Learning Coaching Advice to improve playing skills in
RoboCup

Eva Bou, Enric Plaza and Juan A. Rodriguez-Aguilar
[IIA - Artificial Intelligence Research Institute,
CSIC - Spanish Council for Scientific Research,
Campus UAB, 08193 Bellaterra, Catalonia (Spain).

{ebm,enric,jar}@iiia.csic.es

ABSTRACT

Coaching is a way to help an agent or a group of agents to
learn and/or to improve his/their performance, but learning
to coach is a tough challenge. In this paper we try to make
headway in this matter by presenting a learning method
that uses decision trees to learn pass advices from observa-
tions of players’ actions in the simulated RoboCup soccer
environment. We propose and evaluate different learning
techniques to build decision trees to from which passing ad-
vices can be generated. Finally, we empirically demonstrate
that exploiting learnt advices can significantly improve the
number of successful passes between teammates.

1. INTRODUCTION

RoboCup [1] is a distributed, multiagent, cooperative, com-
petitive domain that is used for research in multiagent sys-
tems. The simulated robotic soccer domain enables two
teams of eleven simulated autonomous robotic players to
play soccer. Futhermore, it allows to include a coach agent
per team acting as an advice-giving agent. A coach agent
receives global and noise-free information about the objects
on the field at all times during the game. He is an agent
that can provide advice to playing agents in order to im-
prove their performance. In RoboCup an advice is a rule
of type “if condition do/dont action” in a language called
Clang [1]. The players may take into account the advices
from their coach for their decision making during a game.

It is a challenge to create a coach that improves significantly
a team’s performance by providing advices.We believe that a
coach can improve a team’s performance if he adapts his ad-
vice to the team’s behavior and skills. This work focuses on
learning advices for coach agents to help increase the num-
ber of successful passes between teamates. This is achieved
by advicing players whether to pass the ball or not depend-
ing on the situation of the game at play. At this aim we

depart from a machine learning technique to learn advices
from observations of passes between teammates. We use de-
cision trees to learn advices because they are easy to trans-
form into Clang advices and also because the structure of a
decision tree is easily understandable by humans.

We experiment with different techniques for building a de-
cision tree and with different heuristic measures to perform
the classification between good and bad passes. Futhermore,
we perform an empirical evaluation of each technique and
measure. Thus, we evaluate the effects of the learning ad-
vices on the players in two experiments. Finally, the re-
sults of evaluating the pass performance of the players with
the advices obtained from combining each technique with
each measure show that the advices significantly increase
the number of successful passes between teammates: from
9% up to 19% depending on the combination of technique
with measure used for building decision trees.

The paper is organized as follows. In section 2 we sum-
marize the related work. In section 3 we briefly introduce
the simulated robotic soccer platform focusing on coaching.
Then, in section 4 we present the scenarios that we use for
generating the training data and for running experiments.
The different learning techniques that we use for learning
advices are explained in section 5. Next, in section 6 we
detail our experiments and analyze the results we obtain.
Finally, in section 7 we draw some conclusions and discuss
future work.

2. RELATED WORK

Several approaches have been taken to learn to give advice
to players in the simulated robotic soccer platforms as a
machine learning problem.

Kuhlmann et al. [5] produce three different kinds of advice
(formational, offensive, and defensive) before a game from
the log files of past games played by a team’s opponents.
Although they focus on treating advice-giving as a machine
learning problem, not all advices are learnt, and thus they
combine learnt advices with hand-coded rules. Similarly, Ri-
ley et al. [11] consider advice-giving as an action-prediction
problem. The learning of advices, in both [11] and [5], are
based on the adversary team (by observing previous games
played by the adversary to generate the advice) instead of
on the team to be coached.

Alternatively, Riley and Veloso focus on adapting advices to
the team being coached [9]. They infer a Markov Decision
Process (MDP) using observations from agents acting in the
environment and solve it to generate advices. Likewise [10],
in this paper we focus on adapting advices to the team being
coached but unlike Riley and Veloso we use decision tree
learning.

