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Abstract. We present a mathematical framework and an implemen-
tation of a proof of concept for communicating about trust in terms
of interactions. We argue that sharing an ontology about trust is not
enough and that interactions are the building blocks that all trust- and
reputation models use to form their evaluations. Thus, a way of talking
about these interactions is essential to gossiping in open heterogeneous
environments. We give an overview of the formal framework we propose
for aligning trust and discuss an example implementation, which uses
inductive learning methods to form a trust alignment. We highlight the
strengths and weaknesses of this approach.

1 Introduction

In complex, distributed systems, such as multi-agent systems, the artificial en-
tities have to cooperate, negotiate, compete, etc. amongst themselves. These
activities may expose them to risks if they choose the wrong agent to partner
with for any such activity. One proposed method of selecting the right partner is
based on the concept of trust and reputation to create a network of social control
for the agents. There are already quite a large number of computational models
for trust and reputation [2] in use; each with a slightly different interpretation
on what trust means. This contrasts with one of the main reasons for using a
trust based approach: it is easily communicable and agents can warn each other
for fraudulent agents or can help each other in their selection of a good partner.
If the different agents use diverse models of trust, this communication becomes
problematic. What does it mean to one agent when another agent communicates
a trust evaluation?

Lets consider this in an example: Alice wants to know if Dave would be a
good keynote speaker for the conference she is organizing. However, she does not
know enough about him. She asks Bob. Bob has never collaborated with Dave
directly, but they work at the same institute and play squash together. Alice has
a trust model which takes the specific roles agents are involved in into account.
Bob does not and therefore his trust in Dave is universal, as a collegue, a squash
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player and also as a keynote speaker. If Bob therefore answers that he trusts
Dave, what does this mean to Alice?

This simple example shows that it is important for Alice to know why Bob
trusts Dave. Trust cannot be seen independent from the observations which sup-
port that trust. In this case we considered two different computational models:
one simple one which ignores roles and one slightly more complicated which
takes the roles agents play in the environment into account. However we argue
that even if the agents do use the same computational model, if that model is
sufficiently expressive and based on cognitive principles [3, 4], the goals agents
have and the way they observe their environment will still lead to different in-
terpretations of what trust means. Various models allow for the specification
of parameters such as context-dependence, preference for risk-avoiding or risk-
taking behaviour, etc. While the models are the same, agents with different
values for these parameters will have different trust evaluations given exactly
the same information. Thus even using the same model trust can mean different
things for different agents.

This article discusses the problem of aligning trust models. In Section 3 we
present a mathematical framework to describe the problem and in Section 4 we
present a prototype implementation to align trust models. First we will discuss
some related work.

2 Related Work and Our Approach

We are not the only ones to consider the communication between agents about
trust as a problem and some work has been done in defining common ontologies
for trust [5, 6], however in practice these ontologies do not have the support of
many of the different trust methodologies in development. An ontology alignment
service is presented in [7], but it requires a translation of all specific trust model
ontologies into a general ontology. In addition, as we argued in the introduction,
even if support were added for all systems and a common ontology emerged, a
cognitive agent will still have its own interpretation of the world on which it
bases its trust evaluations: thus trust must always be considered in the light of
why agents trust each other. This is based on interactions they have had, or
are told about and thus can already be talked about for most domains in the
domain-specific ontologies. We wish to consider an adaptable trust alignment
method which builds on top of the domain ontologies.

Abdul-Rahman and Hailes’ reputation model [8] approaches the problem
from another direction, by defining the trust evaluations based on the actual
communications. The interpretation of communicated trust evaluations is based
on previous interactions with the same sender. The problem with this, however,
is that it is incomplete: firstly it assumes all other agents in the system use
the same model, which in a heterogeneous environment will hardly ever be the
case. Secondly, it uses a heuristic based on prior experiences, to “bias” received
messages. This bias is an average of all previous experiences. They do not dif-



ferentiate between different kinds of experiences, which are based on different
types of interactions.

