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Abstract
We present the notion of Social Instruments as
mechanisms that facilitate the emergence of con-
ventions from repeated interactions between mem-
bers of a society. Specifically, we focus on two
social instruments: rewiring and observation. Our
main goal is to provide agents with tools that al-
low them to leverage their social network of in-
teractions when effectively addressing coordina-
tion and learning problems, paying special atten-
tion to dissolving metastable subconventions. Our
initial experiments throw some light on how Self-
Reinforcing Substructures (SRS) in the network
prevent full convergence to society-wide conven-
tions, resulting in reduced convergence rates. The
use of an effective composed social instrument, ob-
servation + rewiring, allow agents to achieve con-
vergence by eliminating the subconventions that
otherwise remained meta-stable.

1 Introduction
The social topology that restricts agent interactions plays a
crucial role on any emergent phenomena resulting from those
interactions [Kittock, 1993; Delgado, 2002; Urbano et al.,
2009]. In the literature on emergent behavior in multiagent
systems (MAS), one active topic is convention or norm emer-
gence as a mechanism for sustaining social order, increas-
ing the predictability of behavior in the society and develop
the details of those unwritten laws (we use the terms con-
ventions and norms interchangeably in this paper). As con-
ventions help agents to choose a solution from a space of
equally good solutions (as long as all agents use the same
choice), the selection of a coordination protocol, communi-
cation language, or the selection of the task to be executed
in a multitask scenario are pertinent applications of conven-
tions in MAS. In social learning [Mukherjee et al., 2008;
Sen and Airiau, 2007] of norms, where each agent is learn-
ing concurrently over repeated interactions with randomly se-
lected neighbors in the social network, a key factor influenc-
ing success of an individual is how it learns from the “appro-
priate” agents in their social network.

A number of researchers from several communities (mul-
tiagent systems, physics, or economy) have studied the prop-

erties of underlying topologies in the convention emergence
process [Kittock, 1993; Shoham and Tennenholtz, 1997;
Urbano et al., 2009; Delgado, 2002; Delgado et al., 2003].
Most of these research consider a convention as emerged
when 90% of the population has converged to the same con-
vention. 90% convergence, however, should not be consid-
ered a convention (at least a robust one), as a convention, by
definition, needs to be shared by the complete population.

In this paper, we show how agents can experience meta-
stable subconventions depending on their position in the of
interaction topology. As identified by several authors [Ep-
stein, 2000; Toivonen et al., 2009; Villatoro et al., 2009],
meta-stable subconventions interfere with the speed of the
emergence of more general conventions. The problem of sub-
conventions is a critical bottleneck that can derail emergence
of conventions in agent societies and mechanisms need to be
developed that can alleviate this problem. Subconventions are
conventions adopted by a subset of agents in a society who
have converged to a different convention than that adopted
by the majority of the population. Subconventions are facili-
tated by the topological configuration of their social network,
e.g., isolated areas of the graph promote endogamy, or by the
agent reward function, e.g., concordance with previous his-
tory, promoting cultural maintenance, etc. Though it might
be possible for agents to modify their reward functions in cer-
tain scenarios, we consider the general case where agents do
not have that capability. Therefore the problem of subconven-
tions has to be solved through the topological reconfiguration
of the social network of agents.

We define Social Instruments to be a set of tools available
to agents to be used within a society to influence, directly
or indirectly, the behavior of its members by exploiting the
structure of the social network. Social instruments are used
independently (an agent does not need any other agent to use
a social instrument) and have an aggregated global effect (the
more agents use the social instrument, the stronger the effect).
Specifically we focus on two social instruments:rewiring and
observation. Rewiring allows agents to control the links that
relate them with other agents by replacing them intelligently.
This direct control of the topology of the social network al-
lows agents to control whom they interact with, resulting in
increased reward without actually altering the reward func-
tion. On the other hand, observation allows agents to obtain
partial information of the convention emergence process by
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observing other agents in the neighborhood. The access to
this information allows agents to consider extra information
over what they receive from direct interactions. This obser-
vation process also has an impact on the reward of the agents
by facilitating their convention emergence within the society.

