
Norm-Oriented Programming of Electronic

Institutions: A Rule-based Approach

Andrés Garćıa-Camino1, Juan-Antonio Rodŕıguez-Aguilar1, Carles Sierra1, and
Wamberto Vasconcelos2

1 IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain
{andres, jar, sierra}@iiia.csic.es

2 Dept. of Computing Science, University of Aberdeen,
Aberdeen AB24 3UE, United Kingdom

wvasconcelos@acm.org

Abstract. Norms constitute a powerful coordination mechanism among
heterogeneous agents. We propose means to specify and explicitly man-
age the normative positions of agents (permissions, prohibitions and obli-
gations), with which distinct deontic notions and their relationships can
be captured. Our rule-based formalism includes constraints for more ex-
pressiveness and precision and allows the norm-oriented programming of
electronic institutions: normative aspects are given a precise computa-
tional interpretation. Our formalism has been conceived as a machine lan-
guage to which other higher-level normative languages can be mapped,
allowing their execution.

1 Introduction

A major challenge in multi-agent system (MAS) research is the design and imple-
mentation of open multi-agent systems in which coordination must be achieved
among agents defined with different languages by several designers who may not
trust each other. Norms can be used for this purpose as a means to regulate the
observable behaviour of agents as they interact in pursuit of their goals [1–3].
There is a wealth of socio-philosophical and logic-theoretical literature on the
subject of norms (e.g., [4, 5]), and, more recently, much attention is being paid
to more pragmatic and implementational aspects of norms, that is, how norms
can be given a computational interpretation and how norms can be factored in
in the design and execution of MASs (e.g. [6–10]).

A normative position [4] is the “social burden” associated with individual
agents, that is, their obligations, permissions and prohibitions. Depending on
what agents do, their normative positions may change – for instance, permis-
sions/prohibitions can be revoked or obligations, once fulfilled, may be removed.
Ideally, norms, once captured via some suitable formalism, should be directly ex-
ecuted, thus realising a computational, normative environment wherein agents
interact. This is what we mean by norm-oriented programming. We try to make
headway along this direction by introducing an executable language to specify

agents’ normative positions and manage their changes as agents interact via
speech acts [11].

In this paper we present a language that acts as a “machine language” for
norms on top of which different, higher-level normative languages can be accom-
modated. This language can represent distinct flavours of deontic notions and
relationships. Although our language is rule-based, we achieve greater flexibility,
expressiveness and precision than production systems by allowing constraints to
be part of our rules and states of affairs. In this way, normative positions can
be further refined. For instance, picture a selling agent that is obliged to deliver
a good satisfying some quality requirements before a deadline. Notice that both
the quality requirements and the delivery deadline can be regarded as constraints
that must be considered as part of the obligations. Thus, when the agent de-
livers the good satisfying all the constraints, we should regard the obligation as
fulfilled. Notice too that since the deadline might eventually be changed, we also
require the capability of modifying constraints at run-time. Hence, constraints
are considered as first-class citizens in our language.

Although in this paper we restrict to a particular class of MASs, namely elec-
tronic institutions [12], our work sets the foundations to specify and implement
open regulated MASs via norms.

The structure of this paper is as follows. In the next section we present
desirable properties of normative languages. In section 3 we propose a simple
normative language that covers all these requirements along with a sketch of an
implementation of an interpreter. Section 4 summarises electronic institutions
and explains how we capture normative positions of participating agents. We
put our language to use by specifying the Dutch Auction protocol in section
5. In section 6 we contrast our approach with a sample of other contemporary
work. Finally, we draw conclusions and outline future work in section 7.

2 Norm-Oriented MAS: Desiderata

Our main goal is to produce a language that supports the specification of coordi-
nation mechanisms in multi-agent systems by means of norms. For this purpose,
we identify below the desirable features we expect in candidate languages.

Explicit Management of normative positions We take the stance that we
cannot refer to agents’ mentalistic notions, but only to their observable ac-
tions and their normative positions. Notice that as a result of agents’ ob-
servable, social interactions, their normative positions [4] change. Hence, the
first requirement of our language is to support the explicit management of
agents’ normative positions.

General purpose Turning our attention to theoretical models of norms, we
notice that there is a plethora of deontic logics with different axioms to
establish relationships among deontic notions. Thus, we require that our
language captures different deontic notions along with their relationships. In
other words, the language must be of general purpose so that it helps MAS

designers to encode any axiomatisation, and thus specify the widest range
of normative systems as possible.

Pragmatic In a sense, we pursue a “machine language” for norms on top of
which higher-level languages may be accommodated. Along this direction,
and from a language designer’s point of view, it is fundamental to identify
the norm patterns (e.g., conditional obligation, time-based permissions and
prohibitions, continuous obligation, and so on) in the literature to ensure
that the language supports their encoding – this is demonstrated in sec-
tion 6. In this way, not only shall we be guaranteeing the expressiveness of
our language, but also addressing pragmatic concerns by providing design
patterns to guide and ease MAS design.

Declarative In order to ease MAS programming, we shall also require our
language to be declarative, with an implicit execution mechanism to reduce
the number of issues designers ought to concentrate on. As an additional
benefit, we expect its declarative nature to facilitate verification of properties
of the specifications.

