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Abstract. This paper explores the existing gap between
multiagent specification and implementation and the poten-
tial help that evolutionary programming techniques can bring
in. We present a methodology to help the programmer in the
transition from a set of desired global properties expressed as
an equation-based model that a Multi-Agent System (MAS)
must fullfil to an actual society of interacting agents. The
evolutionary techniques are seen, within this methodology,
as a procedure to tune the parameters of the population of
agents in order that their aggregated behaviour maximaly ap-
proaches the desired global properties.

1 Introduction

The general goal of the research reported in this paper is to
better understand the dynamics of large Multi-Agent Systems
(or MAS, for short) with globally distributed and intercon-
nected collections of human, software and hardware systems;
each one of which with potentially thousands of components.

Within this ambitious goal this paper will explore two ideas.
First, a particular approach to the principled design of MAS
using Equation-Based Models (EBM) as a high level spec-
ification method, where equations model the aggregated be-
haviour of the agent populations abstracting from the interac-
tion details of individual agents. Second, the use of evolution-
ary computation techniques to find out what agent structures
produce the global emergent behaviour specified in the EBM
maintaining certain restrictions in the design of the agents.
These ideas will be framed within a design methodology called
SADDE (Social Agents Design Driven by Equations).

In Section 2 we'll introduce the main steps in the SADDE
design methodology. Section 3 will introduce a running exam-
ple and will exemplify the methodology introduced in Section
2. Section 4 will extend the methodology with a step based
on evolutionary computation whose concrete application to
the example introduced in Section 3 will be done in Section
5. Section 6 concludes the paper, discussing it.

2 The SADDE Methodology

We take the stance that in order to build a model for a so-
ciety containing thousands or millions of agents, the general
view provided by an EBM provides succint descriptions of
population-level behaviours which we then attempt to repli-
cate using models consisting of a society of individual inter-
acting agents, that is, the ABM. Our proposed lifecycle is
graphically depicted in Figure 1.

An important characteristic of MASs design from a soft-
ware engineering perspective is the decoupling of the inter-
action process between agents from the deliberative/reactive
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Figure 1. SADDE Methodology

activity within each agent, [2, 17]. The notion of electronic in-
stitution [8, 10], as described in Section 3.2, plays this role in
our methodology by establishing a framework that constraints
and enforces the acceptable behaviour of agents.

The different phases within SADDE are:

[Step 1] EBM — Equation-Based Model. In this first
step, a set of state variables and equations relating them
must be identified. These equations have to model the de-
sired global behaviour of the agent society and will not con-
tain references to individuals of that society. Typically these
variables will refer to values in the environment and to aver-
ages of predictions for observable variables of the agents. We
model yet-to-exist artificial systems. The EBM is the start-
ing point of the construction of a system that later on will
be observed. Thus, a comparison between the EBM predicted
behaviour and the actual ABM behaviour will be obtained.

[Step 2] EIM — Electronic Institution Model. In this
step the interactions among agents are the focus. It is a first
“zoom in” of the methodology from the global view towards
the individual models. This step is not a refinement of the
EBM but the design of a set of social interaction norms that
are consistent with the relations established at Step 1.

[Step 3] ABM — Agent-Based Model. Here, we focus
in the individual. We have to decide what decision models to
use. This is the second “zoom in” of the methodology. New
elements of the requirement analysis (new variables) will be
taken into account here. For instance, some rationality prin-
ciples associated to agents (e.g. producers do not sell below
production costs), or negotiation models to be used (e.g. as
those proposed in [14]) have to be selected.

[Step 4] Multi-Agent System. Finally, the last step of
our methodology consists on the design of experiments for
the interaction of very large numbers of agents designed in
the previous step. For each type of agent the number of indi-
viduals and the concrete setting for the parameters will be the
matter of decision here. The results of these experiments will



determine whether the requirements of the artificial society
so constructed have been consistently interpreted throughout
the methodology and thus whether the expected results ac-
cording to the EBM are confirmed or not.

Once the experiments designed at Step 4 are run and anal-
ysed, several redesigns are possible as shown schematically in
figure 1. In this paper we focus on the use of evolutionary
computation to explore the space of possible MAS configura-
tions. Section 4 addresses this. Further details on the SADDE
methodology can be found at [16].

