights it uses.

In general, this description begs the question of which parameters can be adapted. To this question
we can answer that it very much depends on the actual trust model used, but an example that
recurs in many trust models is that some parameter(s) defines the importance of different sources
of information, such as direct and indirect experiences [4]. We require a function representing a
trust model to not just be any function, but a parametric function with at least one parameter. Such
parameters are, for instance, the weights in a weighted average, the decay rate at which older evidence
is discarded, or the distance in a social network at which point to disregard opinions.

Many trust models use a number of different parameters and each of these parameters influences
the effect different variables have on the final trust evaluation. We, therefore, say that the value of a
parameter should be ‘governed’ by the importance the agent wants to assign to these variables: the
more important the variable, the larger its influence should be upon the output of the trust model. For
instance, consider a trust model that has a parameter which governs the relative importance of direct
experiences and communicated, indirect, experiences. If the agent believes it is surrounded by liars
it should give little importance to communicated, indirect, experiences. The value assigned to the
parameter should reflect this, ensuring that direct experiences are given more importance in the trust
calculation than communicated ones. In general, we require that the agent is capable of instantiating
a trust model with different values for its parameters, which reflect the importance the agent assigns
to the different factors that play a role in calculating trust evaluations.

A further requirement is that for any combination of values for the parameters, the function
is valid: the parameters are linked to the importance of different factors taken into account in
calculating trust. Thus, if some factor becomes more important this can precipitate a change in the
parameters. Any such change should result in a valid trust model.

Property 2 (Parametric models of trust)
We only consider trust models that have at least one parameter such that a change in the parameter
changes the output of the trust model in a predictable manner. Any combination of values for a
trust model’s parameters describes a valid trust model.

3.3 Functioning of trust models

All trust models are methods of aggregation: they combine and merge information from several
different sources into a single value. It is possible to distinguish two separate parts in this process: the
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first part in this process is to combine different aspects of information from a single source into a single
value and the second part consists of several stages of combining many values representing different
sources into, eventually, a single evaluation. Intuitively, we see that parameters in the first part mean
something different to parameters in the second part: in the former case a parameter specifies which
aspects of a piece of information obtained from a single source are more important to the agent,
whereas in the latter a parameter specifies which sources of information are more important. In an
example of wishing to buy items at an auction, the first part may for instance evaluate how happy
an agent is with the outcome of an auction and a parameter might encode that the cost of an item is
more important than its delivery time when performing this evaluation. In the second part, we could
aggregate the evaluations of single auction transactions into a final evaluation and have a parameter
which encodes that the more expensive an item is, the more important it is in this aggregation.

We see that, while most literature on trust models describes the second part in great detail, the
first part is often left open. This is justifiable as this part is very domain dependent. However, we see
that even those trust models which completely define the aggregation of evaluations from various
sources of information without any explicit parameters, for example Vogiatzis et al.’s model [37],
can be adapted by our proposed reasoning model if the implementation of the first part, evaluating
independent interactions, is parameterized. Furthermore, there may be implicit parameters in the way
the designers make certain choices. For instance, Vogiatzis et al. state that ‘in the absence of direct
experience of a service provider that leads to direct trust, it is essential to be able to enquire about that
service provider’s reputation’, thereby implying that reputation information should only be used if
the agent has had no direct contact with the service provider. However, this is just one possibility for
combining reputation and direct trust: the cut-off for reputation could be placed at an arbitrary value
of direct experiences. There are many other methods proposed for the combination of direct trust
and reputation, such as ReGReT’s weighted average [32] or Falcone et al.’s belief-based approach
to combining different sources [8].

Another important aspect of trust, which is not dealt with by all computational models, is that trust
is inherently multi-faceted. An agent is evaluated with respect to some role, or action, which it is
expected to perform. The evaluating agent requires this action to be performed to achieve a specific
goal, which is why it requires the trust evaluation in the first place. This goal, and the action the
trustee is required to perform to achieve it, can change the parameters of the trust model: an agent
selling an item in an auction may be evaluated differently to an agent buying an item.

The cognitive framework we present in this article is designed in such a manner that a large number
of current computational trust models can be incorporated into a BDI reasoning system by considering
the parameters they take into account and specifying what factors can influence these parameters.
The system described here then allows these factors to influence the trust model automatically, thus
integrating the model into the reasoning system of the agent. Furthermore it is inherently multi-
faceted, as the entire cognitive stance of the agent can influence the trust model. We illustrate how to
incorporate existing trust models in Section 7, in which we demonstrate how the framework allows
for the incorporation of three contemporary trust models.

4 Preliminaries

In this article, we define a method for reasoning about trust models. However for this we will need
to refer to some of the other cognitive entities in the system. Accordingly, we start by introducing
the multi-context representation of a BDI agent. The specification of an agent using a multi-context
system (MCS) has several advantages for both the logical specification and the modelling of the agent
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architecture [23]. From a software engineering perspective, an MCS supports modular architectures
and encapsulation. From a logical modelling perspective, it allows the construction of agents with
different and well-defined logics, keeping all formulae of the same logic in their corresponding
context. This increases the representational power of logical agents considerably and, at the same
time, simplifies their conceptualization. The MCS paradigm is, therefore, a popular formalism for
extending the basic BDI logic. For instance, Criado et al. [5] and Joseph et al. [16] use an MCS to
allow a BDI agent to reason about norms and Pinyol and Sabater [25] use a MCS to incorporate trust
into a BDI agent. We follow a similar approach to this last work, but, as explained in Section 2, their
approach firstly only deals with Repage and secondly does not allow for adaptation of the model: their
integration focuses on making decisions to interact, based on trust. Finally, Sabater et al. [31] show
how the specification of BDI-agents using an MCS corresponds directly with the concept of modules
in software engineering, allowing for rapid and easy design of an executable agent architecture.

4.1 Multi-context systems

MCS provide a framework to allow several distinct theoretical components to be specified together,
with a mechanism to relate these components [10]. An MCS consists of a family of contexts, which
are logically connected by a set of bridge rules. Each context contains a formal language and a theory
of that language. We say a sentence is in a context if it is a logical consequence of the theory in that
context. Bridge rules serve to move theories between contexts and can be seen as inference rules,
but rather than inferring conclusions within a context, the premises and conclusion are in different
contexts. They have the form:

C1 :X;C2 :Y
C3 :Z

where X,Y and Z are schemas for sentences in their respective contexts. The meaning of a bridge
rule is that if a sentence complying with schema X holds in context C1 and a sentence with schema
Y holds in context C2 then the corresponding sentence with schema Z holds in context C3. This is
true in the logical sense, but the bridge rules have a second use, which is representing the operational
procedures in the system. The schema in the conclusion might be the outcome of some operation. In
such cases, we will give an abstract description of the function that performs this operation.

Let I be the set of context names, then an MCS is formalized as: 〈{Ci}i∈I ,�br〉 with contexts Ci
and�br a set of bridge rules. In Section 4.3, we show how to represent a BDI-agent as an MCS, but
first we introduce the logics we require in our integration of a trust model into a BDI system.

4.2 Logics

In an MCS, each context is specified using a logic. In this section, we present the various different
logics that we use in the contexts.

4.2.1 First-order logic
While we do not deviate from the standard definition of first-order predicate logic, we need to
introduce the notation, which is used throughout this article. The syntax of first-order logic is defined
using C, a set of constants, F , a set of function symbols, and P , a set of predicate symbols, each
function and predicate symbol with a fixed arity greater than one. Terms and formulae are given in
the usual manner, using quantifiers ∀,∃ and connectives ¬,∧,∨,→.
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4.2.2 First-order dynamic logic
We use first-order dynamic logic (FODL) first proposed by Harel [12], which is FOL extended by
adding action modalities to it. We use FOL as defined above and any FOL-wff is a program-free
FODL-wff. We now define the set RG of first-order regular programs and the set of FODL-wffs by
simultaneous induction as follows.

• For any variable x and term e, x :=e is in RG.
• For any program-free FODL-wff ϕ, ϕ? is in RG.
• For any α and β in RG, (α;β), (α∪β) and α∗ are in RG.
• Any atomic formula is a FODL-wff.
• For any FODL-wffs ϕ and ψ , α in RG and variable x the following are FODL-wffs:

– ¬ϕ
– ϕ∧ψ , ϕ∨ψ , ϕ→ψ

– ∀x :ϕ, ∃x :ϕ
– [α]ϕ

Programs formed by the application of the first and second rule are called assignments and tests,
respectively. We will refer to both of these as basic actions while any other type of program is a
composite program. For the formal semantics of FODL we refer to [12]. For this article, it is sufficient
to have an intuitive understanding: the semantics of program-free formulae is the same as for standard
FOL. The semantics of [α]ϕ can be summarized as: after performing α, ϕ holds. α;β is sequential
composition: [α;β]ϕ means that after first performing α and then performing β, ϕ holds. Similarly
α∪β is non-deterministic choice: [α∪β]ϕ means that after either performing α or performing β, ϕ
holds; and α∗ is repetition: [α∗]ϕ means that after performing α any finite number of times (including
none), ϕ holds.

