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ABSTRACT

Sensor networks arise as one of the most promising technolo-
gies for the next decades. The recent emergence of small and
inexpensive sensors based upon microelectromechanical system
(MEMS) ease the development and proliferation of this kind
of networks in a wide range of real-world applications. Multi-
Agent systems (MAS) have been identified as one of the most
suitable technologies to contribute to this domain due to their
appropriateness for modeling autonomous self-aware sensors
in a flexible way. Firstly, this survey summarizes the actual
challenges and research areas concerning sensor networks while
identifying the most relevant MAS contributions. Secondly, we
propose a taxonomy for sensor networks that classifies them
depending on their features (and the research problems they
pose). Finally, we identify some open future research directions
and opportunities for MAS research.

1. INTRODUCTION

Sensor networks have been identified as one of the most promis-
ing technologies for the future [4] [6] [16] due to: (1) the recent
emergence of small and inexpensive sensors based upon micro-
electromechanical system (MEMS); (2) the set of advantages
they offer in front of other monitoring technologies; and (3) the
wide range of real-world applications that have been already
identified for this technology.

As this new technology emerges and applies to real-world do-
mains, it poses a variety of new challenges to researchers lead-
ing to some new active areas of interest concerning hardware
and software.

In this survey we focus on the software challenges sensor net-
works pose from the perspective of multi-agent systems (MAS).
Sensor networks have been identified as an application domain
with high potential for MAS due to their suitability for mod-
eling autonomous, self-aware sensors in a natural, flexible way
[28] [16]. Sensor networks fall into the category of complex, dis-
tributed, interconnected and rapidly changing systems, iden-
tified in [10] as a hard and challenging domain for autonomic
computing. Issues such as organizational structuring, coordi-
nation, collaboration and distributed, real-time resource allo-
cation are critical for their success. In sensor networks, sensor
agents may go beyond reacting to their local situation; they
may collaboratively determine what to do and with whom
while ensuring that certain collective, global properties are
achieved. However, sensor networks may fairly vary from one
to another depending on the features they exhibit. We real-
ize that sensor networks with different features lead to different
problems when considering its enactment an operation. There-
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fore, one of our contributions in this work is the definition of a
taxonomy that classifies sensor networks in different families,
each one leading to different problems of varying complexities
when enabling them. We also identify the research topics with
higher potential for sensor networks. Moreover, we summarize
the most relevant contributions to these topics while identify-
ing the sensor network’s features in our taxonomy that each
contribution focuses on. Finally, we realize a further analysis
to identify open issues, and thus research opportunities that
deserve further MAS attention.

The rest of this paper is structured as follows. In section 2 we
introduce sensor networks analyzing their properties as a sys-
tem and their suitability as an application domain for MAS. In
section 3 we propose a taxonomy for sensor networks with the
aim of classifing them in different families of problems while
considering the most distinctive characteristics that influence
the problem formulation. Next, in section 4 we identify the
main research topics for sensor networks, describing the most
salient contributions and results from MAS community. Fi-
nally, in section 5 we identify some research opportunities and,
the most promising future research directions for MAS com-
munity.

2. SENSOR NETWORKS AND MAS

In this section we give a brief introduction to sensor networks
and the suitability of MAS to model these systems. Sensor net-
works may be defined as a set of sensing devices distributed in
a large area that collaborate to globally produce meaningful in-
formation from individual, raw, local data. They emerge as an
alternative to other, already-existing monitoring technologies
typically composed of a single or a few calibrated static sensors
that, placed in a highly-controlled environments, provide with
homogeneous streams of data. Sensor networks, however, are
usually wireless dynamic networks composed of a large num-
ber of diverse sensors that provide with physically distributed
pieces of information that vary substantially in content, reso-
lution and accuracy. Table 1 presents a comparison between
sensor networks and these other monitoring technologies. As
we observe that the success of sensor networks lies in the ad-
vantages they offer with respect to the alternative monitoring
technologies. First, they are non-invasive and they can cover
wide-range areas by using a large number of inexpensive and
small sensors. Moreover, due to their distributed structure
they are inherently fault-tolerant and robust to nodes failures
and are suitable to monitor remote or hostile environments.
Up to now, monitoring technologies have been concerned pro-
viding homogeneous collections of data and regularly sampled
datasets. Nowadays, sensor networks can replace former tech-
nologies with heterogeneous data coming from different inter-
est areas and pieces of information that vary substantially in



content, resolution and accuracy.