3 Supply chain example

Supply chains have been a traditional focus of attention in the
design of multiagent systems [13] because of their important
role in the structuring of the manufacturing economy and be-
cause they are a naturally distributed system where agents try
to maximize their own profit, therefore permitting a classical
economical analysis of their strategies. Thus, a MAS in sup-
ply chain will typically consist of a group of selfish agents that
will trade by buying one level below in the chain, adding value
to the purchased goods, and selling the manufactured good
up to the next level in the chain. Although the real model
is a supply tree or a supply graph, a simple supply chain is
rich enough to show the potential complexities of a MAS de-
sign process. In this section we will follow the methodology
presented in Section 2 to illustrate a MAS design —although
necessarily in a summarised way.

3.1 Description of the Supply Chain EBM

In Figure 2 we see an example of a supply chain consisting of
three levels: Si, processing rough materials to produce goods
to be sold to level S» which, in turn, processes the goods
bought to S; to sell to the final consumers represented as level
S3. Each level is pictured as a rounded box that contains the
model of the behaviour of that level in the chain. It should be
emphasized that by behaviour we do not mean the behaviour
of an agent at that level; rather, we mean a global summary
of multitude of agents placed in that level of the chain.

The meaning of the variables in the example is quite
straightforward. We classify them in three groups:

ENVIRONMENT VARIABLES: Variables whose value is
fixed outside the EBM. The MAS designer can manipulate
them only to see how the model reacts in view of environ-
mental changes. In our example they are:

e RoughMat represents the generation of primary goods.
o Demand and MinPrice generate the price for the good.

MODEL VARIABLES: Their value is computed as a func-
tion over other variables or constants in the model, or is fixed
by the MAS designer.

e MazxStockIn; represents the maximum storage capacity for
income goods at level i.

o MaxStockQOut; represents the maximum storage capacity
for produced goods at level 3.

e ProdRate; is the production rate in number of processed
units per time unit at level 7.

o delay; is the time required to transform a unit of good at
level 3.

e Priceln; is the market price that level 4 in the chain would
be willing to pay to level 7 — 1 for a unit of good. We made
it depend on the stocks at level 7.

e PriceQut; is the market price at which level i in the chain
would be willing to sell to level i+1 a unit of good. We made
it depend on the stock of produced material, the maximum
storage capacity and the price payed at level 7 delay; units
of time ago.

STATE VARIABLES: Their value changes along time and
they represent the system observable variables whose dynamic
behaviour the MAS designer is interested in. We have:

e StockIn; represents the current stock of income goods at
level 3.

e StockOut; represents the current stock of produced goods
at level 1.

e Cash; represents the liquidity at level ¢ of the supply chain.

The reader can use different tools to implement and then
observe the behaviour of the system (we have used SIMILE
[15]). The collective behaviour shows two main properties:

1. There is a moderate linear increase of the cash at levels S;
and S> of the chain, and

2. There is a positive flow of goods along the chain, that is,
there is commerce being made.

3.2 An Electronic Institution for supply
chain

The next step in the methodology after the EBM has been
specified is the specification of the electronic institution that
will give structure to the interaction among the individuals
[7]. Each chain level is a global view of a reality consisting
of many individual agents, and the transactions modelled as
flows of goods and money in the EBM are the result of the so-
cial interaction of the agents following particularly well estab-
lished conventions. In our Institution specification we consider
two scenes: One, primary_market, for the interaction between
agents of levels S1 and S» in figure 2 and another, retailing,
for the interaction between S> and Ss. See in Figure 3 the
performative structure of such institution. The links between
scenes indicate the flux of agents; root is the initial scene to
enter the institution, and final is the scene through which all
agents leave the institution. For further details on the concept
of Electronic Institution see [8, 10].

Figure 3.

Supply chain scenes

By means of this specification we are, for instance, pre-
scribing that there will be no interactions between agents of
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S1 and S3 within the Institution. Also, we are fixing that the
interaction in the two scenes will be based on a negotiation
protocol as specified in [1] and that is presented in Figure 4.

3.3 Agents for the supply chain

The mechanism that the agents use to buy and sell products
in the so specified institution is then a negotiation one-to-one
as explained in detail in [1].

The agent model must specify a range of strategies and tac-
tics that agents can employ to generate initial offers, evaluate
proposals and offer counter proposals. To simplify, we only
allow our agents the use of time-dependent tactics. In these
tactics, the predominant factor used to decide which value to
offer next is time. Thus these tactics basically consist of vary-
ing the acceptance value for an issue in the contract under
negotiation depending on the remaining negotiation time. In
our agent model, the negotiation issues are reduced to “price”.
We define tr,,, as the maximum time that an agent a can
spend for a single negotiation process and 3 is the factor that
fixes the type of tactic. The 3 factor modifies the shape of the
function wich makes the dependence of price on time. When
B < 1 we talk about boulware tactics. These tactics maintain
the offered price until the time is almost exhausted, where-
upon it concedes up to the reservation price. When 8 > 1 we
talk about conceder tactics.

