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Abstract

Distributed mechanisms that regulate the behavior of au-
tonomous agents in open multi-agent systems (MAS) are
of high interest since we cannot employ centralized ap-
proaches relying on global knowledge. In actual-world so-
cieties, the balance between personal and social interests is
self-regulated through social conventions that emerge in a
decentralized manner. As such, a computational mechanism
that allows to engineer the emergence of social conventions
in MAS can become a highly promising tool to endow open
MAS with self-regulating capabilities. To this end we pro-
pose a computational self-adapting mechanism that facil-
itates agents to distributively evolve their social behavior
to reach the best social conventions. Our approach bor-
rows from the social contagion phenomenon: social con-
ventions are akin to infectious diseases that spread them-
selves through members of the society. Furthermore, we
experimentally show that our mechanism helps a MAS to
regulate itself by searching and establishing (better) social
conventions on a wide range of interaction topologies and
dynamic environments.

1 Introduction

Distributed mechanisms that regulate the behavior of au-
tonomous agents in multi-agent systems (MAS) have be-
come necessary because centralized approaches relying on
global knowledge are not viable in open MAS. Further-
more, it is difficult for centralized approaches to cope with
dynamic environments. We observe that in actual-world
societies, social behavior is self-regulated through social
conventions. These conventions emerge in a decentralized
manner to balance personal interests with respect to the so-
ciety’s, in such a way that each member can pursue its in-
dividual goals without preventing other members to pursue

theirs.

From a sociological point of view, conventions result
when members of a population adhere to some behavior,
which is neither dictated nor enforced by a central author-
ity. They can be regarded as rules followed by most mem-
bers of the society, which are created and self-perpetuated
by such members. Lets compare this observation with the
requirements for a system to be considered self-organizing.
According to [7], self-organization is: “...a process in which
pattern at global level of system emerges from numerous
interactions among lower-level components of the system.
Moreover, the rules specifying the interactions between the
system’s components are executed using only local infor-
mation, without reference to the global pattern”. Hence, the
emergence of social conventions can be regarded as a self-
organizing process. Therefore, we aim at creating a com-
putational self-adapting mechanism that allows engineering
the emergence of social conventions in MAS, using self-
organization as a guiding principle. This mechanism can
become a highly promising tool to endow open and dynamic
MAS with self-regulating capabilities.

One of the trends of thought in social studies is that con-
ventions emerge by propagation or contagion, where social
facilitation and imitation are key factors [8, 6]. From the
MAS point of view, the studies in [18] and [17] show that
convention emergence is possible. However, these works
limit to analyze propagation, leaving out innovation (the
discovery of rules), which is a very important factor for the
evolution of societies. When the aim is to help a MAS reach
conventions in dynamic environments, propagation may not
be enough since this assumes that at least some agent in the
society knows the appropriate behavior, and this is not al-
ways the case. Additionally, the problem can become even
more difficult when the aim is to not only to reach (any)
convention(s), but the best convention(s).

Moreover, studies in complex networks have shown that
the effectiveness of propagations (be it of rumors, diseases



or computer viruses) in societies is closely influenced by
the topology of social interactions [1, 15, 19] (henceforth
referred to also as interaction topology). Along this direc-
tion, the so-called scale-free and small-world networks are
the most relevant ones because they model the most com-
mon networks appearing in societies and nature (e.g. film-
relations between actors, the protein-protein interaction and
the Internet, just to name a few). Thus, they have been em-
ployed to model societies in MAS. In particular, the emer-
gence of conventions over different network topologies has
been already studied by Pujol et al. in [16]. Nonetheless,
Pujol et al. do not consider societies completely dominated
by the less efficient conventions.

In this paper we attempt at going beyond finding con-
ventions. We propose an evolutionary computational mech-
anism that facilitates agents in a MAS to self-organize and
self-adapt in such a manner that the best conventions dy-
namically emerge for a wide range of interaction topolo-
gies. At this aim, we take inspiration on the argument in
the social sciences literature that social conventions arise
from social contagion [6]. Along this line, our approach
borrows from the social contagion phenomenon to exploit
the notion of positive infection: agents with good behav-
iors become infectious to spread such behaviors in the agent
society. Thus, good behaviors propagate as an infectious
disease. Moreover, to prevent stagnation on less efficient
conventions, we incorporate an innovation mechanism that
allows agents to constantly explore new behaviors in hope
of finding better ones. By combining infection and innova-
tion our computational model helps MAS to establish better
conventions even when less efficient conventions are fully
settled in the society. Furthermore, we empirically show
how our approach empowers agents to reach the best set of
conventions for a wide range of interaction topologies.