3 A Rule Language for Norms

In this section we introduce a rule language for the explicit management of
norms associated with a population of agents. Our rule-based language allow
us to represent changes in an elegant way and also fulfils the requirement that
a normative language should be declarative. The rules depict how normative
positions change as agents interact with each other. We achieve greater flexibility,
expressiveness and precision by allowing constraints [13] to be part of our rules
– such constraints associate further restrictions with permissions, prohibitions
and obligations.

The building blocks of our language are first-order terms (denoted as τ) and
implicitly, universally quantified atomic formulae (denoted as α) without free
variables . We shall make use of numbers and arithmetic functions to build terms;
arithmetic functions may appear infix, following their usual conventions3. We
also employ arithmetic relations (e.g., =, 6=, and so on) as predicate symbols, and
these will appear in their usual infix notation with their usual meaning. Atomic
formulae with arithmetic relations represent constraints on their variables and
have a special status, as we explain below. We give a definition of our constraints,
a subset of atomic formulae:

Definition 1. A constraint γ is an atomic formula of the form τ ⊳ τ ′, where
⊳∈ {=, 6=, >,≥, <,≤}.

We need to differentiate ordinary atomic formula from constraints. We shall use
α′ to denote atomic formulae that are not constraints.

3
We adopt Prolog’s convention using strings starting with a capital letter to represent variables
and strings starting with a small letter to represent constants.

Intuitively, a state of affairs is a set of atomic formulae. As we will show
below, they can store the state of the environment4, observable agent attributes
and the normative positions of agents:

Definition 2. A state of affairs ∆ = {α0, . . . , αn} is a a finite and possibly
empty set of implicitly, universally quantified atomic formulae αi , 0 ≤ i ≤ n,n ∈
IN .

Our rules are constructs of the form LHS RHS, where LHS contains a
representation of parts of the current state of affairs which, if they hold, will cause
the rule to be triggered. RHS depicts the updates to the current state of affairs,
yielding the next state of affairs. The grammar in Fig. 1 defines our rules, where x
is a variable name and LHS∗ is a LHS without set constructors (see below). The
Us represent the updates: they add (via operator ⊕) or remove (via operator ⊖)
atomic formulae αs. Furthermore, we make use of a special kind of term, called
a set constructor, represented as {α′ | LHS∗}. This construct is useful when we
need to refer to all α′s for which LHS∗ holds,e.g., {p(A,B) | A > 20∧B < 100}
is the set of atomic formulae p(A,B) such that A > 20 and B < 100.

R ::= LHS RHS

LHS ::= LHS ∧ LHS | ¬LHS | Lit

RHS ::= U • RHS | U

Lit ::= α | x = {α′ | LHS∗}
U ::= ⊕α | ⊖α

Fig. 1. Grammar for Rules

We need to refer to the set of constraints that belongs to a state of affairs.
We call Γ = {γ0, . . . , γn} the set of all constraints in ∆.

Definition 3. Given a state of affairs ∆, relationship constrs(∆,Γ) holds iff
Γ is the smallest set such that for every constraint γ ∈ ∆ then γ ∈ Γ .

In the definitions below we rely on the concept of substitution, that is, the set
of values for variables in a computation, as well as the concept of its application
to a term [14]. We now define the semantics of our rules as relationships between
states of affairs: rules map an existing state of affairs to a new state of affairs.
We adopt the usual semantics of production rules, that is, we exhaustively apply
each rule by matching its LHS against the current state of affairs and use the
values of variables obtained in this match to instantiate the RHS via s∗.

Definition 4. s∗(∆,LHS RHS,∆′) holds iff s∗l (∆,LHS, {σ1, . . . , σn}) and
sr (∆,RHS · σi , ∆

′), 1 ≤ i ≤ n,n ∈ IN , hold.

That is, two states of affairs ∆ and ∆′ are related by a rule LHS RHS if, and
only if, we obtain all different substitutions {σ1, . . . , σn} that make the left-hand

4
We refer to the state of the environment as the set of atomic formulae that represent the aspects
of the environment in a given point in time.

side match ∆ and apply these substitutions to RHS (that is, RHS ·σi) in order
to build ∆′.

Our rules are exhaustively applied on the state of affairs thus considering
all matching atomic formulae. We thus need relationship s∗l (∆,LHS,Σ) which
obtains in Σ = {σ0, . . . , σn} all possible matches of the left-hand side of a rule:

Definition 5. s∗l (∆,LHS,Σ) holds, iff Σ = {σ1, . . . , σn} is the largest non-
empty set such that sl(∆,LHS, σi), 1 ≤ i ≤ n,n ∈ IN , holds.

We now define the semantics of the LHS of a rule:

Definition 6. sl(∆,LHS, σ) holds between state ∆, the left-hand side of a rule
LHS and a substitution σ depending on the format of LHS:

1. sl(∆,LHS ∧ LHS′, σ) holds iff sl(∆,LHS, σ
′) and sl (∆,LHS

′, σ′′) hold
and σ = σ′ ∪ σ′′.

2. sl(∆,¬ LHS, σ) holds iff sl(∆,LHS, σ) does not hold.
3. sl(∆,α

′, σ) holds iff α′ · σ ∈ ∆ and constrs(∆,Γ) and satisfiable(Γ · σ)
hold.

