
E
x
p
l
o

it
in

g
 t

h
E
 S

t
r

u
c

t
u

r
E
 o

f
 D

iS
t
r

ib
u

t
E
D
 c

o
n

S
t
r

a
in

t
 o

p
t
im

iz
a

t
io

n

p

r
o

b
l
E
m

S
 t

o
 a

S
S
E
S
S
 a

n
D
 b

o
u

n
D
 c

o
o

r
D

in
a

t
io

n
 a

c
t
io

n
S
 i

n
 m

a
S

MONOGRAFIES DE L’INSTITUT D´INVESTIGACIÓ EN
INTEL·LIGÈNCIA ARTIFICIAL

4644447

M
e
ri

tx
e
ll
 V

in
ya

ls
 S

a
lg

a
d

o

CSIC

 Andrés García -Camino

normativE rEgulation of

opEn multi-agEnt SyStEmS

 Consell Superior d´Investigacions Científiques

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 35

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

Normative Regulation of
Open Multi-agent Systems

Andrés Garćıa -Camino

Foreword by Dr. Pablo Noriega,
Dr. Juan Antonio Rodŕıguez Aguilar and

Dr. Wamberto W. Vasconcelos

2010 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalan Countries, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Dr. Pablo Noriega

Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Juan Antonio Rodŕıguez Aguilar

Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

and

Dr. Wamberto W. Vasconcelos

University of Aberdeen

Volume Author
Andrés Garćıa Camino
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

NIPO: 472-10-247-3
ISBN: 978-84-00-08669-5
Dip. Legal: B.47017-2010
c© 2010 by Andrés Garćıa Camino

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

A mis padres y a mi hermano.

Contents

Abstract xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Structure . 8
1.4 Publications . 9

2 Related Work 13
2.1 Logics of Norms . 13
2.2 Normative Computational Languages 16

2.2.1 Conditional Deontic Logic with Deadlines 16
2.2.2 Z Specification of Norms 17
2.2.3 Event Calculus . 18
2.2.4 Rights and Obligations . 19
2.2.5 NoA Agent Architecture 20
2.2.6 Social Integrity Constraints 20
2.2.7 Object Constraint Language 21
2.2.8 Hybrid Metric Interval Temporal Logic 22

2.3 Models for Regulated MAS . 24
2.3.1 Electronic Institutions . 24
2.3.2 MOISE and MOISE+ . 26
2.3.3 Commitment-based Institutions 27
2.3.4 OperA . 28
2.3.5 LGI Model . 29
2.3.6 Electronic Institutions for Virtual Organisations 30
2.3.7 Multi-agent Policy Architecture 30

2.4 Conclusions . 31

3 Regulating Activities in Electronic Institutions 35
3.1 A Normative Language for Electronic Institutions 36

3.1.1 Examples . 37
3.2 Executable Norms . 39

3.2.1 Jess . 39

vii

editorialcsic_redib06
Nota adhesiva

3.2.2 Norm implementation . 40

3.3 Developing and Deploying Norms 43

3.3.1 Automatic Translation of Norms 43

3.3.2 Integration with Electronic Institutions 44

3.4 Conclusions . 45

4 Constraint-based Regulation 49

4.1 A Rule Language for Managing Normative Positions 50

4.1.1 Preliminary Definitions 52

4.1.2 A Language for Rules with Constraints 53

4.1.3 Semantics of Rules . 54

4.1.4 An Interpreter for Rules with Constraints 56

4.1.5 Pragmatics of Rules with Constraints 57

4.2 Programming Institutional Rules 58

4.2.1 Institutional States . 59

4.3 Providing Semantics to Deontic Notions 60

4.4 Normative Conflict Resolution 62

4.4.1 Representing and Enacting Protocols via Institutional Rules 63

4.4.2 Example: The Dutch Auction Protocol 64

4.5 Conclusions . 67

5 Regulating Concurrency 69

5.1 I: A Language for Institutions 70

5.1.1 Semantics . 72

5.1.2 Operational Semantics . 73

5.1.3 Interpreter . 77

5.2 Example of Concurrency: Soup Bowl Lifting 79

5.3 Applied Example: Bank . 80

5.4 Norm-Oriented Programming of Scenes 82

5.4.1 Providing Semantics to Normative Positions 82

5.4.2 Normative Conflict Resolution 83

5.5 Conclusions . 84

6 A Normative Structure for Multiple Activities 87

6.1 Scenario . 88

6.2 Normative States, Transitions and Structures 89

6.2.1 Example . 92

6.3 Formalising Conflict-Freedom . 94

6.3.1 Mapping Normative Structures to Coloured Petri Nets . . 95

6.3.2 Properties of Normative Structures 96

6.4 Resolving Normative Conflicts in Run-time 98

6.4.1 Conflict Detection . 98

6.4.2 Conflict Resolution . 99

6.5 Conclusions . 101

viii

7 Computational Model and Distributed Architecture 103
7.1 Proposed Distributed Architecture 103

7.1.1 Social Layer Protocols . 106
7.2 Conclusions . 111

8 Conclusions and Future Work 113
8.1 Conclusions . 113
8.2 Future Work . 117

8.2.1 Improving Expressiveness 117
8.2.2 Electronic Institutions . 119
8.2.3 New applications using norms 120

A UML Diagrams 121

B An Interpreter for I 123

Bibliography 127

ix

List of Figures

1.1 Propagation of normative positions 3
1.2 This thesis as intersection of research fields. 4
1.3 Implementation process of a norm 5
1.4 Comparison of the approaches proposed in each chapter 7

2.1 BNF of Norms from [Vázquez-Salceda et al., 2004] 16
2.2 BNF of Norm Conditions . 16
2.3 Z Definition of a Norm from [López y López, 2003] 17
2.4 Main Predicates of Event Calculus 18
2.5 Main Fluents from [Artikis et al., 2005] 19
2.6 EI architecture using AMELI. 25

3.1 Conditional obligation with a deadline 37
3.2 Permission in an interval of time 38
3.3 Sanction related to a deadline violation 38
3.4 Example of a Jess unordered fact 39
3.5 Example of a Jess rule . 40
3.6 Example of a conditional obligation with a deadline 41
3.7 Translating the condition . 42
3.8 Translating the obligation . 43
3.9 Translating the deadline . 44
3.10 Rule activation for norm OBLIGED(utter(s,w , i) BETWEEN t1, t2) 44
3.11 Conditional obligation along a time interval 45
3.12 Implementation of a conditional obligation along a time interval . 45
3.13 Developing and deploying norms 46
3.14 AMELI and the JessNormEngine Service 47

4.1 Semantics as a Sequence of ∆’s 52
4.2 Interpreter for Rules with Constraints 56
4.3 Sample Institutional State . 60
4.4 The Dutch Auction Protocol . 65

5.1 Semantics as a Sequence of ∆’s 70
5.2 Grammar for I . 71
5.3 The s star predicate . 78

xi

5.4 The s if predicate . 78
5.5 The fire predicate . 78
5.6 The s force predicate . 79
5.7 The s eca predicate . 79

6.1 Activities of Virtual Marketplace 89
6.2 An Interpreter of Normative Transitions 91
6.3 Activities and Normative Structure 93
6.4 Evolution of CPNs for an Activity and a Normative Structure . . 97
6.5 Norm Adoption Algorithm . 100

7.1 AMELI+architecture . 105
7.2 Communication channels involved in the activation of a rule . . . 106
7.3 Enactment of a normative transition rule 107
7.4 Response of Governor agents to external agents’ attempts 108
7.5 Response of a normative manager to a normative command . . . 108
7.6 Response of a scene manager to a forwarded attempt 109
7.7 Response of a scene manager to a normative command 110

8.1 Comparison of proposed languages 118

A.1 Interfaces between AMELI and norm engine of Chapter 3 121
A.2 UML Diagram of the Automatic Translator of Chapter 3 122

xii

List of Tables

1.1 Comparison of the different approaches of chapters 3, 4, and 5 . . 6

2.1 Comparison of norm languages 32
2.2 Comparison of models of regulated MAS 32

8.1 Final comparison of the different norm languages 114
8.2 Final comparison of the different models of regulated MAS . . . 117

xiii

Foreword

Open multi-agent systems are populated by various self-interested software
agents, developed by different people using distinct languages and architectures.
A wealth of real-life distributed cross-corporation applications can be suitably
modelled and engineered as open multi-agent systems. However, the engineer-
ing of open multi-agent systems is a highly challenging task. Indeed, the goal of
the developer is to design and implement mechanisms to allow a population of
self-interested agents to interact while certain global properties are guaranteed.

This thesis tackles the construction of open multi-agent systems from a social
perspective, namely considering that the interactions between agents can be
regulated by norms just like interactions are regulated in human societies. This
work is important for various reasons. First of all, it sets the foundations for the
norm-oriented programming of open multi-agent systems, namely for encoding
the regulating mechanisms of an agent society as an explicit collection of norms
(rather than, say, embedded into code of a programming language). Secondly,
this work also provides algorithms to solve normative conflicts at run-time (e.g.
what should happen when an agent is, for instance, simultaneously permitted
and forbidden to perform some action). Finally, given the distributed nature of
an agent society, this thesis also offers a distributed architecture to handle both
the management of norms and their conflicts.

We have been fortunate to work with Andrés Garćıa-Camino over these years.
Our collaboration has been very fruitful and enjoyable both scientifically and
personally. Thanks to his ambition for knowledge, Andrés has made signifi-
cant contributions to the field of multi-agent systems. We wish the reader an
experience as pleasant as the one we had while advising the author.

xv

Abstract

Open multi-agent systems are populated by self-interested agents, developed by
different people using different languages and architectures. One way of making
these agents conform to some intended collective purpose is to use norms to reg-
ulate their behaviour, i.e.: discourage, prevent and mitigate harmful behaviour
and facilitate desirable interaction.

In this thesis, we propose a framework —composed by a formal model, a
distributed architecture and languages and algorithms for its implementation—
that extends the notion of an Electronic Institution in order to manage norms
in activities, manage the propagation of their consequences among simultaneous
concurrent activities, and resolve possible normative conflicts induced by this
propagation.

xvii

Acknowledgements

En primer lugar, mis agradecimientos más profundos son para mis directores de
tesis, Pablo Noriega y Juan Antonio Rodŕıguez, sin los cuales no hubiera podido
completar esta tesis.

A mis padres, por sacrificarse tanto, por ayudarme en los momentos duros y
no tan duros de este camino.

A los de siempre (Vı́ctor, Jose y Alberto), por estar siempre ah́ı.
A Eva Bou, Andrea Giovannucci, Eloi Puertas, Raquel Ros y al resto de

doctorandos del IIIA, por compartir buenos momentos juntos a lo largo de este
camino.

Querŕıa dar las gracias a todo el personal del IIIA, tanto cient́ıfico como
administrativo, por la inestimable ayuda que siempre me han ofrecido.

Thanks to Marek Sergot, Keith Clarke and Robert Craven who hosted me
during my short stage in Imperial College London. Their influence undoubtedly
is present in I, the language presented in chapter 5 of this thesis.

Thanks to Dorian Gaertner and Martin Kollingbaum to remind me that
research is a team work.

Very special thanks to Wamberto Vasconcelos who hosted me during my
short stage in the University of Aberdeen and gave me support throughout the
research and writing stages of this thesis. He is my unofficial third advisor.

Este trabajo ha sido parcialmente financiado por una beca I3P del CSIC y
los proyectos de investigación TIC-2003-08763-C02-00, TIN2006-15662-C02-01 y
2006-5-0I-099.

xix

“Imagination is more important that knowledge.
For knowledge is limited, whereas imagination
embraces the entire world, stimulating progress,
giving birth to evolution.”

(Albert Einstein, “What Life Means to Ein-
stein” in The Saturday Evening Post (26
October 1929))

Chapter 1

Introduction

Autonomous agents and multi-agent systems (MAS) are a recent approach to
analysing, designing and implementing complex software systems. Using agents
as a key abstraction provides a large and powerful collection of metaphors,
methodologies and tools that have allowed conceiving and implementing many
innovative types of software [Jennings et al., 1998].

One of the open questions posed in [Jennings et al., 1998] about MAS was:
“How to avoid or mitigate harmful overall system behaviour, such as chaotic
or oscillatory behaviour?”. One possible answer to this question is researchers’
proposal to regulate MAS by arranging agents in organisations or institutions.

Organisations and institutions are a key metaphor to regulate interactions of
self-interested agents because of the following properties:

openness – agents may enter and leave the MAS at runtime.

regulation – a MAS limits the range of agent behaviour accepted at runtime.
That is, all the actions agents can perform are not always permitted.

social structure – Agents are distinguished by their role or their goals.

activity structure – Analogously, each multi-agent activity is also classified by
the protocol, i.e. possible sequence of actions, that agents have to follow
to fulfil certain goals.

For instance, in a virtual market agents are usually classified as providers or cus-
tomers, and purchasing activities may be classified as different types of auctions
with their particular rules. These auctions guide and restrict the behaviour of
agents in order to acquire goods. Furthermore, in a virtual market new providers
and customers may appear or the existing ones may decide to cease their trading
behaviour for a long period of time.

Norms are an intrinsic part of human organisations and institutions. Norms
have subdued human societies for centuries thanks mainly to their fear of punish-
ments when violating them. Although agents cannot feel fear, they can emulate

1

2 Chapter 1. Introduction

it by reasoning for instance about the money loss of the fine(s) when trans-
gressing norms. Initially, agents were regimented following standard software
methodologies where software executes a given set of commands in a predeter-
mined order. However, as the agent community agreed autonomy is an essential
feature of agents, modelling agent behaviour with norms has been gaining pop-
ularity as they allow the partial characterisation of desirable actions of agents.

The purpose of this thesis is to explore how to computationally realise norms
in open, regulated, and structured MAS.

1.1 Motivation

In this section, using a motivating scenario, we pose the questions that this
thesis tries to answer. The scenario used throughout this thesis is a supply-
chain scenario in which companies and individuals come together in a virtual
(electronic) marketplace to conduct business.

Consider a wire factory WireMaking Ltd. that starts an auction to find
suppliers of copper. A buyer agent starts an auction for WireMaking Ltd. for
copper to which supplier agents may respond. A bid consists of the number of
kilograms of the given prime material. Then, after receiving bids the auctioneer
assesses the best offer(s).

To discourage unfulfilled promises, buyers may establish economic sanctions
or other persuasive measures to be applied in case of delivery problems. Thus,
the first setting is the regulation of one activity with norms of behaviour and
the following question arises: What kind of language should be used to specify
these norms of behaviour?

Some attempts to answer this question have been made, e.g. [Esteva, 2003] or
[López y López, 2003]1. However, an essential feature has not been thoroughly
treated by these approaches while establishing desirable agent behaviour, i.e.
time requirements. For instance, the wire factory may want a certain amount
of copper to be delivered by the end of the week after the auction takes place.
Therefore, after winning an auction, the suppliers are expected to deliver the
promised quantity of copper on time. Although the management of time re-
quirements is a desirable feature of the language we are searching for, we notice
that dealing with further constraints is also necessary. For instance, when a
supplier wins an auction it is expected to deliver the goods by the deadline, but
also to fulfil the quantity requirements claimed in the bid. Thus, a question that
this thesis tries to answer are:

Q.1 How to specify norms and make them operational to regulate a multi-agent
activity?

Retaking our supply chain example, WireMaking Ltd. may settle the bill
from time to time for the delivery of the promised quantity of copper. That
is, apart from the auction activity, agents may participate in a delivery activity

1See Chapter 2 for a more comprehensive list of work on norm languages.

1.1. Motivation 3

Regulatory
Middleware

Agent
k

Agent
j· · ·

Activity 1

Agent
f

Agent
i· · ·

Agent
x

Agent
1

Agent
y

· · ·

· · · Message

Regulatory
Middleware

Agent
y Agent· · ·

Activity i

Agent
g

Agent
i

···

Agent
2

Agent
m

Normative Position

· · ·

Normative Position

Figure 1.1: Propagation of normative positions

where goods and money are changed according to the agreement established by
successfully finishing an auction. Thus, when a supplier wins an auction, it is
expected to deliver the promised goods by participating in the delivery activity.

As figure 1.1 shows, in this setting actions in one activity may have effect on
other activities, e.g. a bid in an auction may generate the expectation of copper
deliveries. Furthermore, when the MAS is composed of a large number of activ-
ities, it is desirable to distribute them among several computers to reduce their
workload and provide a smoother and faster evolution of the activities. Thus,
the second setting we shall consider is the regulation of multiple distributed
activities. From the previous statements, a question that arises is:

Q.2 How to specify norms and make them operational to handle multiple con-
current activities?

In the literature it is admitted that norms may be contradictory
[Sartor, 1992]. Let us consider that a norm may allow all suppliers in an auction
to bid at a given moment. However, another norm may state that Shining-
Copper Co., a specific supplier agent, is forbidden to bid because of previous
unfulfilled deadlines on delivery. In [Kollingbaum, 2005], agents are provided
with mechanisms to resolve conflicts among norms. However, the norms have
to be conflict-free in order to apply them. For instance, what should the MAS
do? Should the MAS allow the bid or should it punish the agent? Thus, in
our opinion, the resolution of conflicts among norms should be applied in the
activity by the MAS.

Since our main goal is to regulate with norms MASs with multiple distributed
activities, the following questions also arise:

Q.3 How to computationally enact distributed regulation?

The questions posed above are the main concerns of this thesis. Figure 1.2
shows where the problem addressed in this thesis are. The main concern is to

4 Chapter 1. Introduction

Regulation of
interactions in

MAS

Multi-agent
Systems

Software
Engineering

Norms

Figure 1.2: This thesis as intersection of research fields.

provide a means to build a computational realisation of a class of MASs regulated
by norms. To accomplish this task we will benefit from studies on norms like
deontic logics [von Wright, 1951] and from already built, regulated MAS such
as electronic institutions [Rodŕıguez-Aguilar, 2001].

1.2 Contributions

In this section we introduce the key contributions of this thesis. We envisage the
software cycle of a norm as the translation from some requirements represented
in natural language to some executable language.

Figure 1.3 shows this process. We start with a representation of require-
ments in natural language. The representation of requirements as norms is
studied deeply in Law. Then, at design time, we envisage the representation
of norms with computer languages that it is also deeply studied in the field of
Artificial Intelligence and Law. Afterwards, during development, we translate
norms into a computer executable language and, in run-time, we feed the system
with normative positions and speech acts.

We use as starting point the work in [Noriega, 1997]
[Rodŕıguez-Aguilar, 2001] [Esteva, 2003] that proposes and implements
the Electronic Institution metaphor and software tools to establish an agent
framework where norms are implemented. We will explore this notion in
Chapter 2.

Later on, we will use a broader notion of institution based on [Searle, 1995]
where some unprocessed facts, called brute facts, are taken into consideration
and constitute by convention following the principles of constitutive rules new

1.2. Contributions 5

•  Obliged
•  Permitted
•  Forbidden
•  Uttered

Design
time

Development
Time

(translation)

Norms

Normative
positions and

Events
(Speech acts)

Production rules

Requirements

Run time

Normative state

• Jess
• IRL
• 

• VS2004
• AI & Law Ontologies
• … I

Figure 1.3: Implementation process of a norm

facts that are called institutional facts. That is, constitutive rules establish what
real facts count as some other virtual facts. For example, some pieces of paper
may count as a 5 euro bill if it follows pre-defined features as being issued by
certain authorities. Furthermore, regulative rules establish the restrictions on
the use of institutional facts. For instance, they defined the legal (and illegal)
use of bills, e.g it may be exchanged by items as a car but it is forbidden to
acquire certain substances considered illegal.

Initially, we focused on the regulation of an activity. The initial contributions
of this thesis are the translation of a norm language into a computer executable
language, namely a standard rule production system2, and the implementation
of two rule languages enhanced with norms and constraints3. Then, we focused
on the regulation of multiple distributed activities. The latter contribution of
this thesis is the implementation of a distributed architecture that models and
implements norm propagation and the resolution of normative conflicts that may
appear during norm propagation.

In order to answer our research question about how to specify norms that

2Upper horizontal arrow in Figure 1.3.
3Vertical arrow in Figure 1.3

6 Chapter 1. Introduction

regulate a multi-agent activity, we provide three norm languages. First, we pro-
pose a high-level language that allows the user to specify temporal aspects of
norms, e.g. activation, deactivation and deadlines. Second, we propose a rule
language to specify norms with arithmetic constraints. Third, we propose a lan-
guage with different types of rules to specify norms (with temporal aspects and
arithmetical constraints) over agents’ simultaneous speech acts and to specify
preventive and corrective actions that the system has to perform in each case.

Features Approach
Jess Norms (Ch. 3) IRL (Ch. 4) I (Ch. 5)

Constraints time management management
Distribution centralised one activity one activity

Concurrent Behaviour activities actions actions
Concurrent Regulation one action one action simultaneous actions

Rule execution forward-chaining no forward-chaining regulative rules

Table 1.1: Comparison of the different approaches of chapters 3, 4, and 5

Table 1.1 shows a comparison of features of the three languages. In order to
compare normative languages we use the following features:

Constraints – This feature depicts the degree of constraint management. We
distinguish no specification (–), specification only of time constraints
(time), specification of constraints (specification) and specification and
modification (management).

Distribution – This feature reflects the degree of distribution of norms. We
distinguish no distribution of norms (centralised), norms distributed in
each agent (agents) and norms distributed in each activity (activities).

Concurrent Behaviour – This feature shows the degree of concurrency on
actions. We distringuish no concurrency (–), concurrent actions in one
or no activity (actions), and concurrent actions in concurrent activities
(activities).

Concurrent Regulation – This feature depicts the degree of regulation on
concurrent actions. We distinguish:

• no regulation of actions (–),

• no regulation of actions but regulation of goals (goals),

• just monitoring and sanctioning of actions (monitoring),

• monitoring, sanctioning and prevention of one action at a time (one
action),

• monitoring, sanctioning and prevention of simultaneous actions (si-
multaneous actions).

1.2. Contributions 7

Rule execution – This feature shows how rules are triggered. We distin-
guish rules that are triggered until no new rule can be triggered (forward-
chaining), one execution per rule with different parameters (no forward-
chaining) and (regulative rules) different types of rules that change the
execution of forward-chaining and one-execution rules.

Jess norms is the first norm language dealing with time in electronic insti-
tutions. However, it does not manage arithmetic constraints. IRL is the first
language to include constraint management and the specification of the effects of
valid events. Notice that it has improved the aspect of constraint management.
However, it does not regulate a set of simultaneous actions. Finally, I is the first
language to include that aspect allowing, e.g., to prevent simultaneous actions
from being performed. For instance, we may avoid the modification by different
agents of the same variable at the same time. As for rule execution, Jess norms
uses a standard production system with forward chaining. However, IRL is a
rule-based system without forward chaining. Finally, language I provides sev-
eral types of rules: standard production rules with forward chaining, standard
reactive rules without forward chaining and rules to modify the execution of
previous rules, e.g. by ignoring agents’ actions or by preventing certain states.

In order to answer our research question about how to make norms oper-
ational to regulate a multi-agent activity, we provide an implementation for
the automatic translation of norms in our high-level language of chapter 3 into
rules of a standard production system. Using this automatic translation, we also
implemented a norm service for electronic institutions that complements the reg-
ulation of activities. Furthermore, we provide an implementation of interpreters
for the non-standard rule languages proposed in chapters 4–6.

In order to answer our research question about how to specify norms that
handle multiple concurrent activities, we propose a rule language for the propa-
gation of normative positions of agents among activities that we refer to as the
language of the normative structure.

Distribution

Ex
pr

es
siv

en
es

s

+

+

3:

4:

5:

6: Normative
Structure

Jess Norms

IRL

I

Figure 1.4: Comparison of the approaches proposed in each chapter

8 Chapter 1. Introduction

Figure 1.4 shows a comparison of the proposed languages in terms of ex-
pressiveness and distribution. On the one hand, the languages of chapters 3 -
5 grow in expressiveness without dealing with distribution. On the other hand,
the language of chapter 6 deals with distribution of activities in the same degree
of expressiveness as that of the language presented in chapter 4.

In order to answer our research question about how to make norms oper-
ational to regulate multiple concurrent and distributed activities, we provide
normative structures, a computational model for the propagation of normative
positions, and an algorithm to manage conflicting norms at runtime to com-
plement formal verification techniques. Our algorithm resolves conflicts among
norms at runtime (possibly enriched with arithmetical constraints). If the sys-
tem does not resolve a given conflict in the normative structure, agents can use
conflict resolution techniques to decide which conflicting normative position to
comply with. Supplementing formal verification techniques with practical cor-
rection techniques used at runtime is not new in software engineering. Usually,
imperative programming languages have constructs to detect and repair runtime
errors or exceptions. However, these techniques have not been applied before at
runtime to norms with constraints. The use of our proposed algorithm enables
software designers to correct the specification of desired behaviour of software
components at runtime.

Finally, in order to address our research question about how to computation-
ally enact distributed regulation a distributed architecture is presented for the
enactment of a regulated MAS. The architecture supports:

• the regulation of agent activities with norms activated as result of agent
behaviour,

• the activation of norms among activities and

• the resolution of conflicts among norms in an activity at runtime.

This architecture establishes the basis for building MAS enriched to enforce,
propagate, and resolve conflicts in, sets of norms at runtime. Furthermore, by
providing this architecture to electronic institutions we enable these to incorpo-
rate all the conceptual contributions we have proposed.

1.3 Structure

This thesis is organised as follows:
Chapter 2 surveys the work on the topics dealt with in this thesis. The

chapter is divided into an overview on norms in deontic logics and multi-agent
systems, on computational normative languages and on regulated multi-agent
systems.

Chapter 3 starts addressing Q.1 (normative language and computational
model) in a centralised manner and introduces a language for the representation
of norms in electronic institutions and its translation into Jess rules to give

1.4. Publications 9

them an operational semantics. These norms are complemented with temporal
operators to establish deadlines and the time of activation and deactivation.

In chapters 4 and 5, we start by regulating a single activity:
Chapter 4 presents IRL, a language for the representation and explicit

management of normative positions, i.e. permissions, prohibitions, and obliga-
tions active at runtime. This language replaces the language of chapter 3 in the
pursuit of Q.1 (normative language and computational model). This language
is supplemented with constraints conferring normative positions with more ex-
pressiveness since not only temporal constraints can be represented with this
language. In this chapter, we introduce the notion of normative positions, dif-
ferentiate various types of prohibitions and obligations and provide the means
to implement activities without taking into account relations among them.

Chapter 5 describes I, a language for the representation of normative po-
sitions, i.e. permissions, prohibitions, and obligations active at runtime, and
the system behaviour given these normative positions. The system, following
its specification, ignores, forces, expects events or prevents states of affairs. In
this chapter, we establish how to enforce normative positions by providing the
specification of the system behaviour. Furthermore, we classify the usual be-
haviour of systems that enforce normative positions and also we extend it with
the notion of preventing a state or ignoring, forcing, expecting or sanctioning
sets of simultaneous events. This language replaces the language of chapter 4 in
the pursuit of Q.1 (normative language and computational model).

Then, in chapters 6 and 7, we regulate multiple distributed activities:
Chapter 6 addresses Q.2, introducing the normative structure, an addi-

tional layer in the MAS model that propagates the effects of actions among
activities, and presenting an algorithm for the resolution of normative conflicts.
In this chapter, we extend the behaviour of the system with the actions of prop-
agating and resolving conflicts among normative positions, i.e. active norms. In
addition, we propose that activities specified in different languages can propagate
normative positions by means of the normative structure.

Chapter 7 addresses Q.3 by describing AMELI+, an extension of the agent
middleware for electronic institutions that incorporates the enactment of the
normative structure propagating formulae, including normative positions, among
several activities. These activities are regulated by normative positions and the
specification of their behaviour using languages as the ones presented in chapters
4 and 5. The architecture also embeds the algorithm presented in chapter 6 for
the resolution of normative conflicts.

Chapter 8 discusses the contributions of this research and how it can be
extended in the future.

1.4 Publications

The work in Chapter 3 has been published in:

• [Garćıa-Camino et al., 2005a] Garćıa-Camino, A., Noriega, P., and
Rodŕıguez-Aguilar, J.-A. Implementing Norms in Electronic Institutions.

10 Chapter 1. Introduction

In Proceedings of 4th International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS’05), pages 667–673, Utrecht,
The Netherlands.

• [Garćıa-Camino et al., 2005b] Garćıa-Camino, A., Noriega, P., and
Rodŕıguez-Aguilar, J.-A. Implementing Norms in Electronic Institutions
(Extended Abstract). In 3rd European Workshop on Multi-agent Systems
(EUMAS’05), Brussels, Belgium.

The work in Chapter 4 has been published in:

• [Garćıa-Camino et al., 2008] Garćıa-Camino, A., Rodŕıguez-Aguilar, J. A.,
Sierra, C., and Vasconcelos, W. (2008). Constraint rule-based program-
ming of norms for electronic institutions. Journal on Autonomous Agents
and Multi-Agent Systems. (In press).

• [Garćıa-Camino et al., 2006a] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. A Distributed Architecture for Norm-
Aware Agent Societies. In Baldoni, M. et al., editors, Declarative Agent
Languages and Technologies III, volume 3904 of Lecture Notes in Artificial
Intelligence (LNAI), pages 89–105. Springer, Berlin Heidelberg.

• [Garćıa-Camino et al., 2006b] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. A Rule-based Approach to Norm-
Oriented Programming of Electronic Institutions. ACM SIGecom Ex-
changes, 5(5):33–40.

• [Garćıa-Camino et al., 2006c] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. Norm Oriented Programming of Elec-
tronic Institutions. In Proceedings of 5th International Joint Conference
on Autonomous Agents and Multiagent Systems. (AAMAS’06).

• [Garćıa-Camino et al., 2007b] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. Norm-Oriented Programming of Elec-
tronic Institutions: A Rule-based Approach. In Coordination, Organiza-
tion, Institutions and Norms in agent systems II, volume 4386 of Lecture
Notes in Computer Science, pages 177–193. Springer-Verlag.

• [Garćıa-Camino et al., 2006d] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. Norm-Oriented Programming of Elec-
tronic Institutions (Extended Abstract). In Fourth European Workshop
on Multi-Agent Systems (EUMAS’06), Lisbon, Portugal.

The work in Chapter 5 has been published in:

• [Garćıa-Camino, 2007] Garćıa-Camino, A. Ignoring, Forcing and Expect-
ing Concurrent Events in Electronic Institutions. In COIN III: Coordi-
nation, Organization, Institutions and Norms in Agent Systems. Revised
Selected Papers from the 2007 Workshop Series, volume 4870 of Lecture
Notes in Computer Science, pages 15–26. Springer.

1.4. Publications 11

The work in Chapter 6 has been published in:

• [Garćıa-Camino et al., 2007a] Garćıa-Camino, A., Noriega, P., and
Rodŕıguez-Aguilar, J.-A. (2006) An Algorithm for Conflict Resolution in
Regulated Compound Activities. In Engineering Societies in the Agents
World VII, volume 4457 of Lecture Notes in Computer Science, pages 193–
208.

• [Gaertner et al., 2007] Gaertner, D., Garćıa-Camino, A., Noriega, P.,
Rodŕıguez-Aguilar, J.-A., and Vasconcelos, W. Distributed Norm Man-
agement in Regulated Multi-agent Systems. In Proceedings of 6th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems.
(AAMAS’07).

• [Gaertner et al., 2008] Gaertner, D., Garćıa-Camino, A., Noriega, P.,
Rodŕıguez-Aguilar, J. A., and Vasconcelos, W. (2008). Normative struc-
tures for regulating open multi-agent systems. Journal on Autonomous
Agents and Multi-Agent Systems. (submitted).

• [Kollingbaum et al., 2007a] Kollingbaum, M. J., Vasconcelos, W. W.,
Garćıa-Camino, A., and Norman, T. J. Conflict resolution in norm-
regulated environments via unification and constraints. In Declarative
Agent Languages and Technologies V, volume 4897 of Lecture Notes in
Artificial Intelligence, pages 158–174. Springer.

• [Kollingbaum et al., 2007b] Kollingbaum, M. J., Vasconcelos, W. W.,
Garćıa-Camino, A., and Norman, T. J. Managing conflict resolution in
norm-regulated environments. In Engineering Societies in the Agents
World VIII, volume (In press) of Lecture Notes in Artificial Intelligence.
Springer.

The work in Chapter 7 has been published in:

• [Garćıa-Camino et al., 2007c] Garćıa-Camino, A., Rodŕıguez-Aguilar,
J. A., and Vasconcelos, W. (2007). A Distributed Architecture for Norm
Management in Multi-Agent Systems. In COIN III: Coordination, Or-
ganization, Institutions and Norms in Agent Systems. Revised Selected
Papers from the 2007 Workshop Series, volume 4870 of Lecture Notes in
Computer Science, pages 275–286. Springer.

Chapter 2

Related Work

Apart from classical studies on law, research on norms and agents has been ad-
dressed by two different disciplines: sociology and philosophy. On the one hand,
socially-oriented contributions highlight the importance of norms in agent be-
haviour (e.g., [Conte and Castelfranchi, 1995b, Conte and Castelfranchi, 1993,
Tuomela and Bonnevier-Tuomela, 1995]) or analyse the emergence of norms in
multi-agent systems (for instance, [Walker and Wooldridge, 1995] or the work in
[Shoham and Tennenholtz, 1995]). On the other hand, logic-oriented contribu-
tions focus on the deontic logics required to model normative modalities along
with their paradoxes (e.g., [von Wright, 1963] [Alchourron and Bulygin, 1981]
[Lomuscio and Nute, 2004]). The last few years, however, have seen sig-
nificant work on norms in multi-agent systems, and norm formalisation
has emerged as an important research topic in the literature (for ex-
ample, [Fornara et al., 2004] [Dignum, 1999] [Boella and van der Torre, 2003]
[Vázquez-Salceda et al., 2004]).

In this chapter, we present relevant related work in the following topics:
logics of norms, normative computational languages and regulated MASs.

2.1 Logics of Norms

Norms have been widely studied in several fields such as logics, sociology, psy-
chology, and law. In this section we focus on the logics that study norms, i.e.
deontic logics, since the languages in this thesis are inspired by them.

Although prior to Wright philosophers have remarked on the formal logical
relations of deontic concepts and compared deontic concepts with alethic ones1

[Huisjes, 1981, Knuuttila, 1981], Wright was the first one to propose a plausible
deontic logic in [von Wright, 1951]. It was found later on that a deontic logic
could be given a Kripke semantics [Føllesdal and Hilpinen, 1981].

1Alethic concepts are those denoting modalities of truth, such as necessity, contingency, or
impossibility.

13

14 Chapter 2. Related Work

Further on, the work in [Meyer, 1987] reduces deontic logic to a variant of
dynamic logic [Harel, 1979] that represents the consequences of prohibited ac-
tions in normative systems in terms of violations. Although in our work we do
not explicitly manage violations, we incorporate them in Chapters 3, 4 and 5 as
attempts that are forbidden. In our architecture, institutions are specified by
means of rules establishing how they will react after those violations.

The problem with these normative systems is paradoxes [Åqvist, 1994]. For
example, Ross’ paradox [Ross, 1941]. Consider the following statements (1 and
2) that we could represent in logic as (3 and 4) using the substitution (m = “the
letter is mailed” and b = “the letter is burned”):

1. It is obligatory that the letter is mailed

2. It is obligatory that the letter is mailed or the letter is burned

3. Om

4. O(m ∨ b)

5. p → (p ∨ q)

RM. r → s ` Or → Os

Statement 5 is a tautology2 in the logic. Rule RM is an inference rule that
can be applied whenever the left-hand side holds. Applying RM on 5 we can see
that 4 follows 3, but it is odd to say that an obligation to mail the letter entails
an obligation that can be fulfilled by burning the letter, something presumably
forbidden.

