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Abstract. Mixed Multi-Unit Combinatorial Auctions (MMUCAS) offer
a high potential to be employed for the automated assembly of supply
chains of agents. However, little is known about the factors making a win-
ner determination problem (WDP) instance hard to solve. In this paper
we empirically study the hardness of MMUCAS: (i) to build a model that
predicts the time required to solve a WDP instance (because time can be
an important constraint during an auction-based negotiation); and (ii)
to assess the factors that make a WDP instance hard to solve.
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1 Introduction

In [1] we introduced the so-called mized multi-unit combinatorial auctions (hence-
forth MMUCA for short) and discussed the issues of bidding and winner deter-
mination. Mixed auctions are a generalisation of the standard model of combi-
natorial auctions (CAs) [2]. Thus, rather than negotiating over goods, in mixed
auctions the auctioneer and the bidders can negotiate over supply chain oper-
ations (henceforth transformations for short), each one characterised by a set
of input goods and a set of output goods. A bidder offering a transformation is
willing to produce its output goods after having received its input goods along
with the payment specified in the bid. While in standard CAs, a solution to
the winner determination problem (WDP) is a set of atomic bids to accept that
maximises the auctioneer’s revenue, in mixed auctions, the order in which the
auctioneer “uses” the accepted transformations matters. Thus, a solution to the
WDP is a sequence of operations. For instance, if bidder Joe offers to make
dough if provided with butter and eggs, and bidder Lou offers to bake a cake if
provided with enough dough, the auctioneer can accept both bids whenever he
uses Joe’s operation before Lou’s to obtain baked cakes from butter and eggs.
Since the existence of a solution is not guaranteed in the case of MMUCASs (un-
like classical CAs), attention is focused not only on the winner determination
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problem, but also on the feasibility problem of deciding whether a given instance
admits a solution at all. In fact, an important and peculiar source of complexity
for MMUCAS lays hidden in this latter problem as noticed in [3].

The WDP for MMUCASs is a complex computational problem. In fact, one
of the fundamental issues limiting the applicability of MMUCASs to real-world
scenarios is the computational complexity associated to the WDP. In particular,
it is proved in [1] that the WDP for MMUCAs is N'P-complete. And yet little
is known about its hardness, namely about what makes a WDP instance hard
to solve. Hence, on the one hand some WDP instances may unexpectedly take
longer to solve than required (time is important in auction-based negotiations).
On the other hand, lack of knowledge about the hardness of MMUCA prevents
the development of specialised winner determination algorithms. Unlike classical
CAs, little is known about whether polynomial-time solvable classes of MMU-
CAs can be singled out based on the structural and topological properties of the
instances at hand. Thus, in this paper we try to make headway in the under-
standing of the hardness of MMUCAs by applying the methodology described
in [4] that Lleyton-Brown et al successfully apply to CAs. The results in this pa-
per must be regarded as the counterpart of the results about empirical hardness
obtained in [4] for CAs.

The paper is organised as follows. In section 2 we outline an integer pro-
gram introduced in [5] to efficiently solve the WDP for MMUCAs. In section
3 we outline the methodology introduced in [4] to subsequently employ it to
build a model that predicts the time required by the integer program to solve
a WDP instance. Next section 5 further exploits the methodology to assess the
factors that make a WDP instance hard to solve. Finally, section 6 draws some
conclusions and sets paths to future research.

2 CCIP: A Topology-based Solver

In this section we summarise CCIP, a mapping of the MMUCA WDP into an
integer program (IP) that drastically reduces the number of decision variables
required by the original IP described in [1] by exploiting the topological features
of the WDP. CCIP will be employed in forthcoming sections to analyse the
empirical hardness of the MMUCA WDP. Notice that hereafter we limit to
outlining the intuitions underlying CCIP. We refer the reader to [5] for a detailed
IP formulation.