Another motivating aspect
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of sensor networks is their range

Alternative technologies

Low-cost low-power simple
sensors

Expensive high-power consum-
ing complex sensors

Cover wide-range areas

Cover small-size areas

Monitor remote or hostile
environments

Monitor highly-controlled envi-
ronments

Fault-tolerance and robust
to node failures

Non-robust

Non-invasive

Invasive

Irregular sampled datasets

Regularly sampled datasets

Intrinsic distributed structure

Intrinsic centralistic structure

Low-bandwidth connectivity

High-bandwidth connectivity

Battery-powered

Electric-powered

Table 1: Differences between sensor network technolo-
gies and other monitoring technologies

of applicability, leading so far to a large number of applica-
tions in very different domains such as habitat monitoring,
biomedical applications, smart spaces or distributed robotics.
The interested reader should refer to [30] [11] for surveys on
sensor networks applications. Finally, the research community
has identified sensor networks as a very challenging domain
because of the following distinguishing features:

Complexity. There is no easy way to manually design a
sensor network that acts properly in all possible environ-
mental and network changes.

Scale. They are usually composed of thousands of nodes,
making infeasible approaches where the computational
cost is exponential to the number of sensors. Hence, there
is a need for scalable solutions that can consider a large
number of sensors without limiting the effectiveness of
the network.

Physical distribution. Sensors are deployed over some
area. Hence, during their operation they have to deal
with computation and information sources that are phys-
ically distributed.

Dynamics. Sensor networks are dynamic systems that by
effect of its internal changes or by effects of external
forces change over time. For example, sensors can ap-
pear/disappear over time in an unpredictable way. Hence,
a sensor network’ operation has to deal with and adapt
to an underlying changing network.

Resource Availability. A key characteristic of sensor net-
works is that the demand for resources such as compu-
tation, power or bandwith, is always higher than supply.
Thus, there is a need for resource-awareness at all oper-
ation levels of the network.

Interdependence. The network may need to coordinate
different sensors to achieve high-level tasks that can not
be achieved by the operation of a single sensor. There-
fore, there are dependencies among sensors that make
necessary to coordinate them during the sensor network
operation.

Situatedness. Sensor networks are usually located in rapidly
changing environments where the decision-making pro-
cess of the sensor network has severe time restrictions.
Thus, the sensor network may show anytime capabilities
during its operation.

Notice that these characteristics make sensor networks a chal-
lenging domain for MAS. First, since sensor networks are in-
herently distributed, they can be modeled as MAS in a flexible
way, and therefore take advantage of algorithms and techniques
proposed in the MAS literature. Concretely, sensor networks
may be naturally modeled as MAS by regarding each sensor
as an agent. MAS handle complexity and large scale systems
offering modularity, decomposing the problem and assigning
subproblems to different (sensor) agents. MAS is also used
for modelling physical distribution and ad-hocness as a partic-
ular type of MAS. In resource-scattered environments, MAS
provide efficiency by distributing computing, bandwidth and
power use among different agents. Moreover, MAS deal with:
(1) rapidly changing environments that introduce severe time
restrictions and with limited resources; and (2) with bounded-
rational agents that try to maximize their expected reward but
with limited resources. Finally, in complex and coupled prob-
lems, MAS research has dedicated years of effort to study how
agents can interoperate and coordinate autonomously whereas
achieving a desired global behavior through interactions.

3. ATAXONOMY FOR SENSOR NETWORKS

Although sharing a common definition, sensor networks may
fairly vary from one to another depending on the features
they exhibit. Moreover, notice that sensor networks’ features
deeply affect the problems and challenges posed when consid-
ering their enactment and operation. Here we try to identify
such features defining a taxonomy to allow the classification
of sensor networks. Our taxonomy classifies a sensor network
depending on the characteristics of four elements: the sensing
nodes, the network, the environment and the designer’s goals.
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Figure 1: A taxonomy for sensor networks.

Fig. 1 shows our taxonomy where default features are bold-
faced. In what follows we describe in detail the dimensions



selected for each element.

3.1 Sensor nodes

Sensor nodes are the building blocks that compose sensor net-
works. These nodes, in addition to their sensing capabili-
ties, also include a microprocessor and communication devices.
Moreover, they may also include actuators that allow them
to act over changes in the environment. From all sensor fea-
tures in our taxonomy, we distinguish the following as the most
salient ones:

Power supply. Nodes can be battery-powered when they have
a finite power source; or electric-powered when their power
source is infinite.

Self-awareness. A node can be partially self-aware in case
some of its features are not directed accessible by the sensor
network; or fully self-aware when the sensor network can access
a complete representation of all its features. For instance, we
consider nodes unaware of their own location or their battery
levels as partially self-aware nodes.

Dynamics. A node can be static when sensors are assumed
to remain unchanged except by the performance of actions ex-
ecuted by the same sensor network; or dynamic when external
processes may affect it and modify it. For instance, we con-
sider sensors that move or whose battery levels are recharged
as a consequence of interactions in the environment as dynamic
sensors. Dynamic sensors also include sensors that may disap-
pear or be destroyed by the effect of the environment.

