
Towards an Inductive Algorithm for Learning Trust
Alignment

Andrew Koster
Artificial Intelligence Research

Institute, CSIC
Bellaterra, Spain

andrew@iiia.csic.es

Jordi Sabater-Mir
Artificial Intelligence Research

Institute, CSIC
Bellaterra, Spain

jsabater@iiia.csic.es

Marco Schorlemmer
Artificial Intelligence Research

Institute, CSIC
Bellaterra, Spain

marco@iiia.csic.es

ABSTRACT
Knowing which agents to trust is an important problem in
open multi-agent systems. A way to help solve this prob-
lem is by allowing agents to relay information about trust
to each other. We argue trust is a subjective phenomenon
and therefore needs aligning. We present a mathematical
framework for communicating about trust in terms of inter-
actions. Based on this framework we present an algorithm
based on clustering and inductive logic programming tech-
niques to align agents’ trust models.

Keywords
inductive logic programming, trust, alignment, learning

1. INTRODUCTION
In complex, distributed systems, such as multi-agent sys-

tems, the artificial entities have to cooperate, negotiate,
compete, etc. amongst themselves. Thus the social aspect of
these systems plays a crucial role in their functioning. One
of the issues in such a social system is the question of whom
to trust and how to find this out. There are several systems
already in development that model trust and reputation [16],
ranging from a straightforward listing of evaluations (such as
eBay’s [13] reputation system), to complex cognitive models
(such as Repage [18]). We anticipate that in an open multi-
agent system, there will be a large diversity of models in
concurrent use by different agents, depending on the wishes
of the programmer and the user. However, even if there is
consensus on some model, this is still only a consensus on the
computational representation. In a heterogeneous environ-
ment it is inevitable that, if the trust model an agent uses is
based on cognitive principles, the way different agents inter-
pret their environment will still lead to differences in trust.
We will show how, despite agreeing on the ontological un-
derpinnings of the concepts, there is the need to align trust
so as to enable reliable gossip. With gossip we refer to all
communication about trust.

We will emphasize the need to align trust further by con-
sidering a simple example of a multi-agent system with three
agents.

Alice wants to know if Dave would be a good keynote speaker

Cite as: Towards an Inductive Algorithm for Learning Trust Alignment,
Andrew Koster, Jordi Sabater-Mir and Marco Schorlemmer, European
Agents System Summer School 2009)
Copyright c© 2009,

for the conference she is organizing. However, she does not
know enough about him. She asks Bob. Bob has never collab-
orated with Dave directly, but they work at the same institute
and play squash together. Through these interactions, Bob
has trust in Dave and tells this to Alice.

Lets analyse Bob’s model. He does not know Dave profes-
sionally and bases his trust in Dave on personal interactions.
This is a perfectly valid model, but lets assume Alice’s model
works differently: she only takes academic accomplishments
into account. She should therefore disregard Bob’s gossip,
because it is based on, what she considers, unreliable in-
formation. We emphasize that we differentiate between the
trust she has in Bob and the reliability of the information
he sends her. Her trust in Bob is grounded in her trust and
reputation model. However, what we want to find out is
whether the gossip Bob sends can be interpreted reliably in
Alice’s model.

This short example shows that even in simple situations
the concepts related to trust are highly personal and com-
munication about them is no straightforward matter. In the
case that two agents wish to exchange information about
trust it is therefore important to clarify what trust means
to each of them. This can be done in an alignment process,
based on similar protocols in ontology alignment, concept
formation and other related fields. Some work has been
done in defining common ontologies for trust [14, 7], how-
ever in practice these ontologies do not have the support of
many of the different trust methodologies in development.
Even if support were added for all systems and a common
ontology emerged, we could still not use it to communicate
effectively. Trust is an inherently personal phenomenon and
has subjective components which cannot be captured in a
shared ontology. An adaptable approach that takes the dif-
ferent agents’ points of view into account is needed.