To solve these and other paradoxes, new systems of deontic logic have been
proposed. It continues to be a matter of study and workshops on Deontic Logic
in computer science have been arranged since 1991 being biannual since 1994
[DEON, 2006].

[Sergot, 2001] proposes to generalise the Kanger-Lindahl theory of norma-
tive positions. In the literature the term normative positions has been used to
refer to duties and privileges between two agents. More concretely, it refers to
a point in the space of possible relations between two agents. In his work, Ser-
got presents normative positions among any agent. An example of normative
position extracted from [Sergot, 2001] is :

PEaF ∧ ¬ PEb¬ F ∧ ¬ OEaF ∧ P(EaF ∧ ¬ EbF)

Expressing the right (P) of agent a to perform (Ea) the erection of a fence
between a’s and b’s houses (F) and meaning that agent a is permitted to see to
it that F, agent b is not permitted to hinder the erection of the fence, agent a
is not obliged to see to it that F, and that agent a’s actions are not dependent
on b’s actions.

2A tautology is a statement which holds for all truth values of its atomic propositions.

2.1. Logics of Norms 15

In this thesis we adopt a simpler notion of normative position to refer to
each atomic formula in the current state of relations between two agents. These
atomic formulae represent whether an agent is permitted, forbidden or obliged
to perform an action. For instance, the fact that agent a is obliged to deliver
good g to agent b will be regarded as a normative position. We will see different
notations for this in chapters 3, 4, and 5.

The work in [Broersen et al., 2004] proposes a deontic logic to represent obli-
gations with deadlines based on CTL (Computational Tree Logic), a temporal
logic. They start by defining obligations with deadlines in terms of violations:
an obligation regarding formula ρ to hold with deadline δ holds if and only if
a violation holds when ρ does not hold before the deadline δ. However, they
found a counter-intertuitive property and decided to redefine obligations with
deadlines in terms of achievements: an obligation of formula ρ to hold with
deadline δ holds if and only if there exists a time-point before the deadline δ
where formula ρ holds. The property in question is if there is no possibility of
ρ not to hold before the deadline δ then ρ is obligatory before δ. They argue
that is counter-intuitive because if ρ is unavoidable, then the obligation to meet
the deadline is void, since it concerns an achievement that is already met. They
avoid this property with their definition of obligation with deadline in terms of
achievement. This kind of obligations is partial, that is, some real applications
cannot be implemented with them. For instance, if agents are obliged to not
smoke even they violate (or achieve) this obligation they should still be obliged
not do so. Furthermore, as they are not raising violations anymore, obligations
just disappear. We find an interesting work of research to redefine obligations
with deadline based both in achievement and violations and analyse the prop-
erties of the newly created normative system.

In the literature, there are two views of obligations. On the one hand, an
obligation resembles the alethic notion of necessity, i.e. there is no possibility
that the contrary happens. In [Sergot, 2001] this notion of necessity is used in
obligatory actions: “It is obligatory that a brings about F”. For instance, if I
always cross the main door of the building towards the exterior, I am outside
the building. If it is obligatory that I cross the main door towards the exterior,
then it is obligatory for me to be outside the building. On the other hand, an
obligation is the expectation of someone regarding something to be in a certain
way or to something to happen, i.e. there are possibilities to not fulfil the
expectations. When the expectations about actions are not fulfilled, they are
commonly called violations [Conte and Castelfranchi, 1995a]. For instance, in
case of fire I am obliged to cross the main door of the building towards the
exterior. However, I am free to leave the building through a safer or closer exit
if it is appropriate.

Basically, the paradoxes of deontic logic appear since they include connec-
tives, such as the implication, inside the deontic operators. The emergence of
these paradoxes are the result of the interpretation of the same obligation op-
erator in both senses (necessity and expectation). Thus, there is a need to
differentiate both operators properly.

16 Chapter 2. Related Work

2.2 Normative Computational Languages

In this section we compare a representative sample of norm languages for MAS.

2.2.1 Conditional Deontic Logic with Deadlines

Vázquez-Salceda et al. [Vázquez-Salceda et al., 2004] propose the use of a de-
ontic logic with deadline operators. These operators specify the time or the
event after (or before) which a norm is valid. This deontic logic includes obli-
gations, permissions and prohibitions, possibly conditional, over agents’ actions
or predicates.

As shown in figure 2.1, a norm as defined in [Vázquez-Salceda et al., 2004] is
composed of several parts. The norm condition is the declaration of the context

NORM ::= NORM CONDITION
VIOLATION CONDITION
DETECTION MECHANISM
SANCTIONS
REPAIRS

VIOLATION CONDITION ::= formula
DETECTION MECHANISM ::= {action expressions}

SANCTIONS ::= PLAN
REPAIRS ::= PLAN

PLAN ::= action expression | action expression ; PLAN

Figure 2.1: BNF of Norms from [Vázquez-Salceda et al., 2004]

in which the norm applies. The other fields in the norm description are: 1) the
violation condition, a formula defining when the norm is violated; 2) the detection
mechanism that describes the mechanisms included in the agent platform that
can be used for detecting violations; 3) the sanctions defining the actions that
are used to punish an agent’s violation of the norm; and 4) the repairs, a set
of actions that are used for recovering the system after the occurrence of a
violation. As the definition in figure 2.2 shows, norms can be deontic notions

NORM CONDITION ::= N(S 〈IF C〉) | OBLIGED(a ENFORCE(N(a,S〈IF C〉)))
N ::= OBLIGED | PERMITTED | FORBIDDEN
J ::= (a,P) | (a DO A)
S ::= J | J TIME | J ACTION
C ::= formula
P ::= predicate
A ::= action expression

TIME ::= BEFORE D | AFTER D
ACTION ::= BEFORE J | AFTER J

Figure 2.2: BNF of Norm Conditions

such as permissions, obligations or prohibitions. Furthermore, norms can be
related to actions or to predicates (states). The former restrict or allow the

2.2. Normative Computational Languages 17

actions that a set of agents can perform, the latter constrain the results of the
actions that a set of agents can perform. These results are predicates that can
hold or not. For instance, It is forbidden that tom performs the action of smoke
(FORBIDDEN (tom DO smoke)) and it is forbidden that tom brings about that
the air is polluted (FORBIDDEN (tom, polluted(air)))) are two examples of the
types of norm stated above.

Through the condition (C) and temporal operators (BEFORE and AFTER),
norms can be made applicable only to certain situations. Conditions and tem-
poral operators are considered optional. Temporal operators can be applied to
a deadline (D) or to an action or predicate (J).

Although this approach syntactically includes all the common deontic no-
tions (obligations, permissions, and prohibitions), it does not explicitly manage
normative positions. That is, it allows to specify the activation of a norm but
not its termination. For example, the authors do not specify if an obligation
should still be active or not after its deadline expires. Nevertheless, we took it
as basis for the language presented in chapter 3 in which its implementation by
the translation of norms into JESS rules is also provided.

Time management is captured by operators BEFORE and AFTER lending
more pragmatism to the language but it lacks complex temporal expressions like
’weekly’, ’monthly’ and so on.

The enforcement mechanisms proposed are limited to alarm and logging
mechanisms which, on their own, are not persuasive enough.

2.2.2 Z Specification of Norms

López y López et al. [López y López and Luck, 2004] [López y López, 2003]
present a model of normative multi-agent system specified in the Z language.
Although this work proposes a framework that covers several topics of norma-
tive multi-agent systems we shall focus on its definition of norm. Figure 2.3
shows a norm from [López y López, 2003] composed of several parts. In the

Norm
addresses, beneficiaries : PAgent
normativegoals, rewards, punishments : PGoal
context , exceptions : PEnvState

normativegoals 6= ∅; addresses 6= ∅; context 6= ∅
context ∩ exceptions = ∅; rewards ∩ punishments = ∅

Figure 2.3: Z Definition of a Norm from [López y López, 2003]

schema, addressees stands for the set of agents that have to comply with the
norm; beneficiaries stands for the set of agents that profit from the compliance
of the norm; normativegoals stands for the set of goals that ought to be achieved

18 Chapter 2. Related Work

by addressee agents; rewards are received by addressee agents if they satisfy
the normative goals; punishments are imposed to addressee agent when they do
not satisfy the normative goals; context specifies the preconditions to apply the
norm and exceptions when it is not applicable. Notice that a norm must always
have addressees, normative goals and a context; rewards and punishments are
disjoint sets, and context and exceptions too.

Their proposal is quite general since the normative goals of a norm do not
have a limiting syntax. They also propose the concept of interlocking norms, i.e.
norms that deactivate other norms. However, the authors do not provide a clear
operational semantics to norms nor an explicit management of time. Further-
more, their model assumes that all participating agents have a homogeneous,
predetermined architecture, thus eliminating heterogeneity, another desired fea-
ture, which is the freedom of choice for the architecture of the participating
agents. Pragmatism is not the principal feature of the proposal since, as men-
tioned before, the time management is not explicit and a clear operational se-
mantics is not provided.

2.2.3 Event Calculus

Event calculus is used in [Artikis et al., 2005] for the specification of protocols.
Event calculus (cf. Figure 2.4) is a formalism to represent reasoning about
actions or events and their effects in a logic programming framework and is

Predicate Meaning
happens(Act ,T) Action Act occurs at time T
initially(F = V) The value of fluent F is V at time 0
holdsAt(F = V ,T) The value of fluent F is V at time T
initiates(Act ,F = V ,T) The occurrence of action Act at time T

initiates a period of time for which
the value of fluent F is V

terminates(Act ,F = V ,T) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

Figure 2.4: Main Predicates of Event Calculus

based on a many-sorted first-order predicate calculus. Predicates that change
with time are called fluents. Figure 2.5 shows how obligations, permissions,
empowerments, capabilities and sanctions are formalised by means of fluents
– prohibitions are not formalised in [Artikis et al., 2005] as a fluent since they
assume that every action not permitted is forbidden by default.

Although the initiation and termination of normative positions can be spec-
ified with event calculus, [Artikis et al., 2005] does not give the possibility to
permit actions by default and only explicitly forbid certain actions. The most
notable feature of event calculus is the clarity of its semantics since it is based

2.2. Normative Computational Languages 19

Fluent Domain Meaning
requested(S ,T) boolean subject S requested the floor at time T
status {free, the status of the floor: status = free

granted(S ,T)} denotes that the floor is free whereas
status = granted(S ,T) denotes that the
floor is granted to subject S until time T

best candidate agents the best candidate for the floor
can(Ag ,Act) boolean agent Ag is capable of performing Act
pow(Ag ,Act) boolean agent Ag is empowered to perform Act
per(Ag ,Act) boolean agent Ag is permitted to perform Act
obl(Ag ,Act) boolean agent Ag is obliged to perform Act
sanction(Ag) Z∗ the sanctions of agent Ag

Figure 2.5: Main Fluents from [Artikis et al., 2005]

in logic programming.

Although event calculus models change with time, it lacks on explicit time
management functionalities as shown in [Artikis et al., 2005]. Deadlines thus
need to be modelled as new events.

Another desired feature is that agents can reason about norms without the
need of new complicated machinery. Their deontic fluents are not enough to
inform an agent about all types of duties. For instance, to inform an agent that
it is obliged to perform an action before a deadline, it is necessary to show the
agent the obligation fluent and the part of the theory that models the violation
of the deadline.

The enforcement mechanism provided simply amounts to a violation counter.
It does not distinguish between violations although some of them are more seri-
ous than others. Furthermore, the number of violations an agent has performed
is not very persuasive if any of their goals are not hindered, e.g. earn money.

In [Stratulat et al., 2001] (previous to [Artikis et al., 2005]), event calculus
is also used to model obligations, permissions, prohibitions and violations.

2.2.4 Rights and Obligations

Michael et al. [Michael et al., 2004] propose a formal scripting lan-
guage to model the essential semantics, namely, rights and obligations,
of market mechanisms. Whereas right(]action,]condition) denotes the
right to execute action]action whenever condition]condition is true,
obligation(]satisfy ,]violate,]punishment), denotes the obligation to ensure that
condition]satisfy is satisfied no later than condition]violate under the penalty
of executing action]punishment . For instance, the following obligation states
that Bob must ensure that her bank balance goes above 1000 dollars at some
time before the end of 2004, under the penalty of 100 dollars being deducted
from her account.

20 Chapter 2. Related Work

obligation(balance(bob) > 1000,Time < 12/31/2004, deduct account(bob, 100))

They also formalise a theory to create, destroy and modify objects that either
belong to someone or can be shared by others.

Their proposal is suitable to model and implement market mechanisms, and
provide an explicit management of temporal constraints. However, they do not
provide the full set of normative positions and their language is not pragmatic
enough since it uses a complex syntax to denote action effects. Whereas Prolog,
the implementing language, has a clear semantics, their work does not completely
clarify the operational semantics of the predicates they introduce in their exam-
ples.

2.2.5 NoA Agent Architecture

Kollingbaum [Kollingbaum, 2005] proposes a language for the specification of
normative concepts (i.e., obligations, prohibitions and permissions) and a pro-
gramming language for norm-governed reasoning agents. The normative con-
cepts and the programming language are given their operational semantics via
the NoA Agent Architecture using Java to explain the meaning of each construct
[Kollingbaum and Norman, 2003a] [Kollingbaum and Norman, 2003b].

obligation (
BlockMover,
achieve clear (b),
not clear (b),
clear (b)

)

The example above shows how an obligation is represented in NoA. The
activity specification within this obligation requires the agent BlockMover to
achieve a specific effect, namely “clear (b)”. To fulfill its obligation, the agent
has to choose a plan that produces this effect. Furthermore, the obligation
contains the activation condition “not clear (b)” and the expiration condition
“clear (b)”.

This approach addresses practical reasoning agents developed using their
language, which lacks richer notions such as (temporal) constraints, as well as
an architecture – although the approach is practical and has clear advantages
such as the possibility to check for norm conflicts and consistency, heterogeneous
agents cannot be accommodated. Furthermore, there is no indication of how
the proposal adapts to a multi-agent or distributed scenario, as only individual
agents are addressed.

2.2.6 Social Integrity Constraints

In [Alberti et al., 2003] the language Social Integrity Constraints (SIC) is pro-
posed. This language’s constructs check whether some events have occurred

2.2. Normative Computational Languages 21

and whether some conditions hold to add new expectations, optionally with
constraints.

The syntax of SIC is the following:

SIC ::= [icS]∗

icS ::= χ→ φ

χ ::= ExtendedLiteral [∧ExtendedLiteral]∗

φ ::= ExpectList [: ConstraintList]

ExtendedLiteral ::= Expectation | Event | Atom

Expectation ::= E(Term) | NE(Term)

Event ::= H(Term)

ExpectList ::= Expectation [∧ Expectation]∗

Atoms are defined by ground facts in the Social Organization Knowledge Base.
ConstraintList is a conjunction of constraints from Constraint Logic Program-
ming (CLP) [Jaffar et al., 1998].

An example of a SIC construct is:(
H(request(B ,A,P ,D ,Tr))∧
H(accept(B ,A,P ,D ,Ta))∧
Tr < Ta

)
→ E(do(A,B ,P ,D ,Td)) : Td < Ta + τ

The construct above intuitively means “if agent B sent a request P to agent A
at time Tr in the context of dialogue D , and A sent an accept to B ’s request at
a later time Ta , then A is expected to do P before a deadline Ta + τ”.

This proposal does not directly manage normative positions and, thus, their
expectations have to be mapped into deontic notions [Alberti et al., 2005]. Since
it is implemented using Constraint Handling Rules (CHR) 3, the language is pro-
vided with a clear semantics and an explicit management of time as constraints.
This is a pragmatic approach in the sense that it is easy to specify norms with
temporal constraints. However, the authors do not provide the language with
any norm enforcement mechanism since they do not manage obligations but
expectations.

2.2.7 Object Constraint Language

Fornara et al. in [Fornara et al., 2004], contemporary work with the one pre-
sented in chapter 3, propose the use of norms partially written in OCL, the
Object Constraint Language [OMG, 2003] which is part of UML (Unified Mod-
elling Language) [OMG, 2005]. Their commitments are used to represent all
normative modalities – they represent permissions as the absence of commit-
ments. This feature may jeopardise the safety of the system since it is less risky
to only permit a set of safe actions, thus forbidding other actions by default.

3[Frühwirth and Abdennadher, 2003]

22 Chapter 2. Related Work

Although this feature can reduce the amount of permitted actions, it allows new
or unexpected, risky actions to be carried out.

The expression below shows an example of norm written in OCL:

within h : AuctionHouse
on e : InstitutionalRelationChange(h.dutchAuction,

auctioneer , created)
if true then
foreach agent in h.employee →

select(em | e.involved → contains(em))
do makePendingComm(agent ,

DutchInstAgent(notSetCurPrice(
h.dutchAuction.id ,
?p[?p < h.agreement .reservationPrice]),
< now ,now + time of (e1 : InstStateChange(
h.dutchAuction,OpenDA,ClosedDA)) >,∀))

(2.1)

This norm commits the auctioneer not to declare a price lower than the agreed
reservation price.

Since Fornara et al. adopt OCL, the syntax is a well-defined standard. How-
ever, the authors do not mention neither any tool that they are using or plan
to use to implement institutions, nor the operational semantics it should have.
Time is also managed as constraints but its pragmatism is penalised by the com-
plex syntax of the language. The authors do not provide the language with an
explicit management of normative positions since they only consider commit-
ments that can be seen as obligation in deontic logic (Eq. 2.2). Permissions are
considered as the presence of commitments (Eq. 2.3) and prohibitions as their
absence (Eq. 2.4).

Cφ ↔ Oφ (2.2)

Cφ → Pφ (2.3)

¬ Cφ → Fφ (2.4)

2.2.8 Hybrid Metric Interval Temporal Logic

In [Cranefield, 2005], contemporary work to our own work in chapter 4, we find
a proposal to represent norms via rules written in a modal logic with temporal
operators called hyMITL±. It combines CTL± with Metric Interval Temporal
Logic (MITL) as well as features of hybrid logics. That proposal uses the tech-
nique of formula progression from the TLPlan planning system to monitor social
expectations until they are fulfilled or violated.

Formulae of hyMITL± are defined via the following grammar:

2.2. Normative Computational Languages 23

φ ::= p | ¬ φ | φ ∧ φ | ∀ x .φx | X+φ | X−φ

φU+
I φ | φU−I φ | Aφ | Eφ | ↓u x .φx | I

I ::= (+∞,−∞) | [b, b] | [b, b) | (b, b] | (b, b)

b ::= a | +d | −d

where

• p is an atomic formula for a first order language L.

• φx denotes a formula φ in which variable x is free (i.e. not bound by ∀ or
↓).

• u is a unit selector on the ↓ binding operator, referring to the desired
granularity of time (e.g. year or minute) for binding x to the current time.
A value of now indicates maximum precision.

• a and d are terms, possibly containing variables, that denote (respectively)
absolute points in time and durations.

In this logic, the temporal operators X (the next/previous state) and U (until)
can be applied in the future direction (when adorned with a superscript ‘+’) or
the past direction (indicated by a ‘-’). The meaning of X+φ is that φ is true in
the next state, and φU+

I ψ assert that φ will remain true from the current state
for some (possibly empty) sequence of consecutive future states, followed by a
state that is within the interval I and for which ψ holds. X− and U− are defined
similarly, but in the past direction.

A and E are path quantifiers. They assert that the formula that follows the
operator applies to all, or respectively at least one, of the possible sequences of
states passing through the current state.

[Blackburn et al., 2002] introduces the ↓ operator, the “binder” operator used
in hybrid logics. It binds a variable to a term denoting the current date/time.
The optional unit selector u is a time unit constant that indicates that the
variable should be bound to the time point resulting from rounding down the
current date/time to a particular degree of precision, e.g. to the start of the
current year, month or day.

Like in the SIC approach, only expectations are monitored, thus no making
an explicit management of normative positions, and no enforcement mechanism
is provided. Although the semantics of the language and formula progression
tool is clear, it is not so clear how it can be integrated into a MAS thus decreasing
its pragmatism. With this approach, the specification of the expected MAS state
in the future is possible but the author does not mention how the actual MAS
state is accessed, compared with the expected one or the corrective measures to
be applied are decided.

24 Chapter 2. Related Work

2.3 Models for Regulated MAS

In this section we survey work on the specification of co-operative behaviour in
MAS.

2.3.1 Electronic Institutions

We start by introducing the reader to one of the first models for regulated MAS
not based in regimentation, i.e. Electronic Institutions (EIs). [Noriega, 1997]
sets the foundations of EIs by proposing dialogical institutions as a means to
regulate and implement agent-mediated auctions using a fish market metaphor.
These dialogical institutions, subsequently called EIs, were conceived as three
components: dialogical framework, performative structure and rules of be-
haviour.

The dialogical framework captured the notion of context by making explicit
the participants, their roles and their relevant social interrelationships as well as
the communication and the language used in it.

The performative structure is a set of interdependent located scenes. Each
scene is defined as a set of agents assumed to enact a role by interchanging
statements by illocution. These statements are therefore called illocutions. Fur-
thermore, this interchange of statements is subject to a protocol, defined by
means of a finite-state machine (FSM) where state transitions are labelled by
illocutions and the states have associated pending commitments.

Illocutions start with an illocutionary particle that declares the intention of
the message. For instance, a message informing about the selling of a given good
would use the illocutionary particle inform.

Finally, as protocols may not be sufficient to make fully explicit how the
agent should behave, the rules of behaviour complete the specification of the be-
haviour of each agent. The notion of governor, agents in charge of ensuring that
institutional communication follows the aforementioned protocols by neglecting
forbidden illocutions, is also introduced in [Noriega, 1997].

[Rodŕıguez-Aguilar, 2001] continues this line of work by proposing a new for-
malisation of EI which includes a specification language and a computational
model. In that work a performative structure specifies the conditions and the
order in which agents may enter and leave scenes. Performative structures rep-
resent:

• causal dependencies (e.g. a good cannot be auctioned if it has not been
previously registered in the auction house);

• synchronisation while entering or leaving a scene;

• parallelism by executing several instances of a scene (e.g. concurrent auc-
tioning of several items);

• choice points that allow roles to select what scenes to enter and leave, and

2.3. Models for Regulated MAS 25

• role flow policy among scenes, i.e. what paths can be followed by roles
leaving a scene and what scenes they can reach.

Furthermore, this work introduces the need of normative rules in order to ac-
count the obligations of agents. However, only examples of normative rules are
given.

[Esteva, 2003] further extends the work on EIs by improving the formali-
sation and developing general-purpose software tools to design and interpret
institutional specifications to be followed when executing a open set of dialog-
ical agents. As a result of that thesis, the Electronic institution development
environment (EIDE) started to be developed. Initially, it only comprised IS-
LANDER, an editor and off-line verifier of EI specifications. and AMELI, an
agent-based middleware to execute EIs [Esteva et al., 2004]. Currently it also
provides aBuilder, an editor that partially completes the development of agents
by taking advantage from recurrent particularities of a given specification, and
SIMDEI, an online verifier and simulator of specifications.

Figure 2.6: EI architecture using AMELI.

[Esteva, 2003] and [Esteva et al., 2004] propose the use of Jess engines to
implement norms in EIs. The former proposes one global rule engine per insti-
tution, the latter proposes one local rule engine per governor (one per agent).
However, none of the previous proposals are optimal since in the former one the
rule engine may become a bottleneck in a large MAS and the latter one fails
to process information out of the reach of each governor. For instance, when
two agents are forbidden to perform certain simultaneous actions, the governor
cannot access actions of other agents. In chapter 7 we propose a distributed
architecture with rule engines at several levels.

We now focus on the architecture for executing EIs that uses AMELI and is
depicted in figure 2.6. It is composed of three layers: 1) external agent layer:
external agents taking part in the institution; 2) social layer (AMELI): imple-
mentation of the control functionality of the institution infrastructure; and 3)

26 Chapter 2. Related Work

communication layer: in charge of providing a reliable and orderly transport
service.

The functionality of AMELI includes: 1) the mediation of speech acts uttered
by agents; 2) the provision of key information to successfully participate in the
institution; and 3) the institutional enforcement.

The institutional enforcement consists of: 1) guaranteeing the correct evolu-
tion of each interaction by filtering erroneous illocutions; 2) guaranteeing that
agents movements between scene executions comply with the specification; and
3) controlling which obligations participating agents acquire and fulfil.

The implementation of AMELI presented in [Esteva et al., 2004] realises the
above-mentioned functionalities and it is composed of four types of agents:

• Institution Manager (IM). It is in charge of starting an EI, authorising
agents to enter the institution, as well as managing the creation of new
scene executions. It keeps information about all participants and all scene
executions. There is one institution manager per institution execution.

• Transition Manager (TM). It is in charge of managing a transition
controlling agents movements to scenes. There is one transition manager
per transition.

• Scene manager (SM). Responsible for governing a scene execution (one
scene manager per scene execution).

• Governor (G). Each one is devoted to mediating the participation of an
external agent within the institution. There is one governor per partici-
pating agent.

Two of the main assumptions of EIs are that external agents can only com-
municate with their governors and internals of agents are not accessible by the
institution. Therefore, AMELI is independent from any agent architecture al-
lowing heterogeneous agents (including humans) to interact via the EI. However,
there is a set of external attributes that the EI can access and modify, for exam-
ple, agents’ social status (role, reputation, possessions, etc). Agents’ possessions
are resources of the environment either real or virtual (money, goods, disk space,
etc.).

2.3.2 MOISE and MOISE+

[Hannoun et al., 2000] proposes MOISE, a model to specify organisations of
agents based on three major concepts: roles, organisational links and groups.
As in other models, roles constrain the actions each agent is allowed to perform
in each activity. Agents are specified in groups that constrain the set of agents
they can cooperate with. Organisational links constrain the kinds of interaction
that agents may have in the system: communication (regulated by protocols),
authority (e.g. delegation) or acquaintance (subset of the organisation an agent
may use in its reasoning).

2.3. Models for Regulated MAS 27

They define organisational structure as a set of roles, groups and links spec-
ifying the structure of the MAS independently from agents; and organisational
entity as the set of agents functioning under an organisational structure. They
associate missions to roles. Each mission mi = 〈s,Gi ,Pi ,Ai ,Ri〉 specifies an
allowed behaviour in the system as a consistent set of goals to achieve (Gi) ,
plans (oriented graphs of actions and sub-goals) to follow (Pi), actions to exe-
cute (Ai) and resources to use (Ri). Thus, each element that does not belong
to any associated mission is not allowed.

They may equal these sets to ∅ (nothing is allowed) and Any (all is allowed).
The s parameter may be an obligation O (the agent playing the role has no
choice, it has to execute the mission) or a permission P (the agent playing the
role may decide to execute this mission or not). We notice that, contrary to
obligations in EIs that may not be fulfilled, this kind of obligation is imposed in
agent’s code.

[Hübner et al., 2005] presents MOISE+, an extension of MOISE model allow-
ing agents to not comply with obligations, and S-MOISE, a middleware using
MOISE+ to deploy organised MAS.

2.3.3 Commitment-based Institutions

[Colombetti et al., 2002] proposes a commitment-based semantics for agent com-
munication and sketches a model of institution. In their work, a conditional
commitment its characterised by the following components:

Debtor. The agent that has the commitment.

Creditor. The agent towards which the commitment is made.

Condition. A state of affairs that “activates” the commitment if it becomes
true within a given timeout.

Content. A state of affairs that the debtor is committed to the creditor. It
may have an associated deadline to become true.

State. A commitment can be in one of six possible states: unset, cancelled,
pending, active, fulfilled, and violated.

Thus, they represent a conditional commitment with state s, debtor x , cred-
itor y , condition φ, and content ϕ as the statement C (s, x , y , φ, ϕ).

They envisage an institution made up of four components: a set of regis-
tration rules, a set of interaction rules, a set of authorisations, and an internal
ontology. They propose registration and interaction rules to be implemented by a
collection of commitment-based protocols, and authorisations to be implemented
as a library of role-dependent actions that can be performed by the members of
the group.

In their “Core Institution”, they provide three institutional rules that set the
basis for authorisations:

28 Chapter 2. Related Work

Rule CI-1: any agent is authorised to create an unset commitment with arbi-
trary debtor, creditor, condition, and content.

Rule CI-2: the debtor of an unset commitment is authorised to set it to either
cancelled or pending.

Rule CI-3 : the creditor of an unset, pending or active commitment is autho-
rised to set it to cancelled.

Furthermore, they provide an example of their commitment-based semantics
that we partially present here:

• Performing an act of informing amounts to making the unconditional com-
mitment that the content φ of the inform act is true, and setting it to
pending.

• A request from x to y perform action α if a given condition φ holds amounts
to create an unset commitment from y to x that y will perform α.

• Accepting a request, i.e. an unset commitment, amounts to setting its
state to pending.

• Refusing a request amounts to setting its state to cancelled.

As the authors notice, their definition of institution has been mainly influ-
enced by Searle’s analysis of the “count as” relationship [Searle, 1995] and by
Jones and Sergot’s model of institutionalised power [Jones and Sergot, 1996].

We notice that commitments are always directed towards another agent.
Thus, they lack of the concept of “anonymous” commitment. In this case, a
certain agent becomes a creditor when it creates an obligation that a given agent
is committed to do an action but the debtor should not know who his creditor is.
To accomplish this using this semantics, we should use a virtual entity towards
whom the agent is committed: the institution. Another instance of this case
appears when a role may create commitments but the debtor should not know
who is enacting this role, e.g. in blind reviews. In this case, the creditor would
be a role not a particular agent.

Thus, when using an institution as mediator, we argue that the creditor
component is not essential to specify commitments. In this setting, when an
agent declares to another agent that it will perform an action involving a third
agent (e.g. Alice tells Bob that she will talk to Claire), in fact they are making
a commitment towards the institution and if its a permitted utterance, it will
be accepted and forwarded to its recipient.

2.3.4 OperA

[Dignum, 2003] proposes OperA, a model for specifying organisations in MAS.
The three components of an OperA model are:

2.3. Models for Regulated MAS 29

• Organisational model: describes the organisational structure of the so-
ciety, consisting of roles and their interactions.

• Social model: specifies, in terms of agreements, the enactment of roles
by individual agents.

• Interaction model: describes the possible interaction between agents.

From [Dignum, 2003] we quote the following:

The organisational model (OM) specifies the organizational charac-
teristics of an agent society in terms of four structures: social, in-
teraction, normative and communicative. The social structure (SS)
specifies objectives of the society, its roles and what kind of model
governs coordination. The interaction structure (IS) describes inter-
action moments, as scene scripts, representing a society task that re-
quires the coordinated action of several roles, and gives partial order-
ing of scene scripts, which specify the intended interactions between
roles. Society norms and regulations are specified in the normative
structure (NS), expressed in terms of roles and interaction norms.
Finally, the communicative structure (CS), specifies the ontologies
for description of domain concepts and communication illocutions.

We notice the similarities of OperA with the EI model. The goal of an in-
teraction structure of the OperA model is the same as the one of a performative
structure. The goals of communicative structure and social structure are cap-
tured with a dialogical framework. The normative structure of the OperA model
is very similar to the notion of norms in EIs since it can be summarised as a
set of norms written in LCR. “LCR is an extension of CTL∗, which in turn is
an extension of classical propositional logic.”. CTL∗ is a temporal modal logic
whose model of time is a tree-like structure in which the future is not determined
[Emerson and Halpern, 1986].

2.3.5 LGI Model

[Minsky, 2005] proposes law-governed interaction (LGI), a decentralised coordi-
nation and control mechanism for distributed systems. This middleware allows
a possible large, heterogeneous and open set of actors to interact governed by a
given policy, called the interaction law. The interaction law may be written in
Java or Prolog.

In order to enforce the interaction law, a component called controller is
associated to each actor. The controller is entrusted to mediate the interaction
of its actor with others, and it decides by interpreting the active law, how to
react to messages sent and received by its actor.

Although LGI does not proposes a social model, we notice the similarities
between EI governors and LGI controllers. Both realise a local regulation of
messages at agent level. However, some applications require regulations that
access the state of several agents. To implement this with controllers or governors

30 Chapter 2. Related Work

would require to duplicate in each controller (or governor) the state of all agents
possibly involved in a non-local regulation. However, in large systems this is not
a viable solution.

2.3.6 Electronic Institutions for Virtual Organisations

[Lopes Cardoso and Oliveira, 2005] proposes a model of EI based on contracts
and their use for regulating commerce among Virtual Enterprises. This work is
continued in [Lopes Cardoso and Oliveira, 2007] proposing EIs to be defined by
constitutive and institutional rules following the tradition of [Searle, 1995].

Constitutive rules are of the form:

〈ConstitutiveRule〉 ::= 〈BruteFacts〉{ “∧”〈AgentRole〉}“→”〈InstitutionalFacts〉
Institutional rules work not only on illocutions but also on obligations, their

fulfillment and their violations. By executing institutional rules some institu-
tional procedures may also be executed. Institutional rules are of the form:

〈InstitutionalRule〉 ::= [“[”〈Context〉“]”]〈Antecedent〉“→”〈Consequent〉
Contemporary to this language, [Garćıa-Camino, 2007] proposes I. Al-

though it will be presented in chapter 5, we may remark now that both have
certain similar concepts with different names. I proposes event-condition-action
rules as constitutive rules and if-rules as institutional rules. Furthermore, it also
proposes three types of rules to ignore and force concurrent events and prevent
states of affairs.

2.3.7 Multi-agent Policy Architecture

In [Udupi and Singh, 2006] the authors propose a multi-agent architecture for
policy monitoring, compliance checking and enforcement in virtual organisa-
tions (VOs). Compared to the distributed architecture that will be presented
in chapter 7, their approach also uses a notion of hierarchical enforcement, i.e.
the parent assimilates summarised event streams from multiple agents and may
initiate further action on the subordinate agents. Depending on its policies, a
parent can override the functioning of its children by changing their policies.
Instead of considering any notion similar to an EI scene (multi-agent protocol
where the number of participants may vary) and assigning an agent exclusively
dedicated to the management of one scene, they assign another participant in
the VO as parent of a set of agents. Although the parent would receive only
the events it needs to monitor, it may receive them from all the interactions
their children are engaging in. This can be a disadvantage when the number of
interactions is large turning the parents into bottlenecks. Although they men-
tion that conflict resolution may be accomplished with their architecture, they
leave this feature to the VO agent thus centralising the conflict resolution in
each VO. This can also be a disadvantage when the number of interactions is
large since the VO agent has to resolve all the possible conflicts. This would
require either all the events flowing through the VO agent or the VO agent mon-
itoring the state of the whole VO in order to detect and resolve conflicts. The

2.4. Conclusions 31

main theoretical restriction in their approach is that all the agents involved in
a change in a policy must share a common parent in the hierarchy of the VO.
In an e-commerce example, when a buyer accepts a deal an obligation to supply
the purchased item should be added to the seller. However, as they are different
parties, their only common parent is the VO agent converting the latter in a
bottleneck in large e-commerce scenarios.

2.4 Conclusions

In this section we compare some features of normative languages and models for
regulated MAS.

In order to compare normative languages we use the following features:

Constraints – This feature depicts the degree of constraint management. We
distinguish no specification (–), specification only of time constraints
(time), specification of constraints (specification) and specification and
modification (management).