Configurability. Nodes can be configurable, when the sensor
network can act over them setting their properties and setting
different sensing, communication and processing capabilities;
or non-configurable otherwise. Examples of configurable sen-
sors are mobile sensors, sensors with different communication
transmission powers, or sensors that can switch among differ-
ent qualities of sensing.

Activity. Nodes can be active when they include actuators
that they may use for modifying and introducing changes in
the environment; or passive when their activity is restricted to
perceive, process information and communicate. For instance,
active sensor nodes can control illumination or heating sources
or apply control forces over a material.

3.2 The network

The network in sensor networks is an entity composed of all
deployed sensors and their communications links. We propose
to characterize the network over five dimensions:

Composition. A network can be homogeneous when com-
posed of sensors from the very same type (e.g. same level
of processing, sensing or communication capabilities, etc.), or
heterogeneous otherwise.

Deployment. A network can have either a deterministic de-
ployment, when composed of the same sensors over time; or
an ad-hoc deployment, when sensor positions are unknown be-
fore their deployment and they can not be set at design time.
Deterministic deployment is common in friendly and accessi-
ble environments, whereas an ad-hoc deployment is generally
considered in open or remote areas. For instance, forest moni-
toring sensor networks where sensors are deployed by throwing
them from an helicopter are a good example of ad-hoc deploy-
ment.

Communication. Communication in a network can be re-
stricted (due to low bandwidth or costs or unreliability), or
non-restricted. For instance, networks with RF transmission
are a good example of restricted communication.

Dynamics. A network may be dynamic when composed of
dynamic sensors or when communication links vary as a con-
sequence of external processes; or static otherwise. For in-
stance, a network whose sensor nodes appear/disappear in an
unpredictable way is a good example of a dynamic network.

Ownership. A network may have a single owner, when all
nodes are property of the same stakeholder or company, and
multiple owners otherwise.

Number of nodes. A network may be large if composed of
thousands of nodes, or small otherwise.

3.3 Environment

We define the environment as all external processes that are
of interest to the sensor network. We propose to characterize
the environment along three dimensions:

Dynamics. An environment can have high dynamics, when
events and phenomena occur frequently and change the envi-
ronment very rapidly; and low dynamics otherwise®.

Nature. An environment can be deterministic, when any ac-
tion has a single guaranteed effect and there is no uncertainty
about the environment state that will result after performing
an action; and non-deterministic otherwise.

Observability. An environment can be fully-observable, when
sensors’ observations can define the environment state without
uncertainty; or partially-observable otherwise.

3.4 Goals

The last element of our taxonomy are the goals specified by
a sensor network designer. The goals deeply affect the chal-
lenges that sensor network pose when enacting their operation.
We use the following dimensions to classify a sensor network
depending on the designer’s goals:

Action. Goals can be achieved either through individual ac-
tions, when sensors’ actions are considered separately, or through
collective actions, when sensors’ actions must be coordinated
in order to achieve the goal. For instance, a sensor network
with the goal of sampling an area such that each sensor adapts
its sampling individually depending on the expected state can
be considered as an example of goals with individual actions.
Otherwise, multiple sensors sampling at the same time to ob-
tain a useful measurement is an example of goals with collective
actions.

Action effects. The actions’ effects of the sensor network
over the environment state (if nodes are active, can act over
it); or the network state can be short-term or long-term. When
actions have short-term effects, future network and environ-
ment states do not depend on actions executed in previous
periods, only on the actions executed in the current period.
If actions have short-term effects, the decision-making of the
sensor network is easier because it only depends on the cur-
rent network and environment states and it does not have to
look ahead to consider future states. For instance, actions that

IStatic environments are not considered in sensor networks
because it makes no sense since there would be no phenomena
to observe.



have long-term effects on the underlying network are: actions
that consume energy when limited (in battery-power sensors);
actions that move sensors (mobile sensors); or actions that
change sensor configurations when there is a delay or a cost to
switch among them. On the other hand, examples of actions
that have long term effects over the environment are: actions
that move objects or action that modify certain environment
conditions like the heating or the cooling of a room.

Environment Dependency. Goals may depend on the envi-
ronment when the optimal actions vary with the environment
dynamics. In case of environment dependency, the sensor net-
work may need to estimate the current environment state (us-
ing sensor observations) in order to achieve its goals. For in-
stance, a sensor network whose goal is to cover an area while
minimizing energy consumption (by deactivating redundant
sensors) is a good example of non-environment dependency.
Notice that this goal does not depend on the environment, but
on the sensor’s joint actions. Otherwise, if the goals include
tracking every detected object, then there exists environment
dependency because the sensor network has to estimate the
object position in order to track it. Moreover, environment
dependency may be local when a sensor only needs its own
observations to determine its local environment; or non-local
if it also needs other observations.