Notice that further evolutionary approaches appear in
the literature. Indeed, convention emergence has been de-
scribed as an evolutionary process [3], and so evolutionary
algorithms (EA) have been employed to find conventions
in agent societies. Nevertheless, they are usually applied
either: (i) as a centralized process [11]; or (ii) as an in-
dividual self-contained process for each agent [14]. Both
approaches can be potentially slow and tend to be off-line
processes. By off-line we mean they require complete in-
formation regarding the system (at least up to certain point
in time). Moreover, an off-line process requires to be run
separately from the system execution. This makes off-line
mechanisms unsuitable for dynamically adapting conven-
tions, which understandably require an online mechanism
that promptly reacts to the changes in the system. The later
case is our purpose.

To summarize, in this article we present an online, self-
organizing and self adapting mechanism, based on the so-
cial contagion phenomenon, that allows agents in a MAS to

find and establish good (if not the best) social conventions
that regulate their behavior.

The paper is organized as follows. Section 2 formalizes
the problem we tackle. In section 3 we present our evolu-
tionary infection-based model. Section 4 empirically eval-
uates our model for the problem described in section 2 over
a wide range of interaction topologies. Finally, section 5
draws some conclusions.

2 Formalizing the Problem

In this article, we base the formalization of our self-
adaptation problem in the agent and self-organizing system
models presented by Biskupski, et al. in [5]. Firstly, we
consider that a MAS is composed of a set of autonomous
agents, Ag, and that no central authority exists to rule them.
The relationships (neighborhoods) between these agents are
given by an interaction topology, E ⊆ Ag × Ag. If
(agi, agj) ∈ E, then agi and agj are neighbors, and thus
they can interact with each other. We also consider that the
MAS state changes as agents act, and that all the possible
system states are defined by the finite set S. The actions that
agents can perform are defined by the finite set, ∆. Thus,
the function Π : S × (∆ × ∆)|E| → S models the MAS
state-to-state transition, where (∆ × ∆)|E| stands for the
possible actions all the pairs of neighboring agents can per-
form when interacting with each other. Finally, we consider
that not all states are equally valuable. Hence, the need for
a (abstract) social welfare function u : S → R that values
the quality of some desired MAS property for a particular
system state. Grouping together the components described
above, we can formally define the our notion of MAS:

Definition 1 (Multi-agent System) A multi-agent system
is characterized as a six-tuple 〈Ag,E, S,∆,Π, u〉, where
Ag stands for a finite set of agents, E ⊆ Ag × Ag rep-
resents the finite set of possible interaction topologies, S
stands for a finite set of system states, ∆ is a finite set of
agent actions, Π : S × (∆×∆)|E| → S stands for the sys-
tem state transition function, and u : S → R is the social
welfare function.

Now it is time to formally characterize the agents in a
MAS. Agent-wise, we consider that agents within a MAS
only work with partial (local) knowledge and that they are
social. We label them as social because: (i) each agent
can communicate and interact with other agents within the
MAS; and (ii) agents have social rules that regulate their in-
teractions with other agents. Therefore, notice that agents
perform communicative actions: (i) to interact with each
other, or (ii) to exchange information. On the one hand,
when deciding the next action to take, agents depart from
their individual internal state. This internal state encom-



passes the agent’s local knowledge (obtained from local in-
teractions) and the social rules it is aware of. The agent’s
set of social rules expresses the behavior that it currently
believes is beneficial to itself and the society. We assume
that agents can measure the utility of following their so-
cial rules after performing a particular action. On the other
hand, agents must decide whether to share their informa-
tion and with whom, as well as what to do with the infor-
mation they receive from their peers. In this respect, we
consider agents to have some feedback message exchange
mechanism that allows them to share with their neighbors
the social rules they are aware along with the associated
valuations. Consequently, agents can validate their social
rules through their peers.

Finally, each agent must present a mechanism that, based
on the results after interacting with other agents along with
their feedback, allows it to adapt its social rules and sub-
sequently obtain better results through future interactions.
Bundling all the agent features mentioned so far, we pro-
pose the following formal definition of social-aware agent.

Definition 2 (Social-aware Agent) Given an agent, agi ∈
Ag, we say tat it is social-aware if it can be characterized
as a tuple 〈eti, sti, π, ui,Fi,Ai〉, where:

• eti is the neighborhood of the agent at time t;

• sti : (M t
i , R

t
i) is the agent’s internal state at time t;

– M t
i : is the agent’s memory at time t;

– Rti: is the agent’s set of social rules at time t;

• π : sti → ∆ is the action selection mechanism.

• ui : sti → R is the agent’s utility function;

• Fi : (FI ,FO) is the agent’s feedback mechanism,
where FI stands for the input feedback received from
other agents, and FO models the output feedback sent
to other agents;

• Ai is the agent’s adaptation mechanism.