4. sl(∆, γ, σ) holds iff constrs(∆,Γ) and satisfiable((Γ ∪ {γ}) · σ) hold.
5. sl(∆, x = {α′ | LHS′}, σ) holds iff σ = {x/{α′ · σ1, . . . , α

′ · σn}} for the
largest n ∈ IN such that sl(∆,α

′ ∧ LHS′, σi), 1 ≤ i ≤ n

Cases 1-3 depict the semantics of atomic formulae and how their individual
substitutions are combined to provide the semantics for a conjunction. Case 4
formalises the semantics of our constraints when they appear on the left-hand
side of a rule: we apply the substitution σ to them (thus reflecting any values of
variables given by the matchings of atomic formula), then check satisfiability of
constraints 5. Case 5 specifies the semantics for set constructors : x is the set of
atomic formulae that satisfy the conditions of the set constructor.

Definition 7. Relation sr (∆,RHS,∆
′) mapping a state ∆, the right-hand side

of a rule RHS and a new state ∆′ is defined as:

1. sr (∆, (U •RHS), ∆′) holds iff both sr (∆,U, ∆1) and sr (∆1, RHS,∆
′) hold.

2. sr (∆,⊕α′, ∆′) holds iff ∆′ = ∆ ∪ {α′}.
3. sr (∆,⊕γ,∆′) = true iff constrs(∆,Γ) and satisfiable(Γ ∪ {γ}) hold and

∆′ = ∆ ∪ {γ}.
4. sr (∆,⊖α,∆′) holds iff ∆′ = ∆ \ {α}

Case 1 decomposes a conjunction and builds the new state by merging the
partial states of each update. Case 2 cater for the insertion of atomic formulae
α′ which do not conform to the syntax of constraints. Case 3 defines how a
constraint is added to a state ∆: the new constraint is checked whether it can
be satisfied with constraints Γ and then it is added to ∆′. Case 4 cater for the
removal of atomic formulae.

We extend s∗ to handle sequences of rules: s∗(∆0, 〈R1, . . . ,Rn〉, ∆n) holds iff
s∗(∆i−1,Ri , ∆i), 1 ≤ i ≤ n hold.

5
Our work builds on standard technologies for constraint solving – in particular, we have been
experimenting with SICStus Prolog constraint satisfaction libraries.

∆0 ⇛

∆0

α0

1, · · · , α0

n

l l
ag

1
· · · agn

∗

 ∆1 ⇛

∆1

α1

1, · · · , α1

m

l l
ag

1
· · · agm

∗

 · · ·

Fig. 2. Semantics as a Sequence of ∆’s

The semantics above define an infinite sequence of states 〈∆0, ∆1, . . .〉 if
s∗(∆i , {R1, . . . ,Rn}, ∆i+1), that is, ∆i+1 (obtained by applying the rules to ∆i)
is used to obtain ∆i+2 and so on. Fig. 2 illustrates how this sequence can ac-
commodate the intervention of agents sending/receiving messages. The diagram
shows an initial state ∆0 (possibly empty) that is offered (represented by “⇛”)
to a set of agents {ag1, . . . , agn}. These agents exchange messages, adding a
record (via “l”) {α0

1, . . . , α
0
n} of these messages to ∆0. After the agents add

their utterances, then the rules are exhaustively applied (represented by “
∗
 ”)

to ∆0 ∪ {α0
1, . . . , α

0
n}. The resulting state ∆1 is, on its turn, offered to agents,

and so on.

3.1 Implementation

The semantics above provide a basis for the implementation of our rule inter-
preter. Although we have implemented it with SICStus Prolog we show such
interpreter in Fig. 3 as a logic program, interspersed with built-in Prolog predi-
cates; for easy referencing, we show each clause with a number on its left.

1. s
∗(∆, Rules, ∆′)←

findall(〈RHS, Σ〉, (member((LHS RHS), Rules), s∗l (∆, LHS, Σ)), RHSs),
s
′

r (∆, RHSs, ∆′)
2. s

∗

l (∆, LHS, Σ)← findall(σ, sl (∆, LHS, σ), Σ)
3. sl (∆, (LHS ∧ LHS′), σ)← sl (∆, LHS, σ′), sl(∆, LHS′, σ′′), union(σ′, σ′′, σ)
4. sl (∆,¬ LHS, σ) ← ¬ sl (∆, LHS, σ)
5. sl (∆, α′, σ)← member(α′ · σ, ∆), constrs(∆, Γ), satisfiable(Γ · σ)
6. sl (∆, γ, σ)← constrs(∆, Γ), satisfiable([γ | Γ] · σ)
7. sl (∆, x = {α′ | LHS′}, {x/AllAlphas})← findall(α′ · σ, sl (∆, α′ ∧ LHS′, σ), AllAlphas)
8. s

′

r (∆, [], ∆′)← ∆ = ∆′

9. s
′

r (∆, [〈RHS, Σ〉 | RHSs], ∆′)← s
′′

r (∆, RHS, Σ, ∆′′), s′r (∆
′′, RHSs, ∆′)

10. s
′′

r (∆, RHS, [], ∆′)← ∆ = ∆′

11. s
′′

r (∆, RHS, [σ | Σ], ∆′)← sr (∆, RHS · σ, ∆′′), s′′r (∆′′, RHS, Σ, ∆′)
12. sr (∆, (U •RHS), ∆′)← sr (∆, U, ∆1), sr (∆1, RHS, ∆′)
13. sr (∆,⊕α′, [α′ | ∆])←
14. sr (∆,⊖α, ∆′)← delete(∆, α, ∆′)
15. sr (∆,⊕γ, [γ | ∆])← constrs(∆, Γ), satisfiable([γ | Γ])