4. RESEARCH TOPICS

The application of sensor networks to real-world domains poses
a set of challenges to researchers leading to some new active
areas of interest.

In what follows we describe what we consider as the main
research topics for sensor networks: localization, routing, in-
formation processing, and active sensing strategies. Moreover,
for each topic we review the main contributions from MAS re-
search. Furthermore, in table 2, we summarize the features of
the sensor network considered by each contribution, based on
the taxonomy introduced in section 3, along with the employed
approach and the research topic it contributes to. Notice that
in table 2, the characterization of the sensor networks may
specify fewer dimensions than the specified in the taxonomy.
These non-specified dimensions stand for features that take the
default values, the boldface features in the Fig. 1.

4.1 Localization

Each node in a sensor network can be aware of its own lo-
cation as well as the identity and location of its neighbours.
Typically, when sensors are deployed in an ad-hoc manner, the
network topology has to be constructed in real time and up-
dated periodically as sensors fail or new sensors are deployed.
Moreover, due to this ad-hoc development nodes usually do not
know their own position. Hence, localizing sensor nodes solving
the problem of estimating its spatial coordinates is an impor-
tant and popular area of research. However, contributions to
this area typically stem from other communities different from
MAS. Good introductions and reviews on these techniques can
be found in [15] [19].

4.2 Routing

Routing algorithms in sensor networks have to be efficient
in a network typically characterized as wireless (each node
communicates using radio signals), ad-hoc (the set of nodes
changes over time), and energy-constrained (nodes are battery-
powered). These requirements differ from those for ad-hoc
wireless routing protocols because they require to minimize
energy consumption and extend network lifetime. Therefore,

an active area of research in sensor networks is the develop-
ment of energy-efficient ad-hoc wireless routing protocols that
allow to route information in an energy-efficient way. Sev-
eral recent surveys describe routing algorithms for wireless
sensor networks [3][13]. However, most of these approaches
are proposed from network research either by extending ex-
isting ad-hoc wireless routing algorithms or by proposing new
ones. Therefore, we only review some significant MAS contri-
butions hereafter. Probably the most salient contributions on
this issue come from applying techniques from Computational
Mechanism Design (CMD)[8]. CMD is a field that studies
the development of agent interaction protocols to achieve a
specific outcome (maximize a global function or achieve some
global properties ) taking into account the fact that agents are
self-interested. This is usually done by designing mechanisms
that give incentives to each agent to behave as the designer
intends (usually a payment scheme that provides payments
to the agents in exchange of their services). Along this line,
Rogers et al. [24] develop a new energy-aware self-organized
routing algorithm for sensor networks where sensors transmit
only data to the sink. Their mechanism performs a greedy
optimization because sensors take their routing decisions us-
ing only local information (the expected lifetimes and their
distances to the sink and to their neighbours). In their mech-
anism, sensors use a communication protocol that allows sen-
sors to find and select another sensor that is willing to act as
a mediator and a payment scheme that ensures that sensors
will only be acting as mediators in cases in which the overall
performance of the sensor network is improved. Although this
CMD schema is typically applied in sensor networks where sen-
sors are owned by different stakeholders [23], they propose to
apply it to the design of a single-owner sensor network due to
the simplicity and well-studied properties of CMD. However, a
comparison of the gain in terms of performance of these mech-
anisms in front of other well-known energy-efficient routing
protocols is not provided.

In [21] Padhy et al. propose a new utility-based energy-aware
self-organizing routing protocol combined with adaptive sam-
pling (namely Utility-based Sensing and Communication pro-
tocol, USAC) that finds the cheapest cost route from an agent
to the sink. The idea here is that it might be preferable for
a sensor to transmit its data via a more energy-consuming
route if the least energy-consuming route contains a sensor in
a highly dynamic environment. Hence, the cost of a link from
one agent to another is derived using the opportunity cost of
the energy spent relaying the data instead of using this energy
for its own sensing (sensors use a linear regression model to
forecast the value of the future data).