Consider that after receiving a bunch of bids, we draw the relationships
among goods and transformations, as shown in Figure 1 (a). There, we rep-
resent goods at trade as circles, transformations as squares, a transformation
input goods as incoming arrows and its output goods as outgoing arrows. Thus,
for instance, transformation ty offers one unit of good go and transformation ¢,
transforms one unit of g into one unit of g4. Say that the auctioneer requires a
multiset of goods Uyt = {g2,93}. Row 1 in table 1 stands for a valid solution
sequence. Indeed, it stands for a valid solution sequence because at each posi-
tion, enough input goods are available to perform the following transformation.
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Notice too that likewise row 1, row 2 also stands for a valid solution sequence
because even though they differ in the ordering among transformations, both use
exactly the same transformations, and both have enough goods available at each
position. However, row 3 in table 1 is not a valid sequence, although it contains
the same transformations, because to lacks enough input goods (g2) to be used.

Position [1(2|3(4|5(|6|7|8|9](10|11
Sequence 1|to|t2 t1 ta
Sequence 2(to|t1|t2|ts
Sequence 3|ta|t1|to|ts
ta|t2| 2 tolto
olt1|ts|ts|ts|ts|ta|t10 tr|tr ts
ta|ta|ts
Table 1. Partial sequences of transformations.

Solution
template

(c) SCCs of the TDG (d) The strict order

Fig.1. An MMUCA bid set, the corresponding TDG, SCC, and Order Relation.

In Figure 1 (a), it is clear that transformations that have no input goods
can be used prior to any other transformation. Thus, transformations t¢ and t;
can come first in the solution sequence. Moreover, we can impose that ty comes
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before t; because swapping the two would yield an equivalent solution. If we
now consider transformations ts, t3,t4, we observe that: (i) they depend on the
output goods of ¢y and t1; and (ii) we cannot impose an arbitrary order among
them because they form a cycle and then they can feed with input goods one
another (they depend on one another). However, no permutation of the three can
be discarded for the valid solution sequence. Furthermore, whatever their order,
we can always use them before transformations ¢5 and tg (since these depend on
g4) without losing solutions.

Assuming that the auctioneer does not care about the ordering of a solution
sequence as long as enough goods are available for every transformation in the
sequence, we can impose “a priori” constraints on the ordering of transformations
without losing solutions. The way of imposing such constraints is via a solution
template, a pattern that any candidate sequence must fulfill to be considered as
a solution. For instance, row 4 in table 1 shows a sample of solution template.
A solution sequence fulfilling that template must have transformations ty in
position 1 and ¢; in position 2, whereas it is free to assign positions 3, 4, or 5, to
the transformations in {ts,t3,t4}. For instance, row 3 of table 1 does not fulfill
the template in row 4, whereas rows 1 and 2 do.

Notice that the constraints in the solution template derive from our analysis
of the dependence relationships among transformations. Hence, in order to build
a solution template, we must firstly analyse the dependence relationships among
transformations to subsequently use them to constrain the positions at which a
transformation can be used.

At this aim, we can follow the sequential process illustrated in Figure 1:

1. Define the so-called transformation dependency graph (TDG), a graph where
two transformations ¢ and ¢’ are connected by an edge if they have a good
that is both output of ¢ and input to ¢ (direct dependence). Figure 1 (b)
depicts the TDG for the bids represented in Figure 1(a).

2. Assess the strongly connected components (SCC) of the TDG. Depending on
the received bids, the TDG may or may not contain strongly connected com-
ponents. In order to constrain the position of transformations, we transform
the TDG in an acyclic graph where the nodes that form a strongly connected
component are collapsed into a single node. The main idea is that the posi-
tions of transformations in a strongly connected component are drawn from
the same set of positions, but we cannot impose any order regarding the
position each transformation takes on. In Figure 1(c) we identify strongly
connected components or SCCs in the graph. In figure 1(d) we can see the
graph resulting from transforming (collapsing) each SCC into a node.

If there is a strict order among transformations (e.g. like the one depicted
in Figure 1(d)), then we can always construct a solution template that restricts
the positions that can be assigned to those transformations in a way that, if a
solution sequence fulfills the solution template, the strict order is also fulfilled [6].
For instance, consider the solution template in row 4 in table 1 that we construct
considering the strict order in Figure 1(d). Since the solution sequences in rows
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1 and 2 of table 1 fulfill the solution template in row 4, they both fulfill the strict
order.