Abdul-Rahman and Hailes’ reputation model [1] approa-
ches the problem from another direction, by defining the
trust evaluations based on the actual communications. The
interpretation of gossip is based on previous interactions
with the same sender. The problem with this, however, is
that it is incomplete: firstly it assumes all other agents in
the system use the same model, which in a heterogeneous
environment will hardly ever be the case. Secondly, it uses
a heuristic based on prior experiences, called the semantic
distance, to“bias” received messages. The semantic distance
is an average of all previous experiences. They do not dif-
ferentiate between recommendations about different agents,
which are based on different types of interactions.

We propose to enrich the model of communication by con-

sidering it separate from the actual trust model. By do-
ing this, we can allow for different trust models. We note,
however, that while trust is modeled in disparate ways, all
definitions do agree on the fact that trust is a social phe-
nomenon. Just as any social phenomenon, it arises from the
complex relationships between the agents in the environ-
ment and, without losing generality, we say these relation-
ships are based on any number of interactions between the
agents. These interactions can have many different forms,
such as playing squash with someone, buying a bicycle on
eBay or telling Alice that Dave is a trustworthy keynote
speaker. Note that not all interactions are perceived equally
by all participants. Due to having different goals, agents
may observe different things, or even more obviously: by
having a different vantage point. Simply by having more (or
different) information available, agents may perceive the in-
teraction itself differently. In addition, interactions may be
accompanied by some kind of social evaluation of the inter-
action. These can range from an emotional response, such
as outrage at being cheated in a trade, to a rational analysis.
Thus, we see that how an agent experiences an interaction
is unique and personal. This only adds to the problem we
are considering. To be able to align, there needs to be some
common ground from which to start the alignment, but any
agent’s experience of an interaction is subjective, and thus
not shared. We call this personal interpretation of the inter-
action an observation. We say an agent’s observations allow
it to evaluate trust.

Now that we have discussed what interactions mean to
a single agent, we will return to the focus of communi-
cating about trust. One interaction may be observed by
any number of agents, each making different observations,
which support different trust evaluations of different targets
performing different roles. However, to communicate about
trust evaluations, the agents need to have a starting point:
some basic building blocks they implicitly agree they share.
We note that the interactions provide precisely such a start-
ing point. While all the agents’ observations are different,
they do share one specific thing: the interaction itself. We
therefore argue that to find a reliable alignment between two
agents they can align based on these interactions.

Our approach uses these shared interactions as building
blocks to align the agents’ trust models, based on the gossip
they send each other. The gossip specifies certain interac-
tions, which each agent observes differently. These obser-
vations form the support for an agent’s trust evaluation. If
another agent communicates this trust evaluation, the in-
terpretation should be based on the underlying interactions.
An alignment of the trust models gives a way of doing this
by gossiping about the agents’ trust evaluations and the ob-
servations (and thus interactions) they base these on.

Semantic alignment based on interactions has been stud-
ied in [2]. This approach to semantic alignment is based on
the general framework of Channel Theory [3, 19]. We use
this same mathematical theory as a framework for aligning
trust and introduce it in the next section before discussing
the technical details of the algorithm.

2. THE ALGORITHM
Before we consider possible solutions we need a clear defi-

nition of the problem we are considering. We follow the for-
malization we described in [10] and will summarize it briefly
in the following sections. Firstly we consider agents with

Figure 1: Schematic diagram of the steps in the
alignment process

heterogeneous trust models, but we have no clear descrip-
tion of what a trust model is in the first place. We explain
this in Section 2.1. Furthermore, to align, the agents need
to communicate. For this we will need to define a language
in Section 2.1.1. And finally, the agents need to have some
method of forming an alignment based on the statements in
this language. This we describe in Section 2.1.2. In Section
2.2 we describe the computational approach we take. The
whole process is summarized in Figure 1.