4.3 Information processing

In sensor networks nodes usually need to exchange observa-
tions and data with other nodes to estimate their local envi-
ronment state. Due to their communication and energy restric-
tions, a centralized state estimation, in which a single compu-
tational node receives all sensor data, is not possible. Hence
there is a need for decentralized algorithms that allow sensors
to estimate their state locally whereas minimizing the amount
of bandwidth used. These algorithms must allow fusion occur
locally at each node on the basis of local observations and the
information communicated from neighbouring nodes consider-
ing that state estimates are often highly correlated between
nodes. One approach along this line is the Decentralized Data
Fusion (DDF) method [18] that provides a robust, modular
and scalable solution to the problem of obtaining common and



Ref] Sensor network features Approach Research Area

[24]| Sensors: battery-powered, partially self-aware, configurable; Network: | Mechanism Design Routing
ad-hoc, communication-restricted, dynamic, large; Goals: collective ac-
tions, long-term action effects;

[21]] Sensors: battery-powered, partially self-aware, configurable; Network: | Utility-based approach, regression | Routing, individual active
heterogeneous, ad-hoc, communication-restricted, large; Environment: | model sensing
highly-dynamic; Goals: collective actions, long-term action effects, local
environment dependency;

[18]] Network: dynamic, communication-restricted, large; Environment: | Decentralized Data Fusion method Information Processing
partially-observable; Goals: non-local environment dependency

5] | Network: dynamic,communication-restricted, large; Environment: highly | Distributed Particle Filters Information Processing

25]| dynamic, partially-observable; Goals: non-local environment dependency;

communication-restricted; Goals: local environment dependency;

22]| Network: dynamic, communication-restricted, large; Environment: | Distributed spanning tree for- [ Information Processing,
partially-observable; Goals: non-local environment dependency, collec- | mation, distributed junction tree | Collaborative Sensing
tive actions; formation, asynchronous message | Strategies
passing
23]| Network: communication-restricted, multiple-owners; Goals: non-local | Mechanism Design Information processing
9] | environment dependency
14]| Sensors: battery-powered, dynamic, configurable; Network: | Utility-based , linear programming, | Individual Active Sensing

regression model

[1] | Sensors: configurable; Network: large; Goals: collective actions;

Approximate  organization-based | Coalition formation prob-

distributed algorithm lem
[27]] Sensors: configurable; Network: ad-hoc, communication-restricted, large; | Iterative negotiation process cen- | Coalition formation prob-
Goals: collective actions; tralized to coalition managers lem
[20]] Sensors: configurable; Goals: collective actions; Combinatorial Auctions with cen- | Collaborative Sensing
tral authority Strategies
[7] | Sensors: configurable; Goals: collective actions Centralized search algorithms Collaborative Sensing
Strategies
[12]] Sensors: configurable; Network: large, communication-restricted; Envi- | Organizational-based, dynamic role | Collaborative Sensing
ronment: highly dynamic environment; Goals: collective actions, non- | assignment Strategies
local environment dependency, long term action effects
[29]] Sensors: configurable; Goals: collective actions, non-local environment | Decentralized Data Fusion with | Information processing,
dependency; Probability Collectives collaborative sensing
strategy

Table 2: Contributions, sensor network features that consider, approach and research topic

consistent state estimates across a sensor network by allowing
sensors to communicate information rather than states. The
use of information measures allows nodes to separate what is
new information from prior knowledge and the fusion process
is straightforward since fusion of information is additive (the
order does not matter). Although DDF is limited to Gaussian
distributions, an extension to this method [17], the BDDF al-
gorithm, allows decentralization but without this limitation.
Other works [5] [25] propose, as alternative to the DDF al-
gorithm, the use of distributed particle filters (also known as
Sequential Monte Carlo Methods) that can cope with highly
dynamic environments and that can also handle non-Gaussian
distributions. Particle filters are a set of particles or candidate
state descriptions that are weighted depends on the observa-
tions and allow nodes to keep a belief over state histories in-
stead of just single states. For instance, in [25], Rosencrantz
et al. use local particle filters to determine which measure-
ments are worth sharing using a query-response system. In
this approach, sensors keep a local particle filter and query
one another for useful sensor measurements (a query is a small
set of randomly selected particles). Sensors use query infor-
mation to only transmit the most informative measures.

Another approach is taken in [22], where Paskin and Guestrin
present a general architecture for distributed inference in sen-
sor networks. They show that it can solve a wide range of
inference problems, including probability inference problems.
Their approach is based on distributing a typical centralized in-
ference algorithm, the junction tree formation algorithm, con-
sidering the dynamic communication restrictions of the under-
lying network. They propose a novel architecture consisting of
three distributed algorithms: spanning tree formation, junc-
tion tree formation and message passing. First, sensors orga-
nize themselves into a spanning tree so that adjacent nodes
have high-quality wireless connections. Then, the spanning
tree guides the formation of the junction tree in a way that

computation and communication required by inference is min-
imized. Finally, the inference problem is exactly solved via
asynchronous message passing on that junction tree.