We propose to enrich the model of communication by considering it sepa-
rate from the actual trust model. By doing this, we can allow for different trust
models. We note, however, that while trust is modeled in disparate ways, all
definitions do agree on the fact that trust is a social phenomenon. Just as any
social phenomenon, it arises from the complex relationships between the agents
in the environment and, without losing generality, we say these relationships
are based on any number of interactions between the agents. These interactions
can have many different forms, such as playing squash with someone, buying
a bicycle on eBay or telling Alice that Dave is a trustworthy keynote speaker.
Note that not all interactions are perceived equally by all participants. Due to
having different goals, agents may observe different things, or even more obvi-
ously: by having a different vantage point. Simply by having more (or different)
information available, agents may perceive the interaction itself differently. In
addition, interactions may be accompanied by some kind of social evaluation of
the interaction. These can range from an emotional response, such as outrage
at being cheated in a trade, to a rational analysis. Thus, we see that how an
agent experiences an interaction is unique and personal. This only adds to the
problem we are considering. To be able to align, there needs to be some common
ground from which to start the alignment, but any agent’s experience of an in-
teraction is subjective, and thus not shared. We call this personal interpretation
of the interaction an observation. We say an agent’s observations support its
trust evaluations of other agents.

Now that we have discussed what interactions mean to a single agent, we
will return to the focus of communicating about trust. One interaction may be
observed by any number of agents, each making different observations, which
support different trust evaluations of different targets performing different roles.
However, to communicate about trust evaluations, the agents need to have a
starting point: some basic building blocks they implicitly agree they share. We
note that the interactions provide precisely such a starting point. While all the
agents’ observations are different, they do share one specific thing: the interaction
itself. We therefore argue that to find a reliable alignment between two agents
they can align based on these interactions.

Our approach uses these shared interactions as building blocks to align the
agents’ trust models, based on the gossip they send each other. The gossip
specifies certain interactions, which each agent observes differently. These ob-
servations form the support for an agent’s trust evaluation. If another agent
communicates this trust evaluation, the interpretation should be based on the
underlying interactions. An alignment of the trust models gives a way of doing
this by gossiping about the agents’ trust evaluations and the observations (and
thus interactions) they base these on.



3 Theoretical Foundations

Before we consider possible solutions we need a clear definition of the problem
we are considering. Firstly we are considering agents with heterogeneous trust
models, but we have no clear description of what a trust model is in the first
place. Furthermore, to align, the agents need to communicate. For this we need
to define a language. Finally, the agents need to have some method of forming
an alignment based on the statements in this language. Throughout this section
we will illustrate the main definitions with an example. We will first give the
basic scenario, which is a modified version of the example in the introduction:

Alice is organizing a conference and needs to invite a keynote speaker.
She assigns the task of finding this person to her personal computational
agent. It must contact the other agents in the system. The agent’s first
choice is Bob. It sends Bob’s agent a message with an invitation to the
conference, but he can’t make it. Instead his agent recommends Zack.
However, Alice and Bob’s agents have never aligned their models and
therefore Alice’s agent doesn’t know how to assess the reliability of this
gossip. It asks Bob’s agent to start the alignment process. There are
various other people who both Bob and Alice have interacted with. Their
agents contain knowledge about this and they gossip about these to form
the alignment.

3.1 A formal representation of trust models

As argued in Section 2, interactions form the building blocks for talking about
trust. While these interactions have a wealth of properties, we will start with
the bare minimum we need to know to start the trust alignment. We define an
interaction just as the set of observing agents. In practice we will use a more
descriptive interpretation of what an interaction is. This we will introduce in
Section 3.2.

We will denote with I the set of all interactions in the environment and
with Ag the set of all agents. I|A ≡ {〈id, Ag〉 ∈ I | A ∈ Ag} is the set of
interactions observed by agent A; id is a unique identifer for an interaction.
Agent A’s observations of these interactions form a separate set.

Definition 1 (Observation). An agent A’s observation is given by the func-
tion observeA : I|A → OA, which associates each interaction i ∈ I|A with an
observation o ∈ OA. The set OA is the entire set of observations of agent A and
is in the form of the agent’s internal representation.

Example: Alice’s agent (Observations). Alice’s agent stores the observa-
tions in its belief base. We give an example observation of an interaction where
Bob and Dave play racquetball together.
The observe-function simply maps the interaction itself, with id BD, onto a
belief: observeAlice(BD) = (play racquetball(Bob,Dave)).