2.1 A Formal Representation
As argued in Section 1, interactions form the building

blocks for talking about trust. An interaction is observed by
different agents and represented internally by them. These
observations then lead to trust evaluations of the various
agents involved. Any trust model can therefore be described
as a binary relation between an agent’s observations and its
trust evaluations. In addition, trust always has a target:
any form of representing trust will have a trusting agent
and a target agent, which is the agent the trust evaluation
is about. It is assumed that any agent’s trust evaluations
can be represented in some formal language LTrust. Note
that because trust is a subjective phenomenon, the seman-
tics of this language aren’t shared, but by sharing the syn-
tax the agents can communicate about it. A trust model
is therefore a binary relation |=, such that X |= ϕ means
that there is a set of observations X which support trust
evaluation ϕ ∈ LTrust. The observations X are unknown as
they are an internal representation of the agent. However,
we know these are based on some set of interactions. If O
is the set of an agent’s possible observations and I is the

set of all interactions in the environment, then each agent
A has a function observeA : I → OA which associates inter-
actions with observations. The observations X in the trust
model are therefore generated (with the observe-function)
from some set of interactions I ⊆ I. These interactions are
facts in the environment all agents may know about and can
be used as the basis of an alignment.

2.1.1 Formalizing gossip
In addition to LTrust a second language is needed for effec-

tive trust alignment: a language in which to talk about the
interactions. Knowing which information about the interac-
tions is relevant depends on the domain. Thus a language
for discussing interactions comes from the domain the agents
operate in. Usually such a language already exists or is de-
fined together with the MAS. We call this language LDomain

and note that it is a shared language: both the syntax and
the semantics are known by all agents in the system, as op-
posed to the semantics of LTrust, which is interpreted differ-
ently by the agents. With this shared language it is possible
to define exactly what it means for two agents to share an
interaction. A set of interactions I is shared by agents A
and B if there is some ϕ ∈ LDomain such that ϕ is in both
A and B’s sets of observations of interaction I, or, in other
words, ϕ is the information shared between the agents about
I. Formally neither agent can know that ϕ is observed by
the other agent, however if we limit LDomain to objective
and easily observable properties of the domain, we assume
such ϕ exist.

Messages, containing a trust evaluation of a specific tar-
get in LTrust and pinpointing the specific shared interac-
tions this evaluation is based on in LDomain, form the ba-
sis of the trust alignment. We call such messages “gossip”.
Formally we say gossip from agent B to agent A is a mes-
sage gossip(T, β, ψ), with T the target of the trust evalu-
ation β ∈ LTrust and ψ ∈ LDomain describing the set of
interactions I which support trust evaluation β for agent
B. We cannot simply enumerate the interactions in I be-
cause agents may not be willing to do so. LDomain serves
a double purpose: firstly it may be more descriptive, giving
more information than simply an enumeration of interac-
tions. Secondly it may allow agents to describe interactions
without pinpointing them exactly. This allows agents to
align without divulging sensitive information. Sending gos-
sip messages is point 1 in Figure 1.

The receiving agent A can now use its own trust model to
find an α ∈ LTrust, such that α is supported by I and the
resulting rule α ← β, ψ will form the basis of our alignment.
What this rule means is: the interactions which support ψ,
support trust evaluation α for agent A and β for agent B.
These rules are at point 2 in Figure 1. The goal is now to
find a way of generalizing from such rules to a more gen-
eral, predictive model, such that, for example, agent A can
know what trust evaluation α′ it should associate with a
certain β′ ∈ LTrust, given ψ, despite neither knowing the
interactions which support ψ nor being able to conclude an
own trust evaluation from the observation of those interac-
tions. This would be the outcome of the algorithm, applied
at point 5 in Figure 1.

2.1.2 Generalizations and coverage
Now that we have a way of describing the relationship

(alignment) of two agents’ trust models with regards to a

specific target, we wish to expand this idea to a more pre-
dictive model: we wish to find the more general alignment
between the trust models. This problem is considered as
an inductive learning problem [8]. Given a number of tar-
geted alignments with regards to different agents, is there
an alignment that describes all (or most) of them?