In addition to coaching in RoboCup, we find in the literature
further contributions to learning advices in other domains.
For example, in [10] Riley and Veloso empirically study the
coach problem in a predator-prey environment using rein-
forcement learning.

Decision tree learning has been also used in players learning
in the simulated robotic soccer platform. In [12], Stone uses
decision trees for pass evaluation. In [4], Konur et al. use
C4.5 to learn the action selection strategy when a player
holds the ball. In [13], Visser and Weland apply C4.5 to
learning aspects of the strategy of a team’s adversary. In all
these cases the players use a decision tree to learn. However,
to the best of our knowledge decision trees have not been
used for adapting advices to the team being coached in the
simulated robotic soccer platform.

3. COACHING IN ROBOCUP

The simulated robotic soccer platform is a multiagent envi-
ronment that includes two different teams of eleven agents
and an online coach agent for each team that acts as an
advice-giving agent [1]. A coach agent aims at improving a
team’s performance by providing advice to the players. A
coach receives a global view of the game, but he does not
receive the individual actions or perceptions of the players.
He only receives the position and speed of all players and
the ball. The coach communicates with the players via a
standard coach language called Clang. Clang consists of
a set of rules of the type “if condition do/dont {action}”,
representing advices to players. The condition denotes a sit-
uation, described by the position of the players and the ball.
The directives do/dont {action} are applicable if the con-
dition is true. The directive do {action} indicates that the
players are recommended to do action, whereas the directive
dont {action} indicates that the players are recommended
to avoid to do action. The players freely decide whether to
take into account a coach advices for their decision mak-
ing during a game or not. In other words, a coach cannot
enforce his directives to players.

Clang enables a coach to give advice to players that have
been developed by other researchers. The effects of a coach
advices depends on how the players exploit them. The same
type of advice can have different effects on different players.
Ideally, the coach must learn and adapt his advice to the
capabilities and limitations of the players he coaches and he
must also adapt his advice to the abilities of the opponent
team. One important consideration is that a coach cannot
change the abilities of the players. He can only exploit their
abilities and improve their performance by providing advice
to them.

In this paper we focus on a coach that learns advices to
improve the passing between teammates. Thus, the coach
learns the Clang rules required to improve the number of

successful passes between teammates. For this purpose, we
want the coach to learn under what conditions he must ad-
vice a player either to pass or not the ball to a teammate.

4. SCENARIO

In order to generate training data to learn passing advice
and test data to evaluate it we define a scenario composed
of two teammates and one opponent. The teammates are
coachable players and the opponent is a non-coachable player.
Next, we concentrate on learning how an opponent affects
the success in passing between two teammates.

In order to generate the training data, our coach sends the
“pass always” advice to both teammates. Thereafter, the
teammates pass the ball to one another during a whole game
while the opponent attempts to get the ball. When a player
realizes that he owns the ball, he communicates the coach
his intention to pass. When the coach receives this message
from a teamate, he generates an example for the training
data composed of:

the absolute position of the passer on the field;

the distance of the receiver to the passer;

the distance of the opponent to the passer; and

whether the pass succeeded or failed.

We only consider two possible outcomes: successful passes
(the teammate gets the ball) and failed passes (the opponent
gets the ball).

A lost ball situation arises when nobody gets the ball during
a fixed period of time after the pass action started. Then,
if a teammate gets the ball before fifteen simulation cycles,
the coach saves the example as successful. Otherwise, if the
opponent gets the ball before fifteen cycles the coach saves
the example as failed. Finally, if nobody gets the ball in
fifteen cycles the coach discards the example and it is not
used in the learning process.