Finally, in [23] [9], Rogers et al. attack the problem of sharing
observations among nodes in a multiple-owner sensor network
with communication restrictions using a CMD approach. Two
problems arise in such scenario: first, communication resources
may be distributed among nodes considering the value of the
observation for each node and their communication links; and
secondly, since sensors are owned by different stakeholders the
mechanism must motivate them to share information and to
report a true valuation for the observations. In that context,
they propose two allocation mechanisms, both incentive com-
patible 2: one to deal with a network with broadcast com-
munication (the problem is to decide who sends but not to
whom) and another to deal with a peer-to-peer communica-
tion (the problem is to decide who sends and to whom). In
both mechanisms the role of the auctioneer is centralized, and
thus a central node computes the optimal allocation and pay-
ments. Moreover, they modify sensors’ utility function, that
sensors use to value any piece of information, to consider the
communication link between agents and the probability of the
information to be relevant to the agent.

4.4 Active Sensing Strategies

As considered in the taxonomy (see section 3), sensors can be
configurable. That means that they can change their config-
urations to vary the content, resolution and accuracy of their
observations. Therefore, the way a sensor network senses is
not passive, and hence it must be provided with active sens-
ing: the capacity of reconfiguring and coordinating its sensors
in order to maximize the amount of information perceived over
time.

2the dominant strategy is to truthfully reveal their private ob-
servations’ values to the auctioneer




We have classified contributions to active sensing strategies in
two groups: individual, when each agent configures itself in-
dependently on the other agents, and collective, when agents
have to coordinate in order to determine their joint configura-
tion.

4.4.1 Individual

A type of active sensing well-studied in the literature is the
active sampling where nodes use local information in order to
reconfigure their sampling frequencies to only sense at the most
informative moments instead of using a fixed frequency.

In [21], Padhy et al. develop, as part of their USAC protocol,
a novel mechanism for adaptive sampling that allows each sen-
sor to adjust its sampling rate depending on the environment
dynamics. Each sensor uses a regression model to forecast the
future data as a function of the last measurements and the
optimal sampling rate is the one than keeps the confidence in-
terval within a fixed limit. In this approach, an agent lowers
its sensing frequency when he is capable of correctly predicting
the next values, and increments its otherwise.

In [14], Kho et al. also develop a novel mechanism for adap-
tive sampling with solar-powered sensors that observe an en-
vironment that follows a pattern that is repeated over time
(concretely they apply it to the real-time accurate flood fore-
casting problem). In such circumstances, each node has a new
battery level each day and the available energy is distributed
over the daily hours. Moreover, the phenomena of interest fol-
low a daily pattern and the sampling rates of a specific hour
can be used for estimating the sampling rates of the very same
hour of the next day. In their approach, sensors adapt their
sampling using a regression model to forecast the value of each
sampling rate for each hour and solving a simple linear pro-
gramming that maximizes the sum of these values constrained
to the maximum amount of energy available for that day.

4.4.2 Collective

Collective active sensing strategies deal with sensor networks
where sensors need to coordinate in order to collectively per-
form a higher-level sensing task. We identify two problems
in this context: (1) the Coalition formation problem, namely
when the sensor network has a set of tasks that need the col-
laboration of multiple nodes in order to be achieved. Hence,
the problem is how to distribute sensor nodes into different
coalitions, so that each coalition has enough resources to ex-
ecute its corresponding task. Notice that this problem is not
concerned with how nodes cooperate and organize within the
coalition to execute the assigned task; and (2) the Optimal
control problem, namely the problem of, given a set of tasks
and a set of sensors nodes, determine the joint configurations
that maximize the global task reward.

We divide MAS contributions to this issue based on whether
they provide a solution to the coalition formation problem or
to the optimal control problem.

Coalition Formation contributions. In [1], Abdallah et al.
formulate the sensing strategy problem as a classic resource
allocation problem where each agent controls some amount of
resources and each task is worth some utility when the re-
quired resources are assigned. This formulation poses a coali-
tion formation problem (how to assign to each task a coalition
of agents that maximize the whole sensor network utility). To
solve the coalition formation problem, they propose a novel
distributed approximation algorithm guided by an underlying
organization. Moreover, they propose the use of reinforcement
learning techniques to allow agents to learn policies that speed

up the search for future coalitions. The organization used is a
hierarchy where the lowest levels represent resources controlled
by a single agent and the rest of levels are composed of man-
agers that control and assign tasks to their direct subordinates.
To achieve scalability, managers see an abstraction of the state
of the organization that is under control. The price of this ab-
straction is a loss of information that leads to uncertainty in
the manager state. When a manager receives a task, it asks in
some order their children for contributions and assigns them
subtasks (substasks are created by the manager by descom-
posing the original task) . If a manager can not successfully
allocate a task, it forwards the task up in the hierarchy. To
optimize the search, they use reinforcement learning to learn
the optimal order in which each manager should ask children
for each contribution. This approach makes some infeasible as-
sumptions for the sensor network domain: (1) the task utility
function is defined with a fixed value if all necessary resources
are assigned and null otherwise ; and (2) tasks can not share
resources.