Fig. 3. An Interpreter for Rules

Clause 1 contains the top-most definition: given an existing ∆ and a set
of rules Rules, it obtains the next state ∆′ by finding all those rules in Rules
(picked by the member built-in) whose LHS holds in ∆ (checked via the auxiliary

definition s∗l). This clause then uses the RHS of those rules with their respective
sets of substitutions Σ as the arguments of s′r to finally obtain ∆′. Clause 2
implements s∗l : it finds all the different ways that the left-hand side LHS of a
rule can be matched in∆ – the individual σ’s are stored in setsΣ of substitutions,
as a result of the findall/3 execution. Clauses 8 and 9 show how s′r computes
the new state from a list RHSs of pairs 〈RHS,Σ〉 (obtained in the second body
goal of clause 1): it picks out each pair 〈RHS,Σ〉 and uses s′′r (clauses 10 and
11) to compute each intermediate state of affairs after applying the RHS to
∆ via predicate sr for all the substitutions in Σ. Clauses 3-7 and 12-15 are,
respectively, adaptations of the cases depicted in Def. 6 and Def. 7.

4 Electronic Institutions

Our work extends electronic institutions (EIs) [12], providing them with an ex-
plicit normative layer. There are two major features in EIs: the states and il-
locutions (i.e., messages) uttered (i.e., sent) by those agents taking part in the
EI. The states are connected via edges labelled with the illocutions that ought
to be sent at that particular point in the EI. Another important feature in EIs
are the agents’ roles : these are labels that allow agents with the same role to be
treated collectively thus helping engineers abstract away from individuals. We
define below the class of illocutions we aim at – these are a special kind of term:

Definition 8. Illocutions I are terms p(ag, r, ag′, r′, τ, t) where p is an illocu-
tionary particle (e.g., ask); ag, ag′ are agent identifiers; r , r ′ are role labels; τ
is a term with the actual content of the message and t ∈ IN is a time stamp.

We shall refer to illocutions that may have uninstantiated (free) variables as
illocution schemes, denoted by Ī.

Another important concept in EIs we employ here is that of a scene. Scenes
offer means to break down larger protocols into smaller ones with specific pur-
poses. We can uniquely refer to the point of the protocol where an illocution I

was uttered by the pair (s ,w) where s is a scene name and w is the state from
which an edge labelled with Ī leads to another state.

An institutional state is a state of affairs that stores all utterances during the
execution of a MAS, also keeping a record of the state of the environment, all
observable attributes of agents and all obligations, permissions and prohibitions
associated with the agents that constitute their normative positions.

We differentiate seven kinds of atomic formulae in our institutional states ∆,
with the following intuitive meanings:
1. oav(o, a, v) – object (or agent) o has an attribute a with value v .
2. att(s ,w , I) – an agent attempted to get illocution I accepted at state w of

scene s .
3. utt(s ,w , I) – I was accepted as a legal utterance at w of s .
4. ctr(s ,w , ts) – the execution of scene s reached state w at time ts .
5. obl(s ,w , Ī) – Ī ought to be uttered at w of s .
6. per(s ,w , Ī) – Ī is permitted to be uttered at w of s .
7. prh(s ,w , Ī) – Ī is prohibited at w of s .

We only allow fully ground attributes, illocutions and state control formulae
(cases 1-4 above) to be present6; however, in formulae 5-7 s and w may be
variables and Ī may contain variables. We shall use formulae 4 to represent state
change in a scene in relation to a global clock. We shall use formulae 5–7 above
to represent normative positions of agents within EIs.

We do not “hardwire” deontic notions in our semantics: the predicates above
represent deontic operators but not their relationships. These are captured with
rules (also called in this context institutional rules), conferring the generality
claimed on section 2 on our approach as different deontic relationships can be
forged, as we show below. We can confer different grades of enforcement on EIs .
On the one hand, we can transform only legal attempts into accepted utterances:

„

att(S , W , I)∧
per(S , W , I) ∧ ¬ prh(S ,W , I)

«

„

⊖att(S , W , I)•
⊕utt(S , W , I)

«

(1)

This rule states that if an agent attempts to say something and it is permitted
and not prohibited, then that attempt becomes a (confirmed) utterance. On the
other hand, we can allow agents to do certain illegal actions under more harsh
penalties:

„

att(S , W , inform(Ag1,R,Ag2,R
′, info(Ag3,C),T))∧

Ag1 6= Ag2 ∧ Ag1 6= Ag3 ∧ Ag2 6= Ag3

«

„

⊖att(S , W , inform(Ag1,R,Ag2,R
′, info(Ag3,C),T))•

⊕utt(S ,W , inform(Ag1,R,Ag2,R
′, info(Ag3,C),T))

«

(2)

The rule above states that if an agent attempts to reveal to Ag2 (secret)
information about agent Ag3, it is accepted without taking into account if it
is forbidden or not. In both cases (rules 1 and 2), we can punish agents that
violate prohibitions. Although we can address all forbidden utterances if we use
a variable as the third parameter of att and prh, the following rule punishes only
the revelation of beliefs of third parties:

0

B

B

@

att(S , W , inform(Ag1,R,Ag2,R
′, info(Ag3,C),T))∧

Ag1 6= Ag2 ∧ Ag1 6= Ag3 ∧ Ag2 6= Ag3∧
prh(S , W , inform(Ag1,R,Ag2,R

′, info(Ag3, C),T))∧
oav(Ag1, rep, VRep) ∧ (V ′

Rep = VRep − 10)

1

C

C

A

`

⊖oav(Ag1, rep,VRep) • ⊕oav(Ag1, rep, V ′

Rep)
´

The rule above states that when agent Ag1 tries to reveal to Ag2 informa-
tion about agent Ag3, it gets punished. Notice that agents can be punished by
decreasing the value of any of their observable attributes. But only for exempli-
fying purposes, we use here an attribute called rep (for reputation) that models
in which degree an agent is norm compliant. In the example, the punish consists
in decreasing the trust of agents to share information with Ag1, that is, the value
of Ag1’s reputation is decreased by 10.