The main contribution of this work is the usage of Social
Instruments as mechanisms that speed-up and support full-
convergence (100% of the population using the same conven-
tion) in a range of social networks1. Additionally, in the last
part of the paper we argue how a combined social instrument
allows the dissolution of subconventions in Scale-Free net-
works.

2 Proposed Social Instruments
2.1 Rewiring: Intelligent Link Removal and

Creation
The Rewiring social instrument allows an agent to remove
non-beneficial links with other agents, replacing them with
new ones. Agents decide to rewire a link after the number of
unsuccessful interactions2 with another agent crosses a cer-
tain Tolerance threshold. Agents also need to decide whom
they want to establish the new link with. We have developed
three different methods:
(1) Random Rewiring: Agents rewire to a randomly selected
agent from the population.
(2) Neighbour’s Advice: Agents rewire to an agent recom-
mended by a neighbour.
(3) Global Advice: Agents rewire to an agent that is randomly
selected by the system from those that have the same strategy.

Though there are some similarities of our work with that
of Griffith’s [Griffiths and Luck, 2010], there is also a crucial
difference. They use an offline evolutionary approach, where
the system evolves over generations. On the other hand, we
use an online approach where agents can adapt and modify
their social network at runtime. In addition, our rewiring
methods do not access any agent’s private information (used
only in the Global Advice method which is used as a control)
such as their actual reward values.

2.2 Observation
In a social learning scenario, allowing agents to observe the
strategy of agents outside their circle of interaction can pro-
vide useful information to support the convention emergence
process. However, there should be a trade-off between ob-
serving and interacting. To analyze the effects of observation,
we will allow agents to observe, at certain timesteps, a subset
of other agents’ states in the population. Therefore, agents are
assigned an Observation Probability. Moreover, agents need
to know the number of agents they can observe (Observation
Limit) and who they can observe (Observation Method). We
propose three different observation methods:

1Initial experiments, unfortunately, have shown that full-
convergence cannot be achieved in few specific configurations, e.g.,
scale free networks.

2Unsuccessful interaction in our convention emergence scenario
corresponds to being uncoordinated or not sharing the same conven-
tion for that interaction.

(1) Random Observation: Agents observe random agents
from the society.
(2) Local Observation: Agents observe their immediate
neighbours in the social network.
(3) Random Focal Observation: Agents select a random agent
from the society and observe that agent and its direct neigh-
bors.

After the observation process, the agent will choose the
majority action taken by the observed agents and will rein-
force it.

Despite the similarity, this instrument and mimicking
([Hales and Arteconi, 2006]) behave differently. With ob-
servation, agents only access information that has been previ-
ously made public by the observed agent (agent’s last played
strategy), while with mimicking, they access information that
can be considered private (complete list of neighbours and
decision strategy function).

3 Model
The social learning situation for norm emergence that we are
interested in is that of learning to reach a social convention.
We use the following definition of a social convention: A
social law (a restriction on the set of actions available to
agents) that restricts agents’ behavior to one particular ac-
tion is called a social convention [Shoham and Tennenholtz,
1997]. Norms are implicit in our social learning formulation:
Agents do not have any internal representation of norms, only
preference for one action (the one specified by the norm) over
the others.

For the sake of generalization, our framework is built with
the most accepted convention emergence model (used by
[Delgado et al., 2003; Kittock, 1993; Mukherjee et al., 2008;
Sen and Airiau, 2007; Shoham and Tennenholtz, 1997;
Walker and Wooldridge, 1995]): agents converge to a conven-
tion through repeated bilateral interactions with other agents
from the neighborhood in their social network. Any interac-
tion between two agents is represented as a 2-person m-action
game. At each time step, each agent is paired with another
agent and independently decide their actions. This decision is
made without observing the other agent’s identity or strategy.
In our approach a social convention will be reached once all
agents are in the same state or consistently choose the same
action (the actual state reached or action chosen is immate-
rial).

