JIM
A Java Interagent for Multi-Agent Systems

Francisco J. Martin, Enric Plaza, Juan A. Rodriguez-Aguilar,
and Jordi Sabater
ITTA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra,Barcelona, Spain
Vox: 434-3-5809570, Fax: +34-3-5809661
{martin,enric,jar,jsabater } Qiiia.csic.es

Abstract

In this paper we introduce an interagent as an
autonomous software agent which manages (inter-
mediates) the communication and coordination be-
tween an agent and the agent society wherein this
is situated. According to our proposal, intera-
gents shall constitute the sole and exclusive means
through which agents within a multi-agent scenario
interact. With this aim, we have developed JIM,
a general-purpose interagent that provides agents
with a highly versatile range of programmable —
before and during the agent’s run-time — communi-
cation and coordination services. The development
of JIM lies in the framework of the SMASH project.
SMASH addresses the construction of multi-agent
systems to tackle complex problems of distributed
nature in hospital environments. Two main bene-
fits stem from the usage of JIM: on the one hand,
it permits agents to reason about both communica-
tion and coordination at a higher level of abstrac-
tion, whereas on the other hand, it provides a com-
plete set of facilities that allows agent engineers to
concentrate on the design of their agents’ inner and
social behaviour.

Keywords: Multi-Agent Systems, Interagents,
Communication, Coordination

1 Introduction
There exists a number of problems which involve

multiple sources of knowledge and, thereby, can
best be addressed using a multi-agent system — a

computational system composed of several inter-
acting agents which cooperate! with one another to
solve complex tasks. Furthermore, the deployment
of multi-agent systems permits to benefit from a
number of advantages — such as parallelism, robust-
ness or scalability — that a single agent working iso-
latedly can not offer itself.

Currently, we are partners of the SMASH
project[2], a collective, joint effort involving sev-
eral research institutions that addresses the con-
struction of a general-purpose heterogeneous ra-
tional multi-agent architecture, and the devel-
opment —on a computational implementation of
this architecture— of prototype multi-agent systems
with learning capabilities that cooperate in the so-
lution of complex problems in hospital environ-
ments. The development of such multi-agent sys-
tems poses the question of how to integrate a set
of heterogeneous agents — agents developed by dif-
ferent people for different purposes and in different
languages — within a common setting. In order to
achieve this goal, two major issues need to be ad-
dressed: (highly flexible) communication and co-
ordination among the agents composing the multi-
agent system. Instead of letting agents deal them-
selves with such issues, our proposal opts for intro-
ducing an autonomous software agent that we call
interagent which manages (intermediates) the com-
munication and coordination between the agent it

L«Cooperation with other agents is paramount: it is the
raison d’étre for having multiple agents in the first place in
contrast to having just one” H. S. Nwana [16].

is attached to (its owner) and the agent society
wherein the owner is situated (see Figure 1). Ac-
cording to our proposal, interagents shall constitute
the sole and exclusive means through which agents
within a multi-agent scenario interact.

We are developing JIM, a general-purpose inter-
agent that provides agents with a highly versatile
range of programmable — before and during the
agent’s run-time — communication and coordina-
tion services. JIM is being implemented in Java in
order to ensure platform independence.

The remainder of this paper is organized as fol-
lows. Section 2 analyzes what features distinguish
interagents from related approaches. Section 3 de-
scribes the communication services offered by in-
teragents. In Section 4 the coordination services
supported by interagents are presented. In section
5 we illustrate how JIM is being used in different
agent-based applications. Finally, Section 6 sum-
marizes some concluding remarks.

2 Related Work

For several years, agent-based software engineer-
ing has faced the matter of enabling heteroge-
nous programs written by different people, at dif-
ferent times, in different languages and with dif-
ferent interfaces to communicate and interoperate
[9]. Researchers in the ARPA Knowledge Shar-
ing Effort have proposed agent communication lan-
guages (ACLs) as the means to allow the exchange
of knowledge among software agents in order to
facilitate their interoperation [9]. Generally, an
ACL is composed of three main elements: an open-
ended vocabulary appropriate to a common appli-
cation area, an inner language (KIF-Knowledge In-
terchange Format) to encode the information con-
tent communicated among agents, and an outer
language (KQML-Knowledge Query and Manipu-
lation Language) to express the intentions of agents
[14].