Distribution – This feature reflects the degree of distribution of norms. We
distinguish no distribution of norms (centralised), norms distributed in
each agent (agents), and norms distributed in each activity (activities).

Concurrent Behaviour – This feature shows the degree of concurrency on
actions. We distinguish no concurrency (–), concurrent actions in one
or no activity (actions), and concurrent actions in concurrent activities
(activities).

Concurrent Regulation – This feature depicts the degree of regulation on
concurrent actions. We distinguish:

• no regulation of actions (–),

• no regulation of actions but regulation of goals (goals),

• just monitoring and sanctioning of actions (monitoring),

• monitoring, sanctioning and prevention of one action at a time (one
action),

• monitoring, sanctioning and prevention of simultaneous actions (si-
multaneous actions).

Observing Table 2.1 we did not find a normative language with the following
features: management of constraints, distribution on activities, concurrent ac-
tivities, and regulation of simultaneous actions. In order to obtain a distributed
architecture with these features, we proposed the languages of chapters 3, 4, and
5.

However, to compare models for regulated MAS we use the following features:

32 Chapter 2. Related Work

Language Features
Constraints Distribution Conc. Behaviour Conc. Regulation

1. CDeonticL time centralised actions monitoring
2. Z – agents actions goals
3. EC time centralised actions one action
4. Rights specification centralised actions one action
5. NoA – agents actions goals
6. SIC specification centralised actions monitoring
7. OCL specification centralised activities one action
8. hyMTL time centralised actions monitoring

Table 2.1: Comparison of norm languages

Openness – This feature depicts whether new heterogeneous agents may join
and leave at runtime. We distinguish closed, closed and heterogeneous and
open (and heterogeneous).

Regulation – This feature reflects the degree of regulation. We distinguish:
specification of protocols (protocols), specification of protocols and actions
agents are expected to perform (protocols and obligations, or protocols and
commitments), specification of protocols, obligations, permissions and pro-
hibitions (protocols and norms) and specification of just norms or policies
(norms).

Social Structure – We distinguish no social structure (–), just role labels
(roles), and role hierarchy.

Activity Structure – This feature depicts the degree of structure of actions.
We distinguish: no structure, just a set of actions (actions), different sets
of norms apply to just a set of actions (contexts), and a separation of sets
of actions (and norms) depending on its purpose (activities).

Models Features

Openness Regulation
Social

Structure
Activity
Structure

1. EIs
open and

heterogeneous
protocols and

obligations
role

hierarchy
activities

2. MOISE+ open and
heterogeneous

protocols
role

hierarchy
activities

3. Commit. Insts.
open and

heterogeneous
protocols and
commitments

role
hierarchy

activities

4. OperA
open and

heterogeneous
protocols

and norms
role

hierarchy
activities

5. LGI
open and

heterogeneous
norms roles actions

6. EIs for VOs
open and

heterogeneous
norms roles contexts

7. MA Policy Arch.
open and

heterogeneous
norms roles actions

Table 2.2: Comparison of models of regulated MAS

In chapters 3-6 we propose different languages for the regulation of activities.

2.4. Conclusions 33

However, we need a computational model to provide our languages a computa-
tional realisation. Observing Table 2.2 we obtain desirable features for candidate
models of MAS. We envisage an open model of MAS where heterogeneous agents
interact. We prefer these interactions to be regulated only by norms since reg-
ulating by protocols and norms requires the MAS programmers to learn how
to specify protocols in addition to norms. Furthermore, role hierarchies pro-
vide more expressiveness when specifying activities and norms for roles since
the specification applies to a role and its subsumed ones. For instance, some
activities may be performed or some actions may be forbidden to be bring about
by a given set of roles just specifying the subsuming role. Although we plan
to include role hierarchies, we acknowledge that the proposal presented in this
thesis only deals with role labels. Finally, we envisage a MAS that structures
actions and norms in activities allowing a modular design and distribution of
the MAS according to the purpose of interactions.

Chapter 3

Regulating Activities in
Electronic Institutions

In this chapter we propose a high level language that allows the user to spec-
ify temporal aspects of norms, we provide an implementation that performs an
automated translation of that high level language into rules of a standard pro-
duction system, and we implement a norm service for electronic institutions that
complements the regulation of scenes.

In [Esteva, 2003], a definition of norms for electronic institutions was pro-
vided. This definition was reduced to obligations as a consequence of agents’
dialogical actions. However, this definition of norm does not explicitly manage
time restrictions. This feature is important since it allows us to express a broader
class of norms. That is, the possible activation or deactivation of obligations (or
other deontic modalities such as permissions and prohibitions) due to the pass-
ing of time. Another interesting application of norms with time restrictions is
to specify deadlines for actions. For instance, when an agent wins an auction,
it may have 15 minutes to pay for the good. Otherwise, it may be sanctioned
and the good re-auctioned. Thus, in this chapter we will redefine norms for
electronic institutions and we will give them an operational semantics by means
of its translation into standard production rules.

In this chapter we will approach our first two research questions, i.e. how to
specify norms that regulate a multi-agent activity and how to make them opera-
tional. To address the first question, in this chapter we will define a language to
be applied in electronic institutions (EIs), a specific model of open, structured,
regulated MAS that already has available a large collection of software tools
for its specification, development, testing and execution. To address the second
question we will implement a centralised service in the Agent-based Middleware
for Electronic Institutions (AMELI) [Esteva et al., 2004] that executes a stan-
dard production system. Norms in our language will be translated into rules for
that standard rule engine.

More concretely, we extend the work in [Vázquez-Salceda et al., 2004], which

35

36 Chapter 3. Regulating Activities in Electronic Institutions

proposes a theoretical deontic language, with norms that are kept active during
a time interval, and conditional norms over the state of the institution, e.g. the
observable attributes of agents. Moreover, our extension includes the possibility
to sanction or reward agents by modifying their external attributes.We also
provide operational semantics to the language by translating constructs written
in it into Jess rules [Sandia National Labs, 2006].

As for the norm service in AMELI, governors (cf. Section 2.3.1) provide us
with changes in the values of observable variables and use it to check if illocutions
are finally permitted. Likewise, this service also changes the values of variables
stored in governors.

3.1 A Normative Language for Electronic Insti-
tutions

As we mentioned in the beginning of the chapter, there is a need to redefine
norms in electronic institutions to include time restrictions. Thus, we propose
the BNF description of our normative language as follows:

NORM := N (utter(S ,W , I) 〈TIME〉 〈IF C 〉)

N := OBLIGED | PERMITTED |
FORBIDDEN

I := ι(A,R,A,R,M ,T)

TIME := BEFORE D | AFTER D |
BETWEEN (D,D) |

BEFORE uttered(S
∗
,W
∗
, I
∗
) |

AFTER uttered(S
∗
,W
∗
, I
∗
) |

BETWEEN (uttered(S
∗
,W
∗
, I
∗
),

uttered(S
∗
,W
∗
, I
∗
))

C := ¬ (CONDS) | CONDS

CONDS := 〈¬ 〉COND 〈,C 〉

COND := V OP V | uttered(S
∗
,W
∗
, I
∗
) |

N (utter(S
∗
,W
∗
, I
∗
)) | predicate

V := AT | F | value

AT := identifier.attribute | variable

OP := > | < | ≥ | ≤ | =

SANCTION := SANCTION ((COMMS) IF NP (NORM))

NP := VIOLATED | COMPLIED

COMMS := COMM 〈,COMMS〉
COMM := AT = F | F

F := identifier(< ARGS >)

ARGS := V <, V >

where S is a scene identifier; W is a state identifier; ι is an illocutionary parti-
cle; A is an agent identifier; R is a role identifier; M is a content message in the
language LO from the dialogical framework; T is a time stamp; D is a deadline;
S∗, W ∗, I ∗, A∗, R∗, M ∗, T ∗ are expressions which may contain variables refer-
ring, respectively, to scenes, states, illocutions, agent identifiers, role identifiers,

3.1. A Normative Language for Electronic Institutions 37

messages and time stamp; and predicate is a first-order formula whose variables
are universally quantified.

On the one hand, utter(s∗,w∗, i∗) is the predicate that represents the action
(not carried out yet) of submitting an illocution at the state w∗ of scene s∗.
This predicate is the only one that can be restricted with deontic operators.
On the other hand, uttered(s∗,w∗, i∗) is used to denote that the submission
of an illocution has been carried out. The latter predicate can be used in the
conditional construct of a normative rule.

From the BNF notation it follows that a norm (NORM) can be either an obli-
gation (OBLIGED), a permission (PERMITTED) or a prohibition (FORBIDDEN)
concerning the utterance of a given illocution utter(S ,W , I) if conditions are
satisfied (IF C). The BEFORE construct is used to activate the norm before a
deadline or an action. The AFTER construct is used to activate the norm after
a given deadline or an action. The BETWEEN construct results from the com-
bination of the previous two and it is used to activate the norm once the time
specified by the first argument is reached and de-activate it once the time spec-
ified by the second argument is reached. The IF construct is used to introduce
conditions over variables, agents’ observable attributes or function results. The
AT definition denotes how attribute values can be accessed with the language,
identifier .attribute denotes that the value of the attribute with name attribute
of the agent or object with name identifier is retrieved.

Sanctions (and, analogously, rewards) can also be expressed by defining the
sequence of attribute updates or functions (COMMS) to be executed if a norm
is violated (analogously, complied) that is, VIOLATED NORM (or COMPLIED
NORM).

3.1.1 Examples

In this section we show how to use our normative language through several
examples. All these examples, along with the rest of examples in this chapter,
are based on an electronic auction institution. The institution has four scenes or
activities: Registration, where agents sign in along with the information about
the goods they want either buy or sell; Auction, where the actual bidding takes
place; Payment , where buyers pay for acquired items and sellers are paid; and
Delivery , where the sold goods are delivered to the acquiring buyers.

OBLIGED (utter(payment,W ,
inform(A, buyer ,B, payee, pay(IT ,P)))

BEFORE uttered(payment,w5,
inform(B, payee, all, buyer ,

close()))
IF uttered(auction,w2,

inform(A, auctioneer , all, buyer ,
sold(IT ,P,C))),

A.credit > P

Figure 3.1: Conditional obligation with a deadline

After the registration of agents and goods, agents join the Auction scene to

38 Chapter 3. Regulating Activities in Electronic Institutions

start a Dutch auction. Initially, the auctioneer agent informs all buyers about the
good being auctioned along with its initial price. The auctioneer progressively
decreases the call price until a bidder stops the clock. If the good has not been
sold when the call price reaches the reserve price, the auction finishes off and the
good is withdrawn. If there is a bid collision, i.e. more than one bid is submitted
at the same time, the call price is increased and a new round is started. If only
one agent places the bid during a round and has enough credit, it wins the
auction. When an agent wins an auction it must proceed to the Payment scene
to pay for the purchased goods. After the payment of goods, an agent taking on
the storemanager role must deliver them to the buyer before a deadline.

PERMITTED (utter(auction,W ,
inform(A, buyer ,B, auctioneer , bid(IT ,P)))

BETWEEN (uttered(auction,w0,
inform(B, auctioneer , all, buyer ,

offer(IT ,P)))
uttered(auction,w2,

inform(B, auctioneer , all, buyer ,
sold(IT ,P,C))))

Figure 3.2: Permission in an interval of time

Figure 3.1 contains a conditional obligation with a deadline. Intuitively, it
means that if a buyer submitted a winning bid for a good, he must pay for it
before the payment scene is closed: If agent A, playing the buyer role, submits
to agent C , playing the auctioneer role, a winning bid for a good at price P
(denoted as sold) and agent A’s credit is greater than P , then A is obliged to
pay in the payment scene to an agent playing the payee role before the latter
closes the scene.

Figure 3.2 shows a permission that is active during a time interval. Its
intuitive meaning is that a buyer is permitted to bid after hearing an offer
but before the auctioneer declares the sale: Agent A playing the buyer role is
permitted to submit a bid for an item IT to agent B playing the auctioneer
role in the auction scene after B informs buyers of an offer but before B informs
buyers of the sale.

SANCTION (A.credit = A.credit − 10
IF VIOLATED (OBLIGED(utter(S ,W ,

inform(A,R1,B,R2, deliver(IT)))
BEFORE 15/10/05)))

Figure 3.3: Sanction related to a deadline violation

Figure 3.3 shows a sanction on an agent’s credit when a deadline cannot be
met. If agent A is obliged to inform about the delivery of an item before a
deadline and the agent does not meet this, his credit is reduced by ten units.

3.2. Executable Norms 39

3.2 Executable Norms

Once the normative language has been defined, we need to handle the norma-
tive state of an institution. We chose a rule-based system to implement norms
because the normative language is of the form preconditions postconditions,
which is easily expressable with rules. In order to facilitate the integration with
AMELI we decided to implement this tool with Jess since both are written in
Java.

In this section we first introduce the (norm) engine used for implementing
executable norms. The translation of norms expressed in the language presented
in section 3.1 into executable norms written in Jess is also detailed.

3.2.1 Jess

Jess is an expert system shell and scripting language from Sandia National Lab-
oratories [Sandia National Labs, 2006] written entirely in Java [Gossling, 1996].
Jess supports the development of rule-based systems that can be tightly coupled
to code written in Java. It can manipulate Java objects and can be extended
with new functions implemented in Java.

Facts

A rule-based system maintains a collection of knowledge portions called facts.
This collection is known as the knowledge base. In Jess, there are three kinds
of facts: ordered facts, unordered facts, and definstance facts. Ordered facts are
simply Lisp-style lists where the first field, the head of the list, acts as a category
for the fact. Unordered facts allow the programmer to structure the properties
of a fact in slots. Before the creation of unordered facts, the slots they have
must be defined using the deftemplate construct.

Figure 3.4 shows an example of an unordered fact template used to model the
predicate uttered . An uttered fact is composed of several slots: scene, state,
agent, receiver, performative and content. The scene and state where an
utterance takes place is specified by the scene and state slot; while the agent

and receiver slots define the sender and receiver of the message (content).
The illocutionary particle of the illocution is stated by the performative slot.

(deftemplate uttered
(slot scene)
(slot state)
(slot agent)
(slot receiver)
(slot performative)
(multislot content))

Figure 3.4: Example of a Jess unordered fact

40 Chapter 3. Regulating Activities in Electronic Institutions

Rules

Rules have two parts separated by the connective “=>”: a left-hand side (LHS)
and a right-hand side (RHS). The LHS is employed for matching fact patterns.
The RHS is a list of actions (postconditions) to perform if the patterns of the
LHS (preconditions) are satisfied. These actions are typically method calls. An
important feature of Jess is that the RHS can call native Jess methods, instance
methods of externally referenced Java objects and static class methods. This
feature adds enormous flexibility to the code.

(defrule cob-1-sanction
"Reduce agent’s credit on violation"
(V (type negative) (constraints ?c) (agent ?a)

(scene deliver) (state w0) (receiver ?b)
(performative inform) (content deliver ?it))

(agent (id ?a) (attrs ?at))
=>

(bind ?old (?at get "credit"))
(bind ?new (- ?old 100))
(?at put "credit" ?new))

Figure 3.5: Example of a Jess rule

Figure 3.5 shows an example of a rule. When a violation occurs, that is, when
there exists a fact V with the specified slots and the attributes of the violator
agent ?a can be retrieved in the variable ?at then store the value of the credit of
the agent in variable ?old, store in ?new the value of variable ?old decreased by
a hundred and change the credit of the violator agent ?a to the value of variable
?new.

3.2.2 Norm implementation

In addition to the normative language we need to keep the sequence of actions
done at run-time and to query what actions are permitted or forbidden and what
are the pending obligations. To introduce utterances, permissions, prohibitions
and obligations in the norm engine, a translation from our language to Jess rules
is needed. This translation can be carried out using the criteria established in
the following sections.

We define four types of Jess unordered facts: O, P, F and V that stand,
respectively, for obligations, permissions, prohibitions and violations. Further-
more, we distinguish three types of norms: conditional, action-dependent and
time-dependent norms.

Conditional norms.

Conditional norms are those norms that include an IF section. The translation
of IF sections is directly realised by placing the conditions in the LHS of a Jess
rule.

3.2. Executable Norms 41

OBLIGED(utter(delivery,w0,
inform(C , storemanager ,A, payer , deliver(IT)))

BEFORE 15 days
IF uttered(payment,w0,

inform(A, payer ,B, payee, pay(IT ,P))))

Figure 3.6: Example of a conditional obligation with a deadline

Action-dependent norms.

Action-dependent norms are those norms that include a BEFORE, AFTER or
BETWEEN section followed by an action (as shown in figure 3.2). To translate
an obligation to be fulfilled before the utterance of an illocution i1, we add a
rule that asserts a violation fact if illocution i1 has been uttered but the obliged
illocution has not. The assertion of facts can be achieved with the Jess function
(assert ?fact). The translation of permissions or prohibitions that are active
before the utterance of an illocution i1 occurs is made by asserting the given
permission or prohibition and adding to the Jess engine a rule that retracts it
when illocution i1 is uttered.

In order to translate obligations, permissions and prohibitions that are ac-
tive after the utterance of a given illocution i2; we add a rule that asserts the
obligation, permission or prohibition when i2 is uttered.

The translation of permissions, prohibitions and obligations during a time
interval (BETWEEN construct) is a combination of the three previous cases. We
decompose the BETWEEN construct into two Jess rules as if it had an AFTER
and BEFORE constructs. The translation of these constructs is carried out as
stated above.

Time-dependent norms.

Time-dependent norms are those norms that include a BEFORE, AFTER or
BETWEEN section followed by a date.

To translate rules with temporal restrictions (i.e. the BEFORE, AFTER
and BETWEEN constructs with time objects) into Jess rules we use the user-
defined function (set-deadline ?deadline ?rule) where ?deadline is an ab-
solute date object indicating when the rule fires and ?rule is a string-based
representation of a rule. In this way the set-deadline function adds the given
rule to the Jess engine only when the specified absolute date arrives.

We use the set-deadline function to translate obligations with deadline
(BEFORE construct). It adds a Jess rule that asserts a violation when the
deadline has not been met. In other words, it checks, after the deadline, if the
obliged illocution has not been uttered yet, in order to fire the corresponding
violation.

The translation of permissions and prohibitions that are active before a dead-
line is done by asserting the permission or prohibition and setting a deadline rule
that retracts the permission or prohibition when the deadline has passed.

42 Chapter 3. Regulating Activities in Electronic Institutions

Production rule

Condition

Norm

Figure 3.7: Translating the condition

Figures 3.6 to 3.9 show an example of the translation of a conditional obli-
gation with a deadline into a Jess rule. They represent a rule establishing that
paid goods must be delivered within 15 days. If agent A playing the payer role
pays for an item to an agent B playing the payee role in the payment scene, an
agent playing the storemanager role must deliver that item to the purchaser in
the delivery scene within 15 days.

To translate obligations, permission or prohibitions that activate after a dead-
line, we add a deadline rule that asserts the obligation, permission or prohibition
after the deadline.

For this purpose we use the set-deadline function to add a Jess rule that
asserts the obligation, permission or prohibition once the deadline has passed.

Finally, obligations, permissions and prohibitions during a time interval can
be translated as a combination of the previous two cases: we add a rule for the
AFTER construct and another one for the BEFORE construct.

Figure 3.10 depicts the time diagram of a rule with a BETWEEN construct
which is translated into two Jess rules that activate at times t1 and t2.

Figure 3.12 shows the translation of the normative rule 3.11 into a Jess rule.
Figures 3.11 and 3.12 show a compound norm that has conditional and temporal
sections. In figure 3.12 the action dependence of the norm is expressed in the
conditional section. In figure 3.11 the time dependence is described by the
BETWEEN construct. They oblige a store manager agent to deliver the goods
between 3 to 15 days after the sale date.

3.3. Developing and Deploying Norms 43

Production rule

Obligation

Norm

Figure 3.8: Translating the obligation

3.3 Developing and Deploying Norms

Figure 3.13 shows the process of developing norms and preparing them for ex-
ecution. As any software process, after an initial analysis of the problem, we
obtain a set of requirements of the problem. For instance, we can conclude that
there is a certain seller that wants a given item to be auctioned. At design time,
we reformulate these requirements into permissions, prohibitions and obligations
over the agents. For instance, after we choose to implement the Dutch auction
protocol one of the new requirements could be “The storemanager is given 15
days to deliver the paid item”. This can be reformulated as “The storemanager
is obliged to deliver item IT to agent A within 15 days if agent A has paid for
item IT” (Fig. 3.6). Then, at development time, we translate these norms into
production rules as we explained in section 3.2.2 (Cf. Figs. 3.7 - 3.9 for the
translation of the norm of the example). We start the run time step by provid-
ing the production rules obtained at the last step into the norm engine. Finally,
obligations, permissions, prohibitions, violations and illocutions are entered into
the production system as facts as the MAS evolves, running the production rules
and updating the facts, i.e. the normative state of the MAS.

3.3.1 Automatic Translation of Norms

To reduce the work in the life cycle mentioned above, we have developed a com-
piler that automatically translates norms written in the language presented in
this chapter into Jess rules. Figure A.2 shows a UML diagram of the automatic
translator. This compiler is composed of a parser-writer and a translator. The
parser-writer transforms the contents of a text file, if it follows the norm lan-

44 Chapter 3. Regulating Activities in Electronic Institutions

Production rule

Deadline

Deadline
calculation

Post-deadline
rule

Countdown
start

Norm

Figure 3.9: Translating the deadline

Norm
issue

t
0 t

2

"Before" rule
activation

t
1

"After" rule
activation

t

"After" rule thread sleep time

"Before" rule thread sleep time

Norm active
 time

Figure 3.10: Rule activation for norm OBLIGED(utter(s,w , i) BETWEEN t1, t2)

guage syntax, into a vector of DeonticNorm objects and it is capable of writing
DeonticNorm and JessNorm objects into strings or text files. The translator
sequentially processes a norm, and then its sanctions and rewards. The process-
ing of a DeonticNorm object consists in checking which constructs appear and
creating a JessNorm object according the guidelines in Section 3.2.2.

3.3.2 Integration with Electronic Institutions

To integrate the approach presented in this chapter with electronic institutions,
we need to feed the production system with facts as the MAS evolves. For that
reason, AMELI, the agent middleware for electronic institutions, has been ex-
tended for this purpose. We created the JessNormEngine as a service in AMELI
(by implementing the Service interface) This class also implements the interface
NormEngine shown in Figure A.1. Whenever an illocution is uttered in AMELI,

3.4. Conclusions 45

OBLIGED(utter(deliver ,w0,
inform(C , storemanager ,A, buyer , deliver(IT)))

BETWEEN 3 day, 15days
IF uttered(payment,w0,

inform(A, payer ,B, payee, pay(IT ,P))))

Figure 3.11: Conditional obligation along a time interval

(defrule obt-1
(uttered (agent ?a) (scene payment)

(state w0) (receiver payee)
(performative inform)
(content pay ?it ?price))

=>
(bind ?date (new java.util.Date))
(bind ?t1 (add-date ?date 0 0 3 0 0 0 0))
(bind ?t2 (add-date ?date 0 0 15 0 0 0 0))

(bind ?rule1 (str-cat
"(defrule obt-1-after => "
"(assert (O (agent storemanager) (scene deliver) "
"(state w0) (receiver " ?a ")"
"(performative inform)
"(content deliver it))))"))

(bind ?rule2 (str-cat
"(defrule obt-1-before =>"
"(assert (V (type negative)"
"(constraints \"before "

(?t2 toString) "\")"
"(agent storemanager) (scene deliver)"
"(state w0) (receiver " ?a ")"
"(performative inform)"
"(content deliver it))))"))

(set-deadline ?t1 ?rule1)
(set-deadline ?t2 ?rule2))

Figure 3.12: Implementation of a conditional obligation along a time interval

this service queries the Jess engine whether permissions and prohibitions exist
for that action. If a permission exists and a prohibition does not exist then it
asserts the illocution to the Jess engine. Sanction and reward rules are modified
to include the Java calls necessary to modify the attributes in AMELI.

3.4 Conclusions

In this chapter we have approached how to specify norms and make them oper-
ational to regulate multi-agent activities from a centralised perspective.

As a first attempt to answer the first question, we have proposed a normative
language for specifying obligations, permissions, prohibitions, violations, rewards
and sanctions to restrict agents’ dialogical actions. This normative language
can be used in electronic institutions, a particular model of structured, open
and regulated MAS, obtaining a higher degree of expressiveness and flexibility
because norms can be kept active during a time interval, or may be activated by
a state of the MAS. Moreover, our extension includes the possibility to sanction
and reward agents by modifying their external attributes.

46 Chapter 3. Regulating Activities in Electronic Institutions

Design
time

Development
Time

(translation)

Norms

Facts

Production
rules

Requirements

Run time

O (obliged)
P (permitted)
F (forbidden)
V (violated)
Uttered

Normative state

Figure 3.13: Developing and deploying norms

We provided an operational semantics to norms in electronic institutions by
means of a translation of constructs of the language presented into Jess rules
[Sandia National Labs, 2006] thus making them executable by means of the Jess
rule engine.

As a first attempt to answer the second question, we have implemented a
norm service in AMELI that maintains the normative state of an institution, i.e
the permissions, prohibitions and pending obligations that hold in the current
state of execution.

Although Jess rules were proposed in [Esteva, 2003] to be dealt with by
each governor (Gi in Fig. 3.14) and therefore distributable, the norm engine
presented in this chapter is centralised as it is implemented as a service running
for the whole institution. We have noticed that some norms cannot be dealt with
completely isolated from other governors. For instance, a prohibition on all the
buyers to make an unsupported bid can be enforced by each governor of buyer
agents. However, a prohibition on two agents to perform certain simultaneous
actions cannot be enforced by governors as they do not have access to actions of
other agents. Our goal is to implement distributed enforcement of these latter
kinds of norms. To achieve this, in the next two chapters we propose regulation
at the activity level, where actions of all participant agents are known.

Although the proposals of this chapter answer the first two research ques-
tions posed in Chapter 1, we noticed that we can provide more expressiveness
to candidate languages by specifying norms and making them operational but
including further constraints than just temporal ones. For instance, in our wire
factory example, we may specify that copper sellers are expected to deliver be-
tween 100 and 200 kilograms of copper by the end of the day. If we assume
now that WireMaking Ltd. has minimum requirements of prime materials that

3.4. Conclusions 47

Autonomous
Agents
Layer

Communication Layer

.

.

Distributed,
Social
Layer

Pr
iv
at
e

Pu
bl
ic

A1 Ai An

G1 Gi Gn

Service 1

JessNormEngine

Service n

...
...

Figure 3.14: AMELI and the JessNormEngine Service

it consumes each day and a maximum quantity of copper that it can store, then
we may also want to specify that copper sellers are prohibited from delivering
less than 0.75 and more than 1.25 times the stipulated amount of copper for
today. Thus, in the following chapter we include constraint management in our
proposal.

Chapter 4

Constraint-based
Regulation

In this chapter we propose a rule language to specify norms and arithmetical
constraints, we provide a computational model that allows the processing of
simultaneous speech acts and we present an implementation of the interpreter
for the language we propose.

In the previous chapter we started answering our research questions by ex-
tending electronic institutions with a richer notion of norm that includes obliga-
tions, permissions and prohibitions with temporal constraints, sanctions when
a violation occurs and rewards when norms are complied. However, norms may
have further constraints associated besides temporal ones. For instance, in a
scenario wherein a selling agent is obliged to deliver a product satisfying some
quality requirements before a deadline, both the quality requirements and the
delivery deadline can be regarded as constraints that must be considered as part
of the agent’s obligation. Thus, only when the agent delivers the good satisfying
all the constraints, should we regard the obligation as fulfilled. We also notice
that since the deadline might eventually be changed, we also require the capa-
bility of modifying constraints at run-time. For this reason and to reduce the
complexity of the rules, we decided to create a rule language without forward
chaining for the management of predicates with constraints.

Despite the fact that Jess rules are proposed in [Esteva, 2003] to be dealt with
by each governor (Gi in Fig. 3.14) we have noticed that some norms cannot be
dealt completely isolated from other governors. For instance, a prohibition on all
the buyers from making an unsupported bid can be enforced by each governor
representing an agent who is a buyer. However, a prohibition on two agents
from performing certain simultaneous actions cannot be enforced by governors
as they do not have access to actions of other agents. Our goal is to implement
the distributed enforcement of this latter kind of norm. To achieve this, in this
chapter and in the following ones we propose regulation at activity level, where
the actions of all participant agents are known.

49

50 Chapter 4. Constraint-based Regulation

In this chapter we present IRL, the Institutional Rule Language. Constraints
are entities managed explicitly in conjunction with predicates – we accommo-
date, as we show, constraints in our semantics using standard constraint solving
techniques. Constraints allow for more sophisticated notions of norms and nor-
mative positions to be expressed. For instance, in a scenario in which a selling
agent is obliged to deliver a product satisfying some quality requirements before
a deadline, both the quality requirements and the delivery deadline can be re-
garded as constraints that must be considered as part of the agent’s obligation.
Thus, when the agent delivers the good satisfying all the constraints, we should
regard the obligation as fulfilled. Notice too that since the deadline might even-
tually be changed, we also require the capability of modifying constraints at
run-time.

We also show how agent’s behaviour are regulated by means of protocols and
norms that can be represented and be given a computational realisation. By
regulating interactions with rules, we provide a light-weight engine in order to
regulate open MAS.

This language has been conceived to represent distinct flavours of deontic
notions and relationships: we can define different situations in which different
deontic notions hold: that is, we can define the behaviour of the institution in
certain conditions. In our language, we can specify situations in which, for in-
stance, prohibitions cannot be violated and situations in which, e.g., prohibitions
of certain actions can be violated under penalties.

Our normative approach gives more flexibility to EIs [Esteva, 2003] in that
we can also capture deviant behaviour. Our work sets the foundations to specify
and implement light-weight institutions via rules.

The main contributions of this chapter are:

1. a means to specify what an agent can, may, may not and ought to utter
using normative positions and constraints;

2. an operational semantics to the above mentioned specification by means
of rules and constraint solving techniques;

3. a computational model that establishes how agents’ speech acts are pro-
cessed; and

4. the application of this computational notion of norm to implement and
enrich a model of regulated MAS like Electronic Institutions and, as an
illustrative example, its application to regulate the Dutch Auction.

4.1 A Rule Language for Managing Normative
Positions

In this section we present the work introduced in [Garćıa-Camino et al., 2006a],
a rule-based language for the specification of the translation of agents’ illocutions
into actions in the normative environment. We consider that agents can (directly

4.1. A Rule Language for Managing Normative Positions 51

or indirectly) cause changes in their own normative positions (e.g., by bidding
in an auction), in the normative positions of other agents (e.g., by delegating
or commanding), in the observable attributes of agents (e.g., “badmouthing” an
agent can decrease its reputation), or in the state of resources of the environ-
ment (e.g., moving a box changes its location). By environment we mean the
shared resources which are not part of the agents and, therefore, cannot be freely
accessed and modified. By state of affairs we mean the normative environment,
i.e. the representation of aspects of the MASs enactment including the set of
attributes that a community of agents can access or modify in an unregulated
setting.

In regulated MASs these attributes can only be accessed and modified under
certain conditions. Our rule-based language allows us to represent regulated
changes fulfilling the requirement that a normative language should be declar-
ative. The rules depict how the state of affairs changes as agents interact with
each other or the environment.

We make use of the closed world assumption (CWA) [Apt, 1997] since we
assume a MAS as a communication middleware that manages (and has access
to) all protocols it may regulate. Therefore, we consider as false all formulae not
included in the state of affairs of a MAS since we cannot regulate them.

We now introduce an example of enactment of our computational model using
a Dutch Auction scenario. There are some goods that are expected to be sold
to one of the agents participating in the auction. We consider these goods part
of a real environment but represented in the normative environment. However,
they are owned by one agent, enacting the role of seller, until the auctioneer, a
special kind of agent that regulates the auction, finishes the process determining
a winner and the latter pays for the auctioned goods. As the state of affairs, i.e.
as the normative environment of the auction, we consider the current credit of
the participants, the ownership of the goods that are part of the environment
and the history of speech acts that have been considered valid at some point
of the enactment of the auction. For instance, whenever the auctioneer offers
a good for a given price, it has to be checked that the illocution was uttered
in the correct point in the protocol by applying the rules. If this is the case,
this illocution is added to the state of affairs for later checking. Continuing with
the example, the participant agents may now bid for the item at the offered
price. These attempts are added to the previous state of affairs giving rise to
the current state of affairs before applying the rules to check which attempts are
valid. After the application of the rules, only the valid bids remain in the state
of affairs, e.g. those that the agents may afford. If it is the case that there is
only one bid, a winner may be determined and the obligation of the winner to
pay for the goods arises.

Figure 4.1 depicts the computational model we propose. An initial state of
affairs ∆0 (possibly empty) is offered (represented by “V”) to a set of agents
(ag1, · · · , agn). These agents can add their illocutions (Ξ0

1, · · · ,Ξ0
n) to the state

of affairs (via “l”). Ξt
i is the (possibly empty) set of illocutions added by agent

i at state of affairs ∆t . After an established amount of time, we perform an

52 Chapter 4. Constraint-based Regulation

∆0 V

∆0

Ξ0
1, · · · ,Ξ0

n

l l
ag1 · · · agn

∗
 ∆1 V

∆1

Ξ1
1, · · · ,Ξ1

m

l l
ag1 · · · agm

∗
 · · ·

Figure 4.1: Semantics as a Sequence of ∆’s

exhaustive application of rules (denoted by “
∗
 ”) to the modified state, yielding

a new state of affairs ∆1. This new state will, in its turn, be offered to the agents
for them to add their events, and the same process will go on.

4.1.1 Preliminary Definitions

We initially define some basic concepts. The building blocks of our language are
terms:

Definition 4.1.1. A term, denoted as τ , is

• Any variable x , y , z (with or without subscripts) or

• Any construct f n(τ1, . . . , τn), where f n is an n-ary function symbol and
τ1, . . . , τn are terms.

Terms f 0 stand for constants and will be denoted as a, b, c (with or without
subscripts). We shall also make use of numbers and arithmetic functions to
build our terms; arithmetic functions may appear infix, following their usual
conventions. We adopt Prolog’s convention [Apt, 1997] using strings starting
with a capital letter to represent variables and strings starting with a small
letter to represent constants. Some examples of terms are Price (a variable) and
send(a,B ,Price × 1.2) (a function). We also need to define atomic formulae:

Definition 4.1.2. An atomic formula, denoted as α, is any construct pn(τ1,
. . . , τn), where pn is an n-ary predicate symbol and τ1, . . . , τn are terms.

When the context makes it clear what n is we can drop it. p0 stands for
propositions. We shall employ arithmetic relations (e.g., =, 6=, and so on) as
predicate symbols, and these will appear in their usual infix notation. We also
make use of atomic formulae built with arithmetic relations to represent con-
straints on variables – these atomic formulae have a special status, as we explain
below. We give a definition of our constraints, a subset of atomic formulae:

Definition 4.1.3. A constraint γ is a binary atomic formula τ C τ ′, where
C∈ {=, 6=, >,≥, <,≤}.

4.1. A Rule Language for Managing Normative Positions 53

We shall use Γ = {γ1, . . . , γn} as a set of constraints. A state of affairs is a
set of atomic formulae, representing (as shown below) the normative positions
of agents, observable agent attributes and the state of the environment1.

Definition 4.1.4. A state of affairs ∆ = {α0 : Γ0, . . . , αn : Γn} is a a finite
and possibly empty set of implicitly, universally quantified atomic formulae αi

restricted by a possibly empty set of constraints Γi , 0 ≤ i ≤ n. When the set of
constraints is empty, we write just αi .