As in several other research in convention emergence
([Delgado et al., 2003; Kittock, 1993]), the social network
of agents are chosen from the following structures: (i) a one-
dimensional lattice with connections between all neighbour-
ing vertex pairs (regular network); and (ii) a scale-free net-
work, whose node degree distribution asymptotically follows
a power law (irregular network).

As in [Kittock, 1993; Shoham and Tennenholtz, 1997;
Villatoro et al., 2009], agents are endowed a limited memory
of past interactions (same size for all agents). Agents save in
their memory when an interaction occurred, the action cho-
sen, and the reward obtained. This information is used dif-
ferently depending on the type of strategy decision procedure
adopted. Agents cannot observe the memory, current deci-
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sion, or reward obtained by the other agent, and hence cannot
calculate the payoff for an action before interacting with the
opponent.

Once the interaction model is fixed, we test our social in-
struments using three well-known strategy selection rules:
(1) Best Response Rule (BRR) [Mukherjee et al., 2008;
Sen and Airiau, 2007], (2) Highest Cumulative Reward Rule
(HCRR) [Shoham and Tennenholtz, 1997; Kittock, 1993],
and, (3) Memory Based Rule (MBR) [Villatoro et al., 2009].

The HCRR deterministically specifies the action that each
agent has to take in each interaction. On the other hand, for
BRR and MBR, agents use the Q-Learning algorithm to es-
timate the worth of each action, with an exploration rate of
25%.

4 Experiments
To create a manageable space of experimentation, some simu-
lation parameters have been fixed: a population of 100 agents,
with memory of size 5 (for HCRR and MBR), are located in a
social network with different topologies: a low clustered3 one
dimensional lattice (lattice with Neighborhood Size = 10), a
high clustered one dimensional lattice (lattice with Neighbor-
hood Size = 30), and a scale free network. Agents are ini-
tialized with no preference between the available actions, i.e.,
they randomly choose actions with equal probabilities. Pre-
sented results are averaged over 25 simulation runs.

4.1 Effects of Rewiring
We have explored the search space of the Tolerance Thresh-
olds for the three rewiring methods, observing how it affects
the convergence time and the number of links rewired when
convergence is reached with the different strategy selection
rules.

Influence of Rewiring Methods
In general, the Global Advice (GA) rewiring method produces
the best convergence time due to its centralized nature and
access to global information. Nonetheless the decentralized
methods, specially the Neighbour’s Advice (NA) method, also
show good performances. The NA method improves the Ran-
dom Rewiring (RR) method as it more expediently resolves
the subconventions that appear in the one-dimensional lat-
tices during the convention emergence process. Agents in the
frontier use the rewiring instrument as they cross the tolerance
level faster than those not in the frontier. For this reason, the
RR method relinks an agent with a more suitable agent with a
probability of 1

NumberOfActions . In contrast, the NA method
relinks the agent with another one with the same preference if
it is accessible. In case there is no other agent with the same
preference to connect with, random rewiring will be applied,
obtaining in the worst case scenario, the same results. These
results are also applicable for the scale-free networks.

Influence of topology
Regarding the effects of the topology, we find that the con-
vergence time is increased under the effects of rewiring when

3Clustering Coefficient is a measure of degree to which nodes in
a graph tend to cluster together.

the neighborhood size is increased. On regular networks,
the diameter of the network directly affects the convergence
times and the number of components. This effect is due
to the clustering coefficient of the network. Lattices with
higher neighborhood sizes are less fragmented than those
with more restricted neighborhoods. Therefore, when in-
creasing the neighborhood size, the number of links between
agents also increases, thereby increasing the clustering co-
efficient. Highly clustered societies are more resistant to
rewiring, as the node that wants to use the rewiring would
have to apply it to a higher number of nodes, and then, be
rewired to the same number of nodes with the appropriate
strategy.