Nowadays, KQML has become the communica-
tion language par excellence in agent-based sys-
tems. However, when several computational en-
tities interact by exchanging messages a higher
level of interaction concerned with the conventions
that they share during the exchange should be ad-
dressed [6]. This level of interaction is not sup-
ported by KQML, whereas coordination languages

—like COOL[6] — allow such conventions to be ex-
plicitly expressed. Making shared conventions ex-
plicit allows interdependencies among agents’ ac-
tivities to be managed.

Apart from COOL, there exist other agent build-
ing tools such as AgentTalk[l] or JAFMAS [7]
which also provide coordination constructs and
many more agent building tools that have not ad-
dressed this issue yet2. For instance, JAFMAS pro-
vides a generic methodology for developing speech-
act based multi-agent systems using coordination
constructs similar to COOL.

Interagents —likewise KQML facilitators[17]— are
inspired by the efficient secretary metaphor al-
ready introduced in the Actors model of concurrent
computation [3]. Nevertheless, interagents (unlike
KQML facilitators) offer the coordination level re-
quired by agents to cooperate in non-trivial ways.
On the other hand, unlike KQML facilitators in-
teragents have no knowledge about the reasoning
capabilities of their owners [21], though they are
aware about their owners’ plans thanks to conver-
sation protocols.

By introducing interagents, and concretely JIM,
we try to make headway with respect to other agent
building tools offering a programmable communica-
tion and coordination module whose behaviour can
be specified before or during its owner’s run-time
by both the agent engineer and the (owner) agent
itself. In addition, another major advantage of us-
ing interagents is that they permit agents to reason
about communication and coordination at a higher
level of abstraction, making implementation details
transparent to their owners.

Finally, notice that in some sense interagents ex-
tend to agents the concept of synchronizers pre-
sented in [8] to coordinate distributed objects.

3 Communication Services

In our proposal, communications among agents are
based on message-passing ®>. However, agents do
not exchange messages directly but by means of in-
teragents. Thus, an interagent is informed by its

2For an account of other agent building tools refer to
http://www.ececs.uc.edu/ mnoschan/tools.html.

3The message-passing paradigm provides functionality
equivalent to that found in remote procedure call (RPC)
or tuple-space paradigms [10].

Reasoning Abilities: R
Problem Solving and Agent .

Learning R N
Interagent | “3~

Interaction Abilities: 000 2 NS W .
Communication and _%7 AN Fishmarket
Coordination OO E‘t/e\mjj
------ = -
£ NS ! '
5 % | h .
32 | :
Z g DL & :
| A éoY ' 6 :
& 05
<F | :
5 & £ :
z £ '
-] i1 1
= '
1
1

Figure 1: Fishmarket: A multi-agent system using interagents

owner about the message to be sent and its ad-
dressee, and then the interagent carries out all the
operations needed to deliver it correctly.

An interagent and its owner can communicate in
two ways:

a) through (TCP-)stream-sockets —in case that
an interagent and its owner are two distinct
computational processes (residing in the same
computer or not)

through shared memory —in case that an in-
teragent and its owner are two distinct threads
residing in the same process space

Concerning communication, an interagent pro-
vides its owner with the following communication
services based upon TCP /IP:

e queueing of outgoing messages from its owner
and queueing of incoming messages from (the
interagents of) other agents;

e asynchronous communication between agents;

o synchronous communication between agents
(implemented on top of buffered asynchronous
communication between interagents);

e agent naming services (white pages);

e handling of expired messages and automatic
recovery of transmission errors.