4.2.3 Priority logic
In our specification of the trust model we will require a logic to formalize a structure of priorities
between predicates in our MCS. We call this logic Priority Logic (PL),1. It is a subset of first-order
logic, following the system defined by Schorlemmer [33] for a logic of binary relations. PL limits the
predicates to two predicates of relations, denoted � and =. As is customary, we use infix notation for
these predicates. For any two constants a and b, a�b and a=b are PL-atoms. Using this we define
PL-wffs as:

• Any PL-atom π is a PL-wff.
• For any PL-atom π , ¬π is a PL-wff.
• For any PL-wffs π and ξ , π∧ξ is a PL-wff.

The semantics are given by standard FOL-semantics, but with the following axiom schemas for the
predicates, for any constants a and b:

�-irreflexivity: ¬(a�a)
�-transitivity: (a�b)∧(b�c)→ (a�c)
=-reflexivity: a=a
=-symmetry: (a=b)→ (b=a)
=-transitivity: (a=b)∧(b=c)→ (a=c)

1Note that this logic is not related to Wang et al.’s logic [38] with the same name.
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4.3 Multi-context representation of a BDI-agent

With all the logics described, it is time to present our specification of a BDI-agent using an MCS. We
will not yet define the contexts used for reasoning about the trust model: in this section we present the
contexts and bridge rules for a BDI-agent, whereas Sections 5 and 6 extend this framework to include
reasoning about trust. A BDI-agent is defined as an MCS: A=〈{BC,DC,IC,PC,XC},�br〉. We will
first describe the contexts, before defining the bridge rules. The first three contexts correspond with
the classical notions of beliefs, desires and intentions as specified by Rao and Georgeff [28]. The first,
the Belief Context (BC) contains the belief base of the agent. We use a FODL language, as described
in the previous section, to represent beliefs. Let PDomain, FDomain and CDomain be the predicates,
functions and constants required to describe the agent and its domain, then LBel is the FODL language
generated from them. If ϕ∈LBel is in the belief context, this means the agent believes ϕ holds. In the
Desire Context (DC), we use a FOL language LDes to represent the agent’s desire base, generated
from the same set of predicates, functions and constants as the belief base. The agent’s desires are thus
represented in the program-free segment of the logic for the belief base. If ψ ∈LDes is in the desire
context, then the agent desires ψ . The Intention Context (IC) holds the intention base of the agent
and uses the FODL language LInt, a subset of the language that the belief context uses: let α∈RG and
ψ a FOL-wff, then [α]ψ ∈LInt. In other words, a FODL language consisting only of program-free
formulae preceded by a program. Intuitively, the meaning is that if [α]ψ is in the intention context,
then the agent has the intention to achieve ψ ∈LDes by acting on plan α∈RG. We will use goal and
intention interchangeably and write symbol γ as shorthand for such a goal.

In addition to these mental contexts, we follow Casali’s lead [3] and define two functional contexts:
the Planner Context (PC) and the Interaction Context (XC). The first is in charge of finding plans
to achieve an agent’s desires, while the second is an agent’s way of interacting with the world: it
controls an agent’s sensors, performs basic actions and sends and receives messages. To connect
these contexts to the mental contexts of beliefs, desires and intentions, we use an additional notational
device: quoting.

Definition 1 (Quotation operator)
The quote-operator ‘.’ transforms programs, PL-wffs, FODL-wffs and sets of FODL-wffs into first-
order terms.

The Planner Context uses a first-order language restricted to Horn clauses, where a theory of
planning uses some special predicates for representing plans:

• basic_action(‘α’,‘
Pre’,‘
Post’) where α is a basic action in RG and 
Pre and 
Post are
program-free subsets of LBel. This allows for the definition of basic capabilities of the agent,
together with their pre- and post-conditions: for α to be executable,
Pre must hold (or in other
words, be in the agent’s belief base). 
Post is guaranteed to hold on successful completion.

• plan(‘α’,‘
Pre’,‘
Post’) where α is any program in RG and 
Pre and 
Post are program-free
subsets of LBel. The meaning of this is the same as above, but allows for composite plans.

• bestplan(‘ψ’,‘α’,‘
Pre’,‘
Post’) which corresponds to the agent’s notion of the best instance
of a plan to achieve desire ψ . At the very least we require ψ ∈
Post.

In addition, the planner context contains two special predicates to choose plans based on the agent’s
beliefs and desires:

• belief (‘
’), with 
⊆LBel.
• desire(‘ψ’), with ψ ∈LDes.
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This context is more operational than the other contexts described thus far: its internal logic is
unimportant and its function in the reasoning is to select a specific plan for the agent to execute in
order to achieve a goal ψ , given the current beliefs about the world. The agent has some method
of selecting the best plan to achieve a desire ψ , and this is the plan returned. How formulae of the
form belief (‘
’) and desire(‘ψ’) are introduced into the PC is described in the next section about
bridge rules. This is the only context presented in this section that requires modification to allow
for reasoning about trust, because, being oriented towards single agents, it does not accommodate
actions that require other agents’ participation. We will revisit this context in Section 5.3 to add this
possibility.

The xe is also a functional context, but in a different sense from the planner context, as it
encapsulates the “physical” part of the agent. It contains the following special predicates:

• do(‘α’) where α∈RG. This has the meaning that α is performed by the agent, although at
this abstract level we do not deal with the possibility of failure. Note that if α is a composite
action the xe has some way of decomposing this into a sequence of basic actions which can be
executed.

• sense(‘ϕ’) withϕ a FOL-wff. This has the meaning thatϕ is observed in the agent’s environment

4.3.1 Bridge rules
One of the main advantages of using an MCS to represent an agent is that it separates the deduction
mechanism inside the context from the deduction between the contexts. Reasoning internal to the
contexts is defined in terms of the deduction rules of the logic used within a context, while bridge
rules allow for inference between the contexts. The first corresponds to reasoning about beliefs, or
desires, individually, while the second corresponds to the BDI notion of a deliberation cycle: inference
between the contexts. In the definition of the bridge rules below, and throughout the remainder of this
article, we use symbols 
,
Pre,
Post ⊆LBel, ψ ∈LDes and α∈RG. We start with the two bridge
rules to add the beliefs and desires into the planning context, so that the beliefs can be used to find
plans to achieve the desires:

BC :

PC :belief (‘
’)

DC :ψ
PC :desire(‘ψ’)

(1)

With this information, the planning context deduces formulae with predicate bestplan for any
desire ψ the agent wishes to fulfill and any belief base 
 such that 
Pre ⊆


PC :bestplan(‘ψ’,‘α’,‘
Pre’,‘
Post’) DC :ψ
IC : [α]ψ (2)

Similarly, an agent has a bridge rule to allow for the execution of an intention:

DC :ψ IC : [α]ψ
XC :do(‘α’)

(3)

Upon execution, the effect of the agent’s actions are added back into the belief base:

PC :basic_action(‘α’,‘
Pre’,‘
Post’) XC :do(‘α’)

BC :
Post
(4)

Note that none of these bridge rule take temporal considerations into account, or the possibility of
failure: 
Post is instantly added to the belief base. They also require some form of belief revision
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(2)

(1)

BC XCIC

DC

PC

(3)

(4)

(5)(1)

Figure 1. The MCS specification of a BDI-agent, without the contexts required for reasoning about
trust. Nodes are contexts and (hyper)edges are bridge rules, with the labels corresponding to those
in the text.

to happen to keep the agent’s beliefs consistent and up to date. Here we just give the minimal
specification to allow for reasoning about trust, but one could think of extending the model to deal
with such issues. The last bridge rule we define now is a simple rule for receiving sensory input:

XC :sense(‘
’)

BC :
 (5)

For the correct specification of a BDI-agent further bridge rules are necessary. Most notably those to
allow for a chosen level of realism. Rao and Georgeff [29] specify three different levels of realism:
strong realism (if an agent desires a formula to hold, it will believe the formula to be an option),
realism (if an agent believes a formula, it will desire it) and weak realism (if an agent desires a formula
to hold, it will not believe the negation of that formula to be inevitable). These each correspond to a
different set of bridge rules between the belief base, desire base and intention base [23]. However,
none of this affects our specification of trust and we leave the choice of the level of realism open.
The MCS as specified thus far is summarized in Figure 1.

5 Specifying trust models

The MCS described in the previous section lays the groundwork for an agent that can reason about
trust.As discussed in Section 3, we assume a trust model is an algorithm to calculate a trust evaluation
based on a number of inputs. These inputs are formulae in one of the contexts of the agent and we
distinguish different types of input:

(1) the target agent to be evaluated,
(2) beliefs about direct experiences,
(3) communicated trust evaluations and
(4) the desire the agent wishes to fulfill, for which it needs the target agent to perform some action

We will assume that the agent has a specific unary predicate agent ∈PDomain, which is used to identify
the agents in the system. We will use the shorthand Agents={X ∈CDomain|BC :agent(X)}, the set of
identifiers of agents in the system. The first input of the trust model, the target agent to be evaluated,
is thus an agent a∈Agents. The second and third inputs, the beliefs about direct experience and
communicated trust evaluations, are also formulae in the belief context. While we did not model
communication in our MCS, we can consider it as part of the interaction context. Sending a message
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is simply a basic action of the agent and do performs that basic action, sending the specified message.
Similarly sense also receives communications from other agents. We therefore have two subsets
of the belief base 
DE and 
Comm representing the agent’s beliefs about direct experiences and
communications, respectively. Furthermore, we assume that such beliefs form a distinguished subset
in the language of beliefs. We take PDE ⊂PDomain, the set of predicates about direct experiences and
LDE, the set of FODL-wffs generated in the same way we described in Section 4.2.2. It is easy to
see LDE ⊂LBel. The same holds for PComm and LComm. The last input corresponds to the reason
why the agent is evaluating the trustworthiness of the target in the first place: trustworthiness is a
tool used to help the agent in choosing a partner to achieve some goal. Depending on the goal the
agent wishes to achieve, the way the trust evaluation is computed changes. As such the goal γ that
the agent is attempting to achieve is the fourth input for the trust model.