Experimental results also show interesting properties with
Scale Free networks: when using the NA rewiring method,
the number of components is significantly increased. As ex-
plained previously, rewiring is applied when two agents sur-
pass their tolerance of unsuccessful interactions and NA will
relink to a similar neighboring node. Because of the cluster-
ing coefficient of the Scale-Free networks4, NA will produce
the disconnection of subgraphs from the main graph.

We can conclude that rewiring performs better in low clus-
tered societies, producing a stratified population which results
in significant reduction in convergence time. In more clus-
tered networks, the tolerance level has to be chosen carefully
(depending on the experiment) to produce an effective tech-
nique for norm emergence.

4.2 Effects of Observation
In this section we analyze the effects of observation as a so-
cial instrument when used by agents. We test and compare the
three different methods proposed, exploring the search space
with a representative range of Observation Probability val-
ues. We fix the Observation Limit to 10 for the experiments.

Influence of Observance Methods
Comparing the results from the three Observation methods,
we observe that the Random (RO) and the Random Focal
Observation (RFO) methods are the most effective ones, and
have very similar results, when compared with the Local Ob-
servation (LO) method. The reason for this phenomenon can
be attributed to the frontier effect. When agents use the LO
method, they observe their direct neighbours. If the observing
agent is in the frontier area, then, this observation is pointless.
However, observing different areas gives a better understand-
ing of the state of the world, and hence the RO and the RFO
methods perform better.

Influence of topology
For the BRR and MBR strategy selection rules, we have ob-
served that the different Observation methods produce a more
pronounced effect in societies with higher diameters. We no-
tice that a small percentage of Observation drastically reduces
convergence times. The reason for this effect can also be
attributed to the frontier and the subconvention effect previ-
ously discussed. Subconventions emerge more readily when

4The clustering coefficient distribution decreases as the node de-
gree increases.
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the social network has a small diameter and the frontier re-
gion represents the unsettled area. These subconventions are
more easily resolved at these frontiers by observation rather
than by learning through interactions.

5 Combining Instruments: Solving the
Frontier Effect

Our initial results together with the observations made by
other authors [Epstein, 2000; Toivonen et al., 2009; Villa-
toro et al., 2009] convinced us that subconventions are key
obstacles to the emergence of global conventions. These sub-
conventions thrive because of the topological structure of the
network where they emerge. To achieve the dissolution of
subconventions, they need to be resolved in what we identi-
fied as the “frontier” region.

A subconvention in a regular network is not meta-stable,
but unfortunately, slows down the process of emergence. On
the other hand, in other network types, such as random or
scale-free, subconventions seem to reach meta-stable states5.
Consequently, we have defined weak frontiers as the ones that
are not meta-stable in regular networks, and strong frontiers
as the ones generated in irregular networks.

By combining the social instruments presented in Sec-
tion 2, we have designed a composed instrument for resolving
subconventions in the frontier in an effective and robust man-
ner. This composed instrument allows agents to “observe”
when they are in a frontier, and then, apply rewiring, with the
intention of breaking subconventions. To effectively use this
combined approach, agents must first recognize when they
are located on a frontier. We have previously defined a fron-
tier as consisting of the group of nodes in the subconvention
that are neighbours to other nodes with a different convention
and that are not in the frontier with any other group.

The most important characteristic that defines a frontier is
the existence of a confrontation. Confrontation occurs when
two agents in an interaction do not share the same conven-
tion6.

Before proceeding further, we will define three characteris-
tics of agents with respect to their convention and topological
position in the network. An agent is in equilibrium if it has
the same number of neighbours in its own convention as in
the other convention. An agent is a weak node if the number
of neighbours in its own convention is lower than those in the
other, and an agent is a strong node otherwise (if the number
of neighbours in its own convention is greater than those in
the other).