Two communication protocols have been devised
(agent-to-interagent and interagent-to-interagent?)
whose communication language is based on KQML.
Therefore, both agent-to-interagent messages and
interagent-to-interagent messages are expressed as
KQML performatives. However, at present inter-
agents support a subset of KQML performatives,
whose syntax has been extended with the reserved
parameter keywords shown in Table 1:

e Each performative exchanged between agents
is associated to a particular conversation spec-
ified by the :conversation parameter.

e The :delay parameter indicates how long a mes-
sage queued in an interagent is postponed be-
fore this starts to process it. In this way, an
agent can tell its interagent to deliver a given
performative after a certain amount of time.

e The :time-out parameter indicates the maxi-
mum period of time that an agent conforms to
await for receiving a reply to the performative.

4Notice that communication between interagents is trans-
parent to their owners.

e The :time-to-live parameter indicates the life
time of the performative once it has been
queued in an interagent. Thus, when this time
expires, the message is thrown away by the
interagent where it is queued, and the sender
receives back an error message.

4 Coordination Services

Interagents offer the coordination level required by
agents to cooperate in non-trivial ways. An in-
teragent allows interdependencies between agents’
communicative acts to be ordered. These inter-
dependencies can be defined declaratively inside
each interagent by means of a conversation protocol.
A conversation protocol represents the conventions
adopted by agents when interacting through the
exchange of messages. A conversation protocol can
also be seen as a an agent’s plan to achieve some
goal[6]. We model and implement conversation pro-
tocols as a special type of pushdown automaton.
Pushdown automata, unlike finite state machines,
allow context to be stored and to be subsequently
retrieved for an ongoing conversation.

Conceptually, we have decomposed a conversa-
tion protocol into (see Figure 2):

e A finite state control. Each state in the finite
state control represents the situation of the in-
teragent’s owner during an ongoing conversa-
tion.

e An input list is continuously traversed in
search of a performative which can produce a
transition in the finite state control. If such
message is found, it is dispatched and, thereby,
removed from the input list>. Note that the
way of traversing the input list differs from the
one employed by classic pushdown automata
whose read only input tapes is traversed from
left to right (or the other way around).

e A pushdown list where the context of an spe-
cific conversation can be stored and subse-
quently retrieved.

e A finite set of transitions. Each transition in
a conversation protocol indicates:

5Conversation protocols lack e-moves, what makes a
significant difference with respect to classic pushdown au-
tomata.

1. what message has to be either sent or re-
ceived to produce a move in the finite
state control; and

2. whether it is necessary to store (push) or
retrieve (pop) the context using the push-
down list.

Formally, a conversation protocol, like a push-
down automaton [4], is a 7-tuple :

P = <Q727F757QO7Z07F>
where

e () is a finite set of state symbols that represent
the states of the finite state control;

e Y is the finite input list alphabet composed of
all possible performatives that an interagent
can deal with;

e I' is the finite pushdown list alphabet com-
posed of all possible performatives that an in-
teragent can store;

e § is a mapping from @ x ¥ x I' to the finite
subsets of () x I'* which indicates all possible
transitions that can take place during a con-
versation.

® go € (is the initial state of a conversation.

e 7y € T' is the start symbol of the pushdown
list.

e F C (is the set of final states representing
possible final states of a conversation.

Messages queued by interagents can queue-jump
only if they produce a transition in the conversation
protocol. Therefore, in some sense can it be said
that interagents constrain what an agent can utter
and hear, and when. For instance, Figure 2 shows
instantiation ¢-87 of a conversation held by agents
A and B. The following transition:

0(ge, answer, aska) = {(q4,)}
indicates in such conversation protocol that when:
e such conversation is in state ¢g; and

e the performative corresponding to the topmost
message on the pushdown list is ask; and

Table 1: Reserved parameter keywords and their meanings introduced by JIM

| Keyword | Meaning |
:conversation | Identifier of the conversation wherein the performative
is uttered
:delay Indicates how long a message must be delayed by an
interagent before it starts to deliver it to the addressee.
‘time-out Maximum period of time an agent accepts to wait for

receiving a reply to the performative.

:time-to-live
interagent.