Let Agt, stand for the agent population in the MAS at
time t. When social-aware agents populate a MAS, we can
define the system state at time t as St = (sti)i∈Agt ∈ S;
and the interaction topology at time t as, Et = ∪i∈Agteti ∈
E. Furthermore, this MAS will present self-organizing
and self-adapting properties if the appropriate feedback and
adaptation mechanisms can be found, such that agents can
distributively reach localized (if possible global) conven-
tions of their social rules that allows the MAS to reach a
social (global) goal. Where a (localized) convention stands
for a group of neighboring agents that present a (localized)
consensus [5] regarding their social rules.

Thus, we define the problem we aim at solving, the so-
called distributed self-adaptation problem (DSAP), as fol-
lows:

Definition 3 (DSAP) Given a multi-agent system,
〈Ag,E, S,∆,Π, u〉 where Ag is a finite set of social-
aware agents, the distributed self-adaptation problem is
that of finding for each agent, agi ∈ Ag, the feedback and
adaptation mechanisms, Fi and Ai respectively, that allow
each agent to dynamically assess the social rules at each
time t, Rti , that maximize the social welfare u.

3 An Evolutionary Infection-Based Mecha-
nism

Next we propose a computational mechanism to solve
the DSAP, namely to help agents in a MAS reach social
conventions that maximize the social welfare. At this aim,
we assume that we can accomplish our goal by maximizing
agents’ individual welfares. Thus, we stay in page with the
distributed nature of the problem.

It has been argued in the social sciences literature that
behavior conventions in societies are reached through so-
cial contagion [6]. This phenomenon relates to the spread-
ing of behaviors between individuals to an infectious dis-
ease. Hence, we chose to model the social contagion phe-
nomenon into a MAS framework. However, as stated above,
we target at beneficial conventions, and if possible we prefer
the ones that tend to maximize the social welfare. Consid-
ering the social welfare as a composition of individual wel-
fares, it makes sense to let the individual behaviors that im-
pact positively on it, here named good behaviors, be more
infectious. Nevertheless, with this positive infection we can
achieve at most a total replication of the best-known behav-
ior among agents. Obviously, this is not enough. We also
require some mechanism to explore new behaviors. More-
over, the infectious spreading of behaviors needs to be inter-
weaved with the constant and continuous search for new,
better ones.

By this means we expect that a MAS can reach conven-
tions that are dominant in the society so that no better ones
can be found and no worst ones can upstage them. If so,
we say that a MAS has reached a stable state. However, if
some unaccounted factor(s) alter(s) the MAS in such a man-
ner that the current (stabilizing) conventions become obso-
lete (the social welfare deteriorates), the infectious process
will re-configure the MAS to drive it to another stable state.
Thus, making it a self-adapting mechanism.

A contagion process that constantly evolves to create
new and more powerful infections whenever the situation
demands it can be regarded as an evolutionary process.
Hence, an evolutionary algorithm (EA) [13] seems a suit-
able candidate for our implementation. Nevertheless, be-



cause of the nature of the problem, the self-organization
principles must also stay present.

In our infection-based EA, outlined in algorithm 1, each
agent has a set of genes that encodes its social rules. Agents
can infect other agents with their genes following the sur-
vival of the fittest concept: the fittest the agent (the high-
est its individual welfare), the more infectious. Further-
more, our algorithm realizes innovation (exploration) by
letting agents mutate their genes. Notice though that in-
fections also contribute to innovation by recombining genes
that may result in new genes. Importantly, our algorithm
runs distributedly: each agent decides whether to infect or
mutate based on local knowledge.

Thus, each agent is endowed with: i) an evaluation
function (line 4) to assess its individual welfare; ii) a se-
lection process (line 5) to choose a peer to infect, out of
its local neighborhood, based on its fitness; iii) an infec-
tion operator (line 6) to inject some of its genes into the
selected agent (with probability pinfection); and iv) an in-
novation operator (line 7) to mutate its genes (with proba-
bility pmutation), thus creating new behaviors.

We implement the selection operator by adapting the
roulette selection in the classic GA literature [4] to make
it decentralized. We realize infection by using a classic
crossover recombination. The classic crossover (single-cut
crossover) randomly selects a cut point in the parents’ gene
sequences to exchange their genes and produce two new in-
dividuals. Consider a contagious agent and an agent to in-
fect as two parents. Instead of creating child individuals,
an infection operator combines the genes of both parents.
Furthermore, there is no restriction on the number of agents
each agent can infect (per iteration), but no agent can be
infected twice. Therefore, the fittest agents enjoy more op-
portunities to spread. We realize innovation by having each
agent randomly change its genes with a certain probability.