Some trust models [13] also consider norms as input for the trust model and in [26] a method of
incorporating this into an MCS is given. However, a discussion about norms is outside the scope of
this article. We will assume the agent’s background knowledge is affected by norms and that this
may affect how the agent specifies its trust model, however we will disregard norms in the use of the
trust model: possible norm violations could already be encoded in the agent’s direct experiences and
received communications.

The output of the trust calculation is a trust evaluation: a predicate in a domain-specific language for
describing trust. This predicate is an element of PDomain, and the set of all possible trust evaluations
LTrust is a program-free subset of LBel.

This abstract description of a trust model in terms of its in- and output satisfies the condtion given in
Property 1 of Section 3: a trust model is a Turing computable function. Throughout this article we call
this function trust_calculation and, regardless of the actual computational trust model, we see that
the domain of this function is the set of the agent’s beliefs, goals and agents under evaluation; its range
is the set of possible trust evaluations. For example, if an agent wants to evaluate a salesman s for the
goal of having a bicycle by performing the basic action buy_bicycle, then it can evaluate s using its
beliefs about interactions
DE ⊆LDE and communications
Comm ⊆LDE using its trust model. This
may result in a trust evaluation of agent s with regards to the goal [buy_bicycle]have_bicycle(me)
with value trustworthy. We can represent this in a functional form as the function trust_calculation
with the inputs 
DE, 
Comm, [buy_bicycle]have_bicycle(me) and the agent s as described above:

trust_calculation(
DE,
Comm,[buy_bicycle]have_bicycle(me),s)=
trust(s,‘[buy_bicycle]have_bicycle(me)’,trustworthy)

In Property 2 we recognized that, for reasoning about the trust model, this model must
have something that can be adapted to the agent’s needs. In other words, trust_calculation
is a parametric function. We define the set Paramstrust_calculation as the set of parameters of
trust_calculation and a function labels :Paramstrust_calculation →2CPL that associates subsets of
constants CPL in a priority logic (PL) with the parameters of trust_calculation. These constants
are the factors that are of importance to the agent in calculating the trust evaluation, as discussed in
Section 3.2. This will be formalized in Section 5.2, but first we give an example of a trust_calculation
function.

5.1 An illustrative trust model

We illustrate the parameterization of a trust model with the following small model to evaluate agents
in an auction environment. The model calculates a trust evaluation of a trustee agent t with respect
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to a goal γ by using a weighted average to aggregate information from three different sources: the
agent’s own direct experiences as a buyer and as a seller with the trustee, specified in Salest and
Purchasest , respectively, and the communicated trust evaluations from other agents in the system,
specified in 
Commt . The trust_calculation function of this example is therefore as follows:

trust_calculation(Salest ∪Purchasest,
Commt ,γ,t)=
trust(t,‘γ ’,

wbuyer ·DEbuyer(Salest)+wseller ·DEseller(Purchasest)+wreputation ·Comm_Trust(
Commt )

wbuyer +wseller +wreputation
wbuyer,wseller and wreputation are the three weights and the functions DEbuyer, DEseller and

Comm_Trust calculate intermediate values for direct experiences with buyers, sellers and
communicated evaluations, respectively.

Comm_Trust(
Commt )=
∑

C∈
Commt

value(C)

|
Commt |

DEbuyer(Salest)=
∑

S∈Salest

wprofit ·eval_profit(S)+wtime ·eval_paytime(S)

|Salest |·(wprofit +wtime)

DEseller(Purchasest)=
∑

P∈Purchasest

wcost ·eval_cost(P)+wdelivery ·eval_delivery(P)

|Purchasest |·(wcost +wdelivery)

Comm_Trust aggregates the communicated trust evaluations in a straightforward manner:
it simply takes the communicated values as they are and averages these over all the received
communicated evaluations. DEbuyer and DEseller both use a straight up average over all interactions
in which a sale, or a purchase, was made. Each interaction is evaluated by taking a weighted average
of the evaluation of two aspects of the interaction. For sales interactions this is the profit made
and whether the payment was on time. For purchases this is the cost incurred and whether the
delivery was on time. The weights wprofit and wtime determine the importance of these two factors
for DEbuyer, while wcost and wdelivery do the same for DEseller. Each individual sales interaction is
evaluated using the following functions:

eval_profit(Sale)=max(−1,min(1,
profit(Sale)−expected_profit(Sale)

profit_threshold
))

eval_paytime(Sale)=
{

−1 if date_payed(Sale)>payment_deadline(Sale)

1 otherwise

eval_profit calculates the normalized value of profit: the profit_threshold is a constant: if the
difference between the actual profit and expected profit is greater than the threshold, then the output
of the function is capped at 1, or −1, depending on whether the difference is positive or negative.
eval_paytime is a binary function: it is 1 if the price of the item was paid on time and −1 if it was
not. Two very similar functions eval_cost and eval_delivery perform the same task for evaluating
purchase interactions:

eval_cost(Purchase)=max(−1,min(1,
expected_price(Purchase)−price(Purchase)

cost_threshold
))

eval_delivery(Purchase)=
{

−1 if delivery_date(Purchase)>expected_delivery(Purchase)

1 otherwise
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This trust model serves as a first example of a model that can be incorporated into the agent’s
reasoning system. The key points of this demonstration are twofold: the first is to stress the intuition
described so far that a trust model can be seen as a function taking inputs from the agent’s mental
contexts and calculating a trust evaluation. Obviously, the actual calculation of this example is quite
simple; however, we demonstrate this in a similar manner for actual computational trust models in
Section 7. The second point is to demonstrate that the designer of the system has a choice in what to
consider as parameters. In the above system it would be intuitive to take the weights as parameters.
However, such a choice does not fit our model: the value of a single weight in a weighted average is
meaningless, because it is the ratio between weights that defines their relative importance within a
weighted average. We thus take these ratios as our parameters. The actual value of the weights can
follow trivially from these.

Note, that fixing the values for all possible ratios between all weights may lead to inconsistencies
that would violate Property 2 of Section 3 (that any combination of values for the parameters yields a
valid trust model). In our example, this problem is easily solved by choosing a mutually independent
set of ratios for which the remaining ratios are dependent on. We thus choose the set of parameters
Paramstrust_calculation ={wprofit

wtime
, wcost

wdelivery
,

wbuyer
wseller

,
wbuyer

wreputation
} for the trust_calculation function. It is easy

to see that Property 2 of trust models is fulfilled. While profit_threshold and cost_threshold could
technically also be parameters of the calculation, they serve no purpose in adapting the trust model
to the agent’s behaviour. Rather they need to be chosen correctly for the trust model to be of use in
any domain.

5.1.1 Adapting the trust model
The parameters above can take any number of values, which result in different behaviours of the
trust model. As argued in Sections 3 and 5, the behaviour of the trust model should be adapted to the
current beliefs and goal of the agent. The values of the parameters should depend on certain factors
– the labels of the parameters – that the agent can prioritize over. For instance, if in the example the
agent regards the delivery time of an item as more important than its cost, then the corresponding
weights wdelivery and wcost in the trust calculation should reflect that.

We define this more generally, with the set of constants CPL , which can be used in a priority
logic (PL) as defined in Section 4.2.3. In the above example we choose: CPL ={delivery_time,cost,
payment_time,profit,outcome_buying,outcome_selling,reputation}, which corresponds exactly
with the variables in the equations of the trust model. These are the factors that the agent uses
to describe interactions in which it buys and sells items in an auction as well as the factors describing
the intermediate stages of the trust calculation. Consequently, changes in the relative importance
between these factors should cause the trust model to change. In a real scenario, far more factors can
influence the parameters, but we aim to keep the example simple.

The different parameters of the trust model are not all influenced by the same factors. As specified
in the introduction of Section 5, the labels function defines which factors influence which parameter.
In our example we have:

• labels(
wprofit
wtime

)={payment_time,profit}
• labels( wcost

wdelivery
)={delivery_time,cost}

• labels(
wbuyer
wseller

) ={outcome_buying,outcome_selling}
• labels(

wbuyer
wreputation

) ={outcome_buying,reputation}
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In the continuation of this article we describe a method that allows an agent to reason about the
labels affecting its trust model. Viewing the trust model as a function allows us to abstract away from
the actual computation and give this specification in more general terms than would be the case if
we had to consider each method of computation separately.

5.2 A priority system

Our language must allow for the specification of the importance of the different factors that are taken
into account in a trust calculation. Another thing to note is that these factors may be both the initial
inputs, such as communicated information or direct experiences, as well as internal predicates, such
as the concepts of image and reputation in the case of Repage [30]. However, some comparisons do
not make sense. For example, in the case of Repage it does not make sense to specify that direct
experiences are more important than image, because nowhere in the algorithmic process do the two
concepts occur together. In fact, image is considered as the output of an aggregation of, among
other things, direct experiences. We therefore do not need to specify the importance ordering over all
possible factors, because in the algorithmic design of the trust model some comparisons are pointless.
However, we do need a way for identifying those factors that require ordering. For this we turn to
the parameters of the trust model. We only need to define the importance between any factors that
appear together in the labels related to a parameter. In our example, for instance, there is no need to
define the importance between the factors payment_time and reputation as the relative importance
between these two factors do not influence the same parameter.