To use inductive learning, it is necessary to define what
the solution should look like. This should be a generalization
of the above mentioned rules α ← β, ψ. We note that both
LTrust and LDomain are represented in a standard first-order
logic. Thus it is possible to use θ-subsumption to generalize
these rules. The way to do this is by structuring the search
space. The solution should be the least general alignment,
which covers all the rules given in the messages. A hypo-
thetical alignment T is said to cover a rule α ← β, ψ if there
is a rule Γ ← ∆, Ψ ∈ T such that all sets of interactions I
which support α ← β, ψ also support Γ ← ∆, Ψ. One hypo-
thetical alignment T is more general than another T′ if its
coverage is greater: c(T) ⊃ c(T′). We write this T ' T′.
The overall trust alignment between two agents can now be
found by finding a minimally general generalization, which
covers all the communicated rules.

2.2 An Inductive Algorithm
As described in the preceding section, our algorithm must

generalize the specific targeted alignments to a predictive
ruleset. This is very similar to the problem in concept forma-
tion. The approach taken in these problems is by clustering
the data together and finding a description of each cluster.
However, the fact that we have descriptions in first-order
logics invalidates the use of propositional clustering algo-
rithms for this purpose [9]. Some more modern approaches
combine clustering and ILP methods [12, 5] to allow for clus-
tering of first-order formulas. This is exactly the problem we
are trying to solve and we therefore propose a modification
of these algorithms, using the distance function from [17]
and a conventional agglomerative clustering algorithm. The
found clusters can then be used as the input for an ILP algo-
rithm to learn the generalizations. Furthermore, we have an
additional wish: our partitioning may be too strict, which
will not allow for enough positive examples and too many
negative examples to learn anything useful. In these cases
we will want to relax our partitioning criteria to amplify the
base of positive examples, in the hope that this will allow
for a better generalization. This obviously comes at the cost
of accuracy of the predictive ruleset found, but this can be
taken into account.

2.2.1 A short overview
The input of the algorithm will be any number of rules R

generated from gossip statements. These rules, the same
as described in Section 2.1.1, will serve as the initial input
and have the form shown below, where T1, . . . , Tm are tar-
get agents, α1, . . . , αn, β1, . . . , βn ∈ LTrust and ψ1, . . . , ψn ∈
LDomain describe the interactions.

α1[T1] ← β1[T1], ψ1

...

αi[Tj] ← βi[Tj], ψi

...

αn[Tm] ← βn[Tm], ψn

Algorithm 1 Generalize rules R
1: INPUT: set of SRAs to be generalized R
2: INPUT: distance measure on LTrust D(x, y).
3: INPUT: set of increasing distances for clustering S
4: General rules := ∅
5: Clusters := {{r}|r ∈ R}
6: Covered := ∅
7: for all Stopcriteria s in S do
8: Clusters := agglomerative clustering(Clusters, s, D)
9: if |Clusters| = 1 then

10: break
11: end if
12: for all C ∈ Clusters do
13: H := generalize head(C, R\C)
14: if H)= null then
15: G := generalize body(C, R\C)
16: if G)= null then
17: General rules := General rules ∪ {〈H← G, s〉}
18: Covered := Covered ∪ C
19: end if
20: end if
21: end for
22: if Covered = R then
23: break
24: end if
25: end forGeneral rules

This says there are n different rules about m different
agents. To learn the underlying structure we will use Algo-
rithm 1.

We use three important procedures, which we will explain
in more detail: the distance metric D on targeted alignment
rules, the clustering algorithm in line 1 and the generaliza-
tion algorithm we use on the clusters in lines 1 and 1. This
last one takes as input the rules in the cluster as positive ex-
amples and the rules outside clusters as negative examples
and uses an ILP algorithm to learn a generalization. Fur-
thermore we use the flag “terminate” to end the algorithm
if at a certain clustering resolution we have rules covering
all targeted alignments. In this case there is no reason to
continue, because we have a maximum coverage of the ex-
amples.