Agents in a MAS continuously interact until the incuba-
tion time, tincubation , expires. Thereafter all agents locally
start their evolutionary processes. Once this process fin-
ishes, agents resume their interaction. The incubation time
bounds the time intervals used by agents to assess how the
changes to their genes reflect on their behavior, analogously
to viral infections requiring some time to influence an or-
ganism.

If we look a little bit in our algorithm we can see that
it fulfills the required roles to solve the DSAP. On the one
hand, the evaluation and selection take the part of the feed-
back mechanism. Through this methods each agent gets
some understanding (feedback) on the performance of their
social rules, since they can compare them with respect to
other ones in their neighborhood. Thus, gaining knowledge
of possible improvement and of the current localized social
convention (consensus). On the other hand, infection allows
agents to reach a consensus while at the same time propos-

1: repeat
2: let agents interact for time tincubation;
3: foreach ag ∈MAS do
4: ag.evaluate()
5: ag′ ← ag.selection()
6: ag.infection(ag′, pinfection)
7: ag.mutation(pmutation)
8: end for
9: until MAS stops

Algorithm 1: Infection-based Algorithm.

ing small improvements. Therefore, we introduce muta-
tion, as a purely innovative component, to our algorithm,
to finally realize an adaptation mechanism which empowers
agents to continuously find and settle conventions of social
rules with respect to a social goal.

4 Empirical Evaluation

We hypothesize that our infection-based computational
mechanism can be applied to solve the DSAP. Given a
multi-agent system, we shall consider the DSAP as solved
if algorithm 1 can: (i) self-organize the agents in the MAS
to reach the best social convention(s), (maximize the social
welfare), for a wide range of initial social rule configura-
tions and under the most common interaction topologies;
and (ii) realize self-adaptation in the presence of dynamic
(changing) conditions.

At the aim of validating these assumptions, two sets
of experiments (self-organization and self-adaptation) were
designed to empirically evaluate our mechanism under dif-
ferent conditions of a particular MAS.

Studies in the literature [12] have shown that games
are well suited for testing coordination between individ-
uals. Thus, agents in our MAS interact with each other
by engaging in iterative games. Each game has multiple
rounds. During a round, each agent plays a with a random
neighbor agent. In a game both agents do some action in
∆ = {A,B}. The actions are constrained in each agent
by its current social rules (Rti). Games are rewarded with
a payoff, which is then accumulated. After a game each
agent, agi, keeps on its memory, Mi, its opponent’s action
(overwriting its current content). In this work, for the sake
of simplicity we only kept the opponent’s last action. We
leave for future work to consider a memory of larger size.

The number of rounds for each iterative game is given by
tincubation. When a game finishes, each agent starts its own
evolutionary process (algorithm 1) employing its accumu-
lated payoff as its fitness value for the evaluation function.
Notice that the mechanism for selecting agents for infec-
tion is independent of the opponent agents chosen to play
games. Once the evolutionary process ends, each agent re-



sets its accumulated payoff and clears its memory so that the
next iterative game can begin. Thus, the individual-welfare
ui of each agent is given by the accumulated payoff between
iterative games.

4.1 Interaction Topologies

As mentioned above, the propagation of infectious dis-
eases has been studied by epidemiology and complex net-
works [9, 19, 15]. It is well known that its behavior its
affected by the type of topology on which the population
interacts. Since algorithm 1 is inspired on infections, it is
reasonable to think that the interaction topology of a MAS
may influence its performance. In order to empirically an-
alyze our infection-based model we chose the following in-
teraction topologies:

Small-world These networks present the small-world phe-
nomenon, in which nodes have small neighborhoods,
and yet it is possible to reach any other node in a small
number of hops. This type of networks are highly-
clustered (i.e. have a high clustering coefficient). For-
mally, we note them as W k,p

V , where V is the number
of nodes, k the average connectivity, i.e., the average
size of the node’s neighborhood, and p the re-wiring
probability. We used the Watts & Strogatz model [19]
to generate these networks.

Scale-free These networks are characterized by having a
few nodes acting as highly-connected hubs, while the
rest of them have a low connectivity degree. Scale-free
networks are low-clustered networks. Formally we
note them as Sk,−γV , where V is the number of nodes
and its degree distribution is given by P (k) ∼ k−γ ,
i.e. the probability P (k) that a node in the network
connects with k other nodes is roughly proportional to
k−γ .

Random graphs are networks with a clustering coefficient
that tends to zero. Although these networks do not ap-
pear in nature, we also study the behavior of our model
over them for the sake of completeness. They are for-
mally noted as R<k>V , where V is the number of nodes
and k the average connectivity.

4.2 Coordination Game

An agent’s interactions with its neighbors have the form
of an n-player iterative game, where the game length is de-
fined by the tincubation parameter. At each iteration of the
game, an agent receives a payoff based on its current ac-
tion and the action of the neighbor playing in that iteration
according to the matrix in table 1.