In regular networks, two confronted agents are in a fron-
tier region iff: (1) At least one of the confronted agents is
in an equilibrium position, and (2) all the neighbours of an
in-equilibrium confronted agent are strong nodes.

5By experimentation, we have observed that around 99% of the
generated scale-free networks do not converge (to full convergence)
up to one million timesteps with any of the decision making func-
tions used in this work.

6Not sharing the same convention, choosing a different action,
or choosing a different state to be, are considered equivalent expres-
sions for our purpose.

By taking a snapshot at the end of the simulation of the
emergence of irregular networks (such as scale-free topolo-
gies), we can extract the regions of the network that remain
meta-stable with a convention different than the general con-
vention. After compiling and studying those structures, we
identified an abstract substructure that we have defined as Self
Reinforcing Substructures (SRS). These substructures, given
the appropriate configuration of agents’ preferences, do main-
tain subconventions. These abstract structures are of two
types, the Claw and the Caterpillar (see examples in Fig. 1),
and can be found as subnetworks of scale-free and random
networks.

The Claw SRS is formed by connecting a node with a num-
ber of hangers7 connected to it smaller than the number of
links with the rest of the network. In the situation where the
hangers coordinate to the same convention among themselves
and with the connecting node, we have a self-reinforcing
structure. For example, in Fig. 1(a), A is the central node,
having one connection with the rest of the network and 3
hangers: B (that it is another claw), C (plain hanger) and D
(chain’s connecting node).

The Caterpillar SRS is a structure formed by a central path
and from its members can hang other SRSs (such as claws,
chains, or plain hangers). For example, in Fig. 1(b), A, B, C,
and D are members of the central path, and the other nodes
reinforce them.

(a) Claw (b) Caterpillar

Figure 1: Self-Reinforcing Structures.

As we have observed, the existence of these SRSS (74% of
the generated networks with the methods described in [Del-
gado et al., 2003] contain SRS) are the main reason why
convergence to a 90% level (as observed by [Delgado et al.,
2003]) is achieved relatively quickly, but overcoming the last
10% (containing the SRS) is much harder to achieve.

Inspired by a previous paper [Sen and Airiau, 2007], we
have performed a test varying the amount of players with
a fixed strategy to observe the dynamics of the emergence
of conventions. As shown in Fig. 2, the emergence of con-
ventions in scale-free networks follow the same behavioural
pattern amongst them with different amount of fixed players,

7A hanger is formed by nodes that are connected to a member
of a cyclic component, but which do not themselves lie on a cy-
cle [Scott, 2000], and a chain is a walk in which all vertices and
edges are distinct.
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Figure 2: Evolution of Conventions in Scale-Free Networks
with Fixed Players.

following a power-law distribution (as the node-degree dis-
tribution). Convention emergence is achieved relatively fast
for the majority of the network. In the remaining cases where
SRSs are located, however, a significant delay is observed.

By giving agents the instruments (an agent will use obser-
vation to realize it is part of a SRS, and rewiring to dissolve it)
to dissolve these SRS, we hypothesize that convention emer-
gence will be expedited and full convergence rates will be
obtained.

5.1 Results with Combined Instruments
We have conducted exhaustive experimentation with the com-
bined instrument on the three topologies and using the dif-
ferent decision making functions described in the previous
section. The use of the composed instrument on the regular
networks does not produce an improvement on convergence
time with respect to simple rewiring (one specific scenario of
topology and strategy decision technique can be observed in
Fig. 3(a)).

However, an important improvement is observed in the
number of rewired links (one example of this improvement
can be seen in Fig. 3(b)). In general, this improvement is ob-
served for lower tolerances. The reason for this effect is that
for higher tolerances rewiring works in the same way as the
composed social instrument, but without observing. For those
smaller values, the effect is significant, reducing the number
of rewiring links down to half of the original value.