Now we are ready to characterise valid solutions to the MMUCA WDP. Look-
ing back at the solution sequences in rows 1 and 2 of table 1, we realise that
both are partial sequences. A partial sequence is a sequence with "holes”, mean-
ing that there can be some positions in the sequence that are empty. Therefore,
a valid solution to the MMUCA WDP can be encoded as a partial sequence of
transformations that fulfills some solution template.

3 Empirical Hardness Models

In [4], Leyton-Brown et al. propose a general methodology to analyze the empir-
ical hardness of AN"P-hard problems. The purpose of the methodology is twofold.
On the one hand, given an algorithm to solve some hard problem, it provides
the guidelines to build (learn) a model that predicts the running time required
by the algorithm to solve an instance of the problem. On the other hand, the
methodology also discusses techniques to analyse the factors that determine how
hard some distributions or individual instances are to solve (by the algorithm
under study). Moreover, since the methodology is successfully applied to the par-
ticular case of CAs, it appears as an appropriate tool for analysing the empirical
hardness of the WDP for MMUCAs. Our purpose will be to employ to: (i) build
a model to predict the running time of the solver outlined in section 2; and (ii)
to analyse the factors that make the WDP for MMUCASs hard. Before we apply
the methodology (in forthcoming sections) to MMUCA, next we summarise its
main steps 3:

1. Select an algorithm as the objective of the empirical hardness analysis.

2. Select an instance distribution. To generate instances of the problem, it is
eventually convenient to employ some artificial instance generator.

3. Select features of the problem instances. The values these features take on
will be mapped to a predicted run-time. The features have to be good ones,
avoiding uninformative features.

4. Collect data. Generate a good number of instances with the instance dis-
tribution selected at step 2. Then, solve the instances using the algorithm
selected at step 1 and extract the features selected at step 3. Finally, di-
vide the instances in three separate sets, namely one for training, one for
validation, and one for testing.

5. Build a model. Choose a machine learning algorithm to learn to predict the
running time required by the algorithm selected at step 1 to solve some
problem instance characterised by the values of the features selected at step
3. Statistical regression techniques are the most convenient tool for this goal.

3 We refer the interested reader to [4] for full details.
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4 A Empirical Hardness Model for MMUCA

In this section we apply the methodology outlined in section 3 to build a model
that predicts the running time of the solver outlined in section 2.

Step 1: Selecting an algorithm. As discussed in section 2, MMUCA WDPs
can be solved via integer linear programming (ILP). We select an ILOG CPLEX
implementation of the integer program outlined in section 2 (fully described
in [5]), because it is the fastest algorithm reported in the literature, largely
outperforming the solver in [1].

Step 2: Selecting an instance distribution. In order to generate instance
distributions we resort to the artificial data set generator for MMUCA WDPs
introduced in [7]. The algorithm takes inspiration on the structure of supply
chains, whose formation has been identified as a very promising application
domain for MMUCA [5, 1]. A supply chain is composed of levels (or tiers). Each
tier contains goods that are subsequently transformed into other goods within
another tier in the supply chain. Within this setting, their generator allows to
flexibly generate:

— Supply chain structures with a varying number of levels. Modelling from
complex supply chains involving multiple levels (for example the making of
a car) to simple supply chains involving a few parties.

— Transformations of varying complexity. Varying complexity on the goods
involved in the input and output sides of the transformations in a supply
chain.

— Transformations representing different production structures. The input and
output goods from a transformation may come from different levels.

— Bids per level. Different bid distributions may appear at different levels, to
control the degree of competition in the market.

Step 3: Selecting Features. In order to generate a list of features we start
from the features described in [4] regarding the study of CAs. However, there are
major differences between CAs and MMUCASs that lead to the list of features in
table 2.