6
We allow agents to utter whatever they want (via att formulae). However, the illegal utterances
may be discarded and/or may cause sanctions, depending on the deontic notions we want or need
to implement. The utt formulae are thus confirmations of the att formulae.

5 Example: The Dutch Auction

We now illustrate the pragmatics of our norm-oriented language, as required
in section 2, by specifying, with the rules of Fig. 4, the auction protocol for
a fish market as described in [15]. In the fish market several scenes [12] take
place simultaneously, at different locations, but with some causal continuity.
The principal scene is the auction itself, where buyers bid for boxes of fish that
are presented by an auctioneer who calls prices in descending order, the so-called
downward bidding protocol, a variation of the traditional Dutch auction protocol
that proceeds as follows: 1. The auctioneer chooses a good out of a lot of goods
that is sorted according to the order in which sellers deliver their goods to the
sellers’ admitter; 2. With a chosen good, the auctioneer opens a bidding round
by quoting offers downward from the good’s starting price, previously fixed by
a sellers’ admitter, as long as these price quotations are above a reserve price
previously defined by the seller; 3. For each price the auctioneer calls, several
situations might arise during the open round described below. 4. The first three
steps repeat until there are no more goods left.

The situations arising in step 3 are:
Multiple bids – Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the auc-
tioneer restarts the round at a higher price;
One bid – Only one buyer submits a bid at the current price. The good is sold
to this buyer whenever his credit can support his bid. Otherwise, the round is
restarted by the auctioneer at a higher price, the unsuccessful bidder is fined;
No bids – No buyer submits a bid at the current price. If the reserve price has
not been reached yet, the auctioneer quotes a new price obtained by decreasing
the current price according to the price step. Otherwise, the auctioneer declares
the good as withdrawn and closes the round.

5.1 Proposed Solution

I. Multiple bids – it obliges the auctioneer to inform the buyers, whenever a
collision comes about, about the collision and to restart the bidding round
at a higher price (in this case, 120% of the collision price). Notice that X will
hold all the utterances at scene dutch and state w4 issued by buyer agents
that bid for an item It at price P at time T0 after the last offer. We obtain
the last offers by checking that there are no further offers whose time-stamps
are greater than the time-stamp of the first one. If the number of illocutions
in X is greater than one, the rule fires the obligation above;

II. One bid/winner determination – If only one bid has occurred during the
current bidding round and the credit of the bidding agent is greater than or
equal to the price of the good in auction, the rule adds the obligation for the
auctioneer to inform all the buyers about the sale.

III. Prevention – It prevents agents from issuing bids they cannot afford (their
credit is insufficient) and states that if agent Ag’s credit is less than P (the
last offer the auctioneer called for item It , at state w3 of scene dutch), then
agent Ag is prohibited to bid.

`

X =
˘

α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

¯

∧ | X |> 1
´

`

⊕α3 • ⊕α4 • ⊕(P2 > P ∗ 1.2)
´

where

8

>

>

>

<

>

>

>

:

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , collision(It, P), T2))
α4 = obl(dutch, w3, inform(Au, auct, all, buyer , offer(It, P2), T3))

(I)

„

X =
˘

α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

¯

∧
| X |= 1 ∧ oav(A1, credit, C) ∧ C ≥ P

«

`

⊕α3

´

where

8

>

<

>

:

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , sold(It, P , A1), T4))

(II)

`

α0 ∧ ¬ (α1 ∧ T2 > T) ∧ oav(Ag, credit,C) ∧ C < P
´

`

⊕α2

´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T2))
α2 = prh(dutch, w4, inform(A, buyer , Au, auct, bid(It, P2), T3))

(III)

„

X =
˘

α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

¯

∧
| X |= 1 ∧ oav(A1, credit, C) ∧ C < P

«

0

@

⊖oav(A1, credit, C)•
⊕oav(A1, credit, C2) • ⊕α3•

⊕(C2 = C − P ∗ 0.1) • ⊕(P2 = P ∗ 1.2)

1

A

where

8

>

<

>

:

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(It, P2), T3))

(IV)

0

B

@

ctr(dutch, w5, Tn) ∧ α0 ∧ ¬ (α1 ∧ T2 > T)∧
timeout(dutch, w4, w5, T3) ∧ T3 > T∧

oav(IT , reservation price, RP)∧
oav(IT , decrement rate, DR) ∧ RP < P −DR

1

C

A

„

⊕α2•
⊕(P2 = P −DR)

«

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(IT , P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(IT , P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(IT , P2), T4))

(V)

0

@

ctr(dutch, w5, Tn) ∧ α0 ∧ ¬ (α1 ∧ T2 > T)∧
timeout(dutch, w4, w5, T3) ∧T3 > T ∧ oav(It, reservation price, RP)∧

oav(It, decrement rate,DR) ∧ RP ≥ P −DR

1

A

`

⊕α2

´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer , withdrawn(It), T3))

(VI)

Fig. 4. Rules for the Dutch Auction Protocol

IV. Punishment – It punishes agents when issuing a winning bid they cannot
pay for. More precisely, the rule punishes an agent A1 by decreasing his
credit of 10% of the value of the good being auctioned. The oav predicate
on the LHS of the rule represents the current credit of the offending agent.
The rule also adds an obligation for the auctioneer to restart the bidding
round and the constraint that the new offer should be greater than 120% of
the old price.