We are interested in finding generalizations which allow
us to predict what the receiving agent’s trust evaluation α
would be, given that the sending agent’s trust evaluation
is β, based on interactions which support ψ. We therefore
need to be able to cluster the rules above according to the
relative distance between the receiving agent’s trust evalu-
ations. The rest of the information in the rules is used to
learn the generalization.

2.2.2 A distance metric
An agent’s trust evaluation is in the LTrust language,

which in general could be any first-order logic. Distances on
first-order logic objects have received a lot of attention lately
[17]. Such distance measures work on arbitrary clauses, how-
ever, they do require them to be rewritten in clausal nor-
mal form (CNF). We note that for any closed formula in
a first-order logic its CNF can be found in polynomial time
[15]. The distance measure is then split up into two different
parts:

• A context-dependent part, defining the distance be-
tween the disjunctions in the CNF in LTrust

• A generic part, defining the distance between phrases,
based on the distance between the clauses in each phrase.

We stipulate, however, that the distance metric can be
agent-specific and may be as complicated as the programmer
wishes. To further illustrate this description of a distance
metric, we give an example of LTrust and a metric on it. Our
example of LTrust has the following predicates: image(A, V)
and reputation(A, V), where A is an agent and V ∈ [1, 10] ⊂
N. For the context-dependent part of the metric we use the
closure under symmetry of the following recursive definition:

1. d(ϕ1 ∨ ϕ2, ψ1 ∨ ψ2) =

min
ˆ`

d(ϕ1, ψ1) + d(ϕ2, ψ2)
´
,
`
d(ϕ1, ψ2) + d(ϕ2, ψ1)

´˜

2

2. d(ϕ1 ∨ ϕ2, ψ) =
min

ˆ
d(ϕ1, ψ), d(ϕ2, ψ)

˜
+ 1

2
3. d(¬ϕ,¬ψ) = d(ϕ, ψ)

4. d(¬ϕ, ψ) = 1

5. d(image(A1, V1), image(A2, V2)) =
|V1 − V2|

10

6. d(reputation(A1, V1), reputation(A2, V2)) =
|V1 − V2|

10
7. d(ϕ, ψ) = 1 otherwise

As mentioned above, this distance measure is dependent on
the language and the agent. All we require in the continua-
tion is that it is defined for all simple clauses in LTrust and
that it is a metric. For that it must satisfy the following
properties:

1. non-negativeness: ∀ϕ, ψ : d(ϕ, ψ) ≥ 0

2. reflexivity: ∀ϕ : d(ϕ, ϕ) = 0

3. symmetry: ∀ϕ, ψ : d(ϕ, ψ) = d(ψ, ϕ)

4. strictness: ∀ϕ, ψ : d(ϕ, ψ) = 0 iff ϕ ≡ ψ

5. triangle inequality: ∀ϕ, ψ, θ : d(ϕ, ψ)+d(ψ, θ) ≥ d(ϕ, θ)

It is easy to prove that the measure we provided above is a
metric, disregarding inequalities between agents.

A generic metric.
Now we can define a generic metric, which uses the context-

dependent metric described above. A clausal form can be
represented as a set of disjunctions, which allows us to use
distance metrics on sets. There are several such metrics
available in the literature, but one has been developed for
defining distances between first-order logic objects. This
metric, designed by Ramon and Bruynooghe [17] uses a
matching between two clausal forms to calculate the dis-
tance. We use this metric, because it allows a direct syntac-
tic comparison between different formulas. It is once again
free to the designer to choose a different metric. All that is
really required for the algorithm is for there to be a distance
measure on sentences in LTrust. Clustering algorithms work
better with metrics, because the triangle inequality can be
used to prune the choices.