First of all, as formerly argued in [5] and [7], the topological features of the
search space handled by the WDP matter. Indeed, while in [5] Giovannucci et
al. observed that the order of the number of variables required by CCIP, the
IP, is directly related to the size of the largest strongly connected component
(SCC), in [7] Vinyals et al. empirically observed that large SCCs (cycles) lead to
high solving times. Therefore, we must consider the structural properties of the
SCC graph (like the one in figure 1). Hence, we shall consider: inner features of
SCCs (node size statistics), external features of SCCs (node degree statistics),
general properties of the SCC graph (edge density and depth). Importantly,
notice that these features were not considered when studying CAs in [4] because
the topology of the search space for CAs is different.

Secondly, regarding problem size features, MMUCASs are again different from
CAs because the former consider the notion of transformation. Therefore, we
shall consider both the number of goods and transformations.
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Finally, although Leyton-Brown et al. found in [4] that price-based features
are not among the main factors driving the hardness of a WDP, we still consider
them because although two WDPs may have similar SCC graphs, their optimal
solutions might be different when considering different bid prices.

#Feature|Topological features

1-8 Node size statistics: average, maximum, minimum and standard deviation.

9-12 Node degree statistics: average, maximum, minimum and standard deviation.

13 Edge density: sum of all node degrees divided by the sum of the degrees in
a complete graph.
14 Depth: The largest path in the SCC graph.

#Feature|Problem size features

15 Number of transformations.
16 Number of goods.

#Feature|Price-based features

17-20  |Price statistics: average, max, min and standard deviation of prices.

Table 2. Groups of features.

Step 4: Collecting Data. To collect data, we generated 2250 WDP instances
with the generator in [7] after setting the probability of generating cycles (pp
0.1), the number of goods (ny = 20), and the number of transformations (n, =
200). Such parameters allow us to generate WDP instances whose solving times
are acceptable. Moreover, the fact that we employ a probability distribution
to generate cycles (parameterised by pp) leads to WDP instances of varying
complexity. This is because we observed in [7] that the solving time is sensitive
to cycles in WDP instances. In other words, solving the WDP is costly when
there are cycles. Such WDP instances may be output by the generator when the
probability of generating cycles (py) is positive, as we set above?.

Thereafter, once solved the WDP instances we solve them using CCIP, the
integer program we have selected as a solver at step 1 above. Since eventually
some WDP instances may take too long, we defined a maximum solving time
(4500 seconds). If CCIP does not find any valid solution before the deadline, the
instance is rejected and a new instance is generated and solved. In this way we
avoid to deal with outliers in the empirical analysis. Once solved the problems,
we extracted the values for the selected features described at the step 3 above.
For each problems instance, the values of the features along with the solving
time compose the data that will be subsequently employed to learn the model.
Finally, we divided the data (features’ values along with solving times) in three
sets following the step 4 in the methodology described above: one for training,
one for validation, and one for testing.

Step 5: Building Models. We decided to use linear regression (following the
guidelines in [4]) to build a model that predicts the solving time of CCIP because:
(i) it reduces the learning time; and (ii) it makes more intuitive to analyse and
interpret the resulting models. We use as response variable an exponential model,

4 Notice that some WDP instances may have no cycles, others may have several cycles,
and cycles may encompass a varying number of transformations
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applying the (base-10) logarithm to the CPLEX running times. As for error
metrics, we do not apply the inverse transformation. In this way, we manage to
uniformly penalize all the responses. We consider two error metrics: the squared-
error metric (RMSE), because it is the most used in linear regression, and the
mean absolute error (MAE), because it is more intuitive.

RMSE =0.24, MAE=0.14

Fraction Below
3
Predicted log10 runtime
9

0 02 04 06 08 1 12 14 16 18 2 o 05 1 15 2 25 3 35 4
Squared Error Actual log10 runtime:

(a) squared errors (b) prediction

Fig. 2. Prediction scatter plot.

Figure 2(a) shows the cumulative distribution of squared errors on the test
set. The horizontal axis represents the squared error, whereas the vertical axis
corresponds to the cumulative distribution of squared errors on the test sets,
namely the fraction of instances that were predicted with an error not exceeding
the squared error in the x-value. Notice that the absolute error is greater than
1 (10 seconds) for only for 1% of the predictions.