Table 1. Game Payoff Matrix
Agent j

A B

Agent i
A (α,α) (-1,-1)
B (-1,-1) (1,1)

The pay off matrix can help capture pure coordination
games [18][17] and coordination games with equilibrium
differing in social efficiency [16]. Thus, if α = 1 the ma-
trix represents a pure coordination game; and when α > 1 a
game with different social efficiencies. Notice that regard-
ing the latest use if both agents do B (coordination in B), a
suboptimal payoff is achieved, since coordination in A of-
fers a higher payoff to both agents.

Since agents are social-aware, each agent agi ∈ Ag has
two parameterized rules: one to help it decide what action
to take based on the last opponent’s (peer’s) past action; and
another to decide the action to take when no past action is
known. To this end, each agent can record on its memory
the last action performed by its last opponent without dis-
tinguishing who the opponent was. The parameterized rules
are represented by the following templates:

RT starti : if [ empty(Mi) ] then do(X0
i )

RT reacti : if [ Mi = X0
i ] then do(X1

i ) else do(X2
i )

where Mi stands for the contents of agi memory and
X0
i , X

1
i , X

2
i are variables over ∆.

Rule template RT starti constrains agent agi to per-
form the action assigned to the variable X0

i whenever the
memory is empty, i.e. at the beginning of each iterative
game. Rule template RT reacti chooses X1

i or X2
i based

on the action performed by the last opponent. Notice
that agents learn their rules by finding values for Xi =
{X0

i ,X1
i ,X2

i }, thus obtaining instances of the rule templates
above. For example, if at time t, agent agi has values
Xi = {A,A,B} then its rule templates resolve into rules:
Rti ={if [empty(Mi)] then do(A) , if [Mi = A] then do(A)
else do(B) }. Therefore, this instance of the DSAP is solved
if algorithm 1 can stand for the feedback and adaptation
mechanisms, Fi and Ai respectively, that allows agents in
the MAS to learn the values ofXi that maximize the social-
welfare, u.

This game is interesting because no global knowledge
of the MAS is required by the agents, namely the identities
of opponents are not needed at each iteration nor the pay-
off matrix of the game. However, the lack of knowledge of
the identities makes the MAS more complex since it causes
strong interdependencies between agents’ actions. To illus-
trate the effect of interdependencies consider, for example,
that agent agi rules are given by Xi = {A,A,B} and its
memory by Mi = {A}. Say that at iteration t, he inter-
acts with agent agj , who does action B. Then agi memory



changes to Mi = {B}. At iteration t+ 1, agi interacts with
agk. By following Rreacti , agi does B because Mi is differ-
ent from X0

i . Thus, if agk does A then both agents suffer a
payoff drop caused by agj previous action.

We know before-hand that four cooperative-only solu-
tions exist for this game, and that they are the strongest at-
tractors in the MAS. We call them as cooperative-only be-
cause they try to cooperate by repeatedly doing the same ac-
tion regardless of the past interactions. Two of them always
make agents do A (Xi = {A,A,A} and Xi = {B,A,A}),
and another two make agents always do B (Xi = {A,B,B}
and Xi = {B,B,B}). Henceforth, we shall refer to them as
A-Conventions and B-Conventions. The A-Conventions are
the best (give higher payoffs) whenever α > 1.

4.3 Self-Organization Empirical Results

As mentioned at the beginning of the section, one of our
aims is to verify if our infection-based mechanism can self-
organize the agents to reach the best social convention(s) for
a wide range of configurations. Therefore, the experiments
presented in this section were designed with that purpose.

To that extend, each experiment is defined by a com-
bination of: i) an interaction topology model; ii) a payoff
matrix; and iii) an initial social rules distribution, namely
the agents’ initial rule settings. We run 50 simulations of
each experiment. In all simulations agents interact and in-
fect each other according to the game in section 4.2 during
20000 ticks. Our empirical settings were:

Topologies We generated each interaction topology as de-
scribed in section 4.1. Their parameters as well as their
average clustering coefficient were : W<10>,0.1

1000 =
0.492, S<10>,−3

1000 = 0.056 and R<10>
1000 = 0.020. No-

tice that we generated a new interaction topology per
simulation.

Payoff matrix Using table 1 we defined three payoff matri-
ces: a pure coordination game (α = 1), and two games
with different social efficiencies (α = 1.5, α = 2).

Initial rule distribution At simulation startup, we initial-
ized the norms (Xi values) of every agent using five
distributions: i) Random (rules are randomly set); ii)
Attractor-free (rules set from the non-cooperative-
only rules); iii) Low sub-optimal (rules of 25% of
the agents set from the B-Conventions ; iv) High
sub-optimal (75% of agents with rules from the B-
Convention); and v) Fully sub-optimal (rules of all
agents were set from the B-Conventions).