2.2.3 Clustering
Because we wish to learn generalizations which predict the

receiving agent’s trust evaluations, based on the gossip sent,
we want to consider those rules where the receiving agent’s
trust evaluations are “near each other”. That means we wish
to cluster based on the heads of the rules. It is immediately
obvious why an agglomerative hierarchical is the best fit:

• We want to work our way from small precise clusters
to large clusters covering a broad spectrum of trust
evaluations.

• We want to be able to stop the algorithm when we
have found general rules covering all examples.

Bottom-up incremental clustering algorithms fit these cri-
teria best, which leads us to the family of agglomerative
clustering algorithms [21]. In this family, complete-link clus-
tering creates more balanced clusters than single-link algo-
rithms, yet has less overhead than average-link algorithms.
All other clustering algorithms we explored require the com-
putation of some form of centroid or medioid of the cluster,
which speeds up the agglomeration process at the cost of
calculating this centroid. Because it is hard to find a cen-
troid for phrases in a first-order logic and we do not expect
to have more than a few thousand data points, our choice
fell on complete-link clustering. A drawback of complete-
link clustering is that it deals badly with outliers. However,
we are clustering on the agent’s own trust evaluations. If
there are outliers, they will not be in these evaluations, but
rather the alignment rule itself will be an outlier. We will
need to deal with the outliers in the learning of the body,
but we should not encounter them when clustering.

Complete-link clustering algorithm.
To start, the complete-link agglomerative clustering al-

gorithm places each element in a separate cluster. It then
iteratively merges the two clusters that are nearest together,
according to a distance measure between clusters. This dis-
tance measure is the maximum distance between two single
elements in each cluster, using the distance measure as in
Section 2.2.2. This process of agglomeration is continued
until there is either only one cluster left, which contains all
examples, or some stop criterion has been reached. This
stop criterion is defined in line 1 of Algorithm 1. We stop
the agglomeration when the distance between two clusters
is greater than s.

A naive implementation of the complete-link agglomera-
tive algorithm would take O(n3) time, where n is the number
of elements to be clustered. The reason is fairly obvious: we
start with each element in its own cluster. For each clus-
ter we need to find the distance to each other cluster. This
needs to be repeated any time a cluster is merged. Because
we start with n clusters, this naive algorithm takes O(n3)
time. This is fairly prohibitive, even for the relatively small
datasets we expect to cluster. Luckily there are improve-
ments. Because the distance measure is symmetric, it stands
to reason we can skip some calculations. Furthermore, if we
merge two clusters then the distance from that cluster to
any other cluster is the maximum distance of either of those
clusters to the other cluster. This allows us to reduce the
algorithm to O(n2) time in a fairly straightforward manner:
for each cluster we need to calculate the distance to each
other cluster for which this hasn’t been calculated. There
are computational methods, some of which only work for
metrics, for optimizing it even further. This makes the com-
putation of clusters quite doable. Clustering is the process
at point 3 in Figure 1.

2.2.4 Learning rules
For each distance s we will have a set of clusters. For

each of these clusters we shall attempt to generalize the
rules. This is point 4 of Figure 1. Although we clustered on

clausal normal forms of only the heads of the rules, for this
part we revert back to the full rule written in the original
form. Within the cluster are two or more rules of the form:
αi[Tj] ← βi[Tj], ψi.

Learning the head.
All the αi within a cluster are within distance s of each

other. We therefore start with finding the “centre” of all αi.
Firstly we note that each αi has a target agent Tj . We will
immediately replace all these agents with a variable, because
we do not wish to be dependent on the agent. In the future
we may not wish to do this, but rather abstract to some sub-
set of all the agents which fulfill a certain role, are within a
subgraph of a social network or use other background infor-
mation about the agents to refine the algorithm. For now,
however, we do not distinguish between individual agents
and assume trust is global and based only on the interac-
tions. The “centre” of the cluster will be the least general
generalization of the αi under θ-subsumption. It is relatively
easy to compute using an algorithm such as Aleph [20]. This
is an inductive learning algorithm which uses the“learn from
example” setting [8]. We wish to learn some phrase α∗ in
LTrust such that if α∗ holds then all αi hold. As parame-
ters for learning we therefore use the definitions of LTrust