4.1.2 A Language for Rules with Constraints

Our rules are constructs of the form LHS RHS, where LHS contains a
representation of parts of the current state of affairs which, if they hold, will
cause the rule to be triggered. RHS describes the updates to the current state
of affairs, yielding the next state of affairs:

Definition 4.1.5. A rule, denoted as R, is defined as:

R ::= LHS RHS
LHS ::= LHS & LHS | LHS || LHS | not(LHS) | Lit
RHS ::= U,RHS | U

Lit ::= Atf | sat(Γ) | x = {Atf“ |′′ LHS}
Atf ::= α | α : Γ

U ::= add(Atf) | del(Atf)

where x is a variable name and Γ is a list of constraints or a variable name.

Intuitively, the left-hand side LHS describes the conditions the current state
of affairs ought to have for the rule to apply. The right-hand side RHS describes
the updates to the current state of affairs, yielding the next state of affairs.

In the next section we define the semantics of each construct above, but
intuitively, the constructs α and α : Γ check whether there exists an atomic
formula in the state of affairs matching the atomic formulae α or an atomic
formula with constraints, sat(Γ) checks whether Γ (a set of constraints) is sat-
isfiable. We also make use of a special kind of term, called a set constructor,
represented as {Atf | LHS}. This construct is useful when we need to refer
to all atomic formulae in the state of affairs (Atfs) for which LHS holds. For
instance, {(p(A,B ,C) | B > 20 & C < 100} stands for the set of atomic
formulae p(A,B ,C) such that B is greater than 20 and C is less than 100.
Notice that if we want to check whether variable B in p(A,B ,C) has a con-
straint representing a lower bound in value V , we may use the expression
{p(A,B ,C) : Cs | (B > V) ∈ Cs}. The Us represent updates: they add
to the state of affairs (via operator add) or remove from the state of affairs (via
operator del) atomic formulae.

1We refer to the state of the environment as the subset of atomic formulae representing
observable aspects of the environment in a given point in time.

54 Chapter 4. Constraint-based Regulation

4.1.3 Semantics of Rules

As shown in figure 4.1, we define the semantics of our rules as a relationship
between states of affairs: rules map an existing state of affairs to a new state of
affairs. In this section we define this relationship. In the definitions below we
rely on the concept of substitution, that is, the set of values for variables in a
computation [Apt, 1997, Fitting, 1990]:

Definition 4.1.6. A substitution σ = {x0/τ0, . . . , xn/τn} is a finite and possibly
empty set of pairs xi/τi , 0 ≤ i ≤ n.

Definition 4.1.7. The application of a substitution to an atomic formulae α
possibly restricted by a set of constraints {γ0, . . . , γm} is as follows:

1. c · σ = c for a constant c;

2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x ;

3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ);

4. pn(τ0, . . . , τn) : {γ0, . . . , γm} ·σ = pn(τ0 ·σ, . . . , τn ·σ) : {γ0 ·σ, . . . , γm ·σ}.

Definition 4.1.8. The application of a substitution to a sequence is the se-
quence of the application of the substitution to each element: 〈α1, . . . , αn〉 · σ =
〈α1 · σ, . . . , αn · σ〉

We now define the semantics of the LHS of a rule, that is, how a rule is
triggered:

Definition 4.1.9. sl(∆, LHS, σ) holds between state ∆, the left-hand side of a
rule LHS and a substitution σ depending on the format of LHS:

1. sl(∆, LHS & LHS′, σ) holds iff sl(∆, LHS, σ
′) and sl(∆, LHS

′ · σ′, σ′′)
hold (in this order) and σ = σ′ ∪ σ′′.

2. sl(∆, LHS || LHS′, σ) holds iff sl(∆, LHS, σ) or sl(∆, LHS, σ) hold.

3. sl(∆, not(LHS), σ) holds iff sl(∆, LHS, σ) does not hold.

4. sl(∆, sat(Γ), σ) holds iff satisfiable(Γ · σ) hold.

5. sl(∆, x = {Atf | LHS}, σ) holds iff σ = {x/{Atf · σ1, . . . ,Atf · σn}} for the
largest n ∈ N such that sl(∆,Atf & LHS, σi), 1 ≤ i ≤ n

6. sl(∆,Atf, σ) holds iff Atf · σ ∈ ∆ or Atf · σ holds.

Cases 1 and 2 depict the semantics of atomic formulae and how their indi-
vidual substitutions are combined to provide the semantics for a conjunction
and a disjunction respectively. Case 3 introduces the negation by failure. Recall
that we make use of the closed world assumption. Case 4 holds if the set of
constraints Γ is satisfiable; the substitution σ obtained so far, that is applied
to Γ will hold an assignment of variables in a Constraint Satisfaction Problem

4.1. A Rule Language for Managing Normative Positions 55

[Tsang, 1993]. Case 5 specifies the semantics for set constructors: x is the set
of atomic formulae that satisfy the conditions of the set constructor. Case 6
holds when an atomic formulae (a predicate or constraint) is part of the state of
affairs or it holds in the underlying programming language. It is worth noticing
that, from case 1 above, the order in which conjuncts appear on the left-hand
side is relevant. Our rules are means to define a deterministic program, hence
the order of commands is essential.

We now define the semantics of the RHS of a rule:

Definition 4.1.10. Relation sr (∆, RHS,∆′) mapping a state ∆, the right-hand
side of a rule RHS and a new state ∆′ is defined as:

1. sr (∆, (U,RHS),∆′) holds iff both sr (∆,U,∆1) and sr (∆1, RHS,∆
′) hold.

2. sr (∆, add(α),∆′) holds iff ∆′ = ∆ ∪ {α}.

3. sr (∆, add(α : Γ),∆′) holds iff satisfiable(Γ) hold and ∆′ = ∆ ∪ {α : Γ}.

4. sr (∆, add(α : Γ),∆) holds iff satisfiable(Γ) does not hold.

5. sr (∆, del(Atf),∆′) holds iff ∆′ = ∆ \ {Atf}.

Case 1 decomposes a conjunction and builds the new state by merging the
partial states of each update. Case 2 caters for the insertion of atomic formulae
which are not restricted with constraints. Case 3 defines how a constrained
predicate is added to a state ∆: the new constraints are checked whether it
can be satisfied and then it is added to ∆′. Otherwise, case 4 maintains the
initial state ∆ unaltered. Case 5 caters for the removal of atomic formulae (both
constrained and non-constrained). We note that, from case 1 above, the order
in which conjuncts appear on the right-hand side is also relevant.

Relation sr applies all the updates in the RHS of one firing rule. However,
we also need to apply all the updates in the RHSs of all the firing rules. Relation
s′r applies all the updates in UpdateList (that proceed from the RHSs of the
firing rules) using sr .

Definition 4.1.11. Relation s′r (∆,UpdateList ,∆′) mapping a state of affairs
∆, a list of updates and a new state of affairs holds iff

1. UpdateList = 〈〉 and ∆′ = ∆; or

2. UpdateList = 〈u1, · · · , un〉, sr (∆, u1,∆
′′) and s′r (∆′′, 〈u2, · · · , un〉,∆′)

hold.

To complete the definition of our system, we define the semantics of our rules
as relationships between states of affairs: rules map an existing state of affairs
to a new state of affairs, thus modelling transitions between states of affairs.
Relation s∗ calculates the new state of affairs ∆′ from an initial state ∆ and a
sequence of rules.

56 Chapter 4. Constraint-based Regulation

Definition 4.1.12. Relation s∗(∆,Rules,∆′) mapping a state of affairs ∆, a
list of rules, and a new state of affairs holds iff Us is the largest set of updates
U = RHS · σ of all rules r ∈ Rules of the form r = LHS RHS such that
sl(∆, LHS, σ), and s′r (∆,Us,∆′) hold.

Notice that we collect a list of the updates of the firing rules (with all the
different values of σ that make sl(∆, LHS, σ) hold) and then we apply the
collected updates sequentially. Additionally, we do not apply forward chaining
of rules, making our approach different from standard production systems as
Jess, the one used in chapter 3.

4.1.4 An Interpreter for Rules with Constraints

The semantics above provide a basis for the implementation of a rule interpreter.
Although we have implemented it with SICStus Prolog [SICS, 2006] we show how
a rule is interpreted in figure 4.2 as a logic program, interspersed with built-in
Prolog predicates; for easy referencing, we show each clause with a number on
its left.

1. sl(∆, (LHS & LHS′), σ)← sl(∆, LHS, σ
′), sl(∆, LHS

′ · σ′, σ′′), σ = σ′ ∪ σ′′
2. sl(∆, (LHS || LHS′), σ)← sl(∆, LHS, σ)
3. sl(∆, (LHS || LHS′), σ)← sl(∆, LHS

′, σ)
4. sl(∆, not(LHS), σ)← ¬sl(∆, LHS, σ)
5. sl(∆, sat(Γ), σ)← satisfiable(Γ · σ)
6. sl(∆, x = {Atf | LHS}, {x/AllAtfs})←

findall(Atf · σ, sl(∆,Atf & LHS, σ), AllAtfs)
7. sl(∆,Atf, σ)← member(Atf · σ,∆)
8. sl(∆, α, σ)← call(α · σ)
9. sr (∆, (U,RHS),∆′′)← sr (∆,U,∆′), sr (∆′, RHS,∆′′)

10. sr (∆, add(α),∆′)← ∆′ = ∆ ∪ {α}
11. sr (∆, add(α : Γ),∆′)← satisfiable(Γ), ∆′ = ∆ ∪ {α : Γ}
12. sr (∆, add(α : Γ),∆)←
13. sr (∆, del(Atf),∆′)← delete(∆,Atf,∆′)
14. s′r (∆, [],∆′)← ∆ = ∆′

15. s′r (∆, [U | Us],∆′)← sr (∆,U ,∆′′), s′r (∆′′′,Us,∆′)
16. s∗(∆,Rules,∆′)←

findall(RHS , (member((LHS RHS),Rules), sl(∆,LHS),Us),
s′r (∆,Us,∆′)

Figure 4.2: Interpreter for Rules with Constraints

For each rule, we apply sl(∆, LHS, σ) sequentially for all the different sub-
stitutions σ in the state of affairs and we apply and sr (∆, RHS ·σ,∆′) to all the
RHS such that its LHS holds, i.e. sl(∆, LHS, σ) holds. Clauses 1-8, 9-13, 14-15
and 16 are, respectively, adaptations of the cases depicted in Defs. 4.1.9-4.1.12.

We can define satisfiable/2 via the built-in call residue/2 predicate, avail-
able in SICStus Prolog:

4.1. A Rule Language for Managing Normative Positions 57

satisfiable({γ1, . . . , γn})← call residue((γ1, . . . , γn),)

It is worth mentioning that in the actual Prolog implementation, substitutions
σ appear implicitly as values of variables in terms – the logic program above
looks neater when we incorporate this.

4.1.5 Pragmatics of Rules with Constraints

In this section we illustrate the pragmatics of our rules with some examples:

(
do(A, pay(P ,B),T) &

credit(B ,X) & X2 = X + P

)

 del(do(A, pay(P ,B),T)),
del(credit(B ,X)),
add(credit(B ,X2))

 (4.1)

do(A, ext(obl(X ,T2) : C ,D),T) &

(T < D) & (T2 < D2) ∈ C &

delete((T2 > D2),C ,C ′) &

append(C ′, (T2 > D),C ′′)

 (del(do(A, ext(obl(X ,T2) : C ,D),T)),
del(obl(X ,T2) : C),add(obl(X ,T2) : C ′′)

)
(4.2)

(
do(C , pay(P ,B),T) & min(D) &

time(T) & (P > D)

)

(
del(do(C , pay(P ,B))),
add(done(C , pay(P ,B),T))

)
(4.3)

The first example shows a rule depicting the circumstances under which it should
be applied: if agent A generates the event of paying price P to agent B and the
credit of the latter is X . It also shows on the RHS the updates to perform: we
ensure the event is “consumed” (thus not triggering the rule indefinitely) and
the credit of agent B is updated to X + P .

The second example illustrates the management of constraints: these can be
manipulated like ordinary elements of the state of affairs. In this example, we
show that events of type obl (i.e. an obligation) may have associated constraints.
Particularly, this rule states that if an event of extending (ext) the deadlines of
all the obligations to time D occurs before the deadline D and there exists a
constraint restricting the time of fulfillment of the obligations to be less than a
deadline D2, then the event is consumed, the old obligation is removed and an
obligation with the new deadline is added.

The third example illustrates how constraints can additionally be checked
for their satisfaction: when an event of paying price P is performed by agent C
and there is a formula min(D) (storing a minimum price), we check that all the
constraints in the state of affairs, including the one establishing that the amount
paid is greater than the minimum (P > D), are satisfied. If this is so, then we
remove the event and add a record of this case to the state of affairs. Notice
that we make use of a built-in predicate time/1 to check the current time of the
system.

Our rules manage states of affairs, adding or removing formulae (expressed on
the RHS) when certain conditions (expressed on the LHS) hold. As illustrated
in figure 4.1, our approach accommodates the participation of agents: they add
atomic formulae onto the current state of affairs – these formulae represent agent-
related events, represented above as do(Ag ,Ev ,T) that, together with further

58 Chapter 4. Constraint-based Regulation

elaboration on the circumstances, will trigger off rules to update the state of
affairs.

The language that we propose defines a rule-based system enhanced with
constraint satisfaction techniques in order to check how specified constraints
affect the facts they constrain. We have obtained a language to express, manage,
check fulfilment and/or sanction unfulfilled normative positions, i.e. obligations,
permissions and prohibitions, that are bounded with constraints. Thus, the
language is useful to predict a future state of affairs given an initial state and a
sequence of sets of events that occur and modify the intermediate states of affairs
until we reach the final one. The limitations of the language are determined by
the rule engine. These limitations include the inability to plan, i.e. determine
the sequence of sets of events that must occur in order to reach a given state of
affairs from a given initial state, or post-dicting, i.e. determine the previously
unknown facts in a partial initial state given a final state and the sequence of sets
of events that have occurred. However, the goal of the language is to regulate
a MAS and keep track of its evolution by prediction. Post-diction and planning
would be interesting for a language that an agent could use for deciding which
action to perform but this is not the aim of this thesis.

There are further concerns to be taken into account when designing rules.
Clearly, what we choose to go in the state of affairs has an immediate influence
as to what should appear in rules. Another concern is how we choose to repre-
sent events generated by agents. We show in the next section a representation
proposal that includes information on who caused the event, the time, and a
suitable description of the event.

4.2 Programming Institutional Rules

In this section we use the language presented in the previous section to enact
and regulate agent behaviour in an open MAS. We assume that agent behaviour
is formed by events generated by agents that the system may consider valid. We
say the system institutionalises these events.

For illustrative purposes, we define a particular kind of event, the illocutions,
used in the communication of agents in the forthcoming examples.

Definition 4.2.1. Illocutions I are ground atomic formulae ill(p, ag, r, ag′, r′, τ)
where

• p is an element of a set of illocutionary particles (e.g., inform, request,
etc.).

• ag, ag′ are agent identifiers.

• r, r′ are role labels.

• τ , an arbitrary ground term, is the actual content of the message, built
from a shared content language.

4.2. Programming Institutional Rules 59

Sometimes it is useful to refer to illocutions that are not fully ground, that
is, they may have uninstantiated (free) variables within themselves – in the de-
scription of a protocol, for instance, the precise values of the message exchanged
can be left unspecified. During the enactment of the protocol, agents will pro-
duce the actual values which will give rise to a (ground) illocution. We can thus
define illocution schemes:

Definition 4.2.2. An illocution scheme Ī is any atomic formula
ill(p, ag, r , ag′, r ′, τ) whose terms are either variables or may contain vari-
ables.

4.2.1 Institutional States

An institutional state is a state of affairs that stores all the events institution-
alised during the execution of a MAS, also keeping a record of the state of the
environment, all observable attributes of agents and all obligations, permissions
and prohibitions associated with the agents, i.e. their normative positions.

We differentiate eight kinds of atomic formulae in our institutional states ∆,
with the following intuitive meanings:

1. oav(o, a, v) – object (or agent) o has an attribute a with value v .

2. att(e) – an agent performed event e attempting to get it institutionally
accepted.

3. inst(e, t) – e was accepted as an institutional event at time t .

4. old state(w , t) – the execution of the scene reached state w at time t .

5. state(w , t) – the execution of the scene is in state w since time t .

6. obl(e, tinst , t) – e ought to be institutionalised at time tinst since t .

7. per(e, tinst , t) – e is permitted to be institutionalised at time tinst since t .

8. prh(e, tinst , t) – e is prohibited to be institutionalised at time tinst since t .

States of affairs, such as institutional states, and states of a protocol are re-
lated concepts but should not be confused. In a MAS, it is possible to have many
instances of protocols (or various instances of the same protocol) simultaneously
enacted by agents. This means that at any one time, we could have many states
of protocols represented by atomic formulae in a state of affairs.

Remember that, for illustrative purposes, we focus on a particular kind of
event, that is, the illocutions. Notice that, since illocutions are uttered towards
another specific agent, normative positions over illocutions also are with respect
to another agent, i.e. an agent may be obliged to say something to another
agent.

We differentiate between brute acts, that is, events that are attempted to be
accepted (att) and accepted events or institutional acts (inst). Since we aim at

60 Chapter 4. Constraint-based Regulation

heterogeneous agents whose behaviour we cannot guarantee, we create a “sand-
box” where agents can utter whatever they want (via att formulae). However,
not every event that agents generate may be in accordance with the rules –
the illegal events may be discarded and/or may cause sanctions, depending on
the deontic notions we want or need to implement. The inst formulae are thus
confirmations of the att formulae.

We only allow fully ground attributes, events and state control formulae
(cases 1-5 above) to be present, but, in formulae 6–8 tinst may be a variable and
e may contain variables. We shall use formula 4 to represent state change in a
protocol in relation to global time passing. We shall use formulae 6–8 above to
represent the normative positions of agents within MASs.

We do not “hardwire”deontic notions in our semantics: formulae 6-8 above
represent deontic operators but not their relationships. These are captured with
rules as we show in the next section. We show in figure 4.3 a sample institutional
state. The utterances show a portion of the dialogue between a buyer agent and

∆ =

inst(ill(inform, ag4, seller, ag3, buyer, offer(car, 1200)), 10),
inst(ill(inform, ag3, buyer, ag4, seller, buy(car, 1200)), 13),
obl(ill(inform, ag3, payer, ag4, payee, pay(Price)), T1, 13) : {1200 ≤ Price},
prh(ill(ask, ag3, payer,X, adm, leave), T2, 13),
oav(ag3, credit, 3000), oav(car, price, 1200)

Figure 4.3: Sample Institutional State

a seller agent – the seller agent ag4 offers to sell a car for 1200 to buyer agent
ag3 who accepts the offer. The order among utterances is represented via time
stamps (10 and 13 in the constructs above). In our example, agent ag3 has agreed
to buy the car so it is assigned an obligation to pay at least 1200 to agent ag4

because a constraint restricts the values for Price, that is, the minimum value
for the payment ; agent ag3 is prohibited from asking the protocol administrator
adm to leave. We employ a predicate oav (standing for object-attribute-value)
to store attributes of our state: these concern the credit of agent ag3 and the
price of the car.

4.3 Providing Semantics to Deontic Notions

We now provide some examples on how we explicitly manage normative positions
of agents in our language.When specifying a normative system we need to de-
fine relationships among deontic notions. Such relationships should capture the
pragmatics of normative aspects – what exactly these concepts mean in terms of
agents’ behaviour. We do not want to be prescriptive in our discussion and we
are aware that the sample rules we present can be given alternative formulations.
Furthermore, we notice that when designing institutional rules, it is essential to
consider the combined effect of the whole set of rules over the institutional states
– these should be engineered in tandem.

4.3. Providing Semantics to Deontic Notions 61

We can confer different degrees of enforcement on MAS. We start by looking
at those events that agents generate, i.e., att(E); these may become legal events,
i.e., inst(E ,T), if they are permitted, as specified by the following rule:

att(E) & time(T) & per(E ,T ,T0) : C & sat(C) add(inst(E ,T)) (4.4)

That is, permitted attempts at events become legal or institutionalised events.
Attempts and prohibitions can be related together by institutional rules of

the form att(E) & prh(E ,Tinst ,T) del(att(E)),sanction where sanction
stands for atomic formulae representing sanctions on the agent who gener-
ated a prohibited event. For instance, if the agent’s credit is represented via
oav(Ag, credit, V alue), the following rule applies a 10% fine on those agents
who utter a prohibited illocution:

att(ill(P ,A1,R1,A2,R2,M)) & time(T) &

prh(ill(P ,A1,R1,A2,R2,M),T ,T0) : C &

sat(C) & oav(A1, credit,C) &

C 2 = C − C/10

 (
del(oav(A1, credit,C)),
add(oav(A1, credit,C 2))

)
(4.5)

Another way of relating attempts, permissions and prohibitions is when a
permission granted in general (e.g., to all agents or to all agents adopting a role)
is revoked for a particular agent (e.g., due to a sanction). We can ensure that a
permission has not been revoked via the rule:(
att(E) & time(T) & per(E ,T ,T0) : C & sat(C) &

not(prh(E ,T ,T1) : C ′ & sat(C ′))

)
 add(inst(I ,T)) (4.6)

The rule above states that an utterance is accepted as legal whenever it is per-
mitted and it is not the case that it is forbidden.

We can allow agents to do certain illegal actions (under harsher penalties if
required):(

att(ill(inform,Ag1,R,Ag2,R
′, info(Ag3,C))) &

(Ag1 6= Ag2) & (Ag1 6= Ag3) & (Ag2 6= Ag3) & time(T)

)
 (

del(att(ill(inform,Ag1,R,Ag2,R
′, info(Ag3,C)))),

add(inst(ill(inform,Ag1,R,Ag2,R
′, info(Ag3,C)),T))

) (4.7)

The rule above states that if an agent Ag1, enacting role R, attempts to reveal
to Ag2, enacting role R′, (private) information C about agent Ag3, and the three
variables refer to different agents, then the attempt is accepted without taking
into account if it is forbidden or not. In both cases (rules 4.6 and 4.7), we can
punish agents that violate prohibitions as shown in rule 4.5.

The semantics of obligations also depends on which rules are part of the
system. These rules should be selected taking into account the semantics of
the obligatory events. For instance, when an agent fulfills its obligation to pay
a certain amount of money, we remove that obligation as shown in rule 4.8.

62 Chapter 4. Constraint-based Regulation

However, an obligation to be quiet in a given situation (notice that is equivalent
to a prohibition to utter everything) may not need to be consumed each time
an agent is quiet and, therefore, no extra rule needs to be added.

att(ill(inform,Ag1, payer ,Ag2, payee, pay(P))) & time(T) &

per(ill(inform,Ag1, payer ,Ag2, payee, pay(P)),T ,T0) : C & sat(C) &

not(prh(ill(inform,Ag1, payer ,Ag2, payee, pay(P)),T ,T1) : C ′ & sat(C ′)) &

obl(ill(inform,Ag1, payer ,Ag2, payee, pay(P)),T ,T2) : C ′′ & sat(C ′′) &

(Ag1 6= Ag2)

 (

del(att(ill(inform,Ag1, payer ,Ag2, payee, pay(P)))),
del(obl(ill(inform,Ag1, payer ,Ag2, payee, pay(P)),T ,T2))

)
(4.8)

Let us consider now, that the agents are obliged to do actions before a certain
deadline expressed with constraints. The designer of the MAS may choose to
punish all the agents that do not fulfill a deadline with a fee of 20e.

Rule 4.9 states that if an obligation with deadline has not been fulfilled, i.e.
there exists an obligation with a constraint associated to the time, the deadline
has passed, i.e. current time is greater or equal to the deadline, and we have not
yet applied a sanction for that particular obligation, then we apply a sanction:

obl(ill(inform,Ag1,R,Ag2,R

′,Action),T ,T0) : C &

(T < D) ∈ C & time(T2) & (T2 ≥ D) &

not(sanction(obl(ill(inform,Ag1,R,Ag2,R
′,Action),T), (T < D)))

& credit(Ag1,C) & credit(ei ,C 2) & C 3 = C − 20 & C 4 = C 2 + 20

 del(credit(Ag1,C)),add(credit(Ag1,C 3)),

del(credit(ei ,C 2)),add(credit(ei ,C 4)),
add(sanction(obl(ill(inform,Ag1,R,Ag2,R

′,Action),T ,T0), (T < D)))

(4.9)

These examples show that our language can be used to build norm enforce-
ment mechanisms.

4.4 Normative Conflict Resolution

We can also capture further relationships among normative aspects and estab-
lish policies to cope with conflicts. For instance, we need to specify how to cope
with the situation when an illocution is simultaneously obliged and forbidden
– this may occur when an obligation assigned to agents in general (or to any
agents playing a role) is revoked for a particular subgroup of agents or an in-
dividual agent (for instance, due to a sanction). In this case, we can choose
to ignore/override either the obligation or the prohibition. For instance, with-
out writing any extra rule we override the obligation and ignore the attempt to
fulfil the obligation. The rule below ignores the prohibition and transforms an

4.4. Normative Conflict Resolution 63

attempt to utter the illocution I into its utterance:

att(E) & time(T) & obl(E ,T ,T0) & prh(E ,T ,T1) add(inst(E ,T)) (4.10)

A third possibility is to raise an exception via a term which can then be dealt
with at the institutional level. The following rule could be used for this purpose:

att(E) & time(T) & obl(E ,T ,T0) & prh(E ,T ,T1) add(exc(E)) (4.11)

These examples illustrate how we explicitly manage normative positions of agents
in our language.

When adding constraints to predicates, some problems may rise:

1. constraints in a predicate may be erroneously specified as not satisfiable.
For instance, a rule might try to add an obligation to an agent to pay more
than 50e and less than 20e.

2. constraints in related normative positions may be erroneously specified as
not satisfiable. For instance, an agent may be obliged to pay more than
50e but also forbidden to pay more than 20e.

A solution for the first problem is already included in the semantics of IRL,
as we check in the RHS of the rules the satisfiability of constraints before adding
a predicate. The second problem may be avoided by verification techniques
at design time. However, these methods do not have good performance when
there are too many constraints to check. In chapter 6, we will propose an
algorithm to be applied at run-time to fix the problem of normative positions
with unsatisfiable constraints.

4.4.1 Representing and Enacting Protocols via Institu-
tional Rules

The purpose of this section is to represent and build a computational model of the
dynamics of an interaction enactment based on protocols, that is, its execution
with our rule-based language. Our model is based on scenes of EIs [Esteva, 2003]
(see section 2.3.1) but our approach addresses any protocol specified via non-
deterministic finite-state machines.

We shall represent protocols declaratively as logic programs, as described in
[Vasconcelos et al., 2004]. Each edge connecting two states of a protocol will be
denoted as the fact

edge(State, Event,NewState)

representing that if the control of the enactment of the protocol is in State and
Event is uttered, then the control should move to NewState. Edges are compact
descriptions of what can be performed, i.e., the meaningful actions, and how
the control of the enactment of the protocol (and by extension, of the MAS as
a whole) should change as events are generated. Notice that although an agent

64 Chapter 4. Constraint-based Regulation

may generate a meaningful event (att(Event) and edge(State,Event ,NewState))
in a given situation, it may also need to be permitted (per(E ,Tinst ,T0)) and
not prohibited (not prh(E ,Tinst ,T1)) to do so. By “meaningful” we mean that
the event makes sense in the context of that protocol, that is, at a particular
point of the protocol, we specify via edges all possible events that agents may
generate at any point. Of these, some will be permitted, as explained below.

Protocols are descriptions of what events may be performed and when they
can be brought about in order to have a desired meaning. When permissions are
combined with attempted events (i.e, att(Event), as captured by formula 4.4
above) and approved utterances (i.e, inst(Event ,T)) are combined with up-
dates on the state of the enactment, then the protocol can be fully captured.
In order to represent the control of the protocol enactment we use the term
ctr(State, T imeStamp), stored in the institutional state, which informs that at
time TimeStamp the protocol enacted is at State.

The dynamics of the control of the enactment can be captured generically as
the following institutional rule:

state(Wi ,T) & time(T2) &

att(E) & edge(Wi ,E ,Wj) &

per(E ,T2,T0) : C & sat(C) &

not(prh(E ,T2,T1) : C ′ & sat(C ′))

del(state(Wi ,T)),
add(old state(Wi ,T)),

add(state(Wj ,T2)),
add(inst(E ,T2))

 (4.12)

That is, if the control of the enactment of the protocol is at state Wi and
event E has been performed, there is an edge connecting Wi with Wj labelled
with that event, and the event is permitted and not prohibitted, then the state
of the enactment at the next time will move to state(Wj ,T2). We keep track of
the time of previous states using the old state predicate.

We notice that institutional rules are expressive enough to represent norma-
tive aspects as well as protocols (i.e., interactions) and their enactment.

4.4.2 Example: The Dutch Auction Protocol

In this section, we illustrate the pragmatics of our norm-oriented language
by specifying the auction protocol employed in the fish market described in
[Noriega, 1997]. Following [Noriega, 1997], the fish market can be described as a
place where several scenes [Esteva, 2003] take place simultaneously, at different
locations, but with some causal connection. The principal scene is the auction
itself, in which buyers bid for boxes of fish that are presented by an auctioneer
who calls prices in descending order, following an open cry, sudden death, down-
ward bidding protocol, a variation of the traditional Dutch auction protocol that
proceeds as follows:

1. The auctioneer chooses a good out of a lot of goods that is sorted according
to the order in which sellers deliver their goods to the sellers’ admitter.

2. With a chosen good, the auctioneer opens a bidding round by quoting
offers downward from the good’s starting price, previously fixed by a sell-

4.4. Normative Conflict Resolution 65

Figure 4.4: The Dutch Auction Protocol

ers’ admitter, as long as these price quotations are above a reserve price
previously defined by the seller.

3. For each price the auctioneer calls, several situations might arise during
the open round described below.

4. The first three steps are repeated until there are no more goods left.

The situations arising in step 3 are:

Multiple bids – Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the
auctioneer restarts the round at a higher price;

One bid – Only one buyer submits a bid at the current price. The good is
sold to this buyer whenever his credit can support his bid. Otherwise, the
round is restarted by the auctioneer at a higher price, and the unsuccessful
bidder is fined;

No bids – No buyer submits a bid at the current price. If the reserve price
has not been reached yet, the auctioneer quotes a new price obtained by
decreasing the current price according to the price step. Otherwise, the
auctioneer declares the good as withdrawn and closes the round.

Proposed Solution

Figure 4.4 shows a finite state machine the protocol. Following section 4.4.1 the
protocols are represented as a set of formula of the type edge(Wi ,E ,Wj) and
rule 4.12. The situations arising in step 3 are captured in rules 4.13 – 4.18. For
formatting reasons, we will use αi to denote atomic formulae:

66 Chapter 4. Constraint-based Regulation

Multiple bids – This rule obliges the auctioneer to inform the buyers, when-
ever a collision comes about, about the collision and obliges the auctioneer
to restart the bidding round at a higher price (in this case, 120% of the
collision price). Notice that X will hold all the utterances at scene dutch
and state w4 issued by buyer agents that bid for an item It at price P at
time T0 after the last offer. We obtain the last offers by checking that there
are no further offers whose time-stamps are greater than the time-stamp
of the first one. If the number of illocutions in X is greater than one, the
rule introduces the obligation above:

(
X =

{
α0 α1 & not(α2 & (T2 > T1)) & (T0 > T1)

}
& (size(X) > 1) & (Pm = P ∗ 1.2) & time(T3)

)

(

add(α3),add(α4)
)

where

α0 = inst(ill(inform,A1, buyer ,Au, auct, bid(It,P)),T0)
α1 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T1)
α2 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T2)
α3 = obl(ill(inform,Au, auct, all, buyer , collision(It,P)),T3,T4)
α4 = obl(ill(inform,Au, auct, all, buyer , offer(It,P2)),T3,T5) : {P2 > Pm}

(4.13)

One bid/winner determination – If only one bid has occurred during the
current bidding round and the credit of the bidding agent is greater than
or equal to the price of the good in auction, the rule adds the obligation
for the auctioneer to inform all the buyers about the sale:

(
X =

{
α0 α1 & not(α2 & (T2 > T1)) & (T0 > T1)

}
&

(size(X) = 1) & oav(A1, credit,C) & (C ≥ P) & time(T3)

)

(

add(α3)
)

where

α0 = inst(ill(inform,A1, buyer ,Au, auct, bid(It,P)),T0)
α1 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T1)
α2 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T2)
α3 = obl(ill(inform,Au, auct, all, buyer , sold(It,P,A1)),T4,T3)

(4.14)

Prevention – We may prevent agents from issuing bids they cannot afford,
that is, bids for which their credit is insufficient. The optional rule below
states that if agent Ag’s credit is less than P (the last offer the auctioneer
called for item It), then agent Ag is prohibited to bid.

(
α0 & not(α1 & (T2 > T)) & oav(Ag, credit,C) & (C < P) & time(T3)

)

(

add(α2)
)

where

 α0 = inst(ill, inform,Au, auct,A, buyer , offer(It,P)),T)
α1 = inst(ill(inform,Au, auct,A, buyer , offer(It,P)),T2)
α2 = prh(ill(inform,A, buyer ,Au, auct, bid(It,P2)),T4,T3))

(4.15)

Punishment – Instead of preventing, we may punish those agents when issuing
a winning bid they cannot pay for. More precisely, the rule punishes an
agent A1 by decreasing its credit of 10% of the value of the good being
auctioned. The oav predicate on the LHS of the rule represents the current
credit of the offending agent. The rule also adds an obligation for the
auctioneer to restart the bidding round and the constraint that the new

4.5. Conclusions 67

offer should be greater than 120% of the old price.
X =

{
α0 α1 & (T0 > T1) &

not(α2 & (T2 > T1))

}
&

oav(A1, credit,C) &
(size(X) = 1) & (C < P) &

C2 = C − P ∗ 0.1 & Po = P ∗ 1.2

 del(oav(A1, credit,C)),

add(oav(A1, credit,C2)),
add(α3)

where

α0 = inst(ill(inform,A1, buyer ,Au, auct, bid(It,P)),T0)
α1 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T1),
α2 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T2)
α3 = obl(ill(inform,Au, auct, all, buyer , offer(It,Po)),T3)

(4.16)

No bids/New Price – We must check if there were no bids and if the next
price is greater than the reserve price. If so, we must add an obligation
for the auctioneer to start a new bidding round. Rule 4.17 checks that the
current scene state is w5, the last offer occurred before w5 and whether the
new price is greater than reserve price. If so, the rule adds the obligation
for the auctioneer to offer the item at a lower price. By retrieving the
last offer we gather the last offer price. By checking the oav predicates we
gather the values of the reserve price and the decrement rate for item It .

ctr(dutch,w5,Tn) & α0 &
not(α1 & (T2 > T)) & (Tn > T) &
oav(IT , reservation price,RP) &
oav(IT , decrement rate,DR) &

(RP < (P −DR)) & (P2 = P −DR) & time(T3)

 (
add(α2)

)

where

 α0 = instill(inform,Au, auct, all, buyer , offer(IT ,P)),T)
α1 = inst(ill(inform,Au, auct, all, buyer , offer(IT ,P)),T2)
α2 = obl(ill(inform,Au, auct, all, buyer , offer(IT ,P2)),T4,T3)

(4.17)

No bids/withdrawal – We must check if there were no bids and the next price
is less than the reserve price; if so we add the obligation for the auctioneer
to withdraw the item. Rule 4.18 checks that the current institutional state
is w5, the last offer occurred before w5 and whether the new offer price
is greater than reserve price. If the LHS holds, the rule fires to add the
obligation for the auctioneer to withdraw the item. By checking the last
offer we gather the last offer price. By checking the oav predicates we
gather the values of the reserve price and the decrement rate for the price
of item It :

ctr(dutch,w5,Tn) & α0 &
not(α1 & (T2 > T)) & (Tn > T) &

oav(It, reservation price,RP) &
oav(It, decrement rate,DR) &
(RP ≥ (P −DR)) & time(T3)

 (
add(α2)

)

where

 α0 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T)
α1 = inst(ill(inform,Au, auct, all, buyer , offer(It,P)),T2)
α2 = obl(ill(inform,Au, auct, all, buyer ,withdrawn(It)),T4,T3)

(4.18)

4.5 Conclusions

In this chapter, to continue answering our first two research questions, we
have introduced a language for the explicit management of normative positions

68 Chapter 4. Constraint-based Regulation

bounded by arithmetical constraints and specifying the behaviour of agents in
MASs. The classical model of EIs proposed in [Esteva, 2003] is strict in the sense
that only meaningful speech acts are accepted in the protocols without checking
if they are permitted or not. We propose a language to extend the notion of EI
by implementing its scenes and providing them with several flavours of deontic
notions.