Because we will generally work with sets of observations, it is useful to extend
the function observeA : I|A → OA to ObserveA : P(I|A) → P(OA) such that
for I ⊆ I|A: ObserveA(I) = {o ∈ OA|∃i ∈ I : observeA(i) = o}.

An agent A’s observations support some trust evaluation. This is the essence
of the trust model. As we argued in Section 2 there are many different computa-
tional trust models, but all compute trust evaluations, based on observations of
interactions. We say these observations support the trust evaluation. These trust
evaluations are statements in a language LTrust. The agents share the syntax of
this language, but each agent can have its own semantics, defined by its trust
model. While this shared syntax is not strictly necessary it makes the frame-
work more comprehensible. Because the semantics will differ anyway, whether
an agent calls reputation “reputation” or “jackhammer” doesn’t really matter
from a conceptual point of view, each agent will have their own semantics and
will have to distinguish between the syntax used by each agent anyway. It makes
things easier on a computational level, however, if we can define a language in
which agents agree on the syntax. even though they need to align the seman-
tics. It also makes it easier to understand for humans, who will ultimately be
directing agents equipped with the system. Thus this assumption may be just
as important from the perspective of making the framework “explicable”.
LTrust is a standard predicate language, with one restriction: because trust is

always about some target agent (all trust predicates have an object), we will only
consider those predicates which give an evaluation of exactly one such target T :

LTrust[T ] ≡ {ϕ ∈ LTrust | all predicates in ϕ have target T}

We can now give a very abstract model of trust, which we can use as a
basis for communication. We ground this framework in a mathematical model of
information flow, introduced by Barwise & Seligman [9]. This is a very general
model of how information flows and has been shown to be a good foundation for
alignment [10]. We use this same framework to formalize our earlier assertion
that a trust model gives an evaluation of target agents supported by the agent’s
observations.

Definition 2 (Trust model). A trust model MA of agent A is given as the
tuple 〈P(OA), EvalsA, |=A〉, with the following definitions:

– P(OA) the power set of the observations of agent A.
– EvalsA ⊆ LTrust the trust evaluations of agent A.
– |=A a binary relation: |=A⊆ P(OA)×EvalsA, such that if O ⊆ OA (in other

words, O ∈ P(OA)) and ϕ ∈ EvalsA, then O |=A ϕ represents that for agent
A, the trust evaluation ϕ is supported by O.

Example: Alice’s agent (Alice’s trust model). Alice’s agent’s beliefbase
contains the following observations:
{play racquetball(Bob,Dave), co author(Alice,Dave)}

and LTrust is the set of predicates formed by the predicate trustworthy(T ) and
its negation, with T ∈ {Alice,Bob,Dave}. Some examples of support relations



its trust model can have:
{co author(Alice,Dave)} |=Alice trustworthy(Dave)
{play racquetball(Bob,Dave} |=Alice ¬trustworthy(Dave)

This framework models the entire space of potential observations and their
supported trust evaluations. In practice only one of these evaluations will be the
actual evaluation of the target, namely the one supported by the observations in
the actual state of the agent. However, to assess gossip it is important to base
this on a larger amount of data than just the real trust evaluation.

We will now use this formal model to define a channel, following the math-
ematical model put forth in [9]. The trust alignment between two agents is
grounded in this channel, which models the relation of two different trust mod-
els.

3.2 Formalizing gossip

Now that we have described trust models algebraically, we can focus on the
formal model of how to assess each others’ gossip. To do so, the agents should
form an alignment and for that the agents A and B establish some set of shared
interactions I|AB = I|A ∩ I|B , the set of interactions they have both observed.
This results in subsets of observations for both agents: OA|B ⊆ OA are A’s
observations of the interactions it shared with B. These are observations based
on interactions they know they’ve shared. Due to the assumption that all the
observers know the other observers in interactions, each agent can find this set.
We justify this assumption by noting that even if this is not the case a priori,
the set of shared interactions is easy to establish by first communicating about
these, before entering into the alignment process.