and as the set of positive examples the αi. Because we’re
learning the least general generalization (lgg), we can use
only positive examples and assume everything that is not
a positive example is a negative one. In actual fact this is
not quite the case. For example in our example of LTrust

above, if we have the formulas image(X, 5) and image(X, 7)
in the same cluster, we will wish to learn that the cluster
holds for all phrases such that image(X, Y) ∧ Y ∈ [5, 7],
while this will not be the lgg considering only the given
examples as positive: image(X, 6) will necessarily be con-
sidered a negative example, leading to the generalization:
image(X, 6)∨ image(X, 7). Therefore depending on LTrust

we will want to define some background knowledge in the
learner to rectify cases like these.

Learning the body.
The real work comes in when we wish to learn the body.

We rewrite our rules with α∗ in the head, such that we have
a list of rules: α∗[X] ← βi[X], ψi, which count as positive
examples of the concept α∗. All rules that fall outside the
cluster count as negative examples for α∗. Thus giving us
the basis required for applying an inductive learning algo-
rithm. Furthermore we note that we have more information
available than when we learn the generalization of the head,
namely we have a list of situations βi, ψi in which the exam-
ple holds. This coincides with the “learning from interpre-
tation” setting of ILP [8] and we can use Tilde [4] to learn
these generalizations.

3. DISCUSSION AND FUTURE WORK
We are currently in the process of implementing the algo-

rithm as described above. While we do not have any compu-
tational results yet, we will discuss our expectations. In [11]
we discuss a preliminary proof of concept we implemented
using Aleph to learn the rules. This small scenario taught
us that the approach is viable, however using that imple-
mentation, the computational limitations were inhibitive to
scaling the example up. For this reason we have taken great

caution in this approach to keep the computational complex-
ity of each step into account. Firstly we must note that we
are dealing with several NP-complete problems: finding the
θ-subsumption of a set of clauses has been shown to be NP-
complete, as has calculating the coverage of a given clause
[8]. It was therefore very important to search for approaches
which reduce this complexity. Firstly by clustering our ex-
amples and then considering them as positive and negative
examples for some concept allows us to use established algo-
rithms for learning. The clustering and learning of the head
is a typical example of concept formation, which has an es-
tablished body of research and is applied in various data
mining problems. We feel confident that these approaches,
tested in various datamining scenarios will tackle this initial
problem well. The second part of the problem uses “learning
from interpretations”. While this is still a computationally
hard problem, it is easier to learn than the approach us-
ing Aleph. Tilde has been tested on some very large data
sets and performs efficiently. It is implemented with many
optimizations in the ACE package [6].

We are currently implementing the overall system and
testing the various components. This is the work for the
immediate future. In addition it will be important to as-
sess the quality of the aligned trust models, by comparing
the performance of agents using the system to agents using
the simpler model of Abdul-Rahman and Hailes [1] as well
as agents not aligning at all. We will also extend the al-
gorithm to allow for background knowledge, which can give
the system extra information about the agents involved or
background knowledge about the interactions and the envi-
ronment. Furthermore, this model assumes agents always
give truthful information. If this is not the case, the learn-
ing algorithm will need to be able to cope with “lies”. The
mathematical framework we have designed allows for all of
this and the combination of different algorithms we use in
practice looks promising.

Acknowledgements
This work is supported by the Generalitat de Catalunya un-
der the grant 2009-SGR-1434, the Agreement Technologies
Project CONSOLIDER CSD2007-0022, INGENIO 2010 and
the LiquidPub Project CIT5-028575-STP. M. Schorlemmer
is supported by a Ramón y Cajal research fellowship from
Spain’s Ministry of Science and Innovation, which is par-
tially funded by the European Social Fund.

4. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. Proceedings of the 33rd Hawaii
International Conference on System Sciences, 6, 2000.

[2] M. Atencia and M. Schorlemmer. A formal model for
situated semantic alignment. In Sixth International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2007), volume 6, pages
1270–1277, Honolulu, Hawaii, USA, 2007.

[3] J. Barwise and J. Seligman. Information Flow: The
Logic of Distributed Systems. Cambridge University
Press, 1997.

[4] H. Blockeel and L. De Raedt. Top-down induction of
first-order logical decision trees. Artificial Intelligence,
101(1-2):285–297, 1998.

[5] H. Blockeel, L. De Raedt, and J. Ramon. Top-down
induction of clustering trees. In J. Shavlik, editor,

Proceedings of the 15th International Conference on
Machine Learning, pages 55–63. Morgan Kaufmann,
1998.

[6] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens,
J. Ramon, and H. Vandecasteele. Improving the
efficiency of inductive logic programming through the
use of query packs. Journal of Artificial Intelligence
Research, 16:135–166, 2002.

[7] S. Casare and J. Sichman. Towards a functional
ontology of reputation. In AAMAS ’05: Proceedings of
the fourth international joint conference on
Autonomous agents and multiagent systems, pages
505–511, New York, NY, USA, 2005. ACM.

[8] L. De Raedt. Logical and Relational Learning.
Springer Verlag, 2008.

[9] D. Fisher. Knowledge acquisition via incremental
conceptual clustering. Machine Learning,
2(2):139–172, 1987.

[10] A. Koster, J. Sabater-Mir, and M. Schorlemmer.
Formalization of the trust and reputation alignment
problem. Technical Report TR-2009-03, CSIC-IIIA,
2009.
http://www2.iiia.csic.es/∼andrew/files/techreport.pdf.

[11] A. Koster, J. Sabater-Mir, and M. Schorlemmer. An
interaction-oriented model of trust alignment.
Technical Report TR-2009-05, CSIC-IIIA, 2009.
http://www2.iiia.csic.es/∼andrew/files/techreport2.pdf.

[12] F. A. Lisi. Building rules on top of ontologies for the
semantic web with inductive logic programming.
Theory and Practice of Logic Programming,
8(3):271–300, 2008.

[13] P. Omidyar. Ebay. http://www.ebay.com, retrieved
September 26, 2008, 1995.

[14] I. Pinyol and J. Sabater-Mir. Arguing about
reputation. the lrep language. In Proceedings of the
8th Annual International Workshop ”Engineering
Societies in the Agents World” (ESAW’07), volume
4995, pages 284–299. Springer LNCS, 2007.

[15] D. A. Plaisted and S. Greenbaum. A
structure-preserving clause form translation. Journal
of Symbolic Computation, 2:293–304, 1986.

[16] S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust
in multi-agent systems. The Knowledge Engineering
Review, 19(1):1–25, 2004.

[17] J. Ramon and M. Bruynooghe. A polynomial time
computable metric between point sets. Acta
Informatica, 37:765–780, 2001.

[18] J. Sabater-Mir, M. Paolucci, and R. Conte. Repage:
REPutation and imAGE among limited autonomous
partners. JASSS - Journal of Artificial Societies and
Social Simulation, 9(2), 2006.

[19] M. Schorlemmer, Y. Kalfoglou, and M. Atencia. A
formal foundation for ontology-alignment interaction
models. International Journal on Semantic Web and
Information Systems, 3(2):50–68, 2007.

[20] A. Srinivasan. The aleph manual.
http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/, retrieved February 9, 2009.

[21] R. Xu and D. Wunsch II. Survey of clustering
algorithms. IEEE Transactions on Neural Networks,
16(3):645–678, May 2005.

	00 title
	ProceedingsEASSS09-Final
	10 back