The parameters and their labels give us a natural way to specify what is important in the calculation
of trust. How each of these labels influences the trust evaluation is dependent on the calculation itself.
Take for instance, our example of a weighted average: the higher the ratio

wprofit
wtime

, the more weight is
given to the profit made in a sale, in comparison to the punctuality of the payment. This is a natural
translation from the relative importance of profit as opposed to punctuality. We do not elaborate on
how exactly this translation is implemented. For instance, as long as the parameter

wprofit
wtime

is given
a value greater than 1, it complies with the idea that profit is more important than delivery time,
independent of the actual value it has. However, that does not mean the actual value is unimportant:
the values for this parameter influence the trust model in very different ways. We will assume the
agent has a way of translating the relative importance into actual values for the parameters in a
reasonable manner. One way to choose the values is through the relative importance of the priority
rules, which we will discuss in Section 6, but first we need to finish formalizing this idea of relative
importance between the various factors: we do this using our priority logic (see Section 4.2.3), which
allows us to specify a priority system for each of the parameters, on the labels which influence its
value.

Definition 2 (Priority System)
The priority system context PSC contains a set of priorities for each parameter of the trust model. We
recall that a set of priorities is a theory in a PL-language LPL . Let trust_calculation be a trust model
with parameters Paramstrust_calculation, then for each parameter p∈Paramstrust_calculation we define
the PL-language LPLp with predicates � and = and constants CPL = labels(p). A theory in LPLp is
denoted as �p. The PSC therefore contains the indexed family {�p}p∈Paramstrust_calculation .

For instance, in our auction example, we could have the following PSC:

{cost � delivery_time} wcost
wdelivery
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{profit� payment_delay} wprofit
wtime

{outcome_buying= outcome_selling} wbuyer
wseller

{outcome_buying� reputation} wbuyer
wreputation

These priorities would mean that any actual instantiation of a computational trust model must give
more importance to cost than delivery time, and outcomes from either type of direct experience to
reputation, when evaluating an agent.

Now we recall that trust is multi-faceted: the priority system is dependent on what goal the trust
evaluation serves. For instance, the priorities may differ, depending on whether the agent intends to
buy or sell an item. As such the priorities must be dependent on the goal. We call any goal in which
interaction with other agents is required a social goal.

5.3 Social goals

We recall from Section 4 that a goal in an agent is an FODL sentence that combines a desired outcome
with a plan. Not all goals can be achieved by the agent working in isolation. We call a goal which
requires interaction with another agent a social goal. However, different plans may require different
interactions to fulfill the same desire, so the need to interact must come from the specific manner
in which to achieve the goal. Some desires may be fulfilled in strict isolation, but have alternative
methods for fulfillment if interaction is considered. Other desires may inherently require interaction.
Either way, it is the plan in which the interaction is defined. Such a plan is formed in the Planner
Context and is a sequence of actions. We should therefore specify in the actions, whether there is a
need for interaction. Furthermore, we should define the type of action, or set of actions, we expect
the other agent to perform (such as buying or selling an item). For this we will use an abstraction, so
that rather than specifying the actual actions, we specify which role the agent should fulfill. We will
assume such roles are defined in the MAS itself [13, 21] and the agent knows what can be expected
from an agent performing any given role. The agent therefore has knowledge about a set of roles
which can be performed in the system, using the special unary predicate role∈PDomain. We define
the set Roles analogously to Agents: Roles={r|BC :role(r)}. These roles are used in the definition of
a social action:

Definition 3 (Social action)
social_action(‘α’,‘
Pre’,‘
Post’,r) is defined analogously to the definition of basic_action in 4.3,
where α∈RG is a basic action and 
Pre,
Post ⊆LBel are the pre- and post-condition, respectively.
The distinction between a basic_action and a social_action is that the latter requires that some other
agent, performing role r ∈Roles, participates in the action. With this extension of the syntax of the
planning context’s internal logic, we also need to extend the definition of the planning predicate:
plan(‘α’,‘
Pre’,‘
Post’,R), where R⊆Roles is the set of roles required by social actions in the
program α.

Note that this is a simplified version of a more general definition, in which an action might require
the participation of multiple agents performing multiple roles. This entire framework can be extended
in a trivial manner to such multi-agent social actions, but to keep the notation clean we limit the actions
to two agents and thus a single other agent performing a single role.Asocial goal is defined as any goal
[α]ψ where α is a plan in which at least one social action is involved. For convenience, we explicitly
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write the roles involved in the goal as [α]ψ〈R〉, as shorthand for PC :plan(α,Pre,Post,R) ∧ IC : [α]ψ .
In other words R is the set of roles required by the social actions in the plan. We also write [α]ψ〈r〉 to
denote any role r ∈R with the above condition. Whether an agent performs a certain role adequately
is directly linked to its trustworthiness.

From an organizational perspective of the MAS, we consider all agents inherently capable of
performing any role. Whether they perform this role adequately is a matter for the individual agents
to decide. It is also in this aspect that our multi-faceted view of trustworthiness comes into play,
as trust is based not just on agents’ willingness to perform an action, but also their capability in
performing this action [4]. When an agent wishes to accomplish some social goal, it must attempt
to find the agents best able to fulfill the required roles, using the corresponding priority system to
instantiate the trust model to perform this evaluation.

6 Goal-based instantiation of trust models

In the previous section, we showed how to abstract away from a computational model and specify
the factors that influence the trust computation. We can now tie this together with the BDI-reasoning
of an agent. Particularly, we specify how the beliefs and goals affect the trust model. The factors that
influence the trust model are defined in the priority system, but which PL-theory is used depends
on the agent’s reasoning system. The social goal the agent wants to accomplish, the set of roles
required to achieve this goal, and the beliefs an agent has about its environment may all influence the
importance of the different factors and thus the trust model itself. A priority system, as described in
Definition 2, is thus not a static set of rules, but is defined dynamically for each goal an agent intends
to achieve: given a set of beliefs 
, for each goal γ and for which role r ∈R is required, the agent
has a PL-theory PSγ,r,
 describing the priorities at that moment. We need to specify how priorities
come into existence and how they are used in instantiating a trust model for a specific goal. So far
we have only tangentially involved the reasoning system of the agent; now we will show how the
trust model and priorities are involved in the reasoning. We use the MCS described in Section 4 and
specify the bridge rules required.

6.1 Reasoning about the priority system

We work from the intuition that an agent’s beliefs, and the goal it is attempting to achieve, justify
the priorities. We illustrate this by taking another look at the example of Section 5.1: if an agent
believes it is beneficial to be frugal, it could choose to prioritize cost over delivery time and profit
over payment delay. However, there might be a specific goal, such as if an agent needs to buy an item
urgently, that could change these priorities: if the agent wants the item delivered quickly it could
prioritize delivery time over cost.

To allow an agent to adapt its priorities—and thus its trust model—in such a manner we specify
rules encoding causal relationships between cognitive elements and the priority system, formalized
using a first-order logic restricted to Horn clauses. These rules are deduced in the priority rule
context (PRC); a functional context similar to the planner context. We have three special priority rule
predicates: belief _rule,role_rule and goal_rule. These predicates specify that a set of beliefs, a role
or a goal support a certain ordering of priorities. Additionally, these predicates have a third argument,
specifying the preference value for that rule. This is a numerical indicator of how important that rule
is, which is used in the resolve function below. Let
⊂LBel, r ∈Roles and γ ∈LInt . Additionally let
v∈N and π ∈LPLp for some p∈Paramstrust_calculation, then the following are priority rule predicates:

 at C
SIC

 on February 27, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/


[16:05 10/1/2013 exs003.tex] LogCom: Journal of Logic and Computation Page: 42 25–58

42 Opening the black box of trust

• belief _rule(‘
’,‘π ’,v). This allows for the definition of priority rules stating that the set of
beliefs 
 supports the priority π with preference v.

• role_rule(r,‘π ’,v). The use is similar to the previous rule, but with a role, rather than beliefs,
supporting a priority.

• goal_rule(‘γ ’,‘π ’,v). A priority rule stating that goal γ supports priority π with preference v.

Additionally, we have the predicates belief ,role and goal to represent the agent’s mental attitudes
in the PRC, which are needed in the deductions. To see how this works in practice, we once again
consider the example and formalize the scenario from the start of this section: the agent has a belief
that it is frugal. This belief supports prioritizing cost over delivery time. The formalization of this is
with the priority rule belief _rule(‘frugal(me)’,‘cost �delivery_time’,1).