The parameters of algorithm 1 where set to: pinfection =
0.10, pmutation = 0.0003, and tincubation=10.

To measure if a convention is established, we counted
the number of agents with the same values for Xi per tick,

and the number of agents doing A or B per tick. The counts
of each simulation in the experiment where then aggregated
using the inter-quartile mean.

4.3.1 Pure coordination game

This games are represented by a payoff matrix with α = 1.
The experiments show that the population organizes either
to an A-convention or a B-convention depending on the
number of agents initially doing A or B. Figure 1(a) shows
that if the initial rule distribution leads to more than 50%
of the agents doing action A, then an A-convention is es-
tablished; otherwise, a B-convention settles down. Impor-
tantly, a MAS self-organizes toward the cooperative-only
social rules even though for this game other social conven-
tions exists that can achieve the same result. For instance,
if all agents adopt the rule given by Xi = {A,A,B},
then every agent will always do A. We hypothesize that the
cooperative-only rules emerge as a way for the society to
overcome the problem generated by actions’ interdependen-
cies.

Since the A and B-conventions are equally valuable, we
can say that for this case the MAS manages to organize it-
self to establish one of the best social conventions regardless
of the initial rule distribution. Furthermore, this is accom-
plished independently of the interaction topology.

4.3.2 Different social efficiencies

This type of games are defined by matrices with α > 1.
When using random initial distribution, around 25% of the
agents have rules from the A-conventions and around 50%
of them do action A. Figures 1(b) and 1(c) show that in
this case the agents in the MAS readily organize into an A-
convention for both α = 1.5 and α = 2.0 independently
of the interaction topology. Regarding the Attractor-free
initialization, the agents promptly adopt an A-convention
too, even though at startup no agent knew the best rules. As
to the Low sub-optimal initialization, the same behavior
can be observed.

Departing from a High sub-optimal distribution, agents
in a MAS establishes a B-convention when α = 1.5 for all
interaction topologies. However, by setting α to 2.0, agents
in the small-world networks are able to agree upon an A-
convention. Thus, we conclude that agents will not consider
a new convention if its benefit is not considerable enough.
Moreover, it seems that for the scale-free case a greater ben-
efit is needed.

The Fully sub-optimal distribution represents the worst
case scenario because initially all agents share the conven-
tion of always doing B. In this case, innovation through mu-
tation becomes a key factor. When the innovation probabil-
ity is low, like the one we have been using in the experi-
ments above, the agents are unable to converge to the best
convention. This is because a low mutation equals to a low
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Figure 1. Results of experiments with random initial rule distribution.

number of agents changing their rules. This is a problem be-
cause the agents changing social rules will suffer from low
accumulated payoffs. To illustrate this problem, say that a
low mutation results in a very low number of agents adopt-
ing rules from an A-convention. In a small-world network,
most likely all neighbors of each agent are constrained by
their social rules to always do action B. Thus, an agent do-
ing A will frequently lose at the iterative game, obtaining
a negative payoff. This forces the agent to give in to peer
pressure (neighbors doing B) and change its social rules to
the B-Convention. On the other hand, infections on scale-
free networks are known to be hard to eradicate once they
have settled [10, 15]. This is equivalent to trying to over-
run a settled infection with a new one. A known approach
to accomplish that is for the new infection to surge from
highly connected nodes (hubs), and from there start spread-
ing. However, when only a small number of agents mutates,
the chances of this spreading in one of the few hub nodes is
very low, making the task of upstaging the current infection
impossible.

At this aim, we increased the mutation probability. We
empirically found that using pmutation = 0.055 allows
agents in scale-free networks with α = 2.0 and small-world
networks with α > 1 to organize into an A-Convention
(in small-world even a smaller probability suffices). The
process through which an A-convention overcomes a B-
Convention is interesting. First, a small group of agents
playing tit-for-tat kind of rules (repeating the opponent’s
last action) starts to appear. Figure 2 shows that agents with

this social rules appear almost from the start. Agents with
this strategy can coexist with B-Convention agents with a
small or non-negative effect to their accumulated payoffs
because, even though they lose some games, they get the
biggest payoff or at least the second one frequently. Thus,
they become hard to infect by agents with B-convention
rules (visible in the left-hand plots of figure 2 by the almost
constant number of agents with the tit-for-tat-like rules).
Moreover, when agents with A-convention rules appear,
they have a higher chance of having neighbors that will co-
operate with them. In other words, they can take advantage
of this established group to get higher payoffs and so be
able to start spreading their rules to other agents. However,
a high mutation presents the disadvantage that a small part
of the population will be constantly mutating. In our MAS
this effect is translated to having around 80% of the agents
converging to do action (right-hand plots of figure 2). Most
of them with A-convention rules and a small fraction with
tit-for-tat-like, sub-optimal rules (left-hand plots in figure
2). Finally, random networks require even a higher proba-
bility (pmutation = 0.6) to establish the best convention.