The main advantage of using our language, instead of standard production
systems (such as Jess, used in Chapter 3), to specify and monitor the normative
position of the agents conforming a MAS is to be able to avoid forward-chaining
mechanisms to easily implement one-time actions and sanctions, and the in-
clusion of constraint solving techniques in the semantics to handle constrained
predicates, i.e. to manage constraints and to check how these constraints affect
the predicates they constrain. We have obtained a language to express, manage,
check fulfilment and/or sanction unfulfilled normative positions, i.e. obligations,
permissions and prohibitions, that are bounded with constraints.

Thus, the language presented in this chapter is useful to predict a future
state of affairs with an initial state and a sequence of sets of events that occur
by modifying the intermediate states of affairs until we reach the final one. The
limitations of the language are determined by the rule engine. These limitations
include the inability to plan, i.e. determine the sequence of sets of events that
must occur in order to reach a given state of affairs from a given initial state,
or post-dicting, i.e. determine the previously unknown facts in a partial initial
state given a final state and the sequence of sets of events that have occurred.
However, the goal of the language is to regulate a MAS and keep track of its
evolution by prediction. Post-diction and planning would be interesting for a
language that an agent could use for deciding which action to perform but this
is not the aim of this thesis.

We envisage two typical ways of using our language: i) directly, to supplement
a MAS with interaction protocols and norms or declaratively implement scenes
of EIs or ii) specifying norms with a language like the one presented in chapter
4 and then using a compiler to translate it into IRL to execute it.

Although the proposals of this chapter answers the first two research ques-
tions posed in Chapter 1, we noticed that we can provide more expressiveness
to candidate languages by exploiting more the computational model presented
in this chapter for the specification of simultaneous speech acts that can be per-
mitted, prohibited and forbidden. Furthermore, we can improve the semantics
of our language by including some enforcement actions, that we call institutional
actions, such as ignoring, expecting or forcing certain simultaneous speech acts
or preventing a given state of affairs. Thus, we will include this in the proposal
of the next chapter.

Chapter 5

Regulating Concurrency

In this chapter we propose a language with different types of rules to specify
norms (with temporal aspects and arithmetical constraints) over agents’ simul-
taneous speech acts and to specify preventive and corrective actions that the
system has to perform. We also propose ignoring speech acts and preventing
states of affairs as preventive actions and forcing speech acts and sanctioning as
corrective actions. Finally, we provide an interpreter for the language shown, in
its entirety, in Appendix B.

As shown in chapter 2, in the literature we find that almost all normative
languages are based on deontic logics establishing which actions are permitted,
forbidden or obligatory. However, deontic logics do not establish the semantics
of these modalities with respect to a computational system. For instance, when
an action is claimed to be forbidden, does it mean that it is prevented from
happening, or that the agents that bring it about must be sanctioned or that
the effects of that action are just ignored?

Thus, in this chapter we continue improving the answer for the first two
research questions we posed in chapter 1: how to specify norms (and make
them operational) to regulate a multi-agent activity. In this chapter, we propose
I, a language that reshapes our IRL rules into Event-Condition-Action (ECA)
rules that perform the given actions when the given events occur and the given
conditions hold. The performance of actions add or remove atomic formulae thus
triggering another type of rule: the if-rules, that are standard production rules.
Above these two types of rules we place new types of rules: ignore-rules, that
ignore a set of simultaneous events, force-rules, that generate a set of events on
the occurrence of a given set of events satisfying certain conditions, and prevent-
rules, that ignore the execution of ECA or if-then rules if certain formulae hold
in the current state and another given set of formulae hold in the next state.

The main contributions of I is the management of sets of events that occur
simultaneously and the distinction between norms that can be violated. For
instance, let us consider the case when an agent wins a given good in an auction.
We envisage two options for the payment in that scenario: 1) expect the agent
to generate the event of the payment and sanction the agent if the event is

69

70 Chapter 5. Regulating Concurrency

not generated before a given deadline; or 2) if the institution has control on
the agent’s balance, automatically generate an event of payment as if the agent
would have generated it. In fact, an obligation (to perform an event) that may
be violated is represented as the expectation of the attempts to perform it.
However, the enforcement of an obligation (to perform a set of events) that may
not be violated is carried out by the system by taking these events as having
been performed even they have not. We denote such enforcement as forcing
events.

5.1 I: A Language for Institutions

A problem that we spotted during the development of the previous language
is that if two agents simultaneously perform actions, i.e. gathered during the
same round, that modify the same predicate, e.g. the state of the scene, the
predicate is duplicated with the values of each institutionalised action. A partial
solution would be modifying all the rules to check if there is only one attempt
institutionalisable prior to institutionalise it. However, this rule should check
for all the attempts that comply with any LHS of the rules that in their RHS
institutionalise an event. Writing this rule is a hard task to leave it to the
programmers of electronic institutions. We need then, to include in the semantics
a mechanism to avoid certain state of affairs to come about.

In this section we introduce a rule language for the regulation and manage-
ment of concurrent events generated by a population of agents. Our rule-based
language allows us to represent norms and changes in an elegant way.

As in the previous chapter, the building blocks of our language are first-
order terms and implicitly, universally quantified atomic formulae without free
variables and we adopt Prolog’s convention using strings starting with a capital
letter to represent variables and strings starting with a small letter to represent
constants.

∆0 V

∆0

Ξ0
1, · · · ,Ξ0

n

l l
ag1 · · · agn

∗
 ∆1 V

∆1

Ξ1
1, · · · ,Ξ1

m

l l
ag1 · · · agm

∗
 · · ·

Figure 5.1: Semantics as a Sequence of ∆’s

Figure 5.1 depicts again the computational model we continue using in this
chapter. Recall from Figure 4.1 that an initial state of affairs ∆0 (possibly
empty) is offered (represented by “V”) to a set of agents (ag1, · · · , agn). These
agents can add their utterances (Ξ0

1, · · · ,Ξ0
n) to the state of affairs (via “l”). Ξt

i

is the (possibly empty) set of illocutions added by agent i at state of affairs ∆t .
After an established amount of time, we perform an exhaustive application of

5.1. I: A Language for Institutions 71

rules (denoted by “
∗
 ”) to the modified state, yielding a new state of affairs ∆1.

This new state will, in its turn, be offered to the agents for them to add their
utterances, and the same process will go on.

One goal of the I language is to specify the effects of concurrent events and
this is achieved with Event-Condition-Action (ECA) rules. Intuitively, an ECA-
rule means that whenever the events occur and the conditions hold then the
actions are applied. These actions consist of the addition and removal of atomic
formulae from the state of affairs. ECA-rules are checked in parallel and they
are executed only once without chaining.

If-rules are similar to rules in standard production systems, if the conditions
hold then the actions are applied. They are implemented with a forward chaining
mechanism: they are executed sequentially until no new formula is added or
removed.

Ignore-rules are used for ignoring events when the conditions hold in order
to avoid unwanted behaviour. Similarly, prevent-rules are used for preventing
some conditions to hold in the given situations. In order to prevent unwanted
states, events causing such unwanted states are ignored. Force-rules generate
events and execute actions as consequence of other events and conditions.

Sanctions over unwanted events can be carried out with ECA-rules. For
instance, we can decrease the credit of one agent by 10 if she generates a certain
event.

ECA-Rule ::= on set of events if conditions do actions
if -Rule ::= if conditions do actions

ignore-Rule ::= ignore set of events if conditions
prevent-Rule ::= prevent conditions if conditions

force-Rule ::= force set of events on set of events
if conditions do actions

set of events ::= events | ∅
events ::= atomic formula, events | atomic formula

conditions ::= conditions & conditions | not(conditions)
| sat(set of constraints) | constr formula
| seteq(set of constraints, set of constraints)
| constraint ∈ set of constraints
| time(number) | true

constr formula ::= atomic formulae
| atomic formulae : set of constraints

actions ::= action,actions | action
action ::= add(constr formula) | del(constr formula)

Figure 5.2: Grammar for I

Figure 5.2 shows the grammar for I, i.e. the syntax of the five type of rules
we propose: ECA-rules, if-rules, ignore-rules, prevent-rules and force-rules.

ECA rules specify the effect of a set of events, i.e. a set of atomic formulae,
if the conditions hold. This effect is specified by means of a sequence of actions

72 Chapter 5. Regulating Concurrency

namely addition and removal of constrained formulae. A constrained formulae is
an atomic formula that may be followed by a set of arithmetical constraints using
the syntax presented in Def. 4.1.3. Furthermore, by conditions we mean one
or more possibly negated conditions. Then, a condition may be a constrained
formula, the sat predicate that checks that a set of constraints is satisfiable, the
seteq predicate that checks if two sets are equal, the timepredicate that checks
current time or the true constant that always hold.

If-rules specify the logical consequence if the conditions hold by means of a
sequence of actions. Ignore-rules specify the set of events that should be ignored
if the conditions hold. Similarly, prevent-rules specify the conditions that should
not hold if some conditions hold. Finally, force-rules specify a set of new events
that are generated on the occurrence of a set of events and the satisfaction of
a sequence of conditions. Furthermore, it also specifies a sequence of actions to
perform if the rule is triggered.

We add an extra kind of rule, called expectation-rules, that generate and
remove expectations of events. If the expectation fails to be fulfilled then some
sanctioning or corrective actions are performed.

expectation-Rule ::= expected event on set of events if conditions

fulfilled-if conditions ′ violated-if conditions ′′

sanction-do actions

Each expectation rule can be translated into the following rules:

on set of events if conditions do add(exp(event)) (5.1)

if exp(event) ∧ conditions ′ do del(exp(event)) (5.2)

if exp(event) ∧ conditions ′′ do del(exp(event)),actions (5.3)

Rule 5.1 and 5.2 respectively adds and removes an expectation whenever the
events have occurred and the conditions hold. Rule 5.3 cancels the unfulfilled
expectation and sanctions an agent for the unfulfilled expectation by executing
the given actions whenever some conditions hold.

5.1.1 Semantics

Instead of basing the I language on the standard deontic notions, two types
of prohibitions and two types of obligations are included. In our language,
ECA-rules determine what is possible to perform, i.e. they establish the effects
(including sanctions) in the institution after performing certain (possibly con-
current) events. ECA-rules can be seen as conditional count-as rules: the given
events count as the execution of the actions in the ECA-rule if the conditions
hold and the event is not explicitly prohibited. As for the notion of permission,
all the events are permitted if not explicitly prohibited. The notion of an event
being prohibited may be expressed depending on whether that event has to be
ignored or not. If not otherwise expressed, events are not ignored. Likewise, the
notion of a state being prohibited may be specified depending on whether that

5.1. I: A Language for Institutions 73

state has to be prevented or not. By default, states are not prevented. Obli-
gations are differentiated in two types: expectations, which an agent may not
fulfill, and forced (or obligatory) events, which the system takes as institutional
events even they are not actually performed by the agents.

Each set of ECA-rules generates a labelled transition system 〈S, E ,R〉 where
S is a set of states, each state in S is a set of atomic formulae, E is a set of events,
and R is a S×2E×S relationship indicating that whenever a set of events occur
in the former state, then there is a transition to the subsequent state.

Ignore-rules avoid executing any transition that contains in its labelling the
events that appear in any ignore-rule. For instance, having a rule ignore α1

if true would avoid executing the transitions labelled as {α1}, {α1, α2} and
{α1, α2, α3}. However, having a rule ignore α1, α2 if true would avoid execut-
ing {α1, α2} and {α1, α2, α3} but not {α1}.

Prevent-rules ignore all the actions in an ECA-rule if it brings the given
formulae about. For example, suppose that we have

prevent q1 if true

along with ECA-rules 5.4, 5.5 and 5.6 below. After the occurrence of events α1

and α2 and since q1 is an effect of event α2, all the actions in ECA-rule 5.5 would
be ignored obtaining a new state where p and r hold but neither q1 nor q2.

on α1 if true do add(p) (5.4)

on α2 if true do add(q1),add(q2) (5.5)

on α1, α2 if true do add(r) (5.6)

Force-rules generate events during the execution of the transition system.
However, the effects of such events are still specified by ECA-rules and subject
to prevent and ignore-rules.

5.1.2 Operational Semantics

We now define the semantics of the conditions, that is, when a condition holds:

Definition 5.1.1. Relation sl(∆,C , σ) holds between state ∆, a condition C
in an if clause and a substitution σ depending on the format of the condition:

1. sl(∆,C & C ′, σ) holds iff sl(∆,C , σ
′) and sl(∆,C

′ · σ′, σ′′) hold and σ =
σ′ ∪ σ′′.

2. sl(∆, not(C), σ) holds iff sl(∆,C , σ) does not hold.

3. sl(∆, seteq(L,L2), σ) holds iff L ⊆ L2, L2 ⊆ L and | L |=| L2 |.

4. sl(∆, sat(constraints), σ) holds iff satisfiable(constraints · σ) hold.

5. sl(∆, γ ∈ Γ, σ) holds iff (γ · σ) ∈ (Γ · σ).

6. sl(∆, time(T), σ) holds iff current time is T .

74 Chapter 5. Regulating Concurrency

7. sl(∆, true, σ) always holds.

8. sl(∆, constr formula, σ) holds iff constr formula · σ ∈ ∆.

Case 1 depicts the semantics of atomic formulae and how their individual
substitutions are combined to provide the semantics for a conjunction. Case
2 introduces negation by failure. Case 3 compares if two lists have the same
elements possibly in different order. Case 4 checks if a set of constraints is
satisfiable. Case 5 checks if a constraint belongs to a set of constraints. Case 6
checks if T is current time. Case 7 gives semantics to the keyword true. Case 8
holds when an possibly constrained, atomic formulae constr formula is part of
the state of affairs.

We now define the semantics of the actions of a rule:

Definition 5.1.2. Relation sr (∆,A,∆′) mapping a state ∆, the action section
of a rule and a new state ∆′ is defined as:

1. sr (∆, (A,As),∆′) holds iff both sr (∆,A,∆1) and sr (∆1,As,∆′) hold.

2. sr (∆, add(constr formula),∆′) holds iff

(a) constr formula 6∈ ∆ and ∆′ = ∆ ∪ {constr formula} or;

(b) ∆′ = ∆.

3. sr (∆, del(constr formula),∆′) holds iff

(a) constr formula ∈ ∆ and ∆′ = ∆ \ {constr formula} or;

(b) ∆′ = ∆.

Case 1 decomposes a conjunction and builds the new state by merging the
partial states of each update. Case 2 and 3 cater respectively for the insertion
and removal of atomic formulae α.

We now define relation checkprv that checks if there is no prevent-rule that
has been violated, i.e., it is not the case that all the conditions of any prevent-rule
hold in the state of affairs ∆′. It checks whether ∆′ contain all the conditions
of each prevent-rule or not, if ∆ also contain the given conditions.

Definition 5.1.3. Relation checkprv (∆,∆′,PrvRules) mapping ∆, the state be-
fore applying updates, ∆′, the state after applying updates, and a sequence
PrvRules of prevent-rules, holds iff an empty set is the largest set of conditions
C such that prevent-rule p = prevent C if C ′, p ∈ PrvRules, sl(∆,C

′) and
sl(∆

′,C) hold.

Definition 5.1.4. Relation fire(∆,PrvRules, if C do A,∆′) mapping a state
∆, a sequence PrvRules of prevent-rules, an if-rule and a new state ∆′ holds iff
fired(C ,A) starts to hold, sr (∆,A,∆′) and checkprv (∆,∆′,PrvRules) hold.

Relation can fire checks whether the conditions of a given if-rule hold and
the rule after applying substitution σ has not been already fired.

5.1. I: A Language for Institutions 75

Definition 5.1.5. Relation can fire(∆, if C do A, σ) mapping a state ∆ an if-
rule and a substitution σ holds iff sl(∆,C , σ) holds and fired(C · σ,A · σ) does
not hold.

Relation resolve determines the rule that will be fired by selecting the first
rule in the list.

Definition 5.1.6. Relation resolve(RuleList ,SelectedRuleList) mapping a list
of if-rules and a selected if-rule list holds iff

1. RuleList = 〈〉 and SelectedRuleList = 〈〉; or

2. RuleList = 〈r1, · · · , rn〉 and SelectedRuleList = 〈r1〉.

Relation select rule determines the rule that will be fired by selecting all the
rules that can fire and resolving the conflict with relation resolve.

Definition 5.1.7. Relation select rule(∆, IfRulesList ,SelectedRuleList) map-
ping a state of affairs ∆, a list of if-rules and a selected if-rule list holds iff Rs
is the largest set of rules R ∈ Rs, Rs ⊆ IfRulesList such that can fire(∆,R, σ);
resolve(Rs,SR) hold and SelectedRuleList = SR · σ.

Relation sif determines the new state of affairs after applying a set of if-rules
to a initial state of affairs taking into account a set of prevent-rules.

Definition 5.1.8. Relation sif (∆, IfRules,PrvRules,∆′) mapping a state of af-
fairs ∆, a list of if-rules, a list of prevent-rules and a new state of affairs holds
iff

1. select rule(∆, IfRules,R) hold, R 6= 〈〉, fire(∆,PrvRules,R,∆′′) and
sif (∆′′, IfRules,PrvRules,∆′) hold; or

2. select rule(∆, IfRules,R) hold, R = 〈〉; or

3. sif (∆, IfRules,PrvRules,∆′) hold.

Relation ignored determines that a set of events which occurred have to be
ignored taking into account a list of ignore-rules.

Definition 5.1.9. Relation ignored(∆,Ξ,E , IgnRules) mapping a state of affairs
∆, a list Ξ of events that occurred, a list of events in a ECA-rule and a list of
ignore-rules holds iff i = ignore E ′ if C , i ∈ IgnRules, E ′ ⊆ Ξ, E ∩E ′ 6= ∅ and
sl(∆,C) holds.

Relation s′r uses sr first and then sif in order to activate the forward chaining.

Definition 5.1.10. Relation s′r (∆, IfRules,PrvRules,ActionList ,∆′) mapping
a state of affairs ∆, a list of if-rules, a list of prevent-rules, a list of actions and
a new state of affairs holds iff any of the conditions below hold:

1. ActionList = 〈〉 and ∆′ = ∆; or

76 Chapter 5. Regulating Concurrency

2. ActionList = 〈a1, · · · , an〉, sr (∆, a1,∆
′′), checkprv (∆,∆′′,PrvRules), sif (

∆′′, IfRules,PrvRules,∆′′′) and s′r (∆′′′, IfRules,PrvRules, 〈a2, · · · , an〉,∆′)
hold; or

3. s′r (∆, IfRules,PrvRules, 〈a2, · · · , an〉,∆′).

Relation seca calculates the new state of affairs ∆′ from an initial state ∆ and
a set Ξ of events that occurred applying a list of ECA-rules, if-rules, ignore-rules
and prevent-rules.

Definition 5.1.11. Relation seca(∆,Ξ,ECARules, IfRules, IgnRules,PrvRules,
∆′) mapping a state of affairs ∆, a list Ξ of events that occurred, a list of ECA-
rules, a list of if-rules, a list of ignore-rules, a list of prevent-rules, and a new
state of affairs holds iff:

• As is the largest set of actions A′ = A · σ in an ECA-rule r = on E if C
do A such that:

– r ∈ ECARules, E · σ′ ⊆ Ξ, sl(∆,C , σ
′′) hold,

– ignored(∆,Ξ,E , IgnRules) does not hold and

– σ = σ′ ∪ σ′′; and

• s′r (∆, IfRules,PrvRules,As,∆′) hold.

Relation sforce calculates the new state of affairs ∆′ and the new set Ξ′ of
occurred events from an initial state ∆ and a set Ξ of events that occurred
applying a list of if-rules, ignore-rules, prevent-rules and force-rules.

Definition 5.1.12. Relation sforce(∆,Ξ, IfRules, IgnRules,PrvRules,
FrcRules,Ξ′,
∆′) mapping a state of affairs ∆, a list Ξ of events that occurred, a list of
if-rules, a list of ignore-rules, a list of prevent-rules, a list of force-rules, a new
list of events that occured and a new state of affairs holds iff:

• EAs is the largest set of tuples 〈FE · σ,A · σ〉 of forced events and actions
in a force rule fr = force FE on E if C do A such that

– fr ∈ FrcRules, E · σ′ ⊆ Ξ, sl(∆,C , σ
′′) holds,

– ignored(∆,Ξ,E , IgnRules) does not hold and

– σ = σ′ ∪ σ′′;

• Es is the largest set of forced events Ev such that 〈Ev ,A〉 ∈ EAs;

• Ξ′ = Ξ ∪ Es;

• As is the largest set of actions A such that 〈Ev ,A〉 ∈ EAs; and

• s′r (∆, IfRules,PrvRules,As,∆′) holds.

5.1. I: A Language for Institutions 77

Relation s∗ calculates the new state of affairs ∆′ from an initial state ∆ and a
set Ξ of events that occurred applying a list of ECA-rules, if-rules, ignore-rules,
prevent-rules and force-rules.

Definition 5.1.13. Relation s∗(∆,Ξ,ECARules, IfRules, IgnRules,PrvRules,
FrcRules,∆′) mapping a state of affairs ∆, a list Ξ of events that occurred, a
list of ECA-rules, a list of if-rules, a list of ignore-rules, a list of prevent-rules, a
list of force-rules and a new state of affairs holds iff:

• Cs is the largest set of conditions C such that fired(C ,A) stop holding;

• fired(false, false) starts to hold,

• sif (∆, IfRules,PrvRules,∆′′),

• sforce(∆′′,Ξ, IfRules, IgnRules,PrvRules,FrcRules,Ξ′,∆′′′) and

• seca(∆′′′,Ξ′,ECARules, IfRules, IgnRules,PrvRules,∆′) hold.

5.1.3 Interpreter

In this section we introduce the main predicates we use in the interpreter of
language I that we entirely present in Appendix B.

Figure 5.3 shows the top level predicate of our interpreter. Mirroring Def.
5.1.13, s star calculates a new state of affairs triggering first if-rules to calculate
logical consequences in initial state Delta; then it applies force-rules to create
new forced events; and finally it executes ECA-rules to calculate the causal
consequence of the initial events plus the generated ones. To apply force-rules
and ECA rules, a checking of ignore-rules is performed, i.e. checking if any of
the triggering events is ignored. After each if-rule, force-rule and ECA rule it
checks if any prevent-rule is applicable to reject the triggering of the rule.

Recall from Defs. 5.1.7 and 5.1.6 that we chose if-rules to be triggered in
declaration order. Similarly, by using findall/3 Prolog predicate, we also as-
sume the rest of rules to be triggered in declaration order but no rule resolution
mechanism is provided in our prototype. We acknowledge that ordering of rules
may be a desirable feature in production systems so we envisage a more expres-
sive although more complex definitions of rule triggering including the feature
mentioned above.

In Defs. 5.1.10 and 5.1.2 we introduced how actions in rules change the
initial state by adding and removing possibly constrained atomic formulae. We
use forward chaining for if-rules to calculate logical consequence of facts, that is,
we execute rules until no new rule can be executed. In order to do not repeat
the execution of the same rule with the same parameters we record them during
one exhaustive application of rules.

Thus, starting from a inital state Delta, i.e. a list of atomic formulae, a list
of events Events, and a list of each type of rule, the predicate calculates a new
state NewDelta.

78 Chapter 5. Regulating Concurrency

s_star(Delta,Events,ECARules,IfRules,IgnRules,PrvRules,FrcRules,

NewDelta):-

reset,

s_if(Delta,IfRules,PrvRules,Delta2),

s_force(Delta2,Events,IfRules,IgnRules,PrvRules,FrcRules,

NewEvents, Delta3),

s_eca(Delta3,NewEvents,ECARules,IfRules,IgnRules,PrvRules,

NewDelta).

Figure 5.3: The s star predicate

Then, predicate s star calculates a new state performing the following pro-
cedure: it resets the annotations on rules previously fired, i.e. executed; it then
calculates a partial state Delta2 by applying if-rules; afterwards it modifies the
list of events Events, and the partial state Delta2 with the application of force
rules obtaining a new list of events NewEvents and a new partial state Delta3;
finally it applies ECA-rules on the partial state Delta3 using the new list of
events NewEvents and obtaining the final state NewDelta.

As figures 5.4 and 5.5 show, the application of if-rules, mirroring Def. 5.1.8,
consist on the repetition of selecting the first rule that can be fired and apply it
until no new rule can be selected. To execute or fire a rule consist on annotating
that the rule has been fired with the given parameters, calculating the new state
after applying the actions of the rule and checking if no prevent-rule has to avoid
the result.

s_if(Delta,IfRules,PrvRules,NewDelta):-

select_rule(Delta,IfRules,R),R\=[],

fire(Delta,PrvRules,R,TmpDelta),

s_if(TmpDelta,IfRules,PrvRules,NewDelta).

s_if(Delta,IfRules,_,Delta):-

select_rule(Delta,IfRules,[]).

s_if(Delta,IfRules,PrvRules,NewDelta):-

s_if(Delta,IfRules,PrvRules,NewDelta).

Figure 5.4: The s if predicate

fire(Delta,PrvRules,if C do A,NewDelta):-

assert(fired(if C do A)),

s_r(Delta,A,NewDelta),

check_prv(NewDelta,PrvRules).

Figure 5.5: The fire predicate

5.2. Example of Concurrency: Soup Bowl Lifting 79

Figure 5.6 shows the application of force-rules mirroring Def. 5.1.12. It
consists executing all the rules that can be fired, i.e. checking that the partially
grounded events in the rules can be unified with the events in the list Events,
checking with predicate s l that the condition C holds in state Delta and that
the events that fire the rules are not ignored by any ignore-rule. Then, rule
execution is performed by s prime r predicate by applying the actions of the
rules fired, checking that the results should not be prevented and firing new
if-rules if it is the case.

s_force(Delta,Events,IfRules,IgnRules,PrvRules,FrcRules,

NewEvents,NewDelta):-

findall([FE,A],(member(force FE on E if C do A,FrcRules),

subset2(E,Events),s_l(Delta,C),

\+ ignored(Delta,Events,E,IgnRules)),EAs),

findall(Ev,member([Ev,Ac],EAs),Es), append(Es,Events,NewEvents),

findall(Ac,member([Ev,Ac],EAs),As),s_prime_r(Delta,IfRules,

PrvRules,As,NewDelta).

Figure 5.6: The s force predicate

As figure 5.7 shows, the application of ECA-rules, mirroring Def. 5.1.11,
consist on executing all the rules that can be fired, i.e. checking that the partially
grounded events in the rules can be unified with the events in the list Events,
checking with predicate s l that the condition C holds in state Delta and that
the events that fire the rules are not ignored by any ignore-rule. Then, rule
execution is performed by s prime r predicate as before.

s_eca(Delta,Events,ECARules,IfRules,IgnRules,PrvRules,NewDelta):-

findall(A,(member(on E if C do A,ECARules),subset2(E,Events),

s_l(Delta,C),\+ ignored(Delta,Events,E,IgnRules)),As),

s_prime_r(Delta,IfRules,PrvRules,As,NewDelta).

Figure 5.7: The s eca predicate

5.2 Example of Concurrency: Soup Bowl Lifting

In this section we present an example of how to use the I language in order to
specify a variation of a problem about concurrent action: the Soup Bowl Lifting
problem [Gelfond et al., 1991]. We consider a situation where a soup bowl has
to be lifted by two (physical) agents; one lifting from the right-hand side and
the other one from the left-hand side. If both sides are not lifted simultaneously
then the soup spills.

As introduced in Def. 5.1.6, the order in which the rules are declared is
important since they are executed in the order they are declared. We do not

80 Chapter 5. Regulating Concurrency

obtain the same effect with rules 5.7, 5.8 and 5.9 (spilled does not hold after
the bowl is lifted from both sides simultaneously) as with rules 5.9, 5.7 and 5.8
(spilled holds even if lifted from both sides simultaneously).

on liftLeft if onTable do add(spilled) (5.7)

on liftRight if onTable do add(spilled) (5.8)

on liftLeft , liftRight if onTable do del(spilled),del(onTable) (5.9)

Rules 5.7 and 5.8 specify that the soup is spilled whenever the bowl is lifted
either from the right-hand side or the left-hand side alone. However, rule 5.9
avoids the spill effect whenever both events are done simultaneously. However,
with rules 5.9, 5.7 and 5.8, we do not obtain the desired result since the spilled
formula may be added after executing the rule that removes spilled .

To prevent the bowl from spilling, we may add the following rule to rules
5.7-5.9:

prevent spilled if true (5.10)

However, adding the following rules instead would also prevent the bowl from
being lifted since ignoring one event will prevent the combined events from being
considered.

ignore liftLeft if true (5.11)

ignore liftRight if true (5.12)

Contrarily, if we add rule 5.13 to rules 5.7-5.9, we prevent the bowl from
being lifted from both sides simultaneously but not prevent it from being lifted
from just one side since we are only ignoring the events if they occur together.

ignore liftLeft , liftRight if true (5.13)

This basic example illustrates the use of I.

5.3 Applied Example: Bank

In this section we introduce an example of a banking institution in which agents
are allowed to do certain operations with money. The operations in our bank
are depositing, withdrawing and transferring. In our example we have two types
of accounts called a and b owned by two different agents. In order to perform
an operation in one of these accounts both agents have to simultaneously make
the proper request.

Type a accounts have the limitation that no withdrawals, transfers and debits
are allowed if the account haves a negative balance. However, if the account
holder also has an account of type b with enough money then the necessary
amount is automatically transferred to the account with negative credit and a
fee is debited.

Type b accounts have the following limitations:

5.3. Applied Example: Bank 81

1. They cannot have a negative balance. All transactions that would cause a
negative balance are rejected.

2. Withdrawing from or depositing to these accounts is not allowed1.

Rule 5.14 specify the effects of opening an account of type T to agents A1
and A2 with an amount M of credit if another account of the same type with
the same owners is not already opened.

on open account(Id ,A1,A2,T ,M)
if not(account(Id ,A1,A2,T ,)) ∧ not(account(Id ,A2,A1,T ,))
do add(account(Id ,A1,A2,T ,M)),

add(inst(open account(Id ,A1,A2,T ,M),Time))

(5.14)

Rule 5.15 specify the effect of withdrawing a given quantity Mq of money from
a given account due to the simultaneous request of both owners of the account.
The rules in the action section calculate the new credit for the account and
modifies its value by removing the old credit and adding the new one. Likewise,
a rule for the effects of depositing may also be specified.

on withdraw(A1, Id ,Mq),withdraw(A2, Id ,Mq)
if account(Id ,A1,A2,T ,M)
do M 2 = M −Mq,del(account(Id ,A1,A2,T ,M)),

add(account(Id ,A1,A2,T ,M 2)),
add(inst(withdraw(A1,A2, Id ,Mq),Time))

(5.15)

Rule 5.16 specifies the effect of transferring from one account (of an agent
and of a certain type) to another account possibly as payment of a certain good
G : the source account is deducted the stated amount and it is added to the
destination account.

on transfer(A1, Ids , Idd ,G ,M), transfer(A2, Ids , Idd ,G ,M)
if account(Ids ,A1,A2,Ts ,Ms) ∧ account(Idd ,A3,A4,Td ,Md)
do M 2s = Ms −M ,del(account(Ids ,A1,A2,Ts ,Ms)),

add(account(Ids ,A1,A2,Ts ,M 2s)),M 2d = Md + M ,

del(account(Idd ,A3,A4,Td ,Md)),
add(account(Idd ,A3,A4,Td ,M 2d)),
add(inst(transfer(A1,A2, Ids , Idd ,G ,M),Time))

(5.16)

To avoid concurrent actions affecting the same account, we use rule 5.17. In
this case, only the first action is taken into account and the remaining concurrent
actions are ignored.

prevent account(I ,A1,A2,T ,M) ∧ account(I ,A1,A2,T ,M2) if M 6= M2 (5.17)

In our example, accounts of type a have the restriction that agents are not
allowed to withdraw or transfer from a accounts with negative credit. This is

1Notice that transferring from or to these accounts is still allowed.

82 Chapter 5. Regulating Concurrency

achieved with rules like:

ignore withdraw(A, Id ,) if account(Id ,A, , a,M) ∧M < 0 (5.18)

ignore transfer(A, Ids , , ,) if account(Ids ,A, , a,M) ∧M < 0 (5.19)

Accounts of type b also have some restrictions. First, they cannot go into
negative numbers. This is achieved with the following rule:

prevent account(Id ,A1,A2, b,M) if M < 0

Second, agents are not allowed to withdraw from accounts of type b. This is
achieved by rule 5.20.

ignore withdraw(, Id ,) if account(Id , , , b,) (5.20)

Furthermore, if an account of type a gets a negative balance then the nec-
essary amount to avoid this situation is transferred from an account of type b.
Rule 5.21 forces this type of events. Notice that a similar rule but with the order
of the owners of the accounts reversed is also necessary since the owners may
not appear in the same order.

force transfer(A, Idb , Ida , a negative,C),
transfer(A2, Idb , Ida , a negative,C)

if account(Ida ,A,A2, a,C 2) ∧ C 2 < 0 ∧ C = −C 2
(5.21)

5.4 Norm-Oriented Programming of Scenes

In this section, we apply I to the specification and enactment of scenes similarly
to sections 4.2 - 4.4. We use the same formulae to program EIs of section 4.2.1.
However, this time we give them semantics with I. Normative positions define
the normative state of agents without defining what their attitude towards it is,
i.e. how they will actually behave. In the following section, we will use I to
specify how the institution behaves with regards to these normative positions.

5.4.1 Providing Semantics to Normative Positions

We now provide some examples (translated from section 4.3) on how we explic-
itly manage normative positions of agents in I. Recall that when specifying a
normative system we need to define relationships among deontic notions.