How an agent obtains such priority rules is dependent on the implementation. Similar to the
planning context, such rules can be predefined by the programmer, or the agent can be equipped with
some reasoning system to deduce them. We use ϒ to denote the set of all priority rules an agent
has. The rules are used with a specific set of beliefs, a goal and a role, for which the agent needs to
evaluate other agents’ trust. As such we need bridge rules to connect the priority rule context to the
belief and intention contexts:

BC :

PRC :belief (‘
’)

BC :role(ρ)

PRC :role(ρ)

IC : [α]ψ
PRC :goal(‘[α]ψ’)

(6)

Let p∈Paramstrust_calculation be a parameter of the trust calculation, with its corresponding set of
labels. Given a set of beliefs 
, a role r and a goal γ we can now use the PRC to find a set of
priorities �p,r,γ,
 over the set labels(p):

�p,r,γ,
=

⋃

′⊆


{π |belief _rule(‘
′’,‘π ’,v)∈ ϒ∧ terms(π )⊆ labels(p)}
⋃

{π |role_rule(r,‘π ’,v)∈ ϒ∧ terms(π )⊆ labels(p)}⋃
{π |goal_rule(‘γ ’,‘π ’,v)∈ ϒ∧ terms(π )⊆ labels(p)}

Note that �p,r,γ,
 might not be a consistent PL-theory! We illustrate this by con-
tinuing the formalization of the example. The agent in the scenario has the goal
to buy an item, for instance a book, urgently. This can be formalized in the rule
goal_rule(‘[buy_book]have_book(tomorrow)’,(delivery_time�cost),2). The set generated with the
singleton set of beliefs {frugal(me)} and goal [buy_book]have_book(tomorrow) contains both
delivery_time�cost as well as cost �delivery_time and is thus not a consistent PL-theory.

To use sets of priorities generated in this manner in the Priority System, the agent must perform
some form of conflict resolution, which guarantees a consistent PL-theory. This is done using resolve:
a function that, when given a set of priorities, a set of beliefs, a goal, a role and a trust model, returns
a PL-theory. It is immediately obvious that there are many different ways of obtaining a consistent
PL-theory from a set of priorities and there are intuitively better, and worse, ways of doing this. For
instance, ∅ is a consistent PL-theory, but it is not a very useful one! To maximize the utility of the
obtained PL-theory, we use the preference factors for each of the rules inϒ . The output of the resolve
function must fulfill the following two conditions: (i) it is a consistent PL-theory and (ii) the total
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preference value of the rules used is maximal. This allows the agent designer a lot of freedom in
defining how to resolve the priorities. For instance, one way would be to guarantee that resolve returns
a maximal subset of �p,r,γ,
 that is a consistent PL-theory. Another possibility ties in with the idea
that the trust model should be goal-oriented. In such a case, the priorities supported by the goal should
supercede the priorities supported by the role, which in their turn should supercede those supported
by the beliefs. Both these methods can be expressed by choosing adequate preference factors for the
rules: if we just want the maximal subset, all preferences can be 1, but if the implementation calls
for some distinction between the rules, this can be implemented using the preferences of the rules.

We have now defined all the individual parts of the extended BDI model and can define the first
bridge rule related to reasoning about trust, namely the generation of a priority system:

BC :
 IC :γ =[α]ψ〈r〉 PRC :ϒ
PSC :PSr,γ,


(7)

where PSr,γ,
={resolve(�p,r,γ,
,
,γ,r,trust_calculation)}p∈Paramstrust_calculation , the outcome of
an operational procedure, as alluded to in Section 4.1.

It is up to the implementation of the agent to define resolve as well as the rules in ϒ (or a method
for generating them).

6.2 Instantiating trust models

A social goal γ is not immediately executable, unlike a goal with a plan which does not contain social
actions. To achieve a social action, it is not sufficient to define which role an agent must fulfill, but the
agent must actually choose another agent to fulfill that role. For this the trust evaluation of other agents
in the system must be calculated, so that a decision can be made whom to interact with. As stipulated
earlier, we require there to be a method to obtain an instantiation of a trust model complying with a
priority system. Accordingly, the agent can use such an instantiation to calculate its trust evaluations.
A system implementing our model has to provide a definition of the instantiate function that, when
given a priority system PSr,γ,
 and a trust function trust_calculation, outputs another trust function
trust_calculationr,γ,
, such that instantiate(PSr,γ,
,trust_calculation) complies with the priority
system PSr,γ,
. A trust model complies with a priority system if the value of each of its parameters
complies with the priorities over its labels, as explained in Section 5.2. Both instantiate and how the
compliance of the resulting trust function is checked depend heavily on the actual trust model used
and we will demonstrate this in an example in Section 7.1.

Now this trust_calculationr,γ,
 can be used to aid the agent in selecting a partner for the required
role. However, trust may not be the only thing an agent uses to select a partner. In a BDI-base agent
architecture all reasons an agent may have to select a partner are usually inferred from the belief base.
Therefore, trust evaluations should be added to the belief base, allowing them to be incorporated in
this reasoning process. Once a partner has been selected, a social action may be executed just as a
basic action can be executed by the agent. The details of how this happens is outside the scope of a
high-level specification, but we do need to specify how trust evaluations get added to the belief base.
trust_calculationr,γ,
 is a functional representation of an underlying computational trust model.
This trust model can calculate the trust evaluation of prospective partners for the achievement of the
goal γ . These calculations need to be added in the belief base and, accordingly, we require a bridge
rule for this:

IC :γ =[α]ψ〈r〉 BC :
 PSC :PSr,γ,


BC :ϕγ,r,a (8)

where ϕγ,r,a = trust_calculationr,γ,
(
DE,
Comm,γ,a) with 
DE,
Comm ⊂
 and a∈Agents.
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PSCPRC

(6)(6)

(7)

(8)

BC XCIC

DC

PC
(2)

(3)

(4)

(5)

(1)

(1)

Figure 2. The MCS specification of a BDI-agent that can reason about trust. This is an extension of
Figure 1, whose bridge rules are colored gray. The bridge rules added for reasoning about trust are
black, with labels corresponding to those in the text.

Finally this trust evaluation can then be used in the execution of a plan, by selecting the best partner
for interaction. The MCS with the two new contexts and the additional bridge rules is represented
schematically in Figure 2.

7 Integrating trust models

With the extended BDI-framework in place we can now show how this allows an agent to reason
about its trust model. We will demonstrate how to incorporate three different trust models into the
framework: BRS [15], ForTrust [20] and ReGReT [32]. We show how incorporating a trust model
into the framework allows the agent to proactively change its trust evaluation, in addition to allowing
an easy and intuitive way of allowing any model to deal with the multi-faceted aspect of trust by use
of the agent’s goals and the roles other agents may perform. We only demonstrate the entire reasoning
model for BRS, while presenting a detailed discussion of the algorithmic representation of the other
models and their parameters, so that the engaged reader can repeat the exercise for ForTrust, ReGReT
or any other model fulfilling the criteria presented in Section 3.

7.1 BRS

The Beta Reputation System (BRS) is a statistical method for calculating reputation: the aggregation
of other agents’ trust evaluations. The approach described by Jøsang and Ismail [15] is a centralized
approach and can thus be seen as a model which does not take individual’s own direct experiences
into account separately. However, as they explicitly mention, this same method can be used in a
decentralized approach and newer extensions of this model, such as TRAVOS [36], are distributed.
The basis of TRAVOS is the same statistical model as Jøsang and Ismail describe, so we focus on BRS.
An agent’s own direct experiences are aggregated just the same as any other agent’s communicated
experiences with no special preference. BRS is based on the beta-family of probability distributions
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of binary events. This family is expressed by the following probability density function, where p is
a probability conditioned by the shape parameters α and β and � is the Gamma function2:

f (p|α,β)= �(α+β)

�(α)�(β)
pα−1(1−p)β−1, where 0≤p≤1, α>0, β>0

The expected value, given such a probability density function is:

E(p)= α

α+β
The expected outcome is thus in the range [0,1]. BRS uses this expectation as the reputation, but

converts it to a value in [−1,1], which they state is more intuitive to human users. The α and β
are determined by the number of ‘good’ and ‘bad’ evaluations of interactions with a certain trustee.
Jøsang and Ismail add further refinements by discounting opinions from agents who are uncertain
and discounting experiences over time. Additionally, they provide a method for using non-binary
evaluations of an interaction by treating a single interaction as a number interactions with a mix of
‘good’ and ‘bad’. A numerical evaluation can be translated into a pair (r,s) where r is the value of
‘good’ and s the value of ‘bad’ in that single interaction. By using a weight w it is further possible to
give important interactions a higher value for r and s and thus more importance in the determination
of α and β, although this is not explored further in [15]. Algorithm 1 describes the entire process.

Algorithm 1 (Centralized BRS)
Input: Evals={(v,a,t)}, a set of evaluations. Each evaluation with value v∈[−1,1], evaluator

agent a and time t
Input: j∈Agents, the agent to be evaluated
Input: w, the weight parameter
Input: λ, a parameter for decay over time
s := 0
r := 0
foreach (v,a,t)∈Evals do⌊

r := r+λnow−tw(1+v)/2
s := s+λnow−tw(1−v)/2

reputation := r−s
r+s+2

Output: Reputation(j,reputation,now)

7.1.1 Parametrization of Centralized BRS
When looking at the algorithm we see that there are two explicit parameters, w and λ. λ can be
interpreted as defining the balance between new and old evidence: if λ = 1 the time since the evidence
was observed is irrelevant; with λ<1 historical evidence is given less importance and the unusual
situation of λ>1 would mean the longer ago the evidence was observed, the more importance it is
given. However, w in the formula given by Jøsang and Ismail only influences the convergence rate.
We feel the weight w can be put to better use: as they themselves describe, it can be used to define
the importance of an interaction to the final calculation. This ties in directly to another issue with the
algorithm: it starts off with a set of evaluations without describing how these are calculated from an

2�(x)=∫ ∞
0 tx−1e−tdt
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agent’s beliefs. Thus, the algorithm above only describes the aggregation method used for calculating
trust based on individual evaluations, but not the evaluation method itself, which forms an important
part of the evaluation. This is mainly because the article describes a centralized method in which it
uses communicated information: the computational entity that performs the aggregation is not the
same one that performs the evaluation of individual interactions. We thus propose a decentralized
version of BRS defined in Algorithm 2, which is a procedure for calculating the outcome of the
trust_calculation function for an agent using BRS as its trust and reputation model. This uses three
secondary functions: eval, weight and time_stamp to calculate the value of a direct experience, the
weight assigned to this value by the agent, and the time the direct experience took place, respectively.
Since the agent’s knowledge of its direct experiences and received communications are collected in
its belief base, we make the link to the belief context BC explicit in the algorithm.