The agents can now talk about their trust evaluations based only on the
interactions they both observed to come to their evaluations. To talk about trust,
they can use LTrust, but we have so far not specified how to talk about the
interactions or observations. To do so, we introduce another, separate, language:
LDomain. This should be a domain dependent language in which the agents can
choose to relay objective properties of the interactions they have used to form
their trust evaluations.

Example: Alice’s agent (LDomain). An example of a domain language in
which agents can talk about interactions is the one given in Figure 1. Playing
racquetball can be modeled as an activity which is performed in a personal inter-
action. The other interactions that can be talked about are of a more professional
nature.

The agents align by gossiping about different targets: communicating their
trust evaluations of a target in LTrust and about the interactions these evalua-
tions are based on in LDomain. Gossip sent by an agent B is defined as the tuple
〈T, β, ψ〉, with β ∈ EvalsB [T ] and ψ ∈ LDomain. Just as EvalsB is defined as



a subset of LTrust, we define EvalsB [T ] ⊆ LTrust[T ]. Thus gossip between two
agents consists of a part about trust and a part about the agents’ observations
which support this trust predicate. This ψ can be used to pinpoint what interac-
tions comprise I, the set of interactions that B used to compute β. Agent A uses
I to find its own trust evaluation α ∈ EvalsA[T ], such that ObserveA(I) |=A α,
which gives us the basis for a targeted combined trust model: a shared set of
interactions I supporting a trust evaluation for both A and B with regards to
target T . It is possible that in some situations ObserveA(I) will not support
any trust evaluation for agent A. In this case we cannot use the related gossip
in forming the targeted alignment. However, due to the requirement that the
agents only take shared interactions into account this should not happen often.

Fig. 1. The ontology for an example LDomain, in a UML-like representation

Definition 3 (Targeted combined trust models). A targeted combined trust
model has the same structure as a trust model, defined in Definition 2. It is the
tuple 〈P(I|AB), (EvalsA[T ] ∪ LDomain × EvalsB [T ] ∪ LDomain), |=AB〉
with |=AB a binary relation:
|=AB⊆ P(I|AB) × ((EvalsA[T ] ∪ LDomain) × (EvalsB [T ] ∪ LDomain)), such

that if I ⊆ I|AB and 〈α, β〉 ∈ (EvalsA[T ] ∪ LDomain × EvalsB [T ] ∪ LDomain),
then I |=AB 〈α, β〉 if and only if ObserveA(I) |=A α and ObserveB(I) |=B β.

Example: Alice’s agent (Combined trust model with regards to Dave).
We recall the interaction BD and Alice’s observation
observeAlice(BD)=play racquetball(Bob,Dave).
Furthermore, Alice’s trust model contains the relation:
{play racquetball(Bob,Dave)}|=Alice¬trustworthy(Dave). Lets assume Bob has a simi-
lar observation: observeBob(BD)=good racquetball match(Bob,Dave) and the relation:
{good racquetball match(Bob,Dave)}|=Bobtrustworthy(Dave)



Then the combined trust model for Dave contains the relation (with the
agent’s names in subscript for clarity):
BD|=Alice,Bob〈¬trustworthyAlice(Dave), trustworthyBob(Dave)〉.
Additionally, the model could contain further information communicated by Bob’s
agent about the interaction in LDomain. Thus the relation could look like:
BD|=Alice,Bob〈¬trustworthyAlice(Dave), trustworthyBob(Dave)

∧ personal(BD) ∧ activity(BD,racquetball) ∧ participants(BD, (Bob,Dave))〉

Note that neither agent knows everything, just those parts of the model
which are gossiped about. From these partial models they must extrapolate the
underlying model, so as to form an alignment. The rules we have such that
I |=AB 〈α, β〉 in the targeted combined trust models form the basic building
blocks of this alignment.