Table 2 summarizes the innovation rates necessary to
establish the best conventions under different conditions.
Overall from these results we can observe that highly-
clustered agent communities (e.g. small-world) are more
open to positive infections, where as the low-clustered ones
(e.g. scale-free) are harder to infect if a stable infection
is already in place. This is similar to some results shown
by the scenarios studied in [16]. However, our evolution-



 0

 200

 400

 600

 800

 1000

 0  5000  10000  15000  20000

Ag
en

ts

Ticks

A-Conventions
Tit-For-Tat

 0

 200

 400

 600

 800

 1000

 0  5000  10000  15000  20000
Ticks

Action A
Action B

(a) Small-world

 0

 200

 400

 600

 800

 1000

 0  5000  10000  15000  20000

Ag
en

ts

Ticks

A-Conventions
Tit-For-Tat

 0

 200

 400

 600

 800

 1000

 0  5000  10000  15000  20000
Ticks

Action A
Action B

(b) Scale-free

Figure 2. Results of experiments with full sub-optimal initialization. Graphs show on the left the
number of agents per rule; on the right the number of agents doing each action

Table 2. Innovation rates to establish the best
convention in a MAS
Initial Norm Small-world Scale-free Random
Distribution 1.5 2.0 1.5 2.0 1.5 2.0

Random L L L L L L
Attractor-free L L L L L L
Low sub-optimal L L L L L L
High sub-optimal H L H H VH VH
Full sub-optimal H H H H VH VH

L = Low(0.0003), H = High(0.055), VH = Very High(0.06)

ary model can overcome the difficulty of re-infecting low-
clustered networks by using a high innovation through mu-
tation rate. The high innovation is required because an in-
novating agent with high peer pressure is instantly affected
by a decrease in its payoff. Nevertheless, there is an asso-
ciated cost to this high innovation, in the form of a small
subgroup of agents unable to settle on a set of rules

Finally, we can claim that i) a convention is always
reached, and ii) under certain conditions this convention is
the best one for all topologies. Moreover, when these con-
ditions are not met, e.g. a suboptimal convention is fully
established, our model can still reach the best social con-
vention through innovation.

4.4 Self-Adaptation Empirical Results

In the previous section, it was shown that our infection-
based mechanism endows social agents in a MAS with self-

organization capabilities. Next, we shall show through ex-
periments that it also functions as a self-adaptation mech-
anism that allows agents to re-organize themselves in the
presence of dynamic changes. Thus, proving that our pro-
posed algorithm solves the DSAP.

The experiment definition is the same as the one used in
section 4.3 with the addition of a dynamic component. This
dynamic component can take the form of either run-time
changes in the payoff matrix, dynamic payoff matrix, or an
ever-changing agent population , dynamic population and
neighborhood.

4.4.1 Dynamic payoff matrix

We simulate a dynamic environment by introducing
changes into the payoff matrix at run time. The changes
take the form of swapping the efficient action, which means
that if A is the most efficient action then after the swap B
will become the most efficient one (i.e the payoff values of
cooperating in A are swapped with the values of cooperat-
ing in B) and vice versa. Notice that agents are not explic-
itly informed when the payoff matrix changes. Instead, they
realize that the games they play lead to different results.

We performed experiments using: the matrices with dif-
ferent social efficiencies (α = 1.5 and α = 2.0); the scale-
free (S<10>,−3

1000 ) and small-world (W<10>,0.1
1000 ) topologies;

and the full sub-optimal social rules initialization (the worst
case scenario). With respect to matrix changes, we in-
troduced action swaps every 5000 ticks. Regarding the
infection-base mechanism parameters, the same from the
previous section where used with the innovation rate set to



 0

 200

 400

 600

 800

 1000

 0  5000  10000  15000  20000

Ag
en

ts

Ticks

Action A
Action B

(a) Small-world

 0

 200

 400

 600

 800

 1000

 0  5000  10000  15000  20000

Ag
en

ts

Ticks

Action A
Action B

(b) Scale-free

Figure 3. Results of the dynamic payoff ma-
trix experiments

high.
Figure 3 shows the number of agents performing each

of the possible actions. We observe that after each matrix
change (at ticks 5000, 10000 and 15000) the agents quickly
re-organize into conventions that result in performing the
most efficient action. We also observe that in the small-
world case, the reaction time is faster than the scale-free.
By reaction time we mean the time elapsed between the dy-
namic change and the re-organization. This result was ex-
pected since the small-world is the most clustered one. The
results from the experiments clearly show that our infection-
based mechanism endows agents with self-adapting capa-
bilities.