V. No bids/New Price – It checks if there were no bids and the next price
is greater than the reservation price. If so, it adds the obligation for the
auctioneer to start a new bidding round. Rule 5 checks that the current
scene state is w5, whether a timeout has expired after the last offer and
whether the new price is greater than the reservation price. If so, the rule

adds the obligation for the auctioneer to offer the item at a lower price. By
retrieving the last offer we gather the last offer price. By checking the oav
predicates we gather the values of the reservation price and the decrement
rate for item It .

VI. No bids/withdrawal – It checks if there were no bids and the next price is
less than the reservation price, then adds the obligation for the auctioneer to
withdraw the item. Rule 6 checks that the current institutional state is w5,
whether a timeout has occurred after the last offer and whether the new offer
price is greater than the reservation price. If the LHS holds, the rule fires
to add the obligation for the auctioneer to withdraw the item. By checking
the last offer we gather the last offer price. By checking the oav predicates
we gather the values of the reservation price and the decrement rate for the
price of item It .

6 Comparison with Other Normative Languages

In this section we compare our proposal with other normative languages in the
literature. We concentrate on different approaches, explaining how we can cap-
ture a wide range of normative notions from these formalisms using our rule
language. In doing so, we can provide an implementation for some of these for-
malisms.

A norm from [16] is composed of several parts: the norm condition is the
declarative description of the norm and the context in which it applies; the vi-
olation condition (a formula defining when the norm is violated); the detection
mechanism describing the mechanisms that can be used for detecting violations;
3) the sanctions defined as actions to punish the agents’ violation of the norm;
and the repairs (a set of actions that are used for recovering the system after
the occurrence of a violation). Through the condition (IF) and temporal opera-
tors (BEFORE and AFTER), which are considered optional, norms can be made
applicable only to certain situations. Temporal operators can be applied to a
deadline or to an action or predicate.

Norms as defined in [16] can be translated into our rules by specifying the
violation conditions on the LHS and sanctions and repairs on the RHS. Since
we consider illocutions as the only actions that can be performed in an electronic
institution, actions need to be translated into illocutions uttering that the action
has been done. We call this operation contextualisation. In general, the transla-
tion of the norms of [16] into our rules is straightforward. The permission of an
action is translated as a rule that converts the attempt to utter illocution, i.e.,
att(S ,W , I), into the illocution being uttered, i.e., utt(S ,W , I). The prohibition
of an action can be translated into a rule that ignores the attempt to utter the
illocution, and, optionally, a sanction to the violation can be imposed. The obli-
gation of an action needs to be translated into two rules, viz., a rule to sanction
an agent when it does not fulfil an obligation (i.e., not uttering the expected
illocution at the right scene and state), and a rule to remove the obligation once
it is fulfilled. The translation of temporal clauses (BEFORE and AFTER) can be

achieved by adding to the LHS of the rule the condition that the time in which
the attempt is done has to be less (or greater) than the deadline.

Although the work in [3] proposes a framework that covers several topics of
normative multi-agent systems we shall focus on its definition of norm, in which
addressees stands for the set of agents that have to comply with the norm;
beneficiaries stands for the set of agents that profit from the compliance of the
norm; normativegoals stands for the set of goals that ought to be achieved by
addressee agents; rewards are received by addressee agents if they satisfy the
normative goals; punishments are imposed to addressee agent when they do not
satisfy the normative goals; context specifies the preconditions to apply the norm
and exceptions when it is not applicable. Notice that a norm must always have
addressees, normative goals and a context; rewards and punishments are disjoint
sets, and context and exceptions too.

A norm from [3] can be translated into the following rule schema to detect
its violation:

(context ∧ ¬ exception ∧ ¬ goal ′) punishments

where context and exception are predicates obtained through contextualisation7

for specifying the context and exceptions mentioned in the norm, goal ′ is the
contextualised normative goal (which includes the addressee and possible bene-
ficiaries). Component punishments are contextualised actions obtained from the
norm. This rule captures that in a particular context which is not an exception
of the norm and whose goal has not yet been fulfilled the actions defined by
punishments should be executed.

Rewards can also be specified via the rule schema:

(context ∧ ¬ exception ∧ goal ′) rewards

where rewards are also contextualised actions obtained from the norm. This rule
specifies that a reward should be given when addressee agents comply with the
norm, which is when the norm is applicable and the contextualised normative
goal (goal ′) has been achieved.