Figure 5 shows a schema of the internal structure of
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Figure 4. Agents’ negotiation protocol.

Diagrammatic representation of a supply chain.

each agent. The clouds with the word D-Making-In and
D-Making-Out represent the decision making part of the
agent. Using the negotiation model explained before, each
agent tries to reach an agreement with the other partner to
buy/sell the product. The parameters for this decision making
processes are the parameters for the negotiation model, this
is: tmax and 3. The rest of variables have the same mean-
ing as in the EBM model but applied to a single individual
instead as a full population.

4 Evolutionary programming within
SADDE

Once an ABM is generated according to the SADDE method-
ology, what we have is a precisely defined way of interaction
between agents, as restricted by the electronic Institution, and
schemes of individual behaviour (determined by a concrete
decision making system) of the agents playing the different
roles. But there are still two important decisions to be made
in order to have a running MAS: what values to assign to the
parameters of the decision making apparatus of the agents,
and what proportions of significantly different individual be-
haviours to use in order to conform to the MAS.
Evolutionary computing [5, 4] is the technique used to ex-
plore the space of possible configurations of MAS populations.
In this respect we follow here the Pittsburgh approach [6]
where an individual in the Genetic Algorithm corresponds,
in our case, to the genetic material of a complete MAS pop-
ulation. Crossover between populations will mean that sub-
sequent generations will explore the space of agent combina-
tions and that mutation will, basically, generate new agents
by mutating the parameters of the decision making apparatus
of a particular agent. From the study of such populations we
expect to obtain insights about the structure of the agents
and their social interelationships in relation to the global be-
haviour. This study would eventually lead to the generation of
a series of design rules that could reduce the currently existing
gap between specification and implementation of MAS.
Figure 6 illustrates graphically the intended role of evolu-
tionary computation. We want to use as the initial population
of the evolutionary computation algorithm a set of MASs that
fit with the schema obtained through the SADDE methodol-
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Figure 6. Evolutionary computing within SADDE.

ogy, and then use evolutionary computation to obtain a set
of MASs that fit optimally with the EBM. It is thus natural
that the fitness function is provided by the EBM in terms of
the concrete genetic coding used. In our approach, one chro-
mosome is the specification of a full MAS and the parameters
that specify a single agent are codified in a gen of that chro-
mosome. The parameters that represent an agent are the pa-
rameters of the negotiation model. Therefore a chromosome
is a sequence of tmax and S.

5 Evolutionary computing in the Supply
Chain example

We exemplify in this section the use of evolutionary comput-
ing in the particular context of our running example.

5.1 Fitness functions

One of the key design issues in the proposed methodology is
how to obtain a fitness function from the global behaviour,
as expressed in the EBM, and the behaviour of the agents as
specified in the ABM. The right choice is essential to improve
from the initially designed ABM populations into better ABM
populations that fit the overall objective of guaranteeing cer-
tain properties of the societies that satisfy the EBM.

To illustrate this let us consider the Supply Chain exam-
ple again. The EBM properties we want to match with the
agent society are those explained in section 3.1. In order to
determine the fitness function we have to put in relation these
global properties with individual variables so that by selecting
MASs that maximize some functions over those variables we

approach the desired global behaviour. In general, if we have
a set of properties we want the MAS to satisfy along time
and we model each property to be satisfied as a function over
time and a vector of state variables in the EBM, f;(¢, X;), and
we model the observed behaviour of the aggregated individ-
ual variables, Y;, corresponding to X;, as h;(t,Y;), we can
define a fitness function as a weighted (omega;) mean over a
comparison function between the two along time:

FEBM,ABM) = wi- Y g(fi(t. Xs), h(t, Y1)

i=1 0<t<T

For instance, in our supply chain example, we want to
satisfy the two properties refered at the end of subsec-
tion 3.1 that are modelled by two functions obtained from
the execution of the EBM model. The variables used for
those two functions are X1 = (Cashi,Cashsz,Cashs) and
Xa = (Stocki, Stocka, Stocks) with their corresponding func-
tions, fi(t, X1) = f1(t,{Cashi,Casha,Cashs)) = Cashi(t) +
Cashz(t) + Cashs(t). Similarly for f,. The corresponding Y;
vectors will correspond to the set of individual variables for
cash and stock respectively, and the h; functions will add up
the values of the individual variables. In the experiments we
have performed we have used a quadratic means error to com-

pare the two behaviours. That is, g(a,b) = /|a — b|?