Life time of the performative after being queued in an

e a message with the performative answer is in
the input list, and its sender, receiver and the
label in keyword :in-reply-to match respec-
tively the receiver, sender and label in keyword
:reply-with of the topmost message on the
pushdown list.

then the following move

0(qs, answer, aska) F (g4, @)

takes place in the finite state control. As a result,
conversation c¢-87 switches to state g4, the corre-
sponding message is extracted from the input list
and forwarded to the corresponding addressee, and
the message on the top of the pushdown list is
popped out.

4.1 Conversation Protocol Defini-

tion

An interagent can support a wide range of conver-
sation protocols that can be defined declaratively
and stored into the conversation protocol library
that each interagent has associated. Such library
can be upgraded in two ways:

Statically. Before the interagent’s owner run-time,
as an item provided by the agent engineer.

Dynamically. An agent can interactively define
new conversation protocols (or modify existing
ones) at run-time using a conversation protocol def-
inition and manipulation language based on the set
of reserved coordination performatives in Table 2.
These performatives allow to either fully define a
new conversation protocol or modify stored con-
versation protocols by adding or deleting states or
transitions.

Once defined, conversation protocols must be-
come instantiated in order to be used for coordi-
nating the interaction between agents.

This capability of allowing agents to define and
modify themselves their conversation protocols at
run-time happens to be an innovative feature of
our proposal, distinguishing interagents from other
approaches like COOL[6] or JAFMAS][7].

5 Applications

JIM our Java-based implementation of a general-
purpose interagent, is being used as the communi-
cation and coordination support for the agents de-
veloped in the framework of the SMASH project.
Concretely, in this section we describe Plural —
an extension of the knowledge representation lan-
guage Noos for developing agent-based systems
with learning capabilities — and Fishmarket — an
agent-mediated electronic marketplace®.

5.1 Plural Noos

Noos is an object-centered language based on fea-
ture terms [5]. Noos can furnish applications with
the reasoning capabilities required by intelligent
agents, nonetheless, applications developed in Noos
lack communication abilities except for graphical
user interface. Thereby, we are developing Plural,
a seamless extension of Noos based on interagents
which promotes Noos to an agent-oriented language
[11]. On top of the basic mechanism offered by in-
teragents Plural extends Noos with two new con-
structs with the same nature as the rest of Noos

61n fact, an interagent has emerged as a generalization of
the notion of remote control introduced during the imple-
mentation of this system.

Input list

(answer (answer

:conversation ¢-91 :conversation ¢-87 :conversation ¢-92 :conversation c-187

:sender A :sender A :sender C :sender

wreceiver B wreceiver B :receiver B :receiver B

:reply-with B-1900 tin-reply-to B-1869 :reply-with C-515 :reply-with D-2115

:language Noos :language Noos :language Noos :language Noos

:onotology N-queens :ontology N-queens :ontology N-queens :ontolology N-queens

:content 4) :content 3) :content (find-my-position))| :content (find-my-position))
A

(evaluate (evaluate

Pushdown list

/evaluate

ey,
‘7/0‘7&\/

answer/
/next

(ask

:conversation c-87

:sender B

wreceiver A

:reply-with B-1869
:language Noos

:content (q1 of Board_11))

>

(evaluate
:conversation c-87
:sender A
:receiver B

:reply-with A-2112

Finite ;Limgl:ﬁ[gffﬁz?;y-posi[ion))

State

Control .
4(qo, /evaluate, o) = {(q1,evaluatea)} | 6(qo,evaluate, c) = {(qa4,evaluatea)}
0(q1,answer,evaluatear) = {(g2,0)} 6(qa,answer,evaluatea) = {(g5,)}
0(q1, answer, nexta) = {(¢g2,0)} 6(qa, answer, nexta,) = {(g5,)}
5(q1, ask, @) = {(g2,aska)} 5(qu, a5k,) = {(gs5,a5ka)}
5(qs, next,) = {(g1,nexta)} | d(gs,next, a) = {(q4, nexta)}
d(gs, answer, aska) = {(q1,2)} 6(ge,answer, aska) = {(g4,)}