Definition 4 (Targeted alignment). Given a combined trust model for agents
A and B with regards to target T , we define ⇒T

A as a binary relation
⇒T

A⊆ EvalsB [T ] ∪ LDomain × EvalsA[T ] ∪ LDomain, with Γ [T ] ⇒T
A ∆[T ] such

that:

Γ [T ] ⊆ EvalsB [T ] ∪ LDomain where Γ [T ] means all trust predicates
in Γ have target T

∆[T ] ⊆ EvalsA[T ] ∪ LDomain

∃I ⊆ I|AB : ∀γ ∈ Γ [T ] : ∃δ ∈ ∆[T ] : I |=AB 〈γ, δ〉

TA[T ] = {〈Γ [T ], ∆[T ]〉 | Γ [T ] ⇒T
A ∆[T} is agent A’s targeted alignment with

target T . We call Γ [T ]⇒T
A ∆[T ] a rule in this targeted alignment . The relation

⇒T
A is not symmetrical, while the combined trust model is. It therefore stands to

reason there is a similar targeted alignment TB [T ] with its binary relation ⇒T
B.

A targeted alignment can be interpreted as the set of relations between an
agent’s own model and the communication partner’s model with regards to some
specific target. Each rule states that if there is a set of interactions I which
support all trust evaluations by agent B as well as all statements in LDomain

about the interactions, then agent A has a trust evaluation with corresponding
statements in LDomain which is also supported by I. We consider agents gossiping
untruthful information as outside the scope of this work and suppose that any
rule in a targeted alignment is a “true” rule.

Example: Alice’s agent (Aligning about Dave). The rule in the alignment
with regards to Dave, based on the relation in above would be:
personal(BD), activity(BD,racquetball), participants(BD,(Bob,Dave)) ∧ trustworthyBob(Dave)

⇒Dave
Alice¬trustworthyAlice(Dave)

3.3 Generalization and coverage

Now that we have a way of describing the relationship between two agents’
trust models with regards to a specific target, we wish to expand this idea to



encompass multiple targets. We consider this problem as an inductive learning
problem [11]. Given a number of targeted alignments with regards to different
agents, is there an alignment that describes all (or most) of them?

To use inductive learning, we need to define what our solution should look
like. This is an untargeted alignment: similar to the targeted alignment in Def-
inition 4, but not restricted to just one target. A natural way of forming an
untargeted alignment is by simply replacing all instances of the target agent in
a targeted alignment with a free variable. In general we will say an untargeted
alignment is a θ-subsumption of one or more targeted alignments. We introduce
the notion of coverage to specify which targeted alignments these are.

Definition 5 (Coverage of alignments). For an agent A, we say an align-
ment TA covers a targeted alignment TA[T ], if for every rule Γ [T ] ⇒T

A ∆[T ] ∈
TA[T ], there is a rule Γ ⇒A ∆ ∈ TA, such that Γ θ-subsumes Γ [T ] and ∆
θ-subsumes ∆[T ] for some θ. We introduce the function c which returns the set
of targeted alignments covered by a given untargeted alignment.

We can now use inductive learning to find a trust alignment that covers all
the targeted alignments. The way to do this is by structuring the search space.
We do this with the generality relationship.

Definition 6 (Generality relation). We say an alignment T is more general
than an alignment T′ iff c(T) ⊇ c(T′). We write this: T � T′. If c(T) ⊃ c(T′)
we say T is strictly more general and write T � T′

The overall trust alignment between two agents can now be found by finding
a minimally general generalization, which covers all targeted alignments.

Definition 7 (General trust alignment). The trust alignment T∗A of an
agent A with another agent is a minimally general generalization of all the tar-
geted alignments: ∀T ∈ Targets : TA[T ] ∈ c(T∗A). A minimally general gener-
alization means, that if there is any other alignment T′A that covers all targeted
alignments, then: T′A � T∗A.

Example: Alice’s agent (Trust alignment with Bob). If Alice and Bob
only gossip about Dave, with the targeted alignment above as a result, the general
alignment could look something like this:
personal(I) ∧ activity(I,racquetball) ∧ participants(I, (X,Z)) ∧ trustworthyBob(X)

⇒¬trustworthyAlice(X)

This example has necessarily been very simplistic and therefore this result
seems trivial. We base this alignment on only one interaction about one single
agent. The generalization in this case is just the skolemnization of the targeted
alignment. From this we learn that if Bob bases his evaluation “trustworthy” of
a target agent on an interaction where they played racquetball together, Alice
should consider this agent as “¬trustworthy”. While simple, this is a good start:
next time Bob recommends a possible keynote speaker based on his racquetball
games, Alice knows that she should take this to mean the opposite. However, if



Bob recommends someone based on their joint experience in authoring papers,
this rule says nothing about this. The alignment is not yet complete and there
is no rule covering this type of interaction.