We can confer different degrees of enforcement on MAS. We look again at
those events that agents generate, i.e. illocutions as ill(P ,A,R,A2,R2,M ,T);
these may become institutional events at time T , i.e.: inst(ill(P ,A,R,A2,R2,
M),T), supposing now is time T .

on ill(P ,A,R,A2,R2,M ,T) if time(T)
do add(inst(ill(P ,A,R,A2,R2,M),T))

(5.22)

This rule is a translation of rule 4.4. In I permissions are not specified in the
ECA-rules, these should be checked in ignore-rules and prevent-rules because,

5.4. Norm-Oriented Programming of Scenes 83

following I semantics, what is not ignored or prevented is therefore executed;
we do not need to add an extra check for permissions. However, when relating
attempts and prohibitions, as in rule 4.6 and the subsequent rules, we need to
check both cases: the event is ignored if its not permitted or it is prohibited:

ignore I if time(T) & not(per(I ,T) : C & sat(C)) (5.23)

ignore I if time(T) & prh(I ,T) : C & sat(C) (5.24)

As for obligations, rule 5.25 is an example of rule that removes an obligation
when it is fulfilled by an institutionalised event. Rule 5.26 shows an example
of rule capturing that if certain conditions hold then an obligation to utter an
(institutionalised) illocution before a given deadline D is generated.

if inst(I ,T) & obl(I ,T) : C & sat(C) do del(obl(I ,T) : C) (5.25)

if conds do add(obl(ill(P ,A,R,A2,R2,M),T) : [T < D]) (5.26)

Rule 5.27, translated from rule 4.9, states that if an obligation with deadline
has not been fulfilled, i.e. there exists an obligation with a constraint associated
the time, the deadline has passed, i.e. the current time is greater than or equal
to the deadline, and we have not yet applied a sanction for that particular
obligation, then we apply a sanction.

if

obl(ill(inform,Ag1,R,Ag2,R

′,Action),T) : C &

(T < D) ∈ C & time(T2) & (T2 ≥ D) &

not(sanction(obl(ill(inform,Ag1,R,Ag2,R
′,Action),T), (T < D)))

& credit(Ag1,C) & credit(ei ,C 2) & C 3 = C − 20 & C 4 = C 2 + 20

do

 del(credit(Ag1,C)),add(credit(Ag1,C 3)),
del(credit(ei ,C 2)),add(credit(ei ,C 4)),

add(sanction(obl(ill(inform,Ag1,R,Ag2,R
′,Action),T), (T < D)))

(5.27)

These examples show how I can be also used in the specification and enact-
ment of protocols.

5.4.2 Normative Conflict Resolution

As we mentioned above, I has a clear semantics: what is not ignored or prevented
is therefore executed. Therefore in the case an event is both expected and
ignored, it will not be executed. Furthermore, in the case of rules 5.23 and 5.24,
if conflicting permissions and prohibitions exist then the illocution is ignored.
However, the normative positions are not removed and may lead the agents to
confusion if they do not have clarity that the EI will ignore events in case of
inconsistency.

Although I has a fixed semantics, we can work around this by using the
following rules: Rule 5.28 makes prohibitions prevail over permissions and obli-
gations; Rule 5.29 makes prohibitions prevail over permissions but not over obli-
gations; and Rule 5.30 makes prohibitions yield for permissions and obligations.

84 Chapter 5. Regulating Concurrency

ignore I if time(T) & prh(I ,T) : C & sat(C) (5.28)

ignore I if time(T) & prh(I ,T) : C & sat(C) &

not(obl(I ,T) : C ′ & sat(C ′))
(5.29)

ignore I if time(T) & prh(I ,T) : C & sat(C) &

not(per(I ,T) : C ′ & sat(C ′)) &

not(obl(I ,T) : C ′ & sat(C ′))
(5.30)

5.5 Conclusions

In this chapter we have proposed a language with different types of rules to
specify norms (with temporal aspects and arithmetical constraints) over agents’
simultaneous speech acts and to specify preventive and corrective actions that
the system has to perform in each case. We have also proposed ignoring speech
acts and preventing states of affairs as preventive actions and forcing speech acts
and sanctioning as corrective actions. Finally, we have provided an interpreter
for the language that we show in its entirety in Appendix B.
I is a rule language in which concurrent events may have a combined effect

and may be ignored, forced, expected or sanctioned (instead of the standard
notions in deontic logics). The semantics of our formalism relies on transition
systems conferring it a well-studied semantics.

We have explored the proposal of this chapter by specifying two examples
of concurrency: the soup bowl lifting problem and an example of a bank as an
Electronic Institution. We have explained how to use prevent and ignore rules
to resolve conflicts using different criteria.

The language I is useful to predict a future state of affairs with an initial
state and a sequence of sets of events that occur and modify the intermediate
states of affairs until we reach the final one. The limitations of the language are
determined by the rule engine. These limitations include the inability to plan,
i.e. determine the sequence of sets of events that must occur in order to reach
a given state of affairs from a given initial state, or post-dicting, i.e. determine
the previously unknown facts in a partial initial state given a final state and
the sequence of sets of events that may have occurred. However, the goal of
the language is to regulate a MAS and keep track of its evolution by prediction.
Post-diction and planning would be interesting for a language that an agent
could use for deciding which action to perform but this is not the aim of this
thesis.

In this chapter, we have shown how activities can be regulated with the
language presented and we have presented that I has a simple and fixed stance
on normative conflicts but we can change the execution by adding extra ignore-
rules specifying what normative positions prevail. However, this method is very
rudimentary as normative positions are not removed and may lead to errors.

In [Esteva, 2003], obligations created by agent behaviour need to be fulfilled
in different scenes or activities. For instance, when an agent wins an auction it

5.5. Conclusions 85

may be obliged to pay the good in a bank or a special facility for that purpose
possibly using a pre-established protocol different from the auction protocol.
Thus, in the next chapter, we generalise the notion of propagation of obligations
to normative positions allowing actions of agents to generate normative posi-
tions in other activities and involving other agents. We specify this causal flow
by means of a semi-graphical representation, the normative structure which con-
forms a normative layer on top of activities driven by normative positions, e.g.
using languages presented in chapters 4 and 5. Furthermore, proposes a conflict
resolution algorithm to be applied whenever a normative position is added to a
protocol.

Chapter 6

A Normative Structure for
Multiple Activities

In this chapter we address our research questions about how to specify norms and
make them operational to regulate multiple concurrent and distributed activi-
ties. For this purpose, we propose normative structures, a computational model
for the propagation of formulae among activities and we reduce the normative
structure to coloured Petri nets (CPNs) to show that the verification of norma-
tive conflicts is computationally intractable. Finally, we provide an interpreter
for normative transitions.

In this chapter, we deal with multiple distributed activities. However, ac-
tivities are not always isolated. In [Esteva, 2003], obligations created by agent
behaviour may need to be fulfilled in different scenes or activities. For instance,
a buyer agent that wins an auction has the obligation to pay for the auctioned
item in the near future in the premises provided for that purpose.

To deal with the distribution of activities we conceive two approaches:

Tightly-coupled distribution When an obligation is propagated from one
activity to the next ones, the first activity directly sends the obligation to
the others. In this approach activities are very dependent on each other as
every activity should know all the possible recipients of their obligations.

Loosely-coupled distribution When an obligation is propagated from one
activity to the next ones, the first activity sends the obligation to a prop-
agator in charge of spreading the obligation among the appropriate activ-
ities. In this approach activities are less co-dependent on each other as
they only need to know the pertinent propagators which, in theory, are
fewer in number and more persistent than activities.

In this chapter, we generalise the generation of obligations in other scenes or
activities to normative positions, allowing actions of agents to generate norma-
tive positions in other scenes or activities and possibly involving other agents.
For instance, a buyer who ran out of credit may be forbidden from making

87

88 Chapter 6. A Normative Structure for Multiple Activities

further offers in all the auctions it may participate in until its credit has been
re-established. We specify this causal flow by means of a semi-graphical repre-
sentation, the normative structure (NS) which confers a normative layer on top
of scenes driven by normative positions, e.g. using the language presented in
chapter 5. The normative structure corresponds to a loosely-coupled distribu-
tion approach.

Within a NS conflicts may arise due to the dynamic nature of the MAS and
the concurrency of agents’ actions. For instance, an agent may be obliged and
prohibited to do the same action of a protocol. Methods for conflict resolu-
tion in contradicting laws have been studied in the field of artificial intelligence
and law [Sartor, 1992] and agent reasoning over conflicting normative positions
has been addressed in [Kollingbaum, 2005]. However, it is not until the work
in [Kollingbaum et al., 2007a] that conflicts among normative positions refined
with constraints can be resolved from an institutional perspective. Normative
conflicts with constraints appear when a prohibition and an obligation or per-
mission over the same agent to perform certain action with certain constraints
hold and the range of accepted and rejected values expressed by the constraints
overlaps. For instance, if there exists an obligation for a particular agent to pay
between 200e and 210e but the same agent is also forbidden to pay quantities
greater than 100e – e.g. because it is not desirable that agents make payments
greater than its credit – then the system should decide, following pre-established
criteria, if the obligation should be cancelled or if the prohibition should be mod-
ified, by changing the constraints, to allow the agent to pay between 200e and
210e.

In this chapter, we show by translating the NS into a Coloured Petri Net
(CPN) [Jensen, 1997] and borrowing some well-known theoretical result from the
field of CPNs, that ensuring conflict freedom at design time is computationally
intractable. Thus, we propose that conflict detection and resolution at runtime
can complement formal techniques of verification used at design time. We also
show in this chapter the approach of [Kollingbaum et al., 2007a] applied to our
formulation of normative positions and normative structure.

6.1 Scenario

We use a supply-chain scenario in which companies and individuals come to-
gether at a virtual (electronic) marketplace to conduct business. The overall
transaction procedure may be organised as six activities, represented as nodes
in the diagram of Figure 6.1. They involve different participants whose behaviour
is coordinated through protocols. In this scenario agents can play one of four
roles: accountant (represented as acc), client, supplier (represented as supp) and
warehouse manager (represented as wm). The arrows connecting the activities
indicate the order activities can be enacted.

After registering at the marketplace, clients and suppliers get together in
the negotiation activity where they agree on the terms of their transaction, i.e.
prices, amounts of goods to be delivered, deadlines and other details. In the

6.2. Normative States, Transitions and Structures 89

Exit
Registration

Payment

Delivery

Negotiation

Coordination Model

Contract

Figure 6.1: Activities of Virtual Marketplace

contract activity, the order becomes established and an invoice is prepared. The
client will then participate in a payment activity, verifying his credit-worthiness
and instructing his bank to transfer the correct amount of money. The supplier
in the meantime will arrange for the goods to be delivered (e.g. via a warehouse
manager) in the delivery activity. Finally, agents can leave the marketplace
conforming to a predetermined exit protocol. The marketplace accountant par-
ticipates in most of the activities as a trusted provider of auditing tools. In
the rest of the chapter we shall build on this scenario to exemplify the notion
of normative structure and to illustrate our approach to conflict detection and
resolution in a distributed setting.

6.2 Normative States, Transitions and Struc-
tures

Using our basic concepts, we now provide formal definitions for normative states,
transitions and structures. We first define normative states as follows:

Definition 6.2.1. A normative state ∆ is a finite set of pairs 〈I, t〉 (illocutions)
or 〈N, t〉 (normative positions), t ∈ N, representing, respectively, that I was
uttered at instant t and normative position N has been established at instant t
(or has been active since instant t).

Normative states record both the events (what was uttered and when) and
the normative positions occurring in an activity. A sample normative state of
the delivery activity of our scenario (referred to as dlvry) is:

dlvry =

 〈inform(sean, seller, kev, wm, deliver(wire, 200), 20), 20〉
〈obl(inform(kev, wm, jules, client, deliver(wire, 200), 30)), 20〉
〈prh(inform(kev, wm, jules, client, deliver(iron, 25), 30)), 20〉

In the normative state above, agent sean taking up the seller role has de-

livered 200kg of wire to agent kev taking up the warehouse manager role wm1.

1Following the terminology from [Searle, 1995] and the computational model of an activity
from [Garćıa-Camino et al., 2007b], we design our MAS in order to incorporate that informing

90 Chapter 6. A Normative Structure for Multiple Activities

Agent kev has an obligation to deliver 50kg of copper to sean; kev is, how-
ever, prohibited to deliver 25kg of iron to jules, another client. In a pair
〈p(ag, r, ag′, r′, τ, t), t ′〉 ∈ ∆, it is always the case that t = t ′, that is, the time
the illocution was uttered and their time as recorded in ∆ are always the same.
However, in a pair 〈obl(p(ag, r, ag′, r′, τ, t)), t ′〉 ∈ ∆, t may be different from t ′,
as t reflects the time when the illocution ought to be uttered and t ′ represents
when the normative position was generated (the same applies to the other nor-
mative positions per and prh). Normative states evolve over time; activities are
connected to one another via normative transitions that specify how utterances
and normative positions in one activity (represented in its normative state) affect
other activities.

Activities are not independent: illocutions uttered in some of them may have
an effect in other activities. Normative transitions define the conditions under
which a normative position is updated. These conditions are either utterances
and/or norms associated with a given activity, which yield a normative com-
mand, i.e. the addition or removal of a normative position, possibly in a distinct
activity. We capture dynamic aspects of norms (and their relationships across
distinct activities) via normative transitions, defined as follows:

Definition 6.2.2. A normative transition R is of the form:

R ::= V⇒C
V ::= V & V

| V || V
| not(V)
| ids : D
| α

D ::= α | α : Γ
C ::= C,C

| add(ids : D)
| del(ids : D)

where α is an atomic formula possibly followed by a set of constraints (Γ), ids

is an identifier for activity s and C is a normative command.

In α (but not in ids : α), we capture arithmetical operations and all the
special commands we have been using in the previous sections such as time/1
and sat/1.

We endow our language of Definition 6.2.2 with the usual semantics of rule-
based languages [Kramer and Mylopoulos, 1992] which we informally describe
below. Rules map an existing normative structure to a new normative struc-
ture where only the normative scenes change. Figure 6.2 presents a possible
interpreter for normative transitions.

We extend the notion of MAS with an extra layer consisting of normative
states and transitions. This layer is represented as a bi-partite graph which we

about a delivery “counts as” a factual delivery provided the items have been registered in the
MAS.

6.2. Normative States, Transitions and Structures 91

1. sl(∆, (V & V′), σ)← sl(∆,V, σ
′), sl(∆,V

′ · σ′, σ′′), σ = σ′ ∪ σ′′
2. sl(∆, (V || V′, σ)← sl(∆,V, σ)
3. sl(∆, (V || V′), σ)← sl(∆,V

′, σ)
4. sl(∆, not(V), σ)← ¬sl(∆,V, σ)
5. sl(∆, sat(Γ), σ)← satisfiable(Γ · σ)
6. sl(∆, ids : D, σ)← member((ids : D) · σ,∆)
7. sl(∆, α, σ)← call(α · σ)
8. sr (∆, (C,C′),∆′′)← sr (∆,C,∆′), sr (∆′,C′,∆′′)
9. sr (∆, add(ids : α),∆′)← ∆′ = ∆ ∪ {ids : α}

10. sr (∆, add(ids : α : Γ),∆′)← satisfiable(Γ), ∆′ = ∆ ∪ {ids : α : Γ}
11. sr (∆, add(ids : α : Γ),∆)←
12. sr (∆, del(ids : D),∆′)← delete(∆, ids : D,∆′)
13. s′r (∆, [],∆′)← ∆ = ∆′

14. s′r (∆, [C | Cs],∆′)← sr (∆,C,∆′′), s′r (∆′′′,Cs,∆′)
15. s∗(∆,Rules,∆′)←

findall(C, (member((V⇒C),Rules), sl(∆,V),Cs),
s′r (∆,Cs,∆′)

Figure 6.2: An Interpreter of Normative Transitions

call normative structure. A normative structure relates normative states and
normative transitions specifying which normative positions are to be added to
or removed from which normative states.

Definition 6.2.3. A normative structure is a labelled bi-partite graph 〈N ,E ,
Lin ,Lout〉 where

• N = S ∪ B , S being a set of normative states and B a set of normative
transitions

• E = Ain ∪ Aout , Ain ⊆ S × B are the input arcs and Aout ⊆ B × S are
output arcs of normative transitions

• Lin : Ain 7→ D is a labelling function, assigning an illocution or normative
position to an input arc

• Lout : Aout 7→ N is a labelling function, assigning a normative position to
an output arc

such that:

1. ∀ b ∈ B , ∃ a ∈ Ain : [b = (V⇒C) ∧ V = (s : D) ∧ s ∈ S ∧ D ∈ s] →
a = (s, b) ∧ Lin(a) = D.

2. ∀ b ∈ B , ∃ a ∈ Aout : [b = (V⇒C) ∧ C =©(s : N) ∧ © ∈ {add, del} ∧
s ∈ S , N ∈ s]→ a = (b, s) ∧ Lout(a) = N.

3. ∀ a ∈ Ain ,∃ σ ∈ Σ : [a = (s, b) ∧ b = (V⇒C) ∧ Lin(a) = D] → (s :
D) · σ ∈ V.

92 Chapter 6. A Normative Structure for Multiple Activities

4. ∀ a ∈ Aout ,∃ σ ∈ Σ : [a = (b, s) ∧ b = (V⇒C) ∧ Lout(a) = N] → (s :
N) · σ ∈ C.

The first two requirements ensure that every utterance and every normative
position on the left-hand side of a normative transition labels an arc entering a
normative transition in the normative structure, and that the normative position
on the right-hand side labels the corresponding outgoing arc. Requirements three
and four ensure that labels from all incoming arcs are used in the left-hand side
of the normative transition, and that the labels from all outgoing arcs are used
in the right-hand side of the normative transition that these arcs leave.

The formal semantics of normative structures is defined via a mapping to
Coloured Petri Nets in Section 6.3.1. Here we give the intuitive semantics of
normative transition by describing how they change a normative state of a nor-
mative structure yielding a new normative structure. Each rule is triggered once
for each substitution that unifies the left-hand side V of the rule with a normative
state. An utterance or a normative position on the left-hand side of a rule holds
iff it unifies with an utterance or normative position appearing in the normative
state. Every time a rule is triggered, the update specified on the right-hand side
of that rule is carried out, thus adding or removing a normative position from a
normative state. Conflicts may arise after the addition of normative positions:
if a conflict arises, we make use of an algorithm to decide whether to ignore the
new normative position or to “adjust” old normative positions to avoid conflicts.
We explain this in more detail in Section 6.4.

6.2.1 Example

We now present four normative transitions from our scenario of Section 6.1. The
first rule illustrates how one single normative state can be modified. The second
rule makes reference to more than one normative state in its left-hand side.
Finally, rules 3 and 4 illustrate a “normative flow” whereby the appearance of
a new obligation in one normative state generates other obligations in different
normative states.

In our scenario, during the negotiation activity (represented as ngtn), a re-
quest of a buyer B to a seller S to sell an amount A of item It at price P leads
to the introduction of a normative position in the same normative state. The
normative position is a permission on the seller S to accept the request from B .
This is formalised by the following rule:

(ngtn : request(B , buyer,S , seller, sell(It,A,P),T1)
⇒
add(ngtn : per(accept(S , seller,B , buyer, sell(It,A,P),T2)))

In the negotiation activity, if a seller S accepts the offer of a buyer B to sell
an amount A of item It at price P and in the payment activity (represented
as pmnt) the same buyer has paid P to seller S , then that introduces into the
delivery activity an obligation on the seller agent to deliver the sold item It.

6.2. Normative States, Transitions and Structures 93

This is captured by the following normative transition:(
(ngtn : accept(S , seller,B , buyer, sell(It,A,P),T1)),
(pmnt : inform(B , buyer,S , seller, pay(P),T2))

)
⇒
add(dlvry : obl(inform(S , seller,B , buyer, deliver(It,A),T3)))

During the delivery activity, the creation of an obligation on seller s1 to deliver
copper wire leads to the propagation onto the distribution activity (represented
as dstr) of an obligation on distributor d1 to deliver that amount of copper wire
to s1. We can represent this by the following rule:

(dlvry : obl(inform(s1, seller,B , buyer, deliver(copperwire,A),T1)))
⇒
add(dstr : obl(inform(d1, dstror, s1, seller, deliver(copperwire,A),T2)))

Finally, during the distribution activity, the creation of an obligation on the
distributor d1 to deliver some copper wire allows the propagation onto the
manufacture activity (represented as mnfc) an obligation on manufacturer m1

to deliver that amount of copper wire to d1. This is captured by the rule below:

dstr : obl(inform(d1, dstror,S , seller, deliver(copperwire,A),T1))
⇒
add(mnfc : obl(inform(m1,mnfer, d1, dstror, deliver(copperwire,A),T2)))

We show in Figure 6.3 a diagrammatic representation of how activities
relate and the flow of normative positions within a normative structure: as

Payment Delivery
Negotiation

Normative Level

Exit
Registration

Payment

Delivery

Negotiation

Coordination Level

Contract

Distribution

Manufacture

Distribution

Manufacture

Figure 6.3: Activities and Normative Structure

agents utter illocutions during activities, normative positions arise. Utterances
and normative positions are combined in normative transitions, causing the
flow/propagation of normative positions between activities.

94 Chapter 6. A Normative Structure for Multiple Activities

6.3 Formalising Conflict-Freedom

In this section we introduce basic concepts of Coloured Petri Nets (CPNs). We
map normative structures to CPNs and analyse their properties. We assume a
basic understanding of ordinary Petri nets and refer readers to [Jensen, 1997]
for more details.

CPNs combine the features of Petri nets with those of functional program-
ming languages. Firstly, Petri nets provide the primitives for the description of
the synchronisation of concurrent processes. As noticed in [Jensen, 1997], CPN
semantics builds upon true concurrency, instead of interleaving. True concur-
rency semantics is more natural to work with as this is how we envisage the
connection between the activity (coordination) and the normative levels of a
multi-agent system. Secondly, the functional programming languages used by
CPNs provide primitives for the definition of data types and the manipulation
of their data values. Thus, we can readily translate expressions of a norma-
tive structure into CPNs. Thirdly, CPNs have a large number of formal analysis
methods and tools through which properties of CPNs can be proved. CPNs thus
provide us with all the necessary features to formally reason about normative
structures given that an adequate mapping is provided.

Similarly to Petri nets, the states of a CPN are represented by means of
places. But unlike Petri nets, each place has an associated data type determining
the kind of data the place may contain. A state of a CPN is called a marking,
consisting of a number of tokens positioned in individual places. Each token
carries a data value which belongs to the type of the corresponding place. In
general, a place may contain two or more tokens with the same data value. Thus,
a marking of a CPN is a function which maps each place into a multi-set2 of
tokens of the correct type. One often refers to the token values as token colours
and one also refers to the data types as colour sets. The types of a CPN can be
arbitrarily complex.

The actions of a CPN are represented by means of transitions. An incoming
arc into a transition from a place indicates that the transition may remove
tokens from the corresponding place while an outgoing arc indicates that the
transition may add tokens. The exact number of tokens and their data values
are determined by the arc expressions, which are encoded using the programming
language chosen for the CPN. A transition is enabled in a CPN iff all the variables
in the expressions of its incoming arcs are bound to some value(s) (each one of
these bindings is referred to as a binding element). If so, the transition may
occur by removing tokens from its input places and adding tokens to its output
places. In addition to the arc expressions, it is possible to attach a boolean
guard expression (with variables) to each transition. The concepts above come
together in the following definition of CPN:

Definition 6.3.1. A CPN is a tuple Net = 〈Σ,P ,T ,A,N ,C ,G ,E , I 〉 where:

1. Σ is a finite set of non-empty types, also called colour sets;

2A multi-set is an extension of ordinary sets which allows multiple occurrences of an element.

6.3. Formalising Conflict-Freedom 95

2. P is a finite set of places;

3. T is a finite set of transitions;

4. A is a finite set of arcs;

5. N is a node function defined from A onto P × T ∪ T × P ;

6. C is a colour function from P onto Σ;

7. G is a guard function from T onto expressions;

8. E is an arc expression function from A onto expressions;

9. I is an initialisation function from P onto closed expressions;

The informal explanations for the enabling and occurrence rules given above
should help us to understand the behaviour of a CPN. Similar to ordinary Petri
nets, the concurrent behaviour of a CPN is based on the notion of step. Formally,
a step is a non-empty and finite multi-set over the set of all binding elements. Let
step S be enabled in a marking M. Then, S may occur, changing the marking
M toM′. Moreover, we say that markingM′ is directly reachable from marking
M by the occurrence of step S, and we denote it by M[S >M′.

A finite occurrence sequence is a finite sequence of steps and markings:
M1[S1 > M2 . . .Mn [Sn > Mn+1 such that n ∈ N and Mi [Si > Mi+1

∀ i ∈ {1, . . . ,n}. The set of all possible markings reachable for a net Net from a
marking M is called its reachability set, and is denoted as R(Net ,M).

6.3.1 Mapping Normative Structures to Coloured Petri
Nets

We propose a mapping “7→” from a simpler version of NSs without constraints,
disjunction nor negation to CPNs, to provide semantics for the NSs and to prove
properties about NSs using well-known results from CPNs. Our mapping makes
use of correspondences between normative states and CPN places, normative
transitions and CPN transitions and finally between arc labels and CPN arc
expressions. Namely:

S 7→ P
B 7→ T

Lin ∪ Lout 7→ E

The set of types is the singleton set containing the colour NP (i.e. Σ = {NP}).
We use CPN-ML syntax [Christensen and Haagh, 1996] to structure this com-
plex type as follows:

color NPT = with Obl | Per | Prh | NoMod

color IP = with inform | declare | offer

color UTT = record

illp : IP

96 Chapter 6. A Normative Structure for Multiple Activities

ag1,

role1,

ag2,

role2 : string

content: string

time : int

color NP = record

mode : NPT

illoc : UTT

Modelling illocutions as normative positions without modality (NoMod) is a
“trick” to ensure that sub-nets can be combined as explained below. Arcs are
mapped almost directly. A is a finite set of arcs and N is a node function,
such that ∀ a ∈ A ∃ a ′ ∈ Ain ∪ Aout .N (a) = a ′. The initialisation function I is
defined as I (p) = ∆s (∀ s ∈ S where p is obtained from s using the mapping,
where s = 〈id,∆s〉). Finally, the colour function C assigns the colour NP to
every place: C (p) = NP (∀ p ∈ P). We do not make use of the guard function
G .

6.3.2 Properties of Normative Structures

Having defined the mapping from normative structures to Coloured Petri Nets,
we now look at properties of the latter which help us understand the complexity
of conflict detection. One question we would like to answer is, whether at a given
point in time, a given normative structure is conflict-free. Such a snapshot of a
normative structure corresponds to a marking in the mapped CPN:

Definition 6.3.2. A marking Mi is conflict-free if ¬∃ p ∈ P . ∃np1,np2 ∈
Mi(p) such that np1.mode = Obl and np2.mode = Prh and np1.illoc and
np2.illoc unify.

Another interesting question is whether a conflict will occur from such a
snapshot of the system by propagating the normative positions. In order to
answer this question, we first translate the snapshot of the normative structure
to the corresponding CPN and then execute the finite occurence sequence of
markings and steps, verifying the conflict-freedom of each marking as we go
along:

Definition 6.3.3. Given a marking Mi , a finite occurrence sequence
Si ,Si+1, ...,Sn is called conflict-free, if and only if Mi [Si >Mi+1 . . .Mn [Sn >
Mn+1 and Mk is conflict-free for all k such that i ≤ k ≤ n + 1.

However, the main question we would like to investigate is whether a given
normative structure is conflict-resistant, that is, whether or not the agents en-
acting the MAS are able to bring about conflicts through their actions. When
we factor in arbitrary actions (or utterances) from autonomous agents, we lose
determinism.

6.3. Formalising Conflict-Freedom 97

Having mapped the normative structure to a CPN, we now add CPN mod-
els of the agents’ interactions. Each form of agent interaction (i.e. each ac-
tivity) can be modelled using CPNs along the lines of the work described
in [Cost et al., 2000]. These non-deterministic CPNs “feed” tokens into the CPN
that models the normative structure, thereby introducing non-determinism into
the combined CPN. Figure 6.4 shows the evolution of a CPN. The lower half of
figures 6.4(a)-6.4(c) shows part of a CPN model of an agent protocol where the
arc denoted with ‘1’ represents an illocution by an agent. The target transition

CPN of
Activity

CPN of
Normative
Structure

1

(a)

CPN of
Activity

CPN of
Normative
Structure

2

(b)

CPN of
Activity

CPN of
Normative
Structure

3

(c)

Figure 6.4: Evolution of CPNs for an Activity and a Normative Structure

of this arc not only moves a token on to the next state of this CPN, but also
places a token in the place corresponding to the appropriate normative state
in the CPN model of the normative structure (via arc ‘2’). Transition ‘3’, for
instance, may propagate the token in form of an obligation. Thus, from a given
marking, many different sequences are possible depending on the agents’ actions.
We make use of a reachability set R to define a situation in which agents cannot
cause conflicts.

Definition 6.3.4. A marking Mi is conflict-resistant iff all markings in
R(N ,Mi) are conflict-free.

Checking conflict-freedom of a marking can be done in polynomial time by
checking all places of the CPN for conflicting tokens. Conflict-freedom of an
occurrence sequence in the CPN that represents the normative structure can
also be done in polynomial time since such a sequence is deterministic given a
snapshot.

98 Chapter 6. A Normative Structure for Multiple Activities

Whether or not a normative structure is designed safely corresponds to check-
ing the conflict-resistance of the initial markingM0. Verifying conflict-resistence
of a marking becomes a very difficult task. It corresponds to the reachability
problem in a CPN: “can a state be reached or a marking achieved, that con-
tains a conflict?”. This reachability problem is known to be NP-complete for
ordinary Petri nets [Murata, 1989] and since CPNs are functionally identical,
one cannot expect to verify conflict-resistence of a normative structure at design
time within a reasonable amount of time. Therefore, one can only verify the
conflict-freedom of the initial state of the normative structure and distributed,
run-time mechanisms are needed to ensure that a normative structure maintains
consistency.

6.4 Resolving Normative Conflicts in Run-time

In this section, norms refer to illocutions (as opposed to arbitrary actions) –
normative conflicts arise when an illocution is simultaneously obliged and pro-
hibited. The terms deontic conflict and deontic inconsistency have been used
interchangeably in the literature to refer to situations in which actions are simul-
taneously associated with different modalities. However, in this thesis we adopt
the view of [Elhag et al., 2000] in which the authors suggest that a deontic in-
consistency arises when an action is simultaneously permitted and prohibited
– since a permission may not be acted upon, no conflict actually occurs. The
situation when an action is simultaneously obliged and prohibited is, however,
a normative conflict, as both obligations and prohibitions influence agents’ be-
haviours in a conflicting fashion.

6.4.1 Conflict Detection

We use unification of first-order terms [Apt, 1997, Fitting, 1990] as a means to
detect and resolve conflicts between normative positions. Unification is based on
the concept of substitution (viz. Def. 4.1.6 and 4.1.8), that is, the set of values
for variables in a computation.

Definition 6.4.1. A conflict arises between α : Γ and α′ : Γ′ under a sub-
stitution σ, denoted as conflict(α : Γ, α′ : Γ′, σ), iff the following conditions
hold:

1. Either

1.1. α = per (̄I), α′ = prh (̄I
′
) or;

1.2. α = obl (̄I), α′ = prh (̄I
′
)

2. Ī · σ = Ī
′ · σ, satisfy((Γ ∪ Γ′) · σ)

Two conditions are tested: the first one checks that the various components
of a possibly conflicting normative position unify; the second one checks that
the constraints associated with the normative positions are satisfiable.

6.4. Resolving Normative Conflicts in Run-time 99

6.4.2 Conflict Resolution

Our work presented in [Kollingbaum et al., 2007a] is the basis of the work intro-
duced in this section. We now formally define how the curtailment of normative
positions takes place. It is important to notice that the curtailment of a norma-
tive position creates a new (possibly empty) set of curtailed normative positions.

In order to curtail α : Γ thus avoiding any overlapping of values its vari-
ables may have with those variables of α′ : Γ′, we must “merge” the negated
constraints of α′ : Γ′ with those of α : Γ. Additionally, in order to ensure the
appropriate correspondence of variables between α : Γ and α′ : Γ′ is captured,
we must apply the substitution σ obtained via conflict(α : Γ, α′ : Γ′, σ) on the
merged negated constraints.

Definition 6.4.2. Relationship curtail(α : Γ, α′ : Γ′,∆) holds iff ∆ is a possibly
empty and finite set of normative positions obtained by curtailing α : Γ with
respect to α′ : Γ′. The following cases arise:

1. If conflict(α : Γ, α′ : Γ′, σ) does not hold then ∆ = {α : Γ}, that is, the
set of curtailments of a non-conflicting norm α : Γ is α : Γ itself.

2. If conflict(α : Γ, α′ : Γ′, σ) where Γ = {γ0, . . . , γn} and Γ′ = {γ′0, . . . , γ′m}
holds, then ∆ = {α : Γc

0, . . . , α : Γc
m}, where Γc

j = Γ ∪ ¬(γ′j), 0 ≤ j ≤ m.

By combining the constraints of ν = α : Γ and ν′ = α′ : Γ′ where Γ =
{γ0, . . . , γn} and Γ′ = {γ′0, . . . , γ′m}, we obtain the curtailed norm νc = α :
Γ ∪ ¬(Γ′). The following equivalences hold:

α ∧∧n
i=0 γi ∧ ¬(

∧m
j=0 γ

′
j · σ) ≡ α ∧∧n

i=0 γi ∧ (
∨m

j=0 ¬γ′j · σ)

That is,
∨m

j=0(α ∧ ∧n
i=0 γi ∧ ¬(γ′j · σ)). This shows that each constraint of

ν′ leads to a possible solution for the resolution of a conflict and a possible
curtailment of ν. The curtailment thus produces a set of curtailed norms νc

j =
α∧∧n

i=0 γi ∧¬γ′j ·σ, 0 ≤ j ≤ m. Although each of the νc
j , 0 ≤ j ≤ m, represents

a solution to the norm conflict, we advocate that all of them have to be added
to ∆ in order to replace the curtailed norm. This would allow a preservation of
as much of the original scope of the curtailed norm as possible.

During the formation of a conflict-free ∆′, the institution has to choose which
normative position to curtail in case of a conflict. In order to express such a
choice, we introduce the curtail-rules that determine, given a pair of normative
positions, which normative position to curtail.

Definition 6.4.3. A curtail-rule is an expression of the form:

curtail (α : Γ) over (α′ : Γ′) if conditions

The above expression means that constrained normative position (α : Γ) has
to be curtailed following Definition 6.4.2 whenever conflicts with constrained
normative position (α′ : Γ′) and conditions hold.