Figure 2: Conversation protocol for the foreign evaluation capability of Plural [11]. The conversation protocol followed by

Plural agents during a foreign evaluation is modelled and implemented in an interagent as a pushdown automaton P such

that: P = ({qo,q1,92,93, q4, g5}, {evaluate, ask, answer}, { Z, evaluate, ask, answer}, 4, qo, Z, {q2, q5,¢6 }). Messages followed

by / stand for performatives sent by the interagent’s owner, whilst messages preceded by / stand for performatives received

by the interagent’s owner.

constructs: defforeign and defmobile. These con-
structs provide Noos with two new ways of con-
structing feature terms —foreign refinements and
mobile refinements— which, in turn, allow an agent
to remotely evaluate methods owned by other agent
—foreign evaluation— and send methods to other
agents to solve problems on its behalf —mobile prob-
lem solving methods [13].

In this way, in Plural agents do not communicate
directly with one another, instead, they rely on in-
teragents which offer a range of programmable com-
munication and coordination facilities. Each agent
has attached its own interagent which constitutes
the sole and exclusive means through which a Plural
agent interacts. An interagent gives a permanent
identity to its owner and enforces the conversation
protocols (defined for each construct) —thus estab-

lishing what messages can be forwarded, to whom
and when.

The declarative fashion of the conversation pro-
tocols offered by interagents is what allow Plural
to incorporate new capabilities which require that
agents follow some convention in the exchange of
messages. These conventions will be provided to
interagents by means of conversation protocols. We
have provided interagents with a conversation pro-
tocol for each new Plural construct incorporated at
the level of the knowledge representation language.
For instance, Figure 2 shows the conversation pro-
tocol for the foreign evaluation capability of Plu-
ral. Interagents allow all the underlying exchange
of messages needed by those constructs to be trans-
parent to Plural agents.

The new capabilities embedded into Plural en-

Table 2: Reserved coordination performatives, for agent A and interagent |

Performative

| Meaning

define-conversation

A defines in I a new conversation protocol

add-state
in |

A adds a new state to a conversation protocol residing

delete-state
in |

A deletes a state from a conversation protocol residing

add-transition
residing in |

A adds a new transition to a conversation protocol

delete-transition
protocol

residing in |

A deletes an existing transition from a conversation

able agents to adequately communicate and coor-
dinate in order to exchange knowledge. Plural can
be thought as an extension of a knowledge represen-
tation language with both an agent communication
language and a agent coordination language which
are implicitly provided at the knowledge represen-
tation level by means of some constructs and thanks
to interagents. These constructs allow the exchange
of knowledge to be performed at the knowledge rep-
resentation level transparently and independently
to the agent communication and coordination lan-
guages chosen.

The capabilities that now Plural incorporates
are those currently under active research by new
programming paradigms, namely distributed state,
foreign method invocation, and remote evaluation.
In order to provide Noos with such capabilities
there was no need to re-write Noos. Thus, inter-
agents shows a way in which legacy software can
also profit from mobile code paradigms.

The foreign evaluation and mobile problem solv-
ing methods capabilities of Plural have been used to
devised two cooperation modes among agents with
learning capabilities —Distributed Case-based Rea-
soning (DistCBR) and Collective Case-based Rea-
soning (ColCBR) [18]. These modes of coopera-
tion are based on reusing the experience acquired
by other agents. Which agent owns the similarity-
based reasoning method used to solve a problem
—the sender of the problem or the addressee agent—
is the basic difference between both methods [18].
In DistCBR an agent is delegated to solve a task
on behalf of another agent. DistCBR is supported
by the foreign evaluation capability of Plural. In
ColCBR, an agent in addition to the task to be
achieved sends the method to solve that task. Col-

CBR is supported by the mobile methods capability
of Plural. Such cooperation modes are being used in
CHROMA a distributed system for recommending
a plan for the purification of proteins from tissues
and cultures [18] and in CoDiT [12], a multi-agent
system for therapy recommendation in diabetic pa-
tients in the framework of the SMASH project[2].