5.2 Genetic Algorithm settings

For a general introduction to GAs refer to [3]. We have made
initial experiments with a population of N = 30 individuals,
each individual representing A = 60 agents, with % agents
at the Si level of the chain, % agents at the S» level, and
finally % agents acting as consumers. We have used this in-
creased population distribution to make the co-evolution more
realistic with respect to many real supply chains where the
amount of manufacturers and final consumers increases along
the chain. The exploration of other values is part of the fu-
ture work. Each step in the algorithm consists of T’ iterations
of the following process: for each MAS of the N MAS in the
population do the following, for each agent at level S3 ran-
domly choose an agent in S» and engage them in a negotiation
process, and for each agent at So randomly choose an agent
in S1 and also engage them in a negotiation process. We have
chosen T' = 10. The algorithm terminates when the average
fitness of the MAS individuals does not significantly change



in 5 iterations. Each step consists then on N « T x (4 + )
negotiations, that is 24900 negotiation processes per genera-
tion.

The genetic material is the sequence of agent parameters of
each one of the agents in a MAS population as explained in
section 4. The mutation probability is set to p = 0.1 and there
are as many cross-over points as agents with a probability of
cross-over of p. = 0.25. We consider that a 10% of muta-
tion is a good trade-off between exploitation and exploration.
Finally, the selection is elitist.

6 Discussion and results

EBM and ABM are two well known styles of computer based
modelling. EBM allows the modelling of the global behaviour
of a population leaving implicit the behaviour and interaction
of individuals. On the other hand in ABM we model explic-
itly these individuals and their interactions leaving the global
behaviour of the population as an emergent result. There are
numerous applications of each of these approaches [12, 11].
They have even been applied to the same problem in order to
establish comparative criteria about their alternative use [9].
This competing view between EBM and ABM makes sense
if you have a real system against which the model you build
should be checked. However if the goal is to build an artificial
system whose behaviour is to be inspired by a real system but
not bound to simulate it faithfully, then the reasonable atti-
tude is to take EBM and ABM as complementary approaches
to be used at different levels of abstraction in the design life-
cycle.

We have integrated both approaches into a methodology for
MAS design and implementation. More specifically we have
used EBM to identify desired global properties of the MAS.In
the supply chain example these are the moderate increase in
cash and the positive flow of goods.Then we analyzed how
the flows of the EBM could be produced by the interactions
between different types of agent. The structure of the EBM
guided the definition of these interactions through an elec-
tronic institution. We then decided on the agent model we
expect that will allow populations whose aggregate behaviour
will meet the EBM. In our example this comprises the range
of strategies and tactics that agents can employ to negotiate.
These are reduced to two parameters, the maximum time of
negotiation and the type of tactic, which are the genes of each
agent in the MAS when exploring the space of models using
evolutionary computing.

The application of this technique to a collection of MAS
brings us two main preliminary results. First, the chosen agent
model allows the convergence of the evolutionary process to-
wards the production of a stable collection of MASs show-
ing the EBM specified properties to an acceptable degree.
Second, from the analysis of the distribution of the values
of the parameters in each MAS we can establish a first de-
sign rule which relates them with the global properties spec-
ified by the EBM. Its informal expression can be put as fol-
lows. Slow agents can not be part of any MAS satisfying the
mentioned properties of the supply chain while generous and
greedy agents can coexist.

This is our first attempt to incorporate evolutionary com-
puting in the SADDE methodology. We simplified the prob-
lem and reduced the agent model parameters to a minimum.
We are aware that the design rule obtained does not brings

much new insight on agents design. It was in fact foreseen
from the beginning. However it helped to check the applica-
bility of the approach. In the future we plan to work with
a more complete supply chain in order to obtain a more in-
formative set of design rules. We also plan to extend further
the application of evolutionary computing by representing the
decision processes themselves as genetic material. Finally, the
electronic institution itself could also be represented as genetic
material. In this growing complexity of the representation we
go all the way back from the ABM to the second step in the
methodology, that of the electronic institution specification.
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