We will now discuss a prototype implementation of the alignment process,
which will illustrate the computational model of this framework.

4 Implementing the model

The formal framework outlined in the previous section is the roadmap we use
to guide an implementation.This implementation must focus on the same three
points as before. We will need to describe a robust language for LDomain and a
sufficiently expressive syntax for LTrust. These trust evaluations must be gen-
erated from observations with a different trust model for all agents. Lastly we
must develop a process for finding the alignment based on inductive learning.
As a proof of concept we used a simple scenario described below and focused
on displaying the functionality, rather than on the computational limitations of
the approach. There are heuristics we can use to optimize its response time,
but this implementation is set up to show that automation of the mathematical
framework is a real possibility.

4.1 Finding a Keynote Speaker

We use the same example as in the previous section, but will use more realistic
trust models as well as a small network of interactions. This network is given in
Figure 2. It is a fairly small network, so as not to lose the oversight. The table in
Figure 2 gives high level descriptions of Alice’s observations of the interactions,
which are stored in her agent’s belief base. This description can, fairly easily, be
interpreted in an actual modal logic for BDI-agents, but we opt for readability,
rather than formality here.

4.2 A communication language

In Section 3 we argued that to align agents need 2 languages in which to com-
municate. We will start with a description of LTrust. This will be a very simple
language consisting of two predicates: trustworthy(X) and untrustworthy(X).
This obviously glosses over the complexity of trust, but even with such sim-
ple predicates, we can give different semantics for the concepts to the separate
agents.

Secondly we need to have a language in which to describe the observations.
Firstly we need to distinguish between objective and subjective observations.
From now on we will call the objective “observations” facts, while reserving
observation for just the subjective ones. We want the agents to be able to com-
municate about the facts underlying a trust evaluation. We will rely on the
restrictions of a language, LDomain, to limit the communication to shared, ob-
jective facts and not the subjective observations.



Interaction Observation

AB Bob has written some excellent articles.

AD Alice and Dave co-authored some papers.

AF Fred is a good friend of Alice’s husband.

BC Charlie won a scholarship over Bob a long
time ago.

BD Bob and Dave play squash together.

BE Bob thinks Eve is lazy.

BF Fred was Bob’s PhD supervisor.

BG Bob and Greg worked together on a suc-
cessful project.

BI Irene and Bob are in the same university
swimming team.

BZ Zack and Bob co-authored some papers.

HZ Hank and Zack co-organized a workshop.

Fig. 2. The interactions observable by both Alice and Bob and Alice’s observations

In our example Alice is searching for a keynote speaker. The environment is
comprised of a diverse set of interactions. Both academic evaluations and per-
sonal relations between the scientists play a role in the trust the agents put
in each other, so this must be reflected in any language suitable for them to
communicate about this. We keep it simple and define the language as a simple
ontology for interactions, which we have already seen in Figure 1. Each prop-
erty of an object is either objective, or can be objectified by using a shared
benchmark, such as the impact factor of an article: this can be measured by a
common standard, for instance the citation index. We note that these objective
descriptions are easily locked down in an ontology and are the sort of definitions
that are usually already fixed in available ontologies for agent domains.

4.3 Prolog and Aleph

Alice bases her evaluations of a keynote speaker on academic qualities only,
while Bob also takes personal qualities into account. Both of the models will
be represented as Prolog programs, rather than using a specific trust modeling
methodology, which would allow for more complex models than we wish to align
in this initial approach. Alice has three reasons to evaluate an agent as a trust-
worthy keynote speaker. Firstly they have published a good article together,
which we objectively describe as having a high impact factor. Alternatively she
attended a good lecture, given by that person. This is objectified by the average
students’ evaluation. Finally, if a trustworthy person published a good article
with a third person, that third person is also trusted. Bob has different reasons
to trust an agent as a keynote speaker, based more on personal observations. He
also trusts someone if they published together, but his criteria of a good article
is that it was not rejected by the journal. For attended lectures it is a similar



situation. The student evaluation does not play a role in his evaluation. Finally,
he trusts a person based on its ability to entertain, which he evaluates through
interactions on a recreational basis.