Algorithm 2 (Decentralized BRS)
Input: j∈Agents, the agent to be evaluated
Input: BC : Ij, a set of direct experiences with agent j
Input: BC :Rj ={received(reputation,i,j,v,t)}, a set of messages with sender i,

communicating that agent j has reputation value v at time t
Input: λ, a parameter for decay over time
s := 0
r := 0
foreach i∈ Ij do⎢⎢⎢⎢⎢⎢⎢⎣

v :=eval(i)
w :=weight(i)
t := time_stamp(i)
r :=r+λnow−twv
s :=s+λnow−tw(1−v)

foreach received(reputation,i,j,v,t)∈Rj do⎢⎢⎢⎣ Repi := (1+rv)/2,whereBC :Reputation(i,rv,now−1)
r :=r+λnow−tRepi ×v
s :=s+λnow−tRepi(1−v)

reputation := r−s
r+s+2

Output: Reputation(j,reputation,now)

This algorithm does not strictly follow the description of BRS [15]. To make sense in a decentralized
setting a distinction must be made between the own and others’ experiences. This distinction need
not be made in a centralized system and therefore we propose to discount incoming communications
based on the reputation of the sender. This discounting is not done in the original article, but we
feel it represents an accurate extension of BRS to a decentralized model. The own experiences are
evaluated using the functions eval and weight. These can easily be parametrized to be dependent on
the goal the agent is attempting to achieve.

As mentioned earlier, TRAVOS [36] is an example of a newer trust model that extends BRS
and it makes a similar distinction between own direct experiences and incoming communications
as in Algorithm 2; however, it extends the BRS model significantly, mainly in the way it chooses
what information to take into account when calculating a trust evaluation. BRS uses all information
available, although weights can influence this. TRAVOS, however, uses further calculations of the
confidence in different sources to possibly disregard information.
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7.1.2 Parametrization of Decentralized BRS
The only explicit parameter is the same one as in the centralized model: the decay factor for time,
however there is also an implicit one: while the communicated evaluations always have a weight
of at most 1, the weight of own experiences may be arbitrarily high. as such there is a ratio of
wdirect =maxi∈Ij (weight(i)) between own experiences and communicated information. A simple way
of making this parameter explicit is to simply add a wreputation as an extra factor for communicated
evaluations. The agent can modify this parameter to change the balance between own experiences
and communicated information. The eval function may also be parametrized, similar to the other
models and our description in Section 3.3.

7.1.3 An e-commerce agent using decentralized BRS
We will now show how this system allows an agent to proactively change its trust model, using
Algorithm 2 as the procedure for calculating trust. The implementation depends on the domain
in which the agent is operating, so to keep our example compact, we use the same domain
as in the example of Section 5.1: an agent in an e-commerce environment. The environment
has two roles an agent may play, buyer or seller, corresponding to the actions an agent can
perform, buying an item or selling an item. To evaluate agents’ direct interactions we use
evaluation functions similar to those described in Section 5.1, but returning the outcome in a
format that BRS can handle. BRS performs the aggregation, so we just need to provide a definition
for the functions eval and weight. These are defined differently for the different types of interactions:

eval(DESale)=round(wprofit ·eval_profit(DESale)+wtime ·eval_paytime(DESale))

eval(DEPurchase)=round(wcost ·eval_cost(DEPurchase)+wdelivery ·eval_delivery(DEPurchase))

weight(DESale)=wsale

weight(DEPurchase)=wpurchase

which use the functions:

eval_profit(Sale)=max(−1,min(1,
profit(Sale)−expected_profit(Sale)

profit_threshold
))

eval_paytime(Sale)=
{

−1 if date_payed(Sale)>payment_deadline(Sale)

1 otherwise

eval_cost(Purchase)=max(−1,min(1,
expected_price(Purchase)−price(Purchase)

cost_threshold
))

eval_delivery(Purchase)=
{

−1 if delivery_date(Purchase)>expected_delivery(Purchase)

1 otherwise

Having now specified all the calculations of the trust_calculation function, we choose the
following set of parameters: Paramstrust_calculation ={λ, wprofit

wtime
, wcost

wdelivery
, wsale

wpurchase
, wsale

wreputation
}, giving a

full parametrization of BRS. The last four parameters are described in Section 5.1, while λ is a
parameter from Algorithm 2. We demonstrate the agent’s reasoning using a simple set of labels.
These labels are constants that allow us to capture the meaning of the parameter. The numerical

 at C
SIC

 on February 27, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/


[16:05 10/1/2013 exs003.tex] LogCom: Journal of Logic and Computation Page: 48 25–58

48 Opening the black box of trust

value of a parameter is thus symbolically represented as an ordering of factors that influence the
parameters:

• labels(λ)={old,new}
• labels(

wprofit
wtime

)={payment_time,price}
• labels( wcost

wdelivery
)={delivery_time,cost}

• labels( wsale
wpurchase

)={sale_experience,purchase_experience}
• labels( wsale

wreputation
)={sale_experience,reputation}

The ordering of these labels are defined in a priority system, which is deduced in the PRC. The
following are a sample of rules an agent may use to reason in this example.

The rules for deducing the PL for parameter λ are:

• belief _rule(‘dynamism_environment(high)’,‘new�old’,1)
• belief _rule(‘dynamism_environment(none)’,‘new=old’,1)

These state that if the environment is very dynamic, old information should be given less importance
than new, whereas if the environment is not dynamic, all information should be treated equally.

For
wprofit
wtime

the rules are:

• belief _rule(‘frugal(me)’,‘price�payment_time’,1)
• belief _rule(‘[pay(rent,landlord)]have(home,next_month)∧¬have(rent,now)’,

‘payment_time�price’,5)
• goal_rule(‘[sell(item)]have(money,future)’,‘price�payment_time’,1)

With the meaning that if the agent is frugal, price is given more importance than the deadline for
payment. A similar rule applies if the agent does not have a goal to sell an item urgently. However,
if the agent needs money urgently, for instance to pay the rent, then it should give a high importance
to the time the payment is made, rather than the profit made.

For wcost
wdelivery

:

• belief _rule(‘frugal(me)’,‘cost �delivery_time’,1)
• goal_rule(‘[buy(item)]have(item,tomorrow)’,‘delivery_time�cost’,2)

Similar to the rules for
wprofit
wtime

, a frugal agent should prioritize the cost over timeliness of the delivery.
However, if the item is needed urgently, for instance the next day, then the delivery time is more
important than the cost.

For wsale
wpurchase

:

• role_rule(seller,‘purchase_experience�sale_experience’,2)
• role_rule(buyer,‘sale_experience�purchase_experience’,2)

These rules define the importance in the aggregation process for direct experiences of different types.
If the agent is searching for a seller, then it should give more importance to direct experiences in
which it was buying items than those in which it was selling. Vice versa if the agent is searching for
a buyer.

Finally for wsale
wreputation

:

• belief _rule(�,‘sale_experience�reputation’,1)
• belief _rule(‘∀x∈Agents :good_reputation_source(x)’,

‘sale_experience=reputation’,2)
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The first rule states that the default is for sale experiences to be more important than reputation.
However, if all agents in the system are good reputation sources then the two types of information
should be given equal importance.

These rules are triggered by the first parameter, the antecedent, being true in its respective context.
The bridge rules (6) cause these true sentences to be added in the PRC, where the internal reasoning
checks which priority rules hold true at any one time. For bridge rule (7) to be of any effect, we need
to define a resolve function. An example of a resolve function that resolves possible conflicts in the
priority system could be to perform a best first search for each parameter, which removes rules from
the set of applicable rules recursively, based on their importance value (removing the lowest values
first) until the set of rules results in a consistent PL-theory, thus guaranteeing the highest value set
that forms a consistent PL-theory. The priority system to be used is the family of the PL-theories for
each individual parameter. To obtain a trust model complying with these parameters, we also need
to define the instantiate function. An example of such a function, that works for the above priority
rules, is to use the importance values of the priority rules to calculate the value for each parameter
of the trust model as follows: if new=old then λ=1, otherwise λ=0.9 (which we use as a default
decay rate). For

wprofit
wtime

we have:

instantiate(
wprofit

wtime
,ϒwprofit

wtime

)=
1+∑

rule(ϕ,price�payment_time,v)∈ϒ wprofit
wtime

v

1+∑
rule(ϕ,payment_time�price,v)∈ϒ wprofit

wtime

v

where rule stands for any predicate of the type belief _rule,role_rule or goal_rule. A similar function
exists for the other weight ratios. We finally obtain the weights themselves by a simple algorithm
that assigns 1 to each weight and then for each parameter, adjusts a weight so that the ratio in the
parameter is correct (in other words, if

wprofit
wtime

has value 1/2 it could adjust wprofit to 0.5 or wtime to
2), always adjusting a weight that has value 1 before adjusting other weights. This loop continues
until all parameters are satisfied.