In [27], Sims et al. propose an iterative distributed negotia-
tion process as a solution to the coalition formation problem
that tries to achieve efficient allocations of sensors and adapt
coalitions to a varying population of agents. Each coalition
of agents corresponds to a sector whose agents work together
to accomplish a fixed task, namely provide maximum coverage
with the minimum number of agents. Managers are responsible
for changing and negotiating over resources using an iterative
negotiation process in order to maximize the global utility of
the system. The proposed negotiation protocol is based on the
Contract Net Protocol and unlike the original formulation it
can deal with interdependent tasks (tasks that have positive
utility for the same resources), whereas maximizing the global
utility of the system. The negotiation process considers social
marginal utilities as the sum of utilities of all agents involved
in that negotiation. The protocol obtains either the optimal
solution (when considering all the interdependences) or sub-
optimal (when the chain of interdependences is cutted at some
length). This approach also assumes that resources can not be
shared among coalitions and that the negotiation process eval-
uates each resource separately without considering subadditive
or superadditive relationships among resources.

Optimal control contributions. Abdallah et al. , in [20],
propose to apply a market-based mechanism (combinatorial
auctions) to the collaborative sensing strategy problem. They
formulate a generalization of the classic resource allocation
problem called the setting-based resource allocation problem.
Unlike the classic problem, the setting-based one is applicable
to domains where a resource can be configured to fulfill the
needs of more than one task. Notice that this setting-based
resource allocation problem allows not only to distribute re-
sources among tasks but also to coordinate sensors in such
tasks by giving a specific configuration for each sensor. In this
approach, each task has a utility function that uses for submit-
ting to a central node a set of bids over sensor configurations.
Then the central node runs a combinatorial auction winner
determination algorithm over the received bids and sends the
winning configuration to sensors. To reduce the bidding combi-
natorial explosion, they allow the task utility function to eval-
uate partial configurations. At this aim, they use a Bayesian
network to infer the world state and measurements probabili-
ties and the value of sensor measurements. Notice that it is a
centralized approach that does not consider the cost, neither
in terms of time or energy, of continuously sensing all mea-



surements to a central node and reconfigurations to sensors.
Moreover, the techniques they propose, (using Bayesian infer-
ence to evaluate configurations for a task and combinatorial
auctions to consider joint evaluations from all tasks) are com-
putationally expensive and usually limited to small scenarios.
In [7], Dang et al. propose a solution to a problem equivalent
to the setting-based resource allocation problem defined in [20]
using a coalition model where each task defines a coalition.
Then the problem is to find the set of sensor configurations
that maximize the sum of all task evaluation functions con-
sidering also the cost of these configurations. With this aim
they develop two centralized algorithms: a fast polynomial,
approximate algorithm that uses a greedy technique and has
a calculated bound to the optimum; and an optimal branch-
and-bound algorithm.

In [12], Horling et al. propose an organizational-based ap-
proach to solve the collective sensing strategy problem when
tracking one or more targets that move along arbitrary paths
in an area [16]. The organization proposed considers fixed
tasks (generate a scanning schedule for detecting new targets
and keeping a directory service of sensors available) that does
not depend on the environment and dynamic tasks that vary
with the environment dynamics (the tracking of targets). To
reduce communication burden, the global area is divided into
static, non-overlapping, equal sectors, and global tasks are di-
vided in subtasks defined over sectors and assigned to a fixed
node, the sector manager. In response to new events (e.g. the
detection of a new target) a sector manager creates a new task
and assigns it to an agent (track manager). Notice that this
assignment is dynamic and task responsibility migrates among
different agents. Track managers use their knowledge to de-
termine from where and when should data be collected, ask
sector managers for identifying the sensors needed to gather
the information, send measurement requests to sensors it se-
lects, and fuse received information into a continuous track.
Sensors receive requests from track managers and sector man-
agers. Although using this schema sensors may receive con-
flicting requests, authors are not concerned with this problem.
In [26] Ruairi and Keane propose a theory that deals with the
coalition formation problem and the cooperation problem in
systems, like sensor networks, where the set of tasks vary with
the environment dynamics and where tasks exhibit an intrinsic
locality. The Dynamic Regions Theory (DRT) is based on a
dynamic partition of the network where each region executes
an algorithm corresponding to a specific task. In this theory,
agents not only consider in what region they are (in which task
they contribute), they also coordinate with other agents in the
same region in order to implement algorithms cooperatively.
They give a particular example of how this theory can be ap-
plied in a bottom-up way to a wireless sensor network to allow
the self-organization of the network. In this example they pro-
pose to use as a coordination mechanism an organization: each
node executes a region identification process at regular inter-
vals and a the regional organizational policy to implement role
swapping both using local data. However, in this approach all
the mechanisms are pre-set: rules that nodes use to identify its
region and organizational policies to swap among roles. In ad-
dition to this, they do not consider that a node may be in and
contribute to more than one region at each time. Finally, au-
thors do not provide a discussion on the utility and advantages
of splitting nodes in regions with different algorithms instead
of deciding each time the algorithm and the role.