On the other hand we observe an important improvement
for convergence times when using the composed instrument
(with the recognition of SRS) on irregular networks. The
results presented in Figure 4 represent the average results
from 25 different scale-free networks with and without using
the Combined Social instrument. By comparing Figure 4(a)
and Figure 4(b) we notice the tradeoff between the improve-
ment in convergence time and the amount of rewiring needed.
The reason for this phenomena is because the Composed so-
cial instrument decomposes the SRS differently than simple
rewiring which only rewires the node in the actual frontier.

6 Conclusions and Future Work
We have introduced the use of Social Instruments as tools that
facilitate norm evolution. We have identified the character-
istics and opportunities for effectively utilizing these social

(a) Convergence Time

(b) Rewired Links

Figure 3: Comparison with Simple and Combined Social In-
struments on Regular Network using MBR.

(a) Convergence Time

(b) Rewired Links

Figure 4: Comparison with Simple and Combined Social In-
struments on Scale Free Network using BRR.
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instruments for facilitating norm emergence through social
learning. Social instruments are attractive since they do not
require centralized monitoring or enforcement mechanisms,
normally are extremely easy to use, have very low computa-
tional costs, and are scalable to large systems.

Experimental results with the identified social instruments
have shown that the emergence of transitory subconventions
are the cause of the delay of the emergence of global conven-
tions. From results presented in this paper for the two simple
social instruments studied, we observe that the most effective
social instruments are those that more expediently solve this
subconvention formation problem in the frontier regions.

To the best of our knowledge, this is the first attempt to
achieve full convention emergence (100% of the population
in the same state/choosing the same action) in scale-free net-
works. Other researchers studying norm emergence with
these type of topologies chose a convergence rate of 90%,
without considering that the rest 10% may not be possible
to achieve [Kittock, 1993; Shoham and Tennenholtz, 1997;
Urbano et al., 2009; Delgado, 2002; Delgado et al., 2003],
due to the presence of the identified SRSs. We have presented
a composed social instrument as a robust solution against the
persistence of subconventions in social networks, improving
the convergence times obtained with simple rewiring and fi-
nally achieving full convergence.

In a world where almost 950 million users belong to on-
line social networking platforms (where virtual agents could
also exist)8, it is important to understand what mechanisms
these virtual entities should be equipped with to facilitate the
emergence of common conventions (for the sake of the whole
group) as quickly as possible. Moreover, as a system man-
ager, the results from this work highlights the harmful po-
tential of Self-Reinforcing Structures within the network for
delaying the emergence process, and draws our attention to
need for solutions to such critical problems.
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Ramón Sangüesa. Emergence of coordination in scale-
free networks. Web Intelli. and Agent Sys., 1(2):131–138,
2003.

8As reported on Sept 1st, 2010 at http://www.comscore.
com/Press_Events/Press_Releases/2010/8/
Facebook_Captures_Top_Spot_among_Social_
Networking_Sites_in_India

[Delgado, 2002] Jordi Delgado. Emergence of social con-
ventions in complex networks. Artificial Intelligence,
141(1-2):171–185, October 2002.

[Epstein, 2000] Joshua M. Epstein. Learning to be thought-
less: Social norms and individual computation. Working
Papers 00-03-022, Santa Fe Institute, March 2000.

[Griffiths and Luck, 2010] Nathan Griffiths and Michael
Luck. Changing neighbours: Improving tag-based coop-
eration. In Proceedings of AAMAS’10, pages 249–256,
2010.

[Hales and Arteconi, 2006] David Hales and Stefano Arte-
coni. Slacer: A self-organizing protocol for coordina-
tion in p2p networks. IEEE Intelligent Systems, 21:29,35,
2006.

[Kittock, 1993] James E. Kittock. Emergent conventions and
the structure of multi-agent systems. In Proceedings of
the 1993 Complex systems summer school, SFI Studies in
the Sciences of Complexity Lecture Volume VI, Santa Fe
Institute, pages 507–521. Addison-Wesley, 1993.

[Mukherjee et al., 2008] Partha Mukherjee, Sandip Sen, and
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