Now we see that this allows the agent to instantiate different trust models with different weights,
depending on the role the other agent plays in the interaction, if there is urgency in selling off stock,
or the agent believes all other agents to be truthful in their reputation assessments. The agent designer
could create more priority rules (or implement a system in which the agent learns priority rules) to
cover more cases, similar to agent’s plans are required to allow an agent more flexibility in fulfilling
its desires.

We will not discuss the integration of ForTrust or ReGReT in such a detailed example, but rather
show how those algorithms can be parameterized. The further steps to full integration into the
extended BDI model are left to the engaged reader.

7.2 ForTrust

ForTrust is a logical framework for describing properties of trust: it provides a definition of trust in
the trustee’s action [20] and states that an agent trusts a target agent to perform an action α, which
will fulfill a desire ϕ, if the following conditions hold:

Power: the target agent can ensure ϕ, by doing α.
Capability: the target agent is able to perform action α.
Intention: the target agent intends to do α.
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Trust is then defined in a multimodal logic, with trust as a modality equivalent to an agent having
a desire (or, in their logic, an achievement goal) ϕ and beliefs corresponding to the above conditions
of power, capability and intention of the target, desire and action. Their formalization of trust thus
incorporates those aspects of trust that we have mentioned earlier: an agent trusts another agent with
regards to a specific goal. The role an agent plays is directly dependent on the social action that it is
required to perform. As such this formalization fits exactly with our own one. Lorini and Demolombe
[20] also present a graded version of the multimodal logic, which allows trust to have a strength,
rather than be binary as in classical logic. Either way, this logical description of trust is very abstract.
For instance, it does not describe the computational processes involved. For instance, the very basics
of computational trust: when given a direct experience in which the target agent performed α and
the result was a world in which ϕ′ held, how likely is it that next time the agent performs α, the
desire ϕ is fulfilled? This is just one of the issues that the formalization stays away from, but any
implementation must necessarily solve.

Hübner et al. present an implementation of this graded version of ForTrust, using Jason [14]. This
implementation resolves many of the abstract issues by making very specific choices for how to
calculate the outcome of parts of the formalization in the ART Testbed [9]. The ART Testbed is a
testbed for trust models in which the aim is to obtain the best possible appraisal of various pieces
of art. Thus, the trust evaluation depends on the trustee actually performing the ‘appraise’ action,
thereby fulfilling the conditions of capability and intention and if the belief ‘good_eval’ is true after
appraising, then the condition of power is also fulfilled. Since the agent has a graded belief base, both
the belief that the trustee will perform the ‘appraise’ action and the belief that ‘good_eval’ will hold
are numerical and the final trust evaluation of a trustee is the minimum of these two grades. This
definition is very specific and we give a more general version of the same system in Algorithm 3,
which is not limited to application in only the ART Testbed.

Algorithm 3 ForTrust
Input: BC :B, the set of the agent’s beliefs
Input: IC : [α]ϕ, the goal to be achieved
Input: a∈Agents, the agent to be evaluated
Input: ε, a parameter defining the cut-off rate for capability of performing α
Input: δ, a parameter defining the cut-off rate for the power of achieving ϕ by performing α
Input: γ , a parameter defining the decay factor γ for evidence over time
Input: c0, a default value for the capability
Input: p0, a default value for the power
performed := 0
contracts := 0
outcome := 0
denominator := 0
foreach request(a,α,contract)∈B do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

contracts :=contracts+1
Ifperformed(contract,a,ψ,time)∈B then⎢⎢⎢⎢⎢⎣

performed :=performed+1
modifier :=γ now−time

outcome :=outcome+modifier× eval(ϕ,ψ)
denominator :=denominator+modifier

If contracts=0 then
� capability := c0
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else
� capability := performed

contracts
If capability≤ε then
� capability := 0
If performed =0 then
� power := p0
else
� power := outcome

denominator
If power≤δ then
� power := 0
x := min(capability, power) Output: trust(a,[α]ϕ,x)

We assume the existence of the predicates request(a,α,contract) and performed(contract,a,ψ,
time) in LBel to model the requests to perform action α from an agent a and the result ψ of a’s
performance ofα, respectively. The function eval then compares the outcome of a previous interaction
with the requirement ϕ and returns a numerical value. It is easy to fill in a formula here so the same
result is obtained as in Hübner et al.’s implementation for the ART Testbed [14]. Another application-
specific implementation of ForTrust is presented by Krupa et al. [18], which also adds the possibility
of evaluating the trust in an agent to not perform a malicious action. While this requires a different type
of logical reasoning, from a trust perspective it may be treated in a similar manner. An agent simply
trusts another agent regarding the ficticious action α′: the action of not performing α. By considering
the absence of an action as performing a different action and reasoning about that instead,Algorithm 3
is also a generalization of Krupa et al.’s implementation of ForTrust.

A final remark is that while the ART Testbed provides the possibility of asking for reputation
information from other agents, Hübner et al.’s implementation does not use this. We have, therefore,
not included it either, but, just as them, we aim to integrate reputation, which can provide information
for estimating both the power and capability of other agents, in the future.

7.2.1 Parametrization of ForTrust
Looking at Algorithm 3 we see there are three parameters explicitly specified. Of these, γ is the
easiest to interpret: it has the exact same effect as λ in BRS (see Section 7.1). δ and ε can be considered
independently or together. Independently they describe the cut-off rates for power and capability,
respectively. As such, a high ε means we do not wish to consider agents who do not perform α

when asked, independent of the degree of success at achieving ϕ. We see ε thus directly specifies
the importance of being capable, as we would expect from the algorithm. Similarly δ specifies the
importance of actually achieving ϕ if the agent performs α. However, the interplay between the two
variables is also interesting: if one of these two cut-off rates is unrealistically high, then it does not
make any difference what the other value is at, because the trust will be 0, based on this unrealistic
expectation. Similarly, because we take the minimum, the final trust value will depend on the lowest
of the two and as such, if both are higher than the cut-off rate, then the probability of either one
defining the trust evaluation increases the lower this cut-off is. As such we need more information,
namely the probability distributions for capability and power: the importance of δ and ε depend on
these as such: capability defines the trust if it is either greater than ε, or it is smaller than the power
and the power is smaller than δ and thus we have the following formula, where Prcap(c>ε) calculates
the probability that c is greater than ε given the probability distribution of the capability of the
trustee. Prpower does the same for power and Fcap is the cumulative probability function for capability:
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Prcap(c>ε)+Prcap(c<p|p<min(δ,ε))=Fcap(ε)+
∫ min(δ,ε)

0
Fcap(x)Prpower(p=x)dx

A similar equation can be found for deciding when power defines the trust value, which, because
we are not discounting those situations where both p>δ and c>ε, will not simply be the inverse
probability of the above formula. The relation between the probability of capability and power
can thus be seen to be dependent on δ and ε in a complex manner. Additionally, the probability
distributions for power and capability are generally unknown and thus the influence cannot be
calculated exactly. As a rule of thumb, we can assume that power and capability are distributed
equally. In this case the formula can be simplified, and we may revert back to saying that if δ>ε
then power is more important than capability and vice versa. Regardless, however, of how exactly
the relations between power and capability are influenced by δ and ε it is quite obvious that the
parameters influence their importance, and thus we see that all three parameters γ,δ and ε can be
instantiated with different values, depending on what importance the agent wants to give to the
different factors. As in BRS and, as we shall see, also ReGReT, the eval function may also be
parametric, in which case there are even more options available for the agent to adapt its trust model
to the situation.

7.3 ReGReT

ReGReT [32] attempts to define a comprehensive trust and reputation model, which takes many
different types of information into account. The first two are direct trust and information from other
agents, or reputation. However, it is the first model to consider the multi-faceted aspect of trust by
linking a trust evaluation to a behaviour (or role). An agent is not simply evaluated, but rather a trust
evaluation is an evaluation of an agent performing a specific behaviour. To achieve this, ReGReT
adds ontological information to the calculation. Finally, ReGReT considers the structure of the social
network as a source of information about the relations between agents. While none of these individual
issues were new, at the time ReGReT was presented it was the first system to incorporate all these
different aspects into a single comprehensive trust model. As such it is one of the most influential
trust and reputation models in existence.

7.3.1 Roles and the ontology
The ontological dimension is considered for both the calculation of direct trust and reputation. These
values are calculated specifically for a single role. These roles are related through a role taxonomy.
The calculation of direct trust and reputation is only done for so-called ‘atomic roles’, which take a
single aspect of an interaction into account, such as, for instance, the price of an article in an auction.
These coincide with the leaves of the role taxonomy. For any interior role, the trust in an agent
fulfilling that role is the weighted mean of the trust in that agent for each of the child nodes. For
instance, in an electronic auction, a seller is evaluated based on the cost of an item and the delivery
time. Thus, the trust in an agent based only on cost is calculated and similarly for delivery time. These
are then aggregated using a weighted average to obtain the trust in that agent as a seller. The direct
trust and reputation calculations below are thus the calculations for leaves of the role taxonomy.