100 Chapter 6. A Normative Structure for Multiple Activities

In order to add normative positions, we will use the norm adoption algorithm
shown in Figure 6.5 adapted from [Kollingbaum et al., 2007a]. The first norm is
simply added (line 2), otherwise the norm is checked if it conflicts with any of the
active norms (lines 4-5). If it is the case, it checks if there exists a curtail rule in
Π that determines that the new norm has to be curtailed (lines 6-9). Otherwise it
checks if there exists a curtail rule in Π that determines that the norm in state of
affairs ∆ has to be curtailed (lines 14-17). The function sl(∆, conds, σ4)) checks
if the conditions of the curtail rule are satisfied in the state of affairs ∆ returning
a substitution σ4. Its implementation is similar to the ones in Definitions 4.1.9
and 5.1.1. When changing a norm in ∆, it should be removed and the new
curtailed norms added (line 20).

algorithm adoptNorm(α : Γ,∆,Π,ncs)
input α : Γ,∆,Π
output ncs
begin
01 ncs := ∅
02 if ∆ = ∅ then ncs := {add(α : Γ)}
03 else
04 for each (α′ : Γ′) ∈ ∆ do

// test for conflict
05 if α · σ1 = α′ · σ1 and satisfy((Γ ∪ Γ′) · σ1) then

// test curtail rule
06 if (curtail (απ : Γπ) over (α′π : Γ′π) if conds) ∈ Π and
07 α · σ2 = απ · σ2 and satisfy((Γ ∪ Γπ) · σ2) and
08 α′ · σ3 = α′π · σ3 and satisfy((Γ′ ∪ Γ′π) · σ3) and
09 sl(∆, conds, σ4))
10 then
11 curtail((α : Γ), (α′ : Γ′),∆′′)
12 ncs := {add(δ′′1), · · · , add(δ′′n))
13 else

// test curtail rule
14 if (curtail (α′π : Γ′π) over (απ : Γπ) if conds) ∈ Π and
15 α · σ2 = απ · σ2 and satisfy((Γ ∪ Γπ) · σ2) and
16 α′ · σ3 = α′π · σ3 and satisfy((Γ′ ∪ Γ′π) · σ3) and
17 sl(∆, conds, σ4))
18 then
19 curtail((α′ : Γ′), (α : Γ),∆′′)
20 ncs := {del(α′ : Γ′), add(α : Γ), add(δ′′1), · · · , add(δ′′n)}
21 endif
22 endif
23 endif
24 endfor
25 endif
end

Figure 6.5: Norm Adoption Algorithm

The list of normative commands ncs resulting after the possible curtailment
of a normative position is then used in each activity in order to determine what
actions may be institutionalised as explained in Chapters 4 and 5. However, two
problems arise during the removal of norms. If we remove a curtailed normative
position ((α : Γ) in Definition 6.4.2), should we add again the conflicting norma-
tive position that was removed on curtailing? If we want to remove the effects
of a curtailing normative position ((α′ : Γ′) in Definition 6.4.2)3, should we up-

3Recall that curtailing normative positions are already removed since curtailing.

6.5. Conclusions 101

date the curtailed normative positions to no longer be affected by the removed
one? A solution provided in [Kollingbaum et al., 2007b] is to store a history of
additions of normative positions, roll-back to the addition to be removed and
recalculate possible changes in the final state of affairs following the history. As
this can be very time-consuming, searching for efficient algorithms for removal
of curtailed normative positions needs to be dealt with in future work.

6.5 Conclusions

In this chapter we have addressed our research questions about how to spec-
ify norms and make them operational to regulate multiple concurrent and dis-
tributed activities. For that purpose, we have proposed the normative structure,
a computational model for the propagation of formulae among activities and we
have reduced the normative structure to coloured Petri nets (CPNs) to show
that the verification of normative conflicts is computationally intractable. Fi-
nally, we have provided an interpreter for the rule language used in the normative
structure.

The notion of normative structure is useful because it allows the separation of
activities and their interrelationships. It defines another part of the institution
behaviour, i.e. how the system propagates normative positions among activities.

In the next chapter, we propose an architecture to amalgamate and imple-
ment the notions presented in the previous chapters: rule-based scenes, norma-
tive structure and deontic conflict resolution.

We have to decide in which point to include the conflict resolution algorithms.
We will show that in the next chapter after presenting all the levels of the
proposed distributed architecture.

Chapter 7

Computational Model and
Distributed Architecture

In this chapter we propose a distributed architecture for the translation of agents’
speech acts into system actions over the normative state, for the propagation of
norms among activities and for the resolution of normative conflicts.

This thesis aims at helping in the building of a computational realisation of
norm-regulated MAS. To achieve this, in previous chapters we have proposed
computational languages and algorithms. However, we need to propose a MAS
architecture to integrate and implement the notions presented in the previous
chapters: rule-based protocols for activities, normative structure and deontic
conflict resolution.

In this chapter we present AMELI+, a distributed architecture based
on the distributed architecture of electronic institutions presented in
[Esteva et al., 2004]. We propose this architecture to address the regulation
of the behaviour of autonomous agents and the management of the normative
states of the MASs, including the propagation of normative positions and the
resolution of normative conflicts.

7.1 Proposed Distributed Architecture

We propose an architecture to address the regulation of the behaviour of au-
tonomous agents and the management of the normative states of the MASs,
including the propagation of normative positions and the resolution of norma-
tive conflicts. We assume the existence of a set of agents that interact in order to
pursue their goals – we do not have control on these agents’ internal functioning,
nor can we anticipate it. We require the following features of our architecture:

Regulated – The main goal of our architecture is to restrict the effects of agent
behaviour in the specified conditions without hindering the autonomy of
external agents.

103

104 Chapter 7. Computational Model and Distributed Architecture

Open – Instead of re-programming the MAS for each set of external agents,
we advocate persistent, longer-lasting MASs where agents can join and
leave them. However, agents’ movements may be restricted in certain
circumstances.

Structured – Agents are distinguishable by their role or their goals. Likewise
each instance of an agent activity, i.e. each multi-agent protocol execution,
is also distinguishable.

Heterogeneous – We leave to each agent programmer the decision of which
agent architecture include in each external agent. We make no assumption
concerning how agents are implemented.

Mediatory – As we do not control external agents internal functioning, in order
to avoid undesired or unanticipated interactions, our architecture should
work as a “filter” of events, e.g. messages between agents.

Distributed – To provide the means for implementing large regulated MAS,
we require our architecture to be distributed in a network and therefore
spreading and alleviating the workload and the message traffic.

Norm propagative – Although being distributed, agent interactions are not
isolated and agent behaviour may have effects, in the form of addition or
removal of normative positions, in later interactions, possibly involving
different agents. We assume that agents may query the governors for
the normative positions applicable to them before deciding what action
perform. However, we should notify the external agents when an applicable
normative position has been propagated.

Conflict Resolutive – Some conflicts may arise due to normative positions
generated as result of agent’s behaviour. Since ensuring a conflict-free MAS
at design time is computationally intractable, we require that resolution
of normative conflicts be applied by the MAS. This approach promotes
consistency since there is a unique, valid normative state established by the
system instead of many different state versions due to a conflict resolution
at the agent’s level.

To accomplish these requirements, we extend AMELI, the architecture pre-
sented in [Esteva et al., 2004]. That architecture is divided in three layers:

Autonomous agent layer It is formed by the set of external agents taking
part in the MAS.

Social layer An infrastructure that mediates and facilitates agents’ interac-
tions while enforcing MAS rules.

Communication layer In charge of providing a reliable and orderly transport
service.

7.1. Proposed Distributed Architecture 105

Autonomous
Agents
Layer

Communication Layer

. . .

. . .

.

.

Distributed,
Social
Layer

Pr
iv
at
e

Pu
bl
ic

A1 Ai An

G1 Gi Gn

SM1 SMm

NM1 NMp

Figure 7.1: AMELI+architecture

External agents intending to communicate with other external agents need
to redirect their messages through the social layer which is in charge of forward-
ing the messages (attempts of communication) to the communication layer. In
specified conditions, erroneous or illicit messages may be ignored by the social
layer in order to prevent them from arriving at their addressees.

The social layer presented in [Esteva et al., 2004] is a multi-agent system
itself and the agents belonging to it are called internal agents. We propose to
extend this architecture by including a new type of agent, the normative manager
(NM1 to NMp in fig. 7.1), and by adding protocols to accommodate this kind
of agent. We call AMELI+ the resulting architecture.

In AMELI+, internal (administrative) agents are of one of the following types:

Governor (G) Internal agent representing an external agent, that is, maintain-
ing and informing about its social state, deciding on whether an attempt
from its external agent is valid and forwarding this attempt to the social
layer. There is one per external agent.

Scene Manager (SM) Internal agent maintaining the state of the activity1,
deciding whether an attempt to communicate is valid, notifying any
changes to normative managers and resolving conflicts. There is one per
scene.

Normative Manager (NM) This new type of internal agent receives norma-
tive commands2 and may fire one or more normative transition rules.

1Hereafter, activities are also referred to as scenes following the terminology of AMELI.
2Recall from section 6.2 that a normative command is the addition or removal of a normative

106 Chapter 7. Computational Model and Distributed Architecture

In principle, only one NM is needed if it manages all the normative transition
rules. However, in order to build large MAS and avoid bottlenecks, we propose
the distribution of normative transitions into several NMs.

NMi

Figure 7.2: Communication channels involved in the activation of a rule

To choose the granularity of the normative layer, i.e., to choose from one
single NM to one NM per normative transition, is an important design decision
that we leave for the MAS designers. After choosing the granularity, the NMs
are assigned to handle a possibly unary set of normative transitions. We recall
that each normative transition includes a rule. The SMs involved in the firing of
the rules are given a reference to the NM that manages the rule, i.e. its address
or identifier depending on the communication layer. External agents may join
and leave activities, always following the conventions of the activities. In these
cases, its governor registers (or deregisters) with the SM of that scene.

7.1.1 Social Layer Protocols

Fig. 7.2 shows the communication within the social layer – it only occurs along
the following types of channels:

Agent/Governor This type of channel is used by the external agents sending
messages to their respective governors to request information or to request
a message to be delivered to another external agent (following the norms
of the MAS). Governors use this type of channel to inform their agents
about new normative positions generated.

Governor/Scene Manager Governors use this type of channel to propagate
unresolved attempts to communicate or normative commands generated as
a result of such attempts. SMs use this type of channel to inform governors

position.

7.1. Proposed Distributed Architecture 107

in their scenes about new normative commands generated as a result of
attempts to communicate or conflict resolution.

Scene Manager/Normative Manager This type of channel is used by SMs
to propagate normative commands that NMs may need to receive and
the ones resulting from conflict resolution. NMs use this channel to send
normative commands generated by the application of normative transition
rules.

NMjNMi

SMs1 SMs2

GAnne GAnneGBill GBill

Anne AnneBill Bill

SMs3

Gpainter1 Gpaintern

painternpainter1

Figure 7.3: Enactment of a normative transition rule

Fig. 7.3 shows an enactment of a MAS in our architecture. Agents send at-
tempts to governors (messages 1, 4 and 7) who, after finding out the normative
commands attempts generate, propagate the new normative commands to SMs1

and SMs2 (messages 2, 5 and 8) who, in turn, propagate them to the NM (mes-
sages 3, 6 and 9). As a normative transition rule is fired in the NM, a normative
command is sent to SMs3 (message 10). After resolving any conflicts, SMs3

sends the new normative commands to all the involved governors (messages 11
and 11′) who, in turn, send them to their represented agents (messages 12 and
12′).

As the figure of the previous example shows, our architecture propagates
attempts to communicate (and their effects) from agents (shown on the bottom
of Fig 7.3) to the NMs (shown at the top of the figure). NMs receive events from
several SMs whose managed state may be arbitrarily large. Since NMs only need
the normative commands that may cause any of its rules to fire, NMs subscribe
only to the type of normative commands they are supposed to monitor3. For
instance, if a rule needs to check whether there exists a prohibition to bid in a
scene auction1 and whether there also exists the permission to bid, then the NM
will subscribe to all the normative commands adding or removing prohibitions
and permissions to bid in scene auction1.

3We use a publish-subscribe model to filter the amount of formulae NMs have to deal with.

108 Chapter 7. Computational Model and Distributed Architecture

In the following algorithms, ∆ refers to essential information for the execution
of the MAS, i.e. a portion of the state of affairs of the MAS that each internal
agent is managing. As introduced above, depending on the type of the internal
agent, it manages a different portion of the state of affairs of the MAS, e.g. a
governor keeps the normative state of the agent, and a scene manager keeps the
state of a given scene. These algorithms define the behaviour of internal agents
and are applied whenever a message msg is sent by an agent (agi), a governor
(gi), a SM (smi) or a NM (nmi) respectively.

algorithm G process att(agi ,msg)

input agi ,msg
output ∅
begin
01 new cmmds := get normative commands(msg ,∆)
02 foreach c ∈ new cmmds do
03 ∆ := apply(c,∆)
04 sm := scene manager(c)
05 send(c, agi)
06 send(c, sm)
07 endforeach
08 if new cmmds = ∅ then
09 sm := scene manager(msg)
10 send(msg , sm)
11 endif
end

Figure 7.4: Response of Governor agents to external agents’ attempts

algorithm NM process cmmd(smi ,msg)

input smi ,msg
output ∅
begin
01 foreach cmmd ∈ msg do
02 ∆ := apply(cmmd ,∆)
03 new cmmds := get fired RHSs(∆)
04 foreach c ∈ new cmmds do
05 sm := scene manager(c)
06 send(c, sm)
07 endforeach
08 foreach
end

Figure 7.5: Response of a normative manager to a normative command

When an external agent sends to its governor an attempt to communicate
(messages 1, 4 and 7 in Fig. 7.3), the governor follows the algorithm of Fig. 7.4.

7.1. Proposed Distributed Architecture 109

algorithm SM process att(gi ,msg)

input gi ,msg
output ∅
begin
01 new cmmds := get normative commands(msg ,∆)
02 foreach c ∈ new cmmds do
03 ∆ := apply(c,∆)
04 send(c, gi)
05 foreach 〈nm, ev〉 ∈ subscriptions do
06 if unify(c, ev , σ) then
07 send(c,nm)
08 endif
09 endforeach
10 endforeach
11 if new cmmds = ∅ then
12 s := scene(msg)
13 c := content(msg)
14 send(rejected(s, c), gi)
15 endif
end

Figure 7.6: Response of a scene manager to a forwarded attempt

This algorithm checks whether the attempt to communicate generates normative
commands (line 1), i.e. it is accepted4. This check may vary depending on the
type of specification and implementation of the scenes: e.g. using Finite State
Machines (FSM), as in [Esteva et al., 2004], or executing a set of rules, as in
Chapters 4 and 5.

If the attempt generates normative commands (line 2), they are applied to
the portion of the state of affairs the governor is currently managing creating a
new partial state (line 3). These normative commands are sent to the external
agent (line 5) and to the scene manager (messages 2, 5 and 8 in Fig. 7.3) in
charge of the scene where the normative command should be applied (line 6).
Otherwise, the attempt is forwarded to the SM of the scene the attempt was
generated in (line 10).

If the governor accepts the attempt (after the check of line 1), it sends the
SM a notification.The SM then applies the normative command received and
forwards it to the NMs subscribed to that event (messages 3, 6 and 9 in Fig.
7.3).

However, if the governor does not take a decision, i.e. normative commands
are not generated, the governor sends the attempt to the SM who should decide
whether it is valid or not by following the algorithm of Fig. 7.6. This algorithm,
like the one in Fig. 7.4, checks whether the received attempt generates normative
commands in the current scene state, i.e. the portion of the state of affairs

4In our approach, an ignored attempt would not generate any normative command.

110 Chapter 7. Computational Model and Distributed Architecture

algorithm SM process cmmd(nmi ,Π,msg)

input nmi ,msg
output ∅
begin
01 ncs := ∅
02 ∆′ := apply(msg ,∆)
03 if inconsistent(∆′) then
04 ncs := adoptNorm(msg ,∆,Π,ncs)
05 else ∆ := ∆′

06 endif
07 foreach cmmd ∈ ncs do
08 ∆ := apply(cmmd ,∆)
09 foreach 〈nm, ev〉 ∈ subscriptions do
10 if unify(c, ev , σ) then
11 send(c,nm)
12 endif
13 endforeach
14 foreach g ∈ governors(cmmd) do
15 send(cmmd , g)
16 endforeach
17 endforeach
end

Figure 7.7: Response of a scene manager to a normative command

referring to that scene (line 1). If this is the case (line 2), they are applied to the
current state of the scene (line 3) and forwarded to the governor that sent the
attempt (line 4) and to the NMs subscribed to that normative commands (line
7). Otherwise (line 11), a message informing that the attempt has been rejected
is sent to the governor mentioned (line 14).

In both cases, if the attempt is accepted then the normative manager is no-
tified and it follows the algorithm of Fig. 7.5 in order to decide if it is necessary
to send new normative commands to other scene managers. This algorithm
processes each normative command received (line 1) by applying it to the state
of the NM (line 2) and checking which normative transition rules are fired and
obtaining the normative commands generated (line 3). Each of them are prop-
agated to the SM of the scene appearing in the normative command (line 6,
message 10 in Fig. 7.3).

If normative commands are generated, SMs receive them from the normative
manager in order to resolve possible conflicts and propagate them to the appro-
priate governors. In this case, the SMs execute the algorithm of Fig. 7.7. This
algorithm applies the normative command received on the scene state creating a
temporary state for conflict checking (line 2), then checks if the new normative
command would raise an inconsistency (line 3). If this is the case, it applies
the conflict resolution algorithm presented in Section 6.4, returning the set of
normative commands needed to resolve the conflict (line 4). Each normative

7.2. Conclusions 111

command caused by the message sent by the NM or by conflict resolution, is ap-
plied to the scene state (line 8) and it is sent to the subscribed NMs (lines 9-13)
and to the governors (messages 11 and 11’ in Fig. 7.3) of the agents appearing
in the normative command (lines 14-16).

NMs are notified about the resolution of possible conflicts in order to check
if the new normative commands fire normative transition rules. If NMs receive
this notification, they follow again the algorithm of Fig. 7.5 as explained above.
When governors are notified by a SM about new normative commands, they
apply the normative command received to the normative state of the agent and
notify to its agent about the new normative command (messages 12 and 12’ in
Fig. 7.3).

7.2 Conclusions

In this chapter we propose an answer for our research question about how to com-
putationally enact distributed regulation. The answer proposed fuse our results
in previous chapters obtained when answering the first four research questions.
Thus, we propose a distributed architecture for the translation of agents’ speech
acts into system actions over the normative state, for the propagation of norms
among activities and for the resolution of normative conflicts.

We base the architecture presented in this chapter in our proposal of rule-
based activities presented in Chapter 5, and normative structure and conflict
resolution introduced in Chapter 6.

The main contribution of this chapter is an architecture for the management
of norms in a distributed manner. As a result of the partial enactment of pro-
tocols in diverse activities, normative positions generated in different activities
can be used to regulate the behaviour of agents not directly involved in previous
interactions.

Although scalability have improved with the distribution of activities, it may
be improved by implementing peer-to-peer agent interactions. We leave for
future work an study on how to regulate simultaneous actions of peer-to-peer
agents.

In our approach, conflict resolution is applied at the SM level requiring all
normative commands generated by a NM to pass through a SM who resolves
conflicts and routes them. This feature is justified because SMs are the only
agents who have a full representation of a scene and know the agents that are
participating in it and which role they are enacting. For example, if a prohibition
for all buyers to bid arrives at the auction1 activity, a SM will forward this
prohibition to the governors of the agents participating in that activity with the
buyer role and to the governors of all the new buyers that join that activity while
the prohibition is active. An alternative approach is to apply conflict resolution
at the level of governor agents, curtailing some of the normative positions of
its associated external agent. However, this type of conflict resolution is more
limited since a governor only maintains the normative state of an agent. For
example, a case that cannot be resolved with this approach is when all agents

112 Chapter 7. Computational Model and Distributed Architecture

enacting a role are simultaneously prohibited and obliged to do something, i.e.
when more than one agent is involved in the conflict.

Another approach would be if governors became the only managers of norma-
tive positions; in this case they would need to be aware of all normative positions
that may affect its agent in the future, i.e., they would have to maintain all the
normative positions affecting any of the roles that its agent may enact in every
existing scene. For instance, a governor of an agent that is not yet enacting a
buyer role would also need to receive the normative positions that now applies to
that role even if the agent is not in that scene or is enacting that role yet. This
approach does not help with scalability since a large MAS with various scenes
may generate a very large quantity of normative positions affecting agents in the
future by the mere fact of their entering the MAS.

Conflict resolution is thus applied at the activity level meaning that resolution
criteria involving more than one agent are now possible, as opposed to being
applied at the agent level.

A central service as the one implemented in chapter 3 may become a bot-
tleneck as the number of agents, interactions and activities grow. In opposition
to the implementation of chapter 3, where the management of norms is cen-
tralised in one production system, the proposal of this chapter advocates for
its distribution in scene managers (one per activity) and normative managers
(managing one or more normative transitions that possibly involves more than
two activities).

As we need further analysis to decide the optimal number of normative tran-
sitions to be included in normative managers, we leave this question as a design
decision, i.e. to be answered in design time depending on the problem to be
solved.

Chapter 8

Conclusions and Future
Work

In this chapter we will summarise the achievements of our research and con-
trast them with other recent work. Finally, we will point out possible paths for
advancing this work.

8.1 Conclusions

We recall the five research issues we posed in Chapter 1:

Q.1 How to specify norms and make them operational to regulate a multi-agent
activity.

Q.2 How to specify norms and make them operational to handle multiple con-
current activities.

Q.3 How to computationally enact distributed regulation.

We answered Q.1 throughout Chapters 3-5 by proposing three languages and
their respective interpreters. Jess norms is the first norm language dealing with
time in electronic institutions. However, it does not have a formal semantics
and it does not manage neither constraints nor actions. IRL is the first language
to include constraint management specifying the effects of valid events. We
notice that IRL has improved the aspects of constraint management and action
regulation. However, IRL does not regulate simultaneous actions. Finally, I
is the first language to include that aspect allowing, for instance, to prevent
simultaneous actions from being performed.

Table 8.1 shows a comparison of the expressiveness of the languages presented
in related work (introduced in Section 2.2) and those proposed in this research.

To compare normative languages we use the following features:

113

114 Chapter 8. Conclusions and Future Work

Language Features
Constraints Distribution Conc. Behaviour Conc. Regulation

1. CDeonticL time centralised actions monitoring
2. Z – agents actions goals
3. EC time centralised actions one action
4. Rights specification centralised actions one action
5. NoA – agents actions goals
6. SIC specification centralised actions monitoring
7. OCL specification centralised activities one action
8. hyMTL time centralised actions monitoring
9. Jess Norms time centralised activities one action

10. IRL management one activity actions one action
11. I management one activity actions simultaneous actions

and prevent goals

Table 8.1: Final comparison of the different norm languages

Constraints – This feature depicts the degree of constraint specification and
management. We distinguish among no specification (–), specification only
of time constraints (time), specification of constraints (specification) and
specification and modification (management).

Distribution – This feature reflects the degree of distribution of norms. We dis-
tinguish among no distribution of norms (centralised), norms distributed
in each agent (agents), and norms distributed in each activity (activities).

Concurrent Behaviour – This feature shows the degree of concurrency on
actions. We distinguish among no concurrency (–), concurrent actions in
one or no activity (actions), and concurrent actions in concurrent activities
(activities).

Concurrent Regulation – This feature depicts the degree of regulation on
concurrent actions. We distinguish among:

• no regulation of actions (–),

• no regulation of actions but regulation of goals (goals),

• just monitoring and sanctioning of actions (monitoring),

• monitoring, sanctioning and prevention of one action at a time (one
action),

• monitoring, sanctioning and prevention of simultaneous actions (si-
multaneous actions).

Let us consider the case when a certain agent has to pay a good won in an
auction before a deadline. Thus, the first feature we required for our languages
is time management. Almost all approaches presented this feature, except 2
([López y López, 2003]) and 5 ([Kollingbaum, 2005]).

We also required the second and third features for our language, namely
constraint specification and management. Let us consider now that we specify
restrictions on the amount of money agents may bid and under certain conditions

8.1. Conclusions 115

we can relax these constraints. For instance, agents are not allowed to make
unsupported bids if they are not a regular client, i.e. regular clients are endowed
with a certain amount of credit. To the best of our knowledge, Rights, SIC and
OCL can also specify constraints but they cannot change them. Our languages,
since the work of Chapter 4, not only specify constraints but also manages them
allowing changes on constraints due to agents’ actions or time events.

Finally, we required our language to regulate (quasi)-simultaneous actions.
This feature is only present in I, our language presented in Chapter 5. For
instance, this feature allows to forbid (and to prevent if required) two robots
from entering in the same cell at the same time to avoid collisions.

We also answered Q.1 by proposing two computational models that try to
make norms operational in MAS. One is the centralised production system pre-
sented in Chapter 3, and the other one is presented in Section 4.1. The latter
acquires the events of agents during a short period of time where events are
considered simultaneous and then events are processed by the interpreter of I,
the language presented in Chapter 5.

We define normative structure (addressing Q.2), a model to specify and prop-
agate that uses rules and given certain events in particular activities generates
effects in other activities such as the activation or deactivation of norms.

To deal with the distribution of activities we conceive two approaches:

Tightly-coupled distribution When a normative position, e.g. an obligation,
is propagated from one activity to the next ones, the first activity directly
sends the normative position to the others. In this approach activities are
very dependent on each other as every activity should know all the possible
recipients of their normative positions.

Loosely-coupled distribution When a normative position is propagated from
one activity to the next ones, the first activity sends the normative position
to a propagator in charge of spreading the normative position among the
appropriate activities. In this approach activities are less dependent as
they only need to know the pertinent propagators which, in theory, are
less in number and more persistent than activities.

Although rules among contexts to generate new formulae in other contexts
have already been proposed [Giunchiglia and Serafini, 1994], the use of a norma-
tive structure to activate norms provides a loosely-coupling between activities
allowing the latter to be specified with different languages or different semantics
for obligations, permissions, and prohibitions and still be able to interoperate
whenever they share the same syntax for normative positions. This partial de-
coupling also allows an easy distribution of activities allowing to build larger
MASs. Furthermore, this decoupling is relevant to designers of heterogeneous
distributed processes, and therefore electronic institution designers, that may
need to interchange information and may not be aware of the other processes.
This contribution also addresses partially the definition of the computational
model for this kind of MAS (addressing Q.2).

116 Chapter 8. Conclusions and Future Work

We also answered Q.2 by proposing a computational model that tries to
resolve the distributed regulation of activities with possibly conflicting norms
in MAS. The distributed computational model is put together in Chapter 7
although it is partially presented in section 4.1 for regulating each activity, and in
section 6.4 for propagating normative positions among activities. The resolution
of normative conflicts is presented in Section 6.3.

Q.3 is answered in Chapter 7 by proposing a distributed architecture to
include the results of previous questions, i.e. the enactment of MAS including the
regulation of agent activities with norms activated as result of agent behaviour,
the activation of norms among activities and the resolution of conflicts among
norms in an activity at runtime. This architecture establishes the basis for
building MAS enriched to enforce, propagate, and resolve conflicts in sets of
norms at runtime. Furthermore, by including this architecture into EIDE, the
electronic institutions framework, we will enable them to incorporate all the
conceptual contributions we have proposed.

To compare models for regulated MAS we use the following features:

Openness – This feature depicts whether new heterogeneous agents may join
and leave at runtime. We distinguish closed, closed and heterogeneous and
open (and heterogeneous).

Regulation – This feature reflects the degree of regulation. We distinguish
among: specification of protocols (protocols), specification of protocols
and actions agents are expected to perform (protocols and obligations, or
protocols and commitments), specification of protocols, obligations, per-
missions and prohibitions (protocols and norms) and specification of just
norms or policies (norms).

Social Structure – We distinguish among no social structure (–), just role
labels (roles), and role hierarchy.

Activity Structure – This feature depicts the degree of structure of actions.
We distinguish among: no structure, just a set of actions (actions), different
sets of norms apply to just a set of actions (contexts), and a separation of
sets of actions (and norms) depending on its purpose (activities).

Finally, we contributed towards the declarative implementation of EIs by
regulating multiple activities with rules. In opposition to the hard-coding of
an interpreter of multi-agent Finite State Machine (FSM) specifications, the
inclusion of a production system in each scene manager allows a more flexible
and expressive specification of the protocols to be followed as we showed in
Chapters 4 and 5.

The implementations of the Dutch auction introduced in Chapters 4 and 5
are a clear example that multi-agent FSMs are not expressive enough to spec-
ify temporal requirements. Thus, EIDE added a so-called constraint language
that using the semantics of finite states further restricts the FSM specification.
However, this language has no formal semantics and therefore it would be more

8.2. Future Work 117

Models Features

Openness Regulation
Social

Structure
Activity
Structure

1. EIs
open and

heterogeneous
protocols and

obligations
role hierarchy activities

2. MOISE+ open and
heterogeneous

protocols role hierarchy activities

3. Commit. Insts.
open and

heterogeneous
protocols and
commitments

role hierarchy activities

4. OperA
open and

heterogeneous
protocols

and norms
role hierarchy activities

5. LGI
open and

heterogeneous
norms roles actions

6. EIs for VOs
open and

heterogeneous
norms roles contexts

7. MA Policy Arch.
open and

heterogeneous
norms roles actions

8. Declarative EIs
open and

heterogeneous
norms roles activities

Table 8.2: Final comparison of the different models of regulated MAS

difficult to create reasoning about that language since we would need an ad-hoc
reasoning engine.

In the AMELI version based on JADE platform [Bellifemine et al., 1999],
agents participating in a scene reside in the same container kept in the same
computer. However, in declarative EIs we envisage a differentiation between
spatial and metaphoric agent location. Whereas the spatial location is the lo-
cation of the computer that hosts an agent, the metaphoric locations are the
activities (scenes) an agent is participating in. We propose that, independently
from its spatial location, an agent may participate in distributed activities and
metaphorically move among them just by sending messages. This proposal re-
quires less network overhead since we do not use spatial movements among com-
puters hosting a scene. However, the message traffic from spatially-dispersed
agents towards each scene increases. We could explore the design of a hybrid
system that decides to move an agent spatially or metaphorically according to
certain criteria such as the network load and the number of remaining move-
ments.

8.2 Future Work

In this section we propose future work organised according to its topic and its
difficulty.

8.2.1 Improving Expressiveness

Figure 8.1 shows a comparison of the proposed languages in terms of expressive-
ness and distribution. On the one hand, the languages of Chapters 3-5 grow in
expressiveness without dealing with distribution. On the other hand, the lan-
guage of Chapter 6 deals with distribution of activities at the same degree of

118 Chapter 8. Conclusions and Future Work

expressiveness than the language presented in Chapter 4. We envisage that a
natural next step would be to investigate which are the benefits of a language
as expressive as I, the one of Chapter 5, that regulates simultaneous events and
as distributed as normative transitions, the one of Chapter 6, that propagates
normative positions among distributed activities. We labelled this language as
the language of Chapter 8.

Distribution

Ex
pr

es
siv

en
es

s

+

+

3:

4:

5:

6: Normative
Structure

Jess Norms

IRL

I 8?

Figure 8.1: Comparison of proposed languages

One step along this direction would be to use I (presented in Chapter 5)
as the language in the normative structure (Chapter 6). We find it interesting
to explore the applications of normative structures with and without the use of
this language. For instance, a normative structure using I could also propa-
gate agents among activities imposing some restrictions to simultaneous agent
behaviour. Therefore, normative transitions could be used to synchronise the
entrance and exit of agents from activities. Furthermore, in all cases actions
performed in some activities may generate facts in several activities. We think
this effect as a distributed count as relationship [Searle, 1995] or as distributed
logical consequence.

The state of affairs ∆′ resulting after the possible curtailment of a normative
position is then used in each activity in order to determine what actions may
be institutionalised as explained in Chapters 4 and 5. However, two problems
appear during the removal of norms. If we remove a curtailed normative position
((α : Γ) in Definition 6.4.2), should we add again the conflicting normative
position that was removed upon curtailing? If we want to remove the effects of
a curtailing normative position ((α′ : Γ′) in Definition 6.4.2)1, should we update
the curtailed normative positions to no longer be affected by the removed one? A

1Recall that some normative positions are already removed due to curtailing.

8.2. Future Work 119

solution provided in [Kollingbaum et al., 2007b] is to store a history of additions
of normative positions, roll-back to the addition to be removed and recalculate
possible changes in the final state of affairs following the history. As this can be
very time-consuming, it is a problem that need to be dealt with in future work.

In this thesis we assume that norms are static during the whole execution of
the MAS and therefore, they can be provided to agents in design time. How-
ever, in a more dynamic setting, norms may vary during execution and therefore
they need to be provided to agents at runtime, e.g. traffic lights. One inter-
esting method to take into account is spatially distributed normative objects
[Okuyama et al., 2007].

8.2.2 Electronic Institutions

We want to incorporate the new architecture to the Electronic Institutions De-
velopment Environment (EIDE). As we need further research to decide on the
optimal number of normative transitions to be processed by each normative
manager (cf. Section 7.1), we leave this question as a design decision, i.e. to be
answered at design time depending the problem to be solved.

We are conceiving a hybrid architecture that includes both proposals of norm-
management: agent norms maintained by governors and scene norms maintained
by scene managers. However, a question that arises is how to automatically
distinguish and separate both kind of norms into their appropriate manager.

We have contributed to the implementation of Declarative Electronic In-
stitutions by regulating multiple activities with rules. However, to completely
capture the current model of EIs, we missed some features. We would need to
implement transitions of the performative structure in order to restrict the en-
trance and exit of agents in activities. As we mentioned above, we envisage the
use of I in the normative structure for this purpose. As normative structures
no longer would be only about norm propagation but also about propagation
of agents and maybe other facts, we propose to call it flow structure. Likewise,
we expect to include a reproduction of the concept of ontology in EIs in order
to represent the typology of the objects involved in the problem domain. Hav-
ing summarised this typology would ease the verification of type errors in the
specification of EIs. For instance, we could decide to avoid selling short-term
goods like fish in non-Dutch-like auctions by defining what is a short-term good
and only allowing this kind of goods to be auctioned in Dutch auctions. While
improving the work in this thesis, the performative structure was enhanced by
allowing recursion, i.e. a node in a performative structure may now, apart from
being a scene, be another performative structure. At this point, we noticed two
kinds of propagation: the horizontal one that flows among different nodes and
vertical propagation where a norm flows from the top level of the performative
structure towards nodes in the lower level. [Garćıa-Camino et al., 2007a] was
a first attempt to formalise vertical propagation of norms. However, a robust
implementable model is still missing.

120 Chapter 8. Conclusions and Future Work

8.2.3 New applications using norms

In this thesis, following the EI tradition we applied in our examples the regulation
of MAS to e-commerce, mainly to auctions. However, we want to find and exploit
new interesting applications of norms in MAS that may lead to enrich the current
model. We envisage its application in robot soccer and autonomic networking.

A question in the field of robot soccer that we find interesting is: how robots
could autonomously play soccer without a referee? To solve this we envisage
a software layer common to robots of any team. This layer would act as a
middleware between the hardware layer, that deals with motors, rotors, sensors,
etc., and the reasoning layer, that according with the information of the hardware
layer generate an individual or team plan that is transformed in commands to
the hardware layer in order to play. This middleware would follow the metaphor
of institution but distributed in all robots to enforce some global rules. As a
literary example, the reader may think of the hard-coding of Asimov’ three laws
of robotics in the “brain” of every robot. However, the programming of the
reasoning layer would be available of end-users, as human coaches in the case
of robot soccer. This topic requires further exploration as, for instance, norms
could vary in time possibly as result of the execution of protocols. For instance,
soccer rules may change from season to season due to some recurrent unwanted
behaviour of players.

In the field of autonomic networking we would like to address the question:
how would the addition of obligations in policy management affect the behaviour
of the global system? For instance, some nodes in the network negotiated certain
degree of quality of service (QoS) with some time constraints. Therefore the
client nodes may expect this degree of quality from provider nodes. If the QoS
contract is broken, the client may apply some punishments like choosing another
provider or organising a denial-of-service attack by all the “unhappy” client
nodes.

Another long-term issue is the implementation of norm reasoning in a soci-
ety of agents. Some attempts have been made to improve the BDI architecture
with commitments (BDI-C) [Gaertner et al., 2006]. The next step maybe the
inclusion of uncertainty along the lines of [Casali et al., 2005] in order to reason
about conflicts between commitments and desires. We envisage a BDI architec-
ture capable of representing and reasoning constrained formulae along the line
of our normative positions. Then, norms could be specified as beliefs therefore
not needing an extra commitment component as in BDI-C.