5.2 The Fishmarket

The fish market can be described as a place
where several scenes run simultaneously, at differ-
ent places, but with some causal continuity. The
principal scene is the auction itself, in which buy-
ers bid for boxes of fish that are presented by an
auctioneer who calls prices in descending order —
the downward bidding protocol. However, before
those boxes of fish may be sold, fishermen have to
deliver the fish to the fish market, at the sellers’
registration scene, and buyers need to register for
the market, at the buyers’ registration scene. Like-
wise, once a box of fish is sold, the buyer should
take it away by passing through a buyers’ settle-
ments scene, while sellers may collect their pay-
ments at the sellers’ settlements scene once their
lot has been sold.

In [20, 19, 15] we present the Fishmarket, our cur-
rent implementation of an electronic auction house
based on the traditional fish market metaphor,
subsequently extended to become a multi-agent
testbed[20]. This implementation allows to run
auctions over the Internet that permit both human
and software agents to participate. Thus, buyer
and seller agents can trade goods as long as they
comply with the Fishmarket institutional conven-
tions. Those conventions that affect buyers and

sellers have been coded into their interagents, which
constitute the sole and exclusive means through
which each trading agent interacts with the mar-
ket institution. An interagent enforces its owner (a
trading agent) conversation protocols that establish
what illocutions can be uttered by whom and when.
Not only are interagents utilized to allow trading
agents to interact with the market institution, but
also to allow those agents working as market inter-
mediaries to coordinate their activities. Figure 1
depicts a conceptual view of the Fishmarket system
which differentiates trading interagents (attached
to buyers and sellers) from market interagents (at-
tached to market intermediaries). Both types of
interagents communicate asynchronously through
TCP-stream sockets with their owners, making use
of the communication services detailed in section 3.

For the current version of the system both trad-
ing and market interagents instantiate the conver-
sation protocols stored in their libraries of conver-
sation protocols. Nonetheless we must recall from
section 4.1 that the high flexibility of interagents
would permit to dynamically reconfigure Fishmar-
ket without changing the implementation. For in-
stance, say that the boss of the market decides, dur-
ing the system’s run-time, that the auctioneer em-
ploys new bidding protocols unknown by the trad-
ing interagents. In that case, the boss would dy-
namically define the conversation protocol required
for the new bidding protocol in the trading intera-
gents so that buyer agents were capable of bidding
under the new auction rules.

6 Conclusions

An interagent provides an agent with the basic
mechanisms to interact (communicate and coor-
dinate) with other members of an agent society.
Therefore, an interagent intermediates between its
owner and the multi-agent environment as a whole.
In this way, the overload related to the manage-
ment of the communication and coordination tasks
needed by an agent to live in a multi-agent system
is shifted to its interagent, that relieves its owner
from such a “tedious” work. Moreover, and more
importantly, interagents allow to coordinate inter-
dependencies between agents’ activities by means
of highly flexible conversation protocols.

Two major benefits are gained from employing

interagents. On the one hand, it permits agents
to reason about both communication and coordi-
nation at a higher level of abstraction, whereas on
the other hand it provides a complete set of fa-
cilities that allows agent engineers to concentrate
on the design of their agents’ inner and social be-
haviour.
JIM is currently being used in two directions:

e to promote the knowledge representation lan-
guage Noos to an agent-oriented language[11];

e to coordinate the activities of the mar-
ket intermediaries composing the Fishmarket
system[22, 20] and the interaction between the
market as a whole and the participating buyers
and sellers (see Figure 1).

Acknowledgements

This work has been supported by the Spanish CI-
CYT project SMASH, TIC96-1038-C04001; Juan
Antonio Rodriguez and Francisco J. Martin enjoy
DGR-CIRIT doctoral scholarships FI-PG/96-8490
and FI-PG/96-8472 respectively, and Jordi Sabater
enjoys a CSIC scholarship “Formacién y Especial-
izacién en Lineas de Investigacién de Interés Indus-
trial” in collaboration with C.S.M (Consorci Sani-
tari de Matard).