4.4.2 Dynamic population and neighborhood

In this environment, the number of agents in the MAS
changes and so their neighborhoods. In practice these en-
vironment changes are achieved by dynamically changing
the network topology. Specifically: 1) we create a scale-
free network interaction topology up to certain number of
agents; 2) we begin the social agent interactions using the
after-mentioned topology; and 3) after every k number of
simulation ticks, add new agents and define the new neigh-
borhoods. We experimentally implemented this by inter-
weaving the Barabasi-Albert (BA) scale-free network gen-
eration algorithm [1], and the MAS simulation. In other
words, the MAS and the BA algorithm are executed at the
same time.

The component combination used for the experiment
was: a payoff matrix with α = 2.0; scale-free topology that
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Figure 4. Results of the dynamic population
experiments

started at S<10>,−3
400 and ended at S<10>,−3

2400 ; and a full sub-
optimal social rules initialization for both the initial agents
and the new ones. The new agents were added every 50
simulation ticks. The infection-based parameters were set
to the same previously used.

The experiments show that, even in a MAS with a con-
tinuous influx of agents with less that optimal social rules,
our mechanism is able not to only reach the best convention,
but also to sway most of the incoming agents into perform-
ing the most efficient action. Figure 4 shows the number of
agents performing each action per time step. We observe
that even though at the beginning no agent performs action
A, a convention over that particular action starts to emerge
regardless of the continuously incoming agents performing
action B. Thus, i) our mechanism allows agents to reach the
best convention in dynamic populations; and ii) when the
best social convention has emerged, it empowers incom-
ing agents with pre-established (non-optimal) social rules
to adapt its rules to conform to the best social convention.

In summary, we claim that our infection-based mech-
anism presents self-adaptation properties, since it al-
lows agents (using only local information) to dynamically
change their rules in response to dynamic changes in the
system.

5 Conclusions and Future Work

In this paper we proposed an evolutionary computa-
tional mechanism, based on the concept of positive infec-
tion, that endows a MAS with self-organization and self-
adaptation capabilities. At the macro-level this can be ob-
served through the distributed emergence of social conven-
tions. These social conventions regulate and balance the
behaviors of the agents as individuals and as members of a
society.

We ran separate experiments to validate our mechanism
with respect to the self-organization and self-adaptation as-
pects. Furthermore, because it is well known from studies
in biological and artificial viruses that the underlying topol-
ogy of social interactions affects how infections spread, we
designed our experiments to validate the behavior of our



mechanism under different topologies and agent settings
(initial social rules distributions).

On the one one hand, the self-organization results of our
infection-based mechanism for highly-clustered topologies,
are in line with the studies in [16]. However, our mecha-
nism is able to reach the best social convention even in cases
where the majority of the population is already dominated
by a sub-optimal social convention. On the other hand, low-
clustered societies are more sensitive to the initial distribu-
tions of social rules. With our algorithm, agents reach the
sub-optimal convention if the population starts with a high
number of agents with sub-optimal rules. Nevertheless, by
introducing a high innovation rate it is possible to upstage
sub-optimal conventions with the best one regardless of the
topology. The experiments also showed that when a pop-
ulation has reached the best convention, it cannot be over-
thrown by a sub-optimal one.

The mutation as an innovation mechanism was shown to
be a key factor in destabilizing established sub-optimal con-
ventions, while still letting the best one to take over most of
the population in a stable manner. However, this comes with
a price, since having a high number of agents constantly in-
novating prevents the infection from taking over the whole
population. Nevertheless, for a dynamic and complex MAS
this is a small price to pay in exchange for a distributed
behavior regulation mechanism. Furthermore, it is inter-
esting to notice that on low-clustered topologies tit-for-tat-
like strategies emerge in subpopulations and become sta-
ble allowing the more efficient social rules taking over sub-
optimal dominated populations. This is congruent with [2],
who argues that tit-for-tat is a robust strategy.

On the other hand, the self-adaptation experiments show
that the infection-base mechanism is robust to different dy-
namic changes to the system. Agents adapt, if necessary, to
reach new conventions only using local information. More-
over, agents can reach the best convention even when a con-
tinuous number of incoming agents try roots for a different
convention. Besides that, after the best social convention
has been reached, incoming agents quickly adapt their so-
cial rules to conform with this convention.

Finally, for future work we plan to analyze in more de-
tail the rule infection spreading with the purpose of under-
standing the most basic underlying principles for conven-
tion emergence. Our motivation is that of learning how to
direct the behavior of a MAS by deploying populations of
agents aimed at distributedly regulating the MAS behavior.
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