Therefore each example is represented as a tuple:

(PmaPysz’RyaO:c:Oy:R> (1)

Where P, is the absolute position of the passer on the axis
of the field; P, is the absolute position of the passer on the
y axis of the field; R, is the distance on the z coordinate
of the receiver to the passer; R, is the distance on the y
coordinate of the receiver to the passer; O, is the distance
on the z coordinate of the opponent to the passer; Oy is the
distance on the z coordinate of the opponent to the passer;
and R is the result.

Attribute R takes on a boolean value that indicates whether
the pass succeeded or failed. The other attributes take on
real values as follows: P, € [-52.5,52.5]; P, € [—34,34];
R, € [-105,105]; Ry € [—68,68]; O, € [—105,105]; and Oy
€ [-68, 68].

Notice that the possible values of the attributes of the passer,
P, and P,, are the same than the coordinates of the field

along the z and y axes. The possible values of the attributes
of the receiver and opponent, R,, Ry, O, and Oy, are twice
as much as the coordinates of the field because they repre-
sent the distance to the passer.

5. TECHNIQUES

Once generated the training data, the coach uses it for learn-
ing the advice to pass. We use decision trees to learn ad-
vices. Since Clang advices are rules of the form “if con-
dition do/dont action”, it is straightforward further on to
transform a decision tree into a set of rules Clang.

Examples 1176 { 442 734 }
proportion : success:0.38, failed:0.62

Ry > 8.020

Examples 709 { 380 329 }
proportion: success:0.54, failed:0.46

Ry <= -}zy Ry > -23.404

Examples 107 { 0 107 } Examples 602 { 380 222 }
proportion: success:0.00, failed:1.00 || proportion: success:0.63, failed:0.37

Ry <=-18.839 \,18;839

Examples 318 { 265 53 } Examples 284 { 115 169 }
ion: success:0.83, failed:0.17 ion: success:0.40, failed:0.60

Examples 467 { 62 405 }
proportion: success:0.13, failed:0.87 | (4)

1

@ |

Ox > 10.186

Examples 55 { 10 45 }
proportion: success:0.18, failed:0.82

@)

Figure 1: Example of a resulting decision tree

Figure 1 shows an example of a decision tree learned by the
coach. The coach generates as many advices as leafs has
the tree. Each leaf node of the tree represents an action.
We only consider two type of actions, namely “do pass”
and “dont pass” because we aim at generating two types of
advice: whether to pass or not.

Each leaf of the node can have two types of examples: suc-
cessful passes and failed passes. Let parameter v € [0,1]
be a threshold. When the ratio of successful examples in a
leaf is greater than < the leaf will be considered as a leaf
that characterizes successful passes. Otherwise, a leaf with
a success ratio smaller than 1 — v will be considered as a
leaf that characterizes failure passes. In our experiments we
have used v = 0.7 because we consider that this threshold
sufficiently characterizes a successful pass ratio. The leafs
with a success ratio greater than v will be converted to some
advice of type “do pass”, whereas the leafs with a success
ratio smaller than 1 — 7 will be converted to an advice of
type “dont pass”.

The condition of each Clang advice is created through the
path from the root to the leaf of the tree. For example,
considere figure 2 showing all the rules extracted from the
tree in figure 1. Figures 3 and 4 show the second (2) and
third (3) rules of figure 2 expressed as Clang advices.

The rule in figure 3 advices player 2 to pass the ball to player
3 when the distance to player 3 on the y axis ranges between
-23.4 and -18.84. The rule in figure 4 advices player 2 not to

pass the ball to player 3 when the distance to any opponent
along the z axis is greater than 10.19 and the distance to
player 3 on the y axis ranges between -18.84 and 8.02.

(1) if [(Ry =<-23.404)] then FAILED (1.0 of 107 examples)

(2) if [(Ry > -23.404) (Ry =< -18.839)] then SUCCESS (0.83 of 318 examples)

(3) if [(Ox > 10.186) (By =< 8.020) (Ry > -18.839)] then FAILED (0.82 of 55 examples)
(4) if [(Ry > 8.020)] then FAILED (0.87 of 467 examples)

Figure 2: Rules extracted from the tree in figure 1.