7.3.2 Direct trust
ReGReT gives a clear description on how an agent can evaluate its own direct experiences with
the trustee. It does this in terms of an outcome, which consists of two things: a contract between
two agents and the resulting actions. It is represented as a tuple o=〈i,j,I,Xc,Xf ,t〉, where i is the
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evaluating agent, j is the target, t is the time when the contract was formed and I is a set of terms in
an ontology that the contract is about. Xc is a vector with the agreed values of the contract for each
issue in I . Xf is a similar vector, but with the actual values, after the contract is deemed ‘fulfilled’.
An agent’s outcomes are stored in a part of the belief base, called the outcome database (ODB). The
direct trust an agent has in the trustee is calculated directly from this ODB.

To perform this calculation, the outcomes need to be evaluated. For each atomic role there is a
function gr :Rn ×R

n →[−1,1], where n is the length of the vectors Xc and Xf . This function is used
to evaluate an outcome and returns an impression in the range [−1,1]. The impressions from all
outcomes are aggregated and this is the direct trust of i in j concerning role r

DTi→j(r)=
∑

o∈ODB

f (now,to)·gr(o)

with f (t,to)= f ′(t,to)∑
j∈ODB f ′(t,tj) , where t is the current time and f ′ :R2 →[0,1] a function to calculate

the decay factor for outcomes over time. Examples are f ′(x,y)=0.5x−y or f ′(x,y)=y/x. We see the
aggregation method is a weighted average, with the weight dependent on the time an interaction took
place.

This gives the value of the direct trust, but ReGReT also uses the reliability of the calculation. For
direct trust, this is defined by two factors: the number of outcomes factor and the outcome reputation
deviation. These encode the uncertainty from possibly having too few interactions to reliably predict
the other’s behaviour and, respectively, the uncertainty from the variability in the outcomes. The
reliability, DTRLi→j(r) is simply the multiplication of the reliability calculated from either factor.

7.3.3 Reputation
In addition to direct trust, information from other agents is taken into account. This is calculated
in a number of manners, resulting in three different types of reputation: the witness reputation, a
value giving the reputation according to information received from other agents, the neighbourhood
reputation, calculated by considering the neighbours of the trustee in a social network and the system
reputation, a default reputation based on the role played by the trustee.

Witness reputation is calculated in two steps: the first of these is to decide which witnesses’opinions
to consider. ReGReT uses the topology of the social network to find the witnesses. The details of
this analysis are not important to the further explanation of the model and we refer the reader to
Sabater-Mir’s work [32] for these. The output of the social network analysis is a set of witnesses who
are asked for their opinion. To decide how reliable a witness is, ReGReT uses two systems. The first
of these is simply the individual reputation of the witness. If the reliability of this reputation is too
low (according to a threshold), then another metric is used, once again based on the structure of the
social network, which they call socialTrust. ReGReT has a set of conditional rules. The antecedent
specifies properties that can hold in the social network and the conclusion is a statement about the
reliability of an agent’s opinion. If the witness’ position in the social network coincides with the
condition in the antecedent, the conclusion defines the reliability of the witness’ opinion.

Neighbourhood reputation is calculated in a similar way to the socialTrust metric. System
reputation is used in case neither witness reputation nor neighbourhood reputation can be used
and is a type of default reputation, which is specified for any agent with certain properties, such as
the role it plays in a system or other information generally available. If no information is available
at all, a default value is used.
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As such, ReGReT has a list of reputation metrics, in descending order of reliability. Individual
reputation is considered before witness reputation, which in its turn is considered before
neighbourhood reputation or system reputation. This is achieved by considering the final metric
reputation Ri→j(r)=∑

x∈W ,N,S,Dξx ·R
i

x→j
(r), where R

i
x→j

(r) is the reputation type x, with W ,N,S

and D being shorthand for Witness, Neighbourhood, System and Default. The ξx are weights for this
system which depend on the reliability of each metric. They are defined as follows:

• ξW =Reliability
i

W→j
(r)

• ξN =Reliability
i

N→j
(r)·(1−ξW )

• ξS =Reliability
i

S→j
(r)·(1−ξW −ξN )

• ξD =1−ξW −ξN −ξS

It is easy to see that if the reliability of the witness reputation is high (near 1), then the weight for
the aggregation of the other reputation types is low.

7.3.4 Combining direct trust and reputation
The final calculation step is to combine direct trust with reputation. This is done using the following
formula:

Trusti→j(r)=DTRLi→j(r)·DTi→j(r)+(1−DTRLi→j(r))·Ri→j(r)

Trust is a weighted sum of direct trust and reputation, with the reliability of the direct trust defining
the weights. This calculation can be performed for any of the atomic roles defined in the role taxonomy.
For an internal node, representing a non-atomic role, the trust in its children must be calculated
first. The trust in an agent performing a non-atomic role is then the weighted mean as described in
Section 7.3.1.

We refer to Sabater-Mir’s work [32] for a full description of the algorithm.

7.3.5 Parametrization of ReGReT
ReGReT is the most comprehensive trust model we consider and it has many different parts about
which an agent could reason. The first and most obvious of these, are the weights used to calculate trust
for non-atomic roles. ReGReT considers roles in a similar manner to the way we have incorporated
them into our system. When incorporating ReGReT into our framework, roles therefore have two
functions. ReGReT’s role taxonomy defines the structure for aggregating atomic roles into non-
atomic roles. However, our reasoning system allows for rules to be set up defining the importance
of these child roles in the aggregation and thus influence the weight of the aggregation, which in
ReGReT is defined statically. An additional improvement is that for a specific goal, or set of beliefs,
the importance of the child roles might be changed and thus the weights can be defined dynamically,
dependent on the situation of the agent.

The second place the agent may incorporate reasoning is in the weight functions of direct trust.
Both the time-dependent weight and the role-dependent evaluation functions are undefined in the
model and left for the implementation. The time-dependent weight may be parameterized similarly
to the decay factor in either BRS or ForTrust. However, the role-dependent evaluation functions are
more interesting: the definition in ReGReT is in terms of a single issue of an interaction and thus a
one-dimensional comparison. We have taken the liberty of extending this to an arbitrary function gr
for any atomic role r that calculates the evaluation of an outcome. If, as in the original description,
gr is a one-dimensional comparison it is obvious that this single issue is the only important factor in
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the calculation of trust for role r. However, by converting this into a multi-dimensional comparison
it should be possible, if the function gr is parametric, to specify dynamically which issues of an
outcome are important for role r dynamically.

Finally, in the social network analysis used for witness reputation and neighbourhood reputation,
ReGReT defines a set of fuzzy conditional rules. Sabater-Mir explicitly states that these rules are
hand-coded, but a better approach would be to automate the process. While our reasoning system
does not allow for full automation, it does allow for a mechanism to adapt these rules.

8 Conclusion and future work

In this article, we propose a method for integrating trust models into a cognitive agent by opening the
‘black box of trust’. By making the parameters of a trust model explicit an agent can proactively adapt
their values and thus the trust model. The values of these parameters are expressions of the relative
importance of different factors on the trust calculation. We introduce an explicit representation of
these factors and a priority logic for representing their relative importance to each other. Priority rules
link the agent’s cognitive aspect, such as goals and beliefs, and the social aspect (role) with particular
orderings of these factors. These, in turn, determine the value of the parameters. In this manner, the
trust calculation can be adapted to the cognitive and social dimensions of the agent system.

This article gives a complete formalization of this method by incorporating the trust model
into a multi-context system representation of the BDI framework. Additionally, we illustrate how
this general method can be applied to particular trust models (BRS, ForTrust and ReGReT). This
illustration serves two purposes: the first is to demonstrate our method and the formalization we
provide. The second is to provide a guide to perform this incorporation for other trust models.

We intentionally left out the details of the implementation of the resolve and instantiate functions,
and left the design of the trust priority rules deliberately vague. The details of their implementation
depends on the specific agent architecture and trust model the agent designer uses, as well as the
domain in which the agent should function. Filling in such details is an important step, but in this article
we describe the first step: an abstract, declarative framework, describing a new way to integrate an
agent’s trust model into its reasoning system. In this work, we have focused on using the trust model’s
parameters in order to adapt the model; however, it can be imagined that adapting the computational
process itself might be desirable. There is no reason why the priority system could not be connected
to such computational processes instead of parameters; however, we leave this, far more complex,
adaptation as future work. In the long run, we intend to use the specification of the priorities not just
for reasoning about trust, but rather to allow agents to argue about trust. The idea of arguing about
the validity of trust evaluations was presented by Pinyol et al. [26], who use BDI+Repage to generate
the arguments, which are used to achieve more reliable communication about trust evaluations. The
argument serves to make the trust evaluation more convincing, by linking it to an agent’s knowledge
about the environment. While this is an exemplary tool for the communication of trust, a similar
argument needs to be constructed for every communicated trust evaluation. If, instead, the agents
could change their trust model, then agents could use argumentation to reach an agreement of what
should form the support for a trust evaluation and adapt their trust models to coincide with this. In this
way, future communicated evaluations could be accepted simply by virtue of having agreed on what
a trust evaluation means. However, as explained above, the BDI+Repage model does not provide a
method for such adaptation. The extended BDI framework we present in this article does, and this
use of argumentation to form agreements about trust models is an important venue of future work as
a possible method for aligning trust [17].
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