We specify the trust models for the agents representing Alice and Bob in the
following table and use their observed interactions to calculate the trust evalu-
ations they will align on.
Alice Bob

trustworthy(X) ← article(I), authors(I, List),
member(X, List), member(alice, List),
impact_factor(I, high)

trustworthy(X) ← lectured(I), lecturer(I, X),
student(I, alice),
¬ student_evaluation(I, bad)

trustworthy(X) ← article(I), authors(I, List),
member(X, List), member(Y, List),
trustworthy(Y)

trustworthy(X) ← article(I), authors(I, List),
member(X, List),member(bob, List),
¬ status(I, rejected)

trustworthy(X) ← lectured(I), lecturer(I, X),
student(I, bob)

trustworthy(X) ← personal(I),
participants(I, List), member(X, List),
member(bob, List), activity(I, Act),
type(Act, recreational)

Both agents also have the rule that if a target agent is not trustworthy then
he is untrustworthy.

To align these trust models, the agents need to share a set of interactions.
The initial setup contains this set of shared interactions as well as each agent’s
observations thereof. Both agents observe only the shared facts of the interactions
and there are no subjective observations. The alignment process starts with
Bob’s agent sending gossip messages to Alice’s, regarding all other agents in the
system. An example of such a message is:
gossip(fred, trustworthy(fred), lectured(BF) ∧ lecturer(BF, fred) ∧ student(BF, bob))

These messages allow Alice’s agent to form the targeted alignments by computing
the own trust based on the interactions pinpointed in the gossip message. The
targeted alignments have this trust evaluation as the head of the rule and the
gossip message in the body.
untrustworthy(fred) ← trustworthy_bob(fred), lectured(BF),

lecturer(BF, fred),
student(BF, bob)

Learning as search. Alice’s agent can form a trust alignment with Bob’s
agent by generalising from targeted alignments such as above. We look at this
as the problem of finding a hypothesis that covers the targeted alignments. This
is considered a search problem through the “hypothesis space”. We use Aleph
[12], an implementation of the Progol algorithm [13] to perform this “search”.
It searches for sets of Horn clauses which cover the examples, but requires us
to give some basic information about the boundaries of the search space: which
predicates it should learn to put in the head of the clause and which predicates
it can use in the body of the clauses. In our example all this information is
available: we want the trust evaluation in the head and the predicates in the
gossip in the body. The main drawback of the algorithm is that it can only learn
two-valued concepts. For our example we have a trust model that is two-valued,
but in most models currently in use this is not the case. In the case of discrete-
value trust models the algorithm could learn each value separately. In the case
of continuous-value trust models it would require some pre-processing to be able



to use an ILP algorithm. For our example, however, a search for two-valued
concepts is all we need. Even in this case, though, we need to reformulate the
problem. What we want to find are alignment rules, which may not be a binary
concept. We know that Bob’s trust model is two-valued. We therefore use this
algorithm to learn Bob’s trust model, based on the gossip.

The algorithm attempts to learn a hypothesis that covers all positive exam-
ples and excludes all negative examples. For us a positive example is an agent
that is trustworthy, while being untrustworthy is obviously a negative example
for this concept. In our scenario, Charlie, Hank and Eve are untrustworthy and
thus negative examples for the predicate we are trying to learn.

The algorithm performs a heuristic search of the hypotheses and gives us the
minimally general generalization.