Figure 2(b) shows a scatter plot of the predicted running time versus the
actual running time in (base 10) logarithmic scales. In this case study, the RMSE
is 0.24, whereas the MAE is 0.14. Because they indicate an average error of less
than 1.8 seconds whenever the solving time ranges between 4.4 seconds and 4487
seconds, we conclude that the prediction model is acceptable. We also observe
that most WDPs (actual run-times between 10 seconds and 100 seconds) are
predicted with high accuracy, whereas predictions for WDPs with low solving
times (easy WDPs) are pessimistic and predictions for WDPs with high solving
times (hard WDPs) are optimistic. This occurs because the instance distribution
generated at step 2 did not contain enough examples of easy and hard WDPs.

5 Analysing MMUCA Problem Hardness

In this section we analyse the MMUCA WDP hardness using the model produced
in section 4 to assess the features that make the problem hard to solve.

As a first step, we assess the relationship between the best subset of features of
a given size (ranging from 1 to 17) and the RMSE. In other words, a relationship
between the features that minimise the RMSE (out of all the features in table 2)
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for each number of features. Figure 3(a) plots how the RMSE varies as the size
of the subset of features increases. In order to obtain the best subset of features
for each subset size we employ a heuristic algorithm, the so-called forward-select,
which begins with an empty set of features to progressively add one feature at
each time. Forward-select adds as a new feature the one with the lowest RMSE
when testing with the validation set. Based on the results in figure 3(a), we
decided to analyse the model selecting five features because the RMSE slightly
varies for more than five features.
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Fig. 3. Linear Regression.

We analyzed this five features’ cost of omission in our model to evaluate
the importance of each particular feature. The cost of omission for a particular
feature is computed by analysing how its omission impacts on the RMSE: we
train a model that omits the feature to subsequently compute the resulting
increase on the RMSE. Figure 3(b) ranks the cost of omission, namely the impact
of the hardness of the WDP, of the best five features. Several comments apply:
(1) The average of all SCC node sizes appears as the most important feature.
Hence, the largest the SCCs, the harder the WDP. This result is in line with the
theoretical results in [5].

(2) The second and the third places are the average of SCC node degrees and
the SCC edge densities. Both features refer to an SCC node degree, namely to
an SCC’s number of children. Since the higher the number of children, the larger
the number of potential solution sequences of the WDP, it is not surprising that
features referring to SCC nodes’ degrees have a high impact on the hardness of
the WDP.

(3) The fourth position refers to SCCs whose size is greater than one, namely
to SCCs containing cycles. In some sense, though less important than the top

feature in the ranking, this feature is complementary to that one because it refers
to the sizes of SCCs.
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(4) The feature with the lowest cost of omission, the SCC graph depth, also
influences the hardness of the problem because it indicates the maximum number
of transformations that can compose a solution sequence, namely the maximum
length of the solution sequence.

To summarise, complementary features 1 and 4 refer to the inner features
of SCCs and refer to the impact of cycles on the hardness of the WDP. This
is in line with the results in [7]. Furthermore, features 2 and 3 indicate that
they are also important because they have a strong impact on the number of
potential solution sequences to evaluate to solve the WDP. Finally, feature 5
is also relevant because it influences the lengths of those potential sequences.
Therefore, unlike the analysis in [4] for CAs, our study shows that the features
that most impact the hardness of the WDP for MMUCASs are all topological.

6 Conclusions and future work

In this paper we employed the methodology described in [4] to analyse the em-
pirical hardness of CAs. With this methodology we obtained a model that suc-
cessfully predicts the time to solve MMUCA winner determination problems.
Therefore, we can effectively assess whether the WDP can be solved in time
when there are constraints regarding the time to solve the WDP. Furthermore,
we analyzed the hardness of the MMUCA WDP to learn that the topological
features (of the SCC graph) are the ones that most impact the hardness of the
problem. These results complement the theoretical results in [3]. We argue that
specialised algorithms to solve the MMUCA WDP can benefit from this analysis.
Regarding future work, we plan to complete our empirical study by analysing
supply chains of varying sizes (in terms of number of goods and transformations).
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