Event calculus is used in [6] for the specification of protocols. Event cal-
culus is a formalism to represent reasoning about actions or events and their
effects in a logic programming framework and is based on a many-sorted first-
order predicate calculus. Predicates that change with time are called fluents. In
[6] obligations, permissions, empowerments, capabilities and sanctions are for-
malised by means of fluents – prohibitions are not formalised in [6] as a fluent
since they assume that every action not permitted is forbidden by default. If
we translate all the holdsAt predicates into utt predicates, we can translate the
obligations and permissions of [6] by including the rest of conditions in the LHS
of the normative rules. However, since there is no concrete definition of norm,
we cannot state that the approach in [6] is fully translatable into our rules.

7 Recall that contextualisation is the process of transforming actions into illocutions
stating that actions have been brought about.

Although event calculus models time, the deontic fluents specified in the
example of [6] are not enough to inform an agent about all types of duties. For
instance, to inform an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation fluent and the part of
the theory that models the violation of the deadline.

In [7] we find a proposal to represent norms via rules written in a modal logic
with temporal operators called hyMITL±. It combines CTL± with Metric Inter-
val Temporal Logic (MITL) as well as features of hybrid logics. That proposal
uses the technique of formula progression from the TLPlan planning system to
monitor social expectations until they are fulfilled or violated.

Intuitively, our rules capture formulae AG
+(LHS → X

+RHS) where LHS
and RHS are atomic formulae without temporal operators. As we build the next
state of affairs by applying the operations on the RHS of the fired rules, we
cannot use any other temporal operator in the RHS of our rules. Furthermore,
since our state of affairs has non-monotonic features we cannot reason over the
past of any formulae. We can only do it with predicates with time-stamps, like
the utt predicate, that are not removed from the state of affairs.

We can capture the meaning of the X− operator when it is used on the LHS
of the hyMITL rule: X−φ is intuitively equivalent to ctr(S ,W ,Ts)∧φ(T0)∧T0 =
Ts − 1. Moreover, we can also translate the U+ operator when it is used in the
RHS of the hyMITL rule: φ U+ψ is roughly equivalent to ψ ⊖φ. Although we
cannot use all the temporal operators on the RHS of our rules, we can obtain
equivalent results by imposing certain restrictions in the set of rules. F

+φ can
be achieved if ⊕φ appears on the RHS of a rule and it is possible that the rule
fires. G+φ can be achieved after φ is added and no rule that could fire removes
it. Time intervals can be translated into comparisons of time-points as shown in
the previous example.

In [17] the language Social Integrity Constraints (SIC) is proposed. This
language’s constructs check whether some events have occurred and some condi-
tions hold to add new expectations, optionally with constraints. Although syn-
tactically their language is very similar to ours, they are semantically different.
Different from their use of abduction and Constraint Handling Rules (CHR) to
execute their expectations, we use a forward chaining approach. Despite the fact
that expectations they use are quite similar to obligations and they mention how
expectations are treated, that is, what happens when an expectation is fulfilled
or when it is not, and state the possibility of SICs being violated, no mecha-
nism to regulate agents’ behaviour like the punishment of offending agents or
repairing actions are offered.

The work in [8] proposes the Object Constraint Language (OCL) for the
specification of artificial institutions. The example of this work commits an auc-
tioneer not to declare a price lower than the agreed reservation price. As shown in
section 5, we can also express (rule VI) the case that the auctioneer is obliged to
withdraw the good when the call price becomes lower than the reservation price.
As for [8], we cannot perform an exhaustive analysis of the language because
neither the syntax nor the semantics are specified.

The approach in [18] uses Answer Set Programming (ASP) [19] for the spec-
ification and analysis of agent-based social institutions. They state that ASP
overcomes many Prolog limitations since, instead of calculating only the first
possible solution, it provides all answers to a query. Although ASP is suitable
for institution analysis, it may not be so efficient as required for institution
execution since only one answer is needed, viz., the next state of affairs.

As for institution modelling, they include institutional facts and actions,
permissions, prohibitions, obligations (only) with deadline, violations and in-
stitutional power. The latter, not included in our EI model: it specifies that a
certain agent is empowered to perform a specified institutional action in a given
institution. However, they do not include the possibility of rewarding for norm
compliance nor managing other constraints than deadlines.

The work in [9] reports on the translation of the normative language pre-
sented in [16] into Jess rules to monitor and enforce norms. This language cap-
tures the deontic notions of permission, prohibition and obligation in several
cases: absolute norms, conditional norms, norms with deadline and norms in
temporal relation with another event. Absolute norms are directly translated
into Jess facts; conditional norms are directly translated into rules that add the
deontic facts when the condition holds; norms with deadline are translated into
rules that add conditional norms after the deadline has passed. Finally, norms in
temporal relation with other events are translated into rules that check if those
events have occurred.

Our proposal bears strong similarities with the work reported in [20] where
norms are represented as rules of a production system. We notice that our rules
can express their notions of contracts and their monitoring (i.e., fulfilment and
violation of obligations). However, in [20] constraints can only be used to depict
the left-hand side of a rule, that is, the situation(s) when a rule is applicable –
constraints are not manipulated the way we do. Furthermore, in that work there
is no indication as to how individual agents will know about their normative
situation; a diagram introduces the architecture, but it is not clear who/what
will apply the rules to update the normative aspects of the system nor how
agents synchronise their activities.

After analysing all these approaches we have found some norm patterns that
they have in common. Norms can be conditional or can have temporal con-
straints, that is, they establish relationships between time-points or events or
they hold periodically. Our rules can capture the patterns from rather disparate
formalisms, thus fulfilling the requirement of general purpose mentioned in sec-
tion 2.