4.4 Results

For our example, Aleph found the following trust model for Bob:
trustworthy(fred)
trustworthy(greg)
trustworthy(X) ← personal(I), participants(I, List), member(X, List),

activity(I, Act), type(Act, recreational)

The first thing we notice is that the trustworthiness of Fred and Greg are given
as facts. This is because there are not enough examples to learn further rules.
While Aleph can generalize the rules, the hypotheses generated do not cover any
further examples. Its best solution is therefore the plain fact. We note therefore
that to learn anything sensible we need more examples. By adding more agents
and interactions, we obtain:

trustworthy(X) ← article(I), author(I, List), member(X, List),
impact_factor(I, high)

trustworthy(X) ← lectured(I), lecturer(I, X)
trustworthy(X) ← personal(I), participants(I, List), member(X, List),

activity(I, Act), type(Act, recreational)

This is a better approximation of Bob’s trust model. We still see some notable dif-
ferences. Firstly the clause that Bob needs to be a member of the interactions has
been dropped: all the interactions taken into account had Bob as a member and
there were no negative examples where the same held and Bob was not a member.
The same happens for taking the positive predicate impact_factor(I, high)
rather than the negation ¬status(I, rejected). Once again, due to a lack of
examples. This, however, is completely within the expectations of induction. We
can never know for sure our alignment is complete; all we can do is find the best
approximation given the data we have. Now that we have an approximation of
Bob’s trust model, we can use this as a predictive model. If Bob’s agent gossips
to Alice’s that it trusts Zack, based on interaction article(BZ), Alice’s agent
can trace the model to find that the first rule in the approximated model covers
that. It can compare that with Alice’s own model and find that they are very
similar. The reliability of this gossip is high. If, however, it had been based on
a different, personal, interaction and used the third rule in the approximated
model, then she would be able to find few similarities to her own model and



conclude a low reliability. We see, even in such a simple example, the signifi-
cance of this approach: whereas in both cases Bob’s agent gossips that Zack is
trustworthy, Alice’s agent can distinguish between the two situations.

This comparison between trust models is a fairly straightforward comparison
process. There are many algorithms, using various metrics to measure the dis-
tance between two programs. We can use the same algorithms for calculating the
distance between two program fragments. If the distance is large, then the trust
models are dissimilar for the given interactions and the reliability is low. If the
distance is small, then the models are similar and communication is reliable. In
our example, using a lexical comparison is enough to give a distance measure: in
the situation where Bob’s trust is based on co-authoring an article, the distance
between the approximation and Alice’s model is smaller than in the case of a
personal interaction. In more descriptive trust models, we propose using more
sophisticated methods, such as the one developed by Lukacsy et al. [14].

5 Conclusion and Future Work

We have argued that for agents to understand communication about trust, the
agents need an understanding of what observations the sender bases his gossip
on. In Section 3 we outlined a mathematical framework for this purpose, which
relies on 3 things:

– a language to talk about trust
– a language to talk about objective facts of interactions
– an algorithm to model predicates in the former based on the latter

In Section 4 we have presented a proof of concept for such a model. The trust
language was left mostly out of the picture, but ongoing work on ontologies,
as mentioned in Section 2 could be used for this. We are mainly interested in
developing useful algorithms to align the underlying concepts, based on commu-
nication about interactions. These go hand in hand: if our LDomain gets more or
less descriptive, different algorithms may be necessary for aligning the trust eval-
uations through it. Our initial implementation works with a very basic LDomain

and a naive use of a learning algorithm, but it shows the approach works. Future
work will focus on finding sensible heuristic rules to apply the algorithm in a
larger and more realistic environment. The framework itself also needs extending
to allow for situations where agents can have multiple roles and interpret trust
differently per role. Our framework also does not yet take dishonesty in the gos-
sip into account. However, this model allows for agents with diverse trust models
to gossip reliably about them and future progress can build on the framework.

Acknowledgements This work is supported by the Generalitat de Catalunya
under the grant 2009-SGR-1434, the Agreement Technologies Project CON-
SOLIDER CSD2007-0022, INGENIO 2010. We’d like to thank Jordi Sabater-
Mir for participating in this research.



References

1. Koster, A., Sabater-Mir, J., Schorlemmer, M.: A formalization of trust alignment.
In: Twelfth International Congress of the Catalan Association of Artificial Intelli-
gence (CCIA 2009), Cardona, Spain, IOS Press (2009)

2. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. The
Knowledge Engineering Review 19(1) (2004) 1–25

3. Falcone, R., Castelfranchi, C.: Social Trust: A Cognitive Approach. In: Trust and
Deception in Virtual Societies. Kluwer Academic Publishers (2001) 55–90
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