In [22], Paskin and Guestrin also apply their architecture (see
section 4.3 for an explanation of the application to informa-

tion processing) for robust inference to the collective sensing
strategy problem (what they call optimal control problem), by
distributing a typical algorithm for centralized inference in a
way that its computation and communication cost can be min-
imized.

In [29] Waldock and Nicholson show how Probability Collec-
tives (PC), a powerful new framework for distributed optimi-
sation, can be used for cooperative sensing in a decentralised
sensor network. PC are used for sampling the joint space of
sensor actions to discover an optimal collective sensing strat-
egy. They use the DDF method (see section 4.3 for more de-
tails about this method) to share and fuse information with
PC to sample the joint space of sensor actions to discover an
optimal sensing strategy. Concretely, DDF and PC are cou-
pled by an information-theoretic utility function: DDF opera-
tions create the utility function and PC determine the set of
actions to take. The authors apply these techniques to the
sensor-to-target assignment problems where the problem is to
assign sensors to targets in order to maximize some measure
of the system-wide performance (the quality of target state es-
timates). One important limitation to this approach is that if
the utility of agents’ actions vary when there are changes either
in the environment or in the network, the already learnt prob-
ability distribution becomes useless and it needs to be learnt
from scratch.

S.  CONCLUSIONS

Despite the many and significant contributions to the differ-
ent research topics, more research effort is required to allow
the application of sensor networks to real-world problems. In
what follows we analyse the most promising lines of research
for MAS that pose open, challenging issues.

As to routing, research on energy-efficient, ad-hoc routing prob-
lems is still an open issue. Concretely, further work is necessary
to develop new protocols that address larger changes in topol-
ogy and higher scalability.

As to information processing, existing works focus on distribut-
ing the existing centralized inference and fusion algorithms to
minimize the communication through the network. However,
an important and still open issue is how to extend these algo-
rithms to adapt and exploit the specific network topology and
dynamics. Hence, how to distribute the processing load and
the communication flow among nodes considering their energy
and their communication restrictions are particularly interest-
ing.

Research on active sensing strategies, concretely on collective
sensing strategies, may become the most active MAS research
topic. As to collective sensing strategies, some works ([20] [7]
[1] [27]) have reformulated the problems posed by sensor net-
works as a more general and well-know problems, such as the
classical resource allocation, the task allocation problem, or
the coalition formation problem. However, few extend these
more general formulations in order to exploit and adapt to the
particularities of the sensor network domain. Therefore, an
open issue is to adapt these contributions to exploit aspects
like locality (interactions among closer physical neighbours or
the definition of tasks over a region) or the sharing of resources
among tasks (sensors can contribute to more than one task
with their actions). In that context, exploiting the fact that
coalitions are defined over regions to reduce the complexity of
the coalition formation algorithms looks promising. Another
focus of attention of collective sensing strategies lies on the
study of the reorganization and adaptiveness of sensor net-
works to changes in the underlying network and environment.
One interesting approach to deal with these changing condi-



tions comes from works like [12] and [26] which, in the context
of computational organizations, implement dynamic role as-
signment to allow agents to switch among roles in response to
network and environment dynamics. However, their policies
for switching are determined and they have been only applied
to particular applications.

Another open issue in sensor networks, applicable to all re-
search topics, is the introduction of learning. Except [1], the
works included in this survey assume that the system has al-
ready prior knowledge about the utility of its actions and about
how to infer and predict the environment state, excluding the
need for using learning to improve the system performance.
Moreover, the introduction of learning techniques in sensor
networks may need the use of transfer learning mechanisms,
namely mechanisms that allow to transmit what agents have
learned so far in a former learning context to some new, similar
context. Otherwise the changes in the network structure, due
to its dynamics or the self-organization process itself, would
require agents to restart their learning processes from scratch.
The literature tackling this problem is scattered and maybe
the most significant work is [2], where Abdallah et al. pro-
pose a mechanism to transfer knowledge by using heuristics in
multi-agent reinforcement learning.

Finally, except [23] and [9], few works consider that a sensor
network may have multiple owners. Moreover, although these
works have shown that Computational Mechanism Design is
useful for modelling these scenarios, the allocation and pay-
ment rules are usually centralized. Therefore, building decen-
tralized mechanisms where the auctioneer role is distributed
among the participating agents remains an open issue.
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