7 Conclusions and Future Work

In this paper we have introduced a formalism for the explicit management of
the normative position of agents in electronic institutions. Ours is a rule lan-
guage in which constraints can be specified and changed at run-time, conferring
expressiveness and precision on our constructs. The semantics of our formalism

defines a kind of production system in which rules are exhaustively applied to a
state of affairs, leading to the next state of affairs. The normative positions are
updated via rules, depending on the messages agents send.

Our formalism addresses the points of a desiderata for normative languages
introduced in section 2. We have explored our proposal in this paper by specify-
ing a version of the Dutch Auction protocol. We illustrate how our language can
provide other (higher-level) normative languages with a computational model
(i.e., an implementation) thus making it possible for normative languages pro-
posed with more theoretical concerns in mind to become executable.

Although our language is not as expressive as the language of [7] since we
cannot represent all the temporal modalities, our language is not a language for
checking properties of a system but for specifying its behaviour.

Furthermore, we notice that although our implementation directly captures
the proposed formal semantics, it is not as efficient as other implementations for
rule-based systems, such as the Rete algorithm [21].

As for future work, we would like to overcome the efficiency issue by providing
an implementation based on the Rete algorithm.

We would also like to generalise our language to cope with arbitrary actions,
rather than just speech acts among agents – this would allow our work to ad-
dress any type of open multi-agent system. We would also like to improve the
semantics of the language in order to support the use of temporal operators for
the management of time.

Our semantics describe a transition system similar to the one presented in
[22] – we would like to carry out a careful comparison between that work and
our operational semantics.

An interesting avenue of investigation is to endow agents with reasoning abil-
ities over our rules. Such reasoning, possibly using resource-bounded forward and
backward chaining mechanisms, would allow agents to anticipate the effects of
their actions, that is, the punishments or rewards for, respectively, norm viola-
tion and norm compliance

We also want to investigate the verification of norms (along the lines of
our work in [23]) expressed in our rule language, with a view to detecting,
for instance, obligations that cannot be fulfilled, prohibitions that will prevent
progress, inconsistencies and so on.

Acknowledgements – This work was partially funded by the Spanish Edu-
cation and Science Ministry as part of the projects TIN2006-15662-C02-01 and
2006-5-0I-099. Garćıa-Camino enjoys an I3P grant from the Spanish Council for
Scientific Research (CSIC).

References

1. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons,
Chichester, UK (2002)

2. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7(1)
(1999) 69–79

3. López y López, F.: Social Power and Norms: Impact on agent behaviour. PhD
thesis, Univ. of Southampton (2003)

4. Sergot, M.: A Computational Theory of Normative Positions. ACM Trans. Com-
put. Logic 2(4) (2001) 581–622

5. Shoham, Y., Tennenholtz, M.: On Social Laws for Artificial Agent Societies: Off-
line Design. Artificial Intelligence 73(1-2) (1995) 231–252

6. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks. Volume 3476 of LNCS. Springer-Verlag (2005)

7. Cranefield, S.: A Rule Language for Modelling and Monitoring Social Expectations
in Multi-Agent Systems. Technical Report 2005/01, Univ. of Otago (2005)

8. Fornara, N., Viganò, F., Colombetti, M.: An Event Driven Approach to Norms in
Artificial Institutions. In: AAMAS05 Workshop: Agents, Norms and Institutions
for Regulated Multiagent Systems (ANI@REM), Utrecht (2005)

9. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: Implementing Norms in
Electronic Institutions. In: Procs. 4th AAMAS. (2005)

10. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Dis-
tributed Architecture for Norm-Aware Agent Societies. In: Procs. Int’l Workshop
on Declarative Agent Languages & Technologies (DALT 2005), New York, USA.
Volume 3904 of LNAI. Springer-Verlag, Berlin (2006)

11. Searle, J.: Speech Acts, An Essay in the Philosophy of Language. Cambridge
University Press (1969)

12. Esteva, M.: Electronic Institutions: from Specification to Development. PhD thesis,
Universitat Politècnica de Catalunya (UPC) (2003) IIIA monography Vol. 19.

13. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of
Logic Progr. 19/20 (1994) 503–581

14. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag,
New York, U.S.A. (1990)

15. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. PhD thesis,
Universitat Autònoma de Barcelona (UAB) (1997) IIIA monography Vol. 8.

16. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multi-
agent Systems. Volume 3187 of LNAI. Springer-Verlag (2004)

17. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
Verification of Agent Interactions using Integrity Social Constraints. Technical
Report DEIS-LIA-006-03, University of Bologna (2003)

18. Cliffe, O., De Vos, M., Padget, J.: Specifying and Analysing Agent-based Social
Institutions using Answer Set Programming. In: AAMAS05 Workshop: Agents,
Norms and Institutions for Regulated Multiagent Systems (ANI@REM), Utrecht
(2005)

19. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Press (2003)

20. Lopes Cardoso, H., Oliveira, E.: Towards an Institutional Environment using
Norms for Contract Performance. Volume In press of LNAI., Springer-Verlag
(2005)

21. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match
problem”. Artificial Intelligence 19(1) (1982) 17–37

22. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17 (1993) 301–321

23. Vasconcelos, W.W.: Norm Verification and Analysis of Electronic Institutions.
Volume 3476 of LNAI. Springer-Verlag (2004)