Appendix A

UML Diagrams

Figure A.1: Interfaces between AMELI and norm engine of Chapter 3

121

122 Appendix A. UML Diagrams

public Collection deontic2Jess(Collection c)

<<interface>>
D2JTranslator

public Collection deontic2Jess(Collection c)

D2JTransImpl

public void readDeonticNorms(File f)
public void writeDeonticNorms(File f)
public Collection getDeonticNorms()
public void setDeonticNorms(Collection c)
public void writeJessNorms(File f)

<<interface>>
DeonticParser

public void readDeonticNorms(File f)
public void writeDeonticNorms(File f)
public Collection getDeonticNorms()
public void setDeonticNorms(Collection c)
public void writeJessNorms(File f)

DeonticParserImpl

public DNAction getAction()
public void setAction(DNAction a)
public String getType()
public void setType(String s)
public Collection getSanctions()
public Collection getRewards()
public void setSanctions(Collection c)
public void setRewards(Collection c)

<<interface>>
DeonticNorm

public DNAction getAction()
public void setAction(DNAction a)
public String getType()
public void setType(String s)
public Collection getSanctions()
public Collection getRewards()
public void setSanctions(Collection c)
public void setRewards(Collection c)
public DNAction getBeforeAction()
public void setBeforeAction(DNAction a)
public DNAction getAfterAction()
public void setAfterAction(DNAction a)
public Date getBeforeDate()
public void setBeforeDate(Date c)
public Date getAfterDate()
public void setAfterDate(Date c)
public Vector getConditions()
public void setConditions(Vector v)
public Vector getSanctionConditions()
public void setSanctionConditions(Vector v)
public Vector getRewardConditions()
public void setRewardConditions(Vector v)
public void setBeforePeriod(Vector p)
public Vector getBeforePeriod()
public void setAfterPeriod(Vector p)
public Vector getAfterPeriod()
public void setRewards(Collection c)
public boolean isTemporal()

DNAction afterAction
DNAction beforeAction
Date afterDate
Date beforeDate
Vector conditions
Vector sanctionConditions
Vector rewardConditions
DNAction myAction

DeonticNormImpl

public String getType()
public void setType(String t)
public String getActor()
public void setActor(String a)
public String getVerb()
public void setVerb(String v)

<<interface>>
DNAction

public String getType()
public void setType(String t)
public String getActor()
public void setActor(String a)
public String getVerb()
public void setVerb(String v)
public String getScene()
public void setScene(String s)
public String getState()
public void setState(String w)
public String getActorRole()
public void setActorRole(String s)
public String getAddressee()
public void setAddresse(String a)
public String getAddresseeRole()
public void setAddresseeRole(String s)
public String getPerformative()
public void setPerformative(String s)
public Vector getArgs()
public void setArgs(Vector s)
public int getTimestamp()
public void setTimestamp(int s)

String scene
String state
String actor
String actorRole
String addresseeRole
int timeStamp
String performative
String verb
Vector arguments
String type

DNIllocution

public Collection getLHS()
public void setLHS(Collection c)
public Collection getRHS()
public void setRHS(Collection c)

<<interface>>
JessNorm

public Collection getLHS()
public void setLHS(Collection c)
public Collection getRHS()
public void setRHS(Collection c)

Collection lhs
Collection rhs

JessNormImpl

Figure A.2: UML Diagram of the Automatic Translator of Chapter 3

Appendix B

An Interpreter for I

% ---

% File: I-interpreter.pl

% Date: 10 March 2007

% Author: Andres Garcia-Camino -- andres@iiia.csic.es

% Description:

% This program implements an interpreter for electronic institutions and norms

% represented as rules.

% History:

% version 5: Add s_if in s_star -> forward chaining is activated even there is

% no event

% version 4: Fixes removal of formulae with variables

% version 3: Adds seteq command

% version 2: Fixes intersects(E,E’) vs intersects(E’,E)

%

% Instructions:

% 1. Edit the rule/2 facts to accommodate your rules

% ---

:- op(170,fx,[on,prevent,ignore,force,if]).

:- op(160,xfy,[if,do,on]).

:- use_module(library(lists)).

:- dynamic fired/1.

%%

% Reset

%%

% 1. Retract all fired(_) assertions.

% 2. Assert the fired(_,_) fact so that "can_fire" does not fail if no such

% predicate exists.

reset :-

findall(C,retract(fired(C,_)),_),

123

124 Appendix B. An Interpreter for I

assert(fired(false,false)).

% ---

run(Delta,Events,NewDelta):-

findall(R,(rule(Id,R),R=(on _ if _ do _)),ECARules),

findall(R,(rule(Id,R),R=(ignore _ if _)),IgnRules),

findall(R,(rule(Id,R),R=(prevent _ if _)),PrvRules),

findall(R,(rule(Id,R),R=(force _ on _ if _ do _)),FrcRules),

findall(R,(rule(Id,R),R=(if _ do _)),IfRules),

s_star(Delta,Events,ECARules,IfRules,IgnRules,PrvRules,FrcRules,NewDelta).

% ---

s_star(Delta,Events,ECARules,IfRules,IgnRules,PrvRules,FrcRules,NewDelta):-

reset,

s_if(Delta,IfRules,PrvRules,Delta2),

s_f(Delta2,Events,IfRules,IgnRules,PrvRules,FrcRules,NewEvents,Delta3),

s_on(Delta3,NewEvents,ECARules,IfRules,IgnRules,PrvRules,NewDelta).

% ---

s_f(Delta,Events,IfRules,IgnRules,PrvRules,FrcRules,NewEvents,NewDelta):-

findall([FE,A],(member(force FE on E if C do A,FrcRules),subset2(E,Events),

s_l(Delta,C),\+ ignored(Delta,Events,E,IgnRules)),EAs),

findall(Ev,member([Ev,Ac],EAs),Es), append(Es,Events,NewEvents),

findall(Ac,member([Ev,Ac],EAs),As),s_prime_r(Delta,IfRules,PrvRules,As,NewDelta).

% ---

s_on(Delta,Events,ECARules,IfRules,IgnRules,PrvRules,NewDelta):-

findall(A,(member(on E if C do A,ECARules),subset2(E,Events),

s_l(Delta,C),\+ ignored(Delta,Events,E,IgnRules)),As),

s_prime_r(Delta,IfRules,PrvRules,As,NewDelta).

% ---

ignored(Delta,Events,E,IgnRules):-member(ignore E2 if C,IgnRules),

subset2(E2,Events),

intersects(E,E2),s_l(Delta,C). % changed intersects(E2,E) by intersects(E,E2).

% ---

s_prime_r(S,_,_,[],S).

s_prime_r(S,IfRules,PrvRules,[A|As],NewS):-

s_r(S,A,TmpS),

check_prv(TmpS,PrvRules),

s_if(TmpS,IfRules,PrvRules,TmpS2),

s_prime_r(TmpS2,IfRules,PrvRules,As,NewS).

s_prime_r(S,IfRules,PrvRules,[_|As],NewS):-

s_prime_r(S,IfRules,PrvRules,As,NewS).

% ---

check_prv(Delta,PrvRules):-

findall(C,(member(prevent C if C2,PrvRules),s_l(Delta,C),s_l(Delta,C2)),[]).

% ---

125

% s_l(S/+,Conditions/+):-

% - Checks if Conditions matches S

% - When checking it also assigns values to variables in Conditions

% - Conditions is a list of the terms

% ---

s_l(_,[]). % end of list?

s_l(S,([Atf|Atfs])):- % otherwise

!,

s_l(S,Atf), % check each element of the list...

s_l(S,Atfs).

s_l(S,\+ Atf):- % handle negation

!,

\+ s_l(S,Atf).

s_l(_,seteq(L,L2)):- !, subset2(L,L2), subset2(L2,L),length(L,N),length(L2,N).

s_l(_,true):-!. % handle true keyword

s_l(_,prolog(Goal)):- % handle arbitrary Prolog goal

!,

call(Goal).

s_l(S,Atf):- % atfs must be in S

!,

member(Atf,S).

% ---

s_r(S,[],S). % end of updates?

s_r(S,[Update|RHS],NewS):- % otherwise

!,

s_r(S,Update,STemp), % handle each update at a time

s_r(STemp,RHS,NewS).

s_r(S,add(Atf),[Atf|S]):- % add atf?

!,

\+ member(Atf,S).

s_r(S,add(_),S).

s_r(S,del(Atf),NewS):- % delete atf

!,

member(Atf,S),

delete(S,Atf,NewS).

s_r(S,del(_),S).

s_r(S,prolog(Goal),S):-

!,

call(Goal).

% ---

intersects(L,L).

intersects(L,L2):- member(A,L),member(A,L2).

intersects(A,L):-member(A,L).

% ---

subset2([],[]).

subset2([],[_|_]).

subset2([H|T],L):- member(H,L), subset2(T,L).

subset2(A,L):- member(A,L).

126 Appendix B. An Interpreter for I

% ---

s_if(Delta,IfRules,PrvRules,NewDelta):-

select_rule(Delta,IfRules,R),R\=[],

fire(Delta,PrvRules,R,TmpDelta),

s_if(TmpDelta,IfRules,PrvRules,NewDelta).

s_if(Delta,IfRules,_,Delta):-

select_rule(Delta,IfRules,[]).

s_if(Delta,IfRules,PrvRules,NewDelta):-

s_if(Delta,IfRules,PrvRules,NewDelta).

% ---

select_rule(Delta,IfRules,R):-

findall(Rule,(member(Rule,IfRules),can_fire(Delta,Rule)),Rs),

resolve(Rs,R).

% ---

resolve([],[]).

resolve([H|_],H).

% ---

can_fire(Delta,if C do _):-s_l(Delta,C),\+ fired(C,A).

% ---

fire(Delta,PrvRules,if C do A,NewDelta):-

assert(fired(C,A)),s_r(Delta,A,NewDelta),

check_prv(NewDelta,PrvRules).

Bibliography

[Alberti et al., 2005] Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor,
G., and Torroni, P. (2005). Mapping deontic operators to abductive expecta-
tions. In Proceedings of 1st International Symposium on Normative Multiagent
Systems (NorMAS 2005), AISB 2005, Hertfordshire, Hatfield, UK. Cited in
page 21

[Alberti et al., 2003] Alberti, M., Gavanelli, M., Lamma, E., Mello, P., and Tor-
roni, P. (2003). Specification and Verification of Agent Interactions using
Integrity Social Constraints. Technical Report DEIS-LIA-006-03, Università
degli Studi di Bologna. Cited in page 20

[Alchourron and Bulygin, 1981] Alchourron, C. E. and Bulygin, E. (1981). The
Expressive Conception of Norms. In Hilpinen, R., editor, New Studies in
Deontic Logics, pages 95–124, London. D. Reidel. Cited in page 13

[Apt, 1997] Apt, K. R. (1997). From Logic Programming to Prolog. Prentice-
Hall, U.K. Cited in page 51, 52, 54, 98

[Åqvist, 1994] Åqvist, L. (1994). Handbook of Philosophical Logic: Volume II
Extensions of Classical Logic, chapter Deontic Logic. Kluwer. Cited in page
14

[Artikis et al., 2005] Artikis, A., Kamara, L., Pitt, J., and Sergot, M. (2005).
A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks. In
Declarative Agent Languages and Technologies II, volume 3476 of LNCS.
Springer-Verlag. Cited in page xi, 18, 19

[Bellifemine et al., 1999] Bellifemine, F., Poggi, A., and Rimassa, G. (1999).
Jade - a fipa-compliant agent framework. Technical report, Telecom Italia.
Part of this report has been also published in Proceedings of PAAM’99, Lon-
don, April 1999, pp.97-108. Cited in page 117

[Blackburn et al., 2002] Blackburn, P., de Rijke, M., and Venema, Y. (2002).
Modal Logic, chapter 7, pages 436–447. Cambridge University Press. Cited in
page 23

[Boella and van der Torre, 2003] Boella, G. and van der Torre, L. (2003). Per-
mission and Obligations in Hierarchical Normative Systems. In Proceedings

127

128 Bibliography

8th International Conference in AI & Law (ICAIL’03), Edinburgh. ACM.
Cited in page 13

[Broersen et al., 2004] Broersen, J., Dignum, F., Dignum, V., and Meyer, J.-
J. C. (2004). Designing a deontic logic of deadlines. In 7th Int. Workshop of
Deontic Logic in Computer Science (DEON’04), pages 43–56, Portugal. Cited
in page 15

[Casali et al., 2005] Casali, A., Godo, L., and Sierra, C. (2005). Graded BDI
models for agent architectures. In CLIMA V, volume 3487 of Lecture Notes
in Artificial Intelligence LNAI, pages 126–143. Cited in page 120

[Christensen and Haagh, 1996] Christensen, S. and Haagh, T. B. (1996). Design
CPN - overview of CPN ML syntax. Technical report, University of Aarhus.
Cited in page 95

[Colombetti et al., 2002] Colombetti, M., Fornara, N., and Verdiccchio, M.
(2002). The role of institutions in multiagent systems. In Atti del VII con-
vegno dell’Associazione italiana per l’intelligenza artificiale (AI*IA 02). Cited
in page 27

[Conte and Castelfranchi, 1993] Conte, R. and Castelfranchi, C. (1993). Norms
as Mental Objects: From Normative Beliefs to Normative Goals. In Procs. of
MAAMAW’93, Neuchatel, Switzerland. Cited in page 13

[Conte and Castelfranchi, 1995a] Conte, R. and Castelfranchi, C. (1995a). Cog-
nitive and social action. UCL Press. Cited in page 15

[Conte and Castelfranchi, 1995b] Conte, R. and Castelfranchi, C. (1995b). Un-
derstanding the Functions of Norms in Social Groups through Simulation. In
Gilbert, N. and Conte, R., editors, Artificial Societies. The Computer Sim-
ulation of Social Life, pages 252–267, London. UCL Press. Cited in page
13

[Cost et al., 2000] Cost, R. S., Chen, Y., Finin, T. W., Labrou, Y., and Peng,
Y. (2000). Using colored petri nets for conversation modeling. In Issues in
Agent Communication, pages 178–192, London, UK. Springer-Verlag. Cited
in page 97

[Cranefield, 2005] Cranefield, S. (2005). A Rule Language for Modelling and
Monitoring Social Expectations in Multi-Agent Systems. Technical Report
2005/01, University of Otago. Cited in page 22

[DEON, 2006] DEON (1991-2006). International Workshop in Deontic Logic in
Computer Science. Cited in page 14

[Dignum, 1999] Dignum, F. (1999). Autonomous Agents with Norms. Artificial
Intelligence and Law, 7(1):69–79. Cited in page 13

Bibliography 129

[Dignum, 2003] Dignum, V. (2003). A model for organizational interaction:
based on agents, founded in logic. PhD thesis, Utrecht University. Cited
in page 28, 29

[Elhag et al., 2000] Elhag, A., Breuker, J., and Brouwer, P. (2000). On the
formal analysis of normative conflicts. Information & Communications Tech-
nology Law, 9(3):207–217. Cited in page 98

[Emerson and Halpern, 1986] Emerson, E. and Halpern, J. (1986). ’sometimes’
and ’not never’ revisited: on branching time versus linear time temporal logic.
Journal of the ACM, 33:151–178. Cited in page 29

[Esteva, 2003] Esteva, M. (2003). Electronic Institutions: from specification to
development. PhD thesis, Universitat Politecnica de Catalunya. Number 19
in IIIA Monograph Series. Cited in page 2, 4, 25, 35, 46, 49, 50, 63, 64, 68,
84, 87

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J. A., and Arcos,
J. L. (2004). AMELI: An agent-based middleware for electronic institutions.
In Proceedings of 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’04), pages 236–243. ACM. Cited in page
25, 26, 35, 103, 104, 105, 109

[Fitting, 1990] Fitting, M. (1990). First-Order Logic and Automated Theorem
Proving. Springer-Verlag, New York, U.S.A. Cited in page 54, 98

[Føllesdal and Hilpinen, 1981] Føllesdal, D. and Hilpinen, R. (1981). Deontic
Logic: an introduction. In Deontic Logic: Introductory and Systematic Read-
ings. D. Reidel. Cited in page 13

[Fornara et al., 2004] Fornara, N., Viganò, F., and Colombetti, M. (2004). A
Communicative Act Library in the Context of Artificial Institutions. In 2nd
European Workshop on Multi-Agent Systems, pages 223–234, Barcelona. Cited
in page 13, 21

[Frühwirth and Abdennadher, 2003] Frühwirth, T. and Abdennadher, S. (2003).
Essentials of Constraint Programming. Springer Verlag. Cited in page 21

[Gaertner et al., 2007] Gaertner, D., Garćıa-Camino, A., Noriega, P.,
Rodŕıguez-Aguilar, J.-A., and Vasconcelos, W. (2007). Distributed Norm
Management in Regulated Multi-agent Systems. In Proceedings of 6th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems.
(AAMAS’07). Cited in page 11

[Gaertner et al., 2008] Gaertner, D., Garćıa-Camino, A., Noriega, P.,
Rodr’iguez-Aguilar, J. A., and Vasconcelos, W. (2008). Normative structures
for regulating open multi-agent systems. Autonomus Agents and Multi-Agent
Systems. (submitted). Cited in page 11

130 Bibliography

[Gaertner et al., 2006] Gaertner, D., Noriega, P., and Sierra, C. (2006). Ex-
tending the BDI architecture with commitments. In Frontiers in Artificial
Intelligence and Applications (to appear). IOS Press. Cited in page 120

[Garćıa-Camino, 2007] Garćıa-Camino, A. (2007). Ignoring, forcing and expect-
ing concurrent events in electronic institutions. In COIN III: Coordination,
Organization, Institutions and Norms in Agent Systems. Revised Selected Pa-
pers from the 2007 Workshop Series, volume 4870 of Lecture Notes in Com-
puter Science, pages 15–26. Springer. Cited in page 10, 30

[Garćıa-Camino et al., 2005a] Garćıa-Camino, A., Noriega, P., and Rodŕıguez-
Aguilar, J.-A. (2005a). Implementing Norms in Electronic Institutions. In
Proceedings of 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’05), pages 667–673, Utrecht, The Nederlands.
Cited in page 9

[Garćıa-Camino et al., 2005b] Garćıa-Camino, A., Noriega, P., and Rodŕıguez-
Aguilar, J.-A. (2005b). Implementing Norms in Electronic Institutions (Ex-
tended Abstract). In 3rd European Workshop on Multiagent Systems (EU-
MAS’05), Brussels, Belgium. Cited in page 10

[Garćıa-Camino et al., 2007a] Garćıa-Camino, A., Noriega, P., and Rodŕıguez-
Aguilar, J. A. (2007a). An algorithm for conflict resolution in regulated com-
pound activities. In Engineering Societies in the Agents World VII, volume
4457 of Lecture Notes in Computer Science, pages 193–208. Cited in page 11,
119

[Garćıa-Camino et al., 2006a] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A.,
Sierra, C., and Vasconcelos, W. (2006a). A Distributed Architecture for
Norm-Aware Agent Societies. In Baldoni, M. et al., editors, Declarative Agent
Languages and Technologies III, volume 3904 of Lecture Notes in Artificial
Intelligence (LNAI), pages 89–105. Springer, Berlin Heidelberg. Cited in page
10, 50

[Garćıa-Camino et al., 2006b] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A.,
Sierra, C., and Vasconcelos, W. (2006b). A Rule-based Approach to Norm-
Oriented Programming of Electronic Institutions. ACM SIGecom Exchanges,
5(5):33–40. Cited in page 10

[Garćıa-Camino et al., 2006c] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A.,
Sierra, C., and Vasconcelos, W. (2006c). Norm Oriented Programming of
Electronic Institutions. In Proceedings of 5th International Joint Conference
on Autonomous Agents and Multiagent Systems. (AAMAS’06). Cited in page
10

[Garćıa-Camino et al., 2006d] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A.,
Sierra, C., and Vasconcelos, W. (2006d). Norm-Oriented Programming of
Electronic Institutions (Extended Abstract). In Fourth European Workshop
on Multi-Agent Systems (EUMAS’06), Lisbon, Portugal. Cited in page 10

Bibliography 131

[Garćıa-Camino et al., 2008] Garćıa-Camino, A., Rodŕıguez-Aguilar, J. A.,
Sierra, C., and Vasconcelos, W. (2008). Constraint rule-based programming
of norms for electronic institutions. Autonomus Agents and Multi-Agent Sys-
tems. (In press). Cited in page 10

[Garćıa-Camino et al., 2007b] Garćıa-Camino, A., Rodŕıguez-Aguilar, J. A.,
Sierra, C., and Vasconcelos, W. W. (2007b). Norm-oriented programming
of electronic institutions: A rule-based approach. In Coordination, Organi-
zation, Institutions and Norms in agent systems II, volume 4386 of Lecture
Notes in Computer Science, pages 177–193. Springer-Verlag. Cited in page
10, 89

[Garćıa-Camino et al., 2007c] Garćıa-Camino, A., Rodŕıguez-Aguilar, J. A., and
Vasconcelos, W. W. (2007c). A distributed architecture for norm management
in multi-agent systems. In COIN III: Coordination, Organization, Institu-
tions and Norms in Agent Systems. Revised Selected Papers from the 2007
Workshop Series, volume 4870 of Lecture Notes in Computer Science, pages
275–286. Springer. Cited in page 11

[Gelfond et al., 1991] Gelfond, M., Lifschitz, V., and Rabinov, A. (1991). What
are the limitations of the Situation Calculus? In Essays in Honor of Woody
Bledsoe, pages 167–179. Cited in page 79

[Giunchiglia and Serafini, 1994] Giunchiglia, F. and Serafini, L. (1994). Multi-
language hierarchical logics or: How we can do without modal logics. Artificial
Intelligence, 65(1):29–70. Cited in page 115

[Gossling, 1996] Gossling, J. (1996). The Java programming Language. Reading.
Addison-Wesley. Cited in page 39

[Hannoun et al., 2000] Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat,
C. (2000). MOISE: An organizational model for multi-agent systems. In
Monard, M. C. and Sichman, J. S., editors, Advances in Artificial Intelligence,
volume 1952 of LNAI. Springer-Verlag. Cited in page 26

[Harel, 1979] Harel, D. (1979). First-order dynamic logic. In Lecture Notes in
Computer Science. Springer. Cited in page 14

[Hübner et al., 2005] Hübner, J. F., Sichman, J. S., and Boissier, O. (2005).
S-MOISE+: a middleware for developing organized multi-agent systems.
In Proc. International Workshop on Organizations in Multi-Agent Systems:
From Organizations to Organization-Oriented Programming (OOOP05),
Utrecht, The Netherlands. Cited in page 27

[Huisjes, 1981] Huisjes, C. H. (1981). Norms and Logic. PhD thesis, University
of Groningen. Cited in page 13

[Jaffar et al., 1998] Jaffar, J., Maher, M. J., Marriott, K., and Stuckey, P. J.
(1998). The Semantics of Constraint Logic Programs. Journal of Logic Pro-
gramming, 37(1-3):1–46. Cited in page 21

132 Bibliography

[Jennings et al., 1998] Jennings, N. R., Sycara, K., and Wooldridge, M. (1998).
A roadmap of agent research and development. Journal of Agents and Multi-
Agents Systems, 1:7–38. Cited in page 1

[Jensen, 1997] Jensen, K. (1997). Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Uses (Volume 1). Springer. Cited in page 88, 94

[Jones and Sergot, 1996] Jones, A. J. and Sergot, M. J. (1996). A formal char-
acterisation of institutionalised power. Journal of the Interest Group in Pure
and Applied Logic, 4(3):427–443. Cited in page 28

[Knuuttila, 1981] Knuuttila, S. (1981). The emergence of deontic logic in the
fourteenth century. In Hilpinen, R., editor, New Studies in Deontic Logic,
pages 225–248. D. Reidel Publishing Company. Cited in page 13

[Kollingbaum, 2005] Kollingbaum, M. J. (2005). Norm-Governed Practical Rea-
soning Agents. PhD thesis, Department of Computing Science, University of
Aberdeen, United Kingdom. Cited in page 3, 20, 88, 114

[Kollingbaum and Norman, 2003a] Kollingbaum, M. J. and Norman, T. J.
(2003a). NoA – A Normative Agent Architecture. In Proceedings 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 1465–1466,
Acapulco, Mexico. AAAI Press. Cited in page 20

[Kollingbaum and Norman, 2003b] Kollingbaum, M. J. and Norman, T. J.
(2003b). Norm Adoption in the NoA Agent Architecture. In Proceedings
2nd International Joint Conference on Autonomous Agents & Multi-Agent
Systems (AAMAS’03), Melbourne, Australia. ACM, U.S.A. Cited in page 20

[Kollingbaum et al., 2007a] Kollingbaum, M. J., Vasconcelos, W. W., Garćıa-
Camino, A., and Norman, T. (2007a). Conflict resolution in norm-regulated
environments via unification and constraints. In Declarative Agent Languages
and Technologies V, volume 4897 of Lecture Notes in Artificial Intelligence,
pages 158–174. Springer. Cited in page 11, 88, 99, 100

[Kollingbaum et al., 2007b] Kollingbaum, M. J., Vasconcelos, W. W., Garćıa-
Camino, A., and Norman, T. (2007b). Managing conflict resolution in norm-
regulated environments. In Engineering Societies in the Agents World VIII,
volume (In press) of Lecture Notes in Artificial Intelligence. Springer. Cited
in page 11, 101, 119

[Kramer and Mylopoulos, 1992] Kramer, B. and Mylopoulos, J. (1992). Knowl-
edge Representation. In Shapiro, S. C., editor, Encyclopedia of Artificial In-
telligence, volume 1, pages 743–759. John Wiley & Sons. Cited in page 90

[Lomuscio and Nute, 2004] Lomuscio, A. and Nute, D., editors (2004). Proc.
of the 7th Intl. Workshop on Deontic Logic in Computer Science (DEON’04),
volume 3065 of Lecture Notes in Artificial Intelligence. Springer Verlag. Cited
in page 13

Bibliography 133

[Lopes Cardoso and Oliveira, 2005] Lopes Cardoso, H. and Oliveira, E. (2005).
Virtual Enterprise Normative Framework within Electronic Institutions. In
Engineering Societies in the Agents World V, volume 3451 of LNAI, pages
14–32. Springer-Verlag. Cited in page 30

[Lopes Cardoso and Oliveira, 2007] Lopes Cardoso, H. and Oliveira, E. (2007).
Electronic institutions for b2b: dynamic normative environments. Artificial
Intelligence and Law. Cited in page 30

[López y López, 2003] López y López, F. (2003). Social Power and Norms: Im-
pact on agent behaviour. PhD thesis, University of Southampton. Cited in
page xi, 2, 17, 114

[López y López and Luck, 2004] López y López, F. and Luck, M. (2004). A
Model of Normative Multi-Agent Systems and Dynamic Relationships. In
Regulated Agent-Based Social Systems, volume 2934 of LNAI, pages 259–280.
Springer-Verlag. Cited in page 17

[Meyer, 1987] Meyer, J.-J. C. (1987). A different approach to deontic logic:
deontic logic viewed as a variant of dynamic logic. Notre Dame Journal of
Logic, 29(1):109–136. Cited in page 14

[Michael et al., 2004] Michael, L., Parkes, D. C., and Pfeffer, A. (2004). Specify-
ing and monitoring market mechanisms using rights and obligations. In Pro-
ceedings AAMAS Workshop on Agent Mediated Electronic Commerce (AMEC
VI), New York, USA. Cited in page 19

[Minsky, 2005] Minsky, N. H. (2005). Law Governed Interaction (LGI): A Dis-
tributed Coordination and Control Mechanism (An Introduction, and a Ref-
erence Manual). Technical report, Rutgers University. Cited in page 29

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4):541–580. Cited in page 98

[Noriega, 1997] Noriega, P. (1997). Agent-Mediated Auctions: The Fishmarket
Metaphor. PhD thesis, Universitat Autonoma de Barcelona. Number 8 in
IIIA Monograph Series. Cited in page 4, 24, 64

[Okuyama et al., 2007] Okuyama, F. Y., Bordini, R. H., and da Rocha Costa,
A. C. (2007). Spatially distributed normative objects. In Coordination, Or-
ganizations, Institutions, and Norms in Agent Systems II, volume 4386 of
Lecture Notes in Computer Science, pages 133–146. Cited in page 119

[OMG, 2003] OMG (2003). Object constraint language specification 1.4. http:
//www.omg.org. Cited in page 21

[OMG, 2005] OMG (2005). Unified Modelling Language. http://www.uml.org.
Cited in page 21

http://www.omg.org
http://www.omg.org

134 Bibliography

[Rodŕıguez-Aguilar, 2001] Rodŕıguez-Aguilar, J. A. (2001). On the Design and
Construction of Agent-mediated Electronic Institutions. PhD thesis, Univer-
sitat Autonoma de Barcelona. Number 14 in IIIA Monograph Series. Cited
in page 4, 24

[Ross, 1941] Ross, A. (1941). Imperatives and logic. Theoria, 7:53–71. Cited in
page 14

[Sandia National Labs, 2006] Sandia National Labs (2006). Jess. The Rule En-
gine for Java. http://www.jessrules.com, viewed on 15 Mar 2006 at 17.50
GMT. Cited in page 36, 39, 46

[Sartor, 1992] Sartor, G. (1992). Normative conflicts in legal reasoning. Artificial
Intelligence and Law, 1(2-3):209–235. Cited in page 3, 88

[Searle, 1995] Searle, J. (1995). The Construction of Social Reality. The Penguin
Press, London. Cited in page 4, 28, 30, 89, 118

[Sergot, 2001] Sergot, M. (2001). A Computational Theory of Normative Posi-
tions. ACM Trans. Comput. Logic, 2(4):581–622. Cited in page 14, 15

[Shoham and Tennenholtz, 1995] Shoham, Y. and Tennenholtz, M. (1995). On
Social Laws for Artificial Agent Societies: Off-line Design. Artificial Intelli-
gence, 73(1-2):231–252. Cited in page 13

[SICS, 2006] SICS (2006). SICStus Prolog. Swedish Institute of Computer
Science. http://www.sics.se/sicstus, viewed on 10 Feb 2006 at 18.16
GMT+1. Cited in page 56

[Stratulat et al., 2001] Stratulat, T., Clérin-Debart, F., and Enjalbert, P.
(2001). Norms and Time in Agent-based Systems. In Proceedings 8th In-
ternational Conference on AI & Law (ICAIL’01), pages 178 – 185, St. Louis,
Missouri, USA. Cited in page 19

[Tsang, 1993] Tsang, E. P. K. (1993). Foundations of Constraint Satisfaction.
Academic Press. Available at http:/www.bracil.net/edward/FCS.html.
Cited in page 55

[Tuomela and Bonnevier-Tuomela, 1995] Tuomela, R. and Bonnevier-Tuomela,
M. (1995). Norms and Agreement. European Journal of Law, Philosophy and
Computer Science, 5:41–46. Cited in page 13

[Udupi and Singh, 2006] Udupi, Y. B. and Singh, M. P. (2006). Multiagent
policy architecture for virtual bussiness organizations. In Proceedings of the
IEEE International Conference on Services Computing (SCC). Cited in page
30

[Vasconcelos et al., 2004] Vasconcelos, W. W., Robertson, D., Sierra, C., Esteva,
M., Sabateri, J., and Wooldridge, M. (2004). Rapid Prototyping of Large
Multi-Agent Systems through Logic Programming. Annals of Mathematics
and Artificial Intelligence, 41(2–4):135–169. Cited in page 63

http://www.jessrules.com
http://www.sics.se/sicstus
http:/www.bracil.net/edward/FCS.html

Bibliography 135

[Vázquez-Salceda et al., 2004] Vázquez-Salceda, J., Aldewereld, H., and
Dignum, F. (2004). Implementing Norms in Multiagent Systems. In Multia-
gent System Technologies: Second German Conference, MATES 2004, volume
3187 of LNAI, pages 313–327, Erfurt, Germany. Springer-Verlag. Cited in
page xi, 13, 16, 35

[von Wright, 1951] von Wright, G. H. (1951). Deontic logic. Mind, 60:1–15.
Cited in page 4, 13

[von Wright, 1963] von Wright, G. H. (1963). Norm and Action: A Logical
Inquiry. Routledge and Kegan Paul, London. Cited in page 13

[Walker and Wooldridge, 1995] Walker, A. and Wooldridge, M. J. (1995). Un-
derstanding the emergence of conventions in multi-agent systems. In Proceed-
ings International Joint Conference on Multi-Agent Systems (ICMAS), pages
384–389, San Francisco, USA. Cited in page 13

Monografies de l’Institut d’Investigació en
Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial

Constraint Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional

Logics
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special

Relations
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of

Collaborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents
Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-

mediated Electronis Institutions
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and

Imprecise Constants: Possibilistic Semantics and Automated
Deduction

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory - A Possibilistic Approach

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for
heterogeneous data sets

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics

Num. 19 M. Esteva, Electronic Institutions: from specification to devel-
opment

Num. 20 J. Sabater, Trust and Reputation for Agent Societies

Num. 21 J. Cerquides, Improving Algorithms for Learning Bayesian
Network Classifiers

Num. 22 M. Villaret, On Some Variants of Second-Order Unification
Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent

Systems: A Knowledge Modelling Approach
Num. 24 S. Ramchurn, Multi-Agent Negotiation Using Trust and Per-

suasion
Num. 25 S. Ontañon, Ensemble Case-Based Learning for Multi-Agent

Systems
Num. 26 M. Sánchez, Contributions to Search and Inference Algorithms

for CSP and Weighted CSP
Num. 27 C. Noguera, Algebraic Study of Axiomatic Extensions of

Triangular Norm Based Fuzzy Logics
Num. 28 E. Marchioni, Functional Definability Issues in Logics Based on

Triangular Norms
Num. 29 M. Grachten, Expressivity-Aware Tempo Transformations of

Music Performances Using Case Based Reasoning
Num. 30 I. Brito, Distributed Constraint Satisfaction
Num. 31 E. Altamirano, On Non-clausal Horn-like Satisfiability Prob-

lems
Num. 32 A. Giovannucci, Computationally Manageable Combinatorial

Auctions for Supply Chain Automation
Num. 33 R. Ros, Action Selection in Cooperative Robot Soccer using

Case-Based Reasoning
Num. 34 A. Garćıa-Cerdaña, On some Implication-free Fragments of

Substructural and Fuzzy Logics
Num. 35 A. Garćıa-Camino, Normative Regulation of Open Multi-agent

Systems
Num. 36 A. Ramisa Ayats, Localization and Object Recognition for

Mobile Robots
Num. 37 C.G. Baccigalupo, Poolcasting: an intelligent technique to

customise music programmes for their audience
Num. 38 J. Planes, Design and Implementation of Exact MAX-SAT

Solvers
Num. 39 A. Bogdanovych, Virtual Institutions
Num. 40 J. Nin, Contributions to Record Linkage for Disclosure Risk

Assessment
Num. 41 J. Argelich Romà, Max-SAT Formalisms with Hard and Soft

Constraints
Num. 42 A. Casali, On Intentional and Social Agents with Graded

Attitudes
Num. 43 A. Perreau de Pinnick Bas, Decentralised Enforcement in

Multiagent Networks

D
ec

en
tr

a
li

se
D

 e
n

fo
r

c
em

en
t

in
 m

u
lt

ia
g

en
t

n
e

t
w

o
r

k
s

43

A
dr

iá
n

Pe
rr

ea
u

 d
e

Pi
nn

in
ck

 B
as

CSIC