References
[1] Agenttalk: Describing multi-
agent coordination protocols.
http://www.cslab.tas.ntt.jp/at/.
[2] The smash project.

http://www.iiia.csic.es/Projects/smash/.

[3] G. Agha. Actors, A Model of Concurrent Com-
putation in Distributed Systems. The MIT
Press, 1986.

[4] A. V. Aho and J. D. Ullman. The Theory of
Parsing, Translation, and Compiling, volume
I: Parsing of Series in Automatic Computa-
tion. Prentice-Hall, 1972.

[5] J. L. Arcos. The Noos representation lan-
guage. PhD thesis, Universitat Politecnica de
Catalunya, 1997.

[6]

[8

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Barbuceanu and M. S. Fox. Cool: A
language for describing coordination in multi
agent systems. In Proceedings of the First
International Conference on Multi-Agent Sys-
tems, 1995.

D. Chauhan. JAFMAS: A Java-based Agent
Framework for Multiagent Systems Devel-
opment and Implementation. PhD thesis,
ECECS Department, University of Cincinnati,
1997.

S. Frolund. Coordinating Distributed Objects.
The MIT Press, 1996.

M. R. Genesereth and S. P. Ketchpel. Software
agents. Communications of the ACM, Special
Issue on Intelligent Agents, 37(7):48-53, July
1994.

M. Lejter and T. Dean. A framework for
the development of multiagent architectures.
IEEE Expert, 11(6):47-59, 1996.

F. J. Martin, E. Plaza, and J. L. Arcos. In-
teragents: Providing knowledge representa-
tion languages with agent-oriented capabili-
ties. 1998. Submitted.

F. J. Martin, E. Plaza, and J. L. Arcos. Knowl-
edge and experience reuse through communi-
cation among competent (peer) agents. 1998.
Submitted.

F. J. Martin, E. Plaza, and J. L. Arcos. Mo-
bile problem solving methods in multi-agent
systems. 1998. Submitted.

J. Mayfield, Y. Labrou, and T. Finin. Eval-
uation of kqml as an agent communication
language. In M. Wooldridge and J. Miiller,
editors, Intelligent Agents II, pages 347-360.
Springer Verlag, 1996.

P. Noriega. Agent-Mediated Auctions: The
Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona, 1997. Also to appear
in ITTA mongraphy series.

H. S. Nwana. Software agents: an
overview. The Knowledge Engineering Review,
11(3):205-244, 1996.

[17]

[18]

[19]

[20]

[21]

[22]

R. S. Patil, R. E. Fikes, P. F. Patel-Schneider,
D. McKay, T. Finin, T. R. Gruber, and
R. Neches. The darpa knowledge sharing ef-
fort: Progress report. In Proceedings of the
Third International Conference on Principles

of Knowledge Representation and Reasoning,
1992.

E. Plaza, J. L. Arcos, and F. Martin. Coopera-
tive case-based reasoning. In G. Weiss, editor,
Distributed Artificial Intelligence Meets Ma-
chine Learning. Learning in Multi-agent En-
vironments, number 1221 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1997.

J. Rodriguez-Aguilar, P. Noriega, C. Sierra,
and J. Padget. Fm96.5 a java-based electronic
auction house. In proc. of PAAM’97, pages
207-224, 1997.

J. A. Rodriguez-Aguilar, F. J. Martin, P. Nor-
iega, P. Garcia, and C. Sierra. Competi-
tive scenarios for heterogenous trading agents.
In Second International Conference on Au-
tonomous Agents, 1998.

N. Singh and M. Gisi. Coordinating dis-
tributed objects with declarative interfaces. In
Coordination Languages and Models, number
1061 in Lecture Notes in Computer Science,
pages 368—-385. Springer, 1996.

T. F. Team. The fishmarket project. In

www.iiia.csic.es/Projects/fishmarket.