(define (definerule Rule_2A direc (
(and
(and (bowner our {2 }))
(and (ppos our {3} 111 (rec (((pt our 2)+(pt 100.00 -23.40))) (((pt our 2)+(pt -100.00 -18.84))))))
)
(doour{2}(pass{3)))

Figure 3: Rule (2) of figure 2 in Clang language.

(define (definerule Rule_3A direc (
(and
(and (bowner our { 2 }))
(and (ppos opp { 0} 1 11 (rec (((pt our 2)+(pt 100.00 -100.00))) (((pt our 2)+(pt 10.19 100.00))))))
(and (ppos our{3} 111 (rec (((pt our 2)+(pt 100.00 -18.84))) (((pt our 2)+(pt -100.00 8.02))))))
)
(dont our { 2 } (pass { 3 1))

Figure 4: Rule (3) of figure 2 in Clang language

In order to build a decision tree we experimented with differ-
ent heuristic measures to compare which one leads to best
results. In particular we used the Gain criterion [7], the
GainRatio criterion [7] , and the Mantaras normalized Dis-
tance [6] because these are the most popular measures.

We have also experimented with three different learning
techniques to build the decision tree in order to compare
which technique leads to best results. The three techniques
are represented in figure 5, and they are called (1) Global
technique, (2) Local technique and (3) Pruned technique.

In the Global technique we use discretization for the at-
tributes of the training examples that are continuous. The
Global technique has four steps: Discretization, Decision
tree induction, Branch elimination and Rule generation. As
shown on (1) in figure 5, the first step is to perform a dis-
cretization of each continuous attribute before building the
tree. Once the data are discretized, we induce the decision
tree with the aid of an ID3 algorithm [8]. Before translating
the resulting decision tree into advices, we perform a prun-
ing process, named Branch elimination, that generates a new
tree. The Branch elimination step consists on eliminating
those branches of the tree whose leaves have a ratio of suc-
cessful passes between v and 1 —+ (0.7 and 0.3). We name
trimmed tree the tree generated through the Branch elim-
ination step. The last step is the Rule generation, which
consists on translating every branche of the trimmed tree
into advices. Thus, we only consider those situations where
the pass turns out to be either good or bad. In both cases,
the condition of the advice is constructed through the path
from the root to the leaf. Each node of the path is an ele-
ment of the advice, and all elements are combined with an
“and” operator.

In the Local technique (see (2) on figure 5) we create the
decision tree from the continuous data in the training exam-

Decision tree Trimmed tree Advices

Branch Rule
elimination generation

Decision tree
induction

g 98¢

Decision tree
Trimmed tree Advice

[Conditiond. do pass
ecision tree . Ru o
eneration Condition2 do pass 2

elimination generati P

Condition3 dont pass

Condition4 do pass

Decision tree Decision tree Trimmed tree Advice

Decision tree Branch Rule

Post Pruning Condiiont do pass
induction elimination generation

on2 dont pass ~ (3)
Condition3 do_pass

c

Figure 5: Learning techniques

ples. The Local technique has three steps: Decision tree in-
duction, Branch elimination, and Rule generation. Whereas
the Decision tree induction is different from the Global tech-
nique, both the Branch elimination and the Rule generation
steps are the same than those in the Global technique. The
discretization is carried out through the decision tree at-
tribute selection step. At each step of the decision tree at-
tribute selection we decide a split value for each attribute.
Thus, we obtain a partition of the training examples into
two parts for each attribute. The attribute that is selected is
the one with the best partition of examples according to the
heuristic measure criterion. This process is implemented at
each node of the tree. Therefore, as the construction of the
decision tree progresses the number of examples is smaller
and the discretization is only based on these examples. The
algorithm process stops when the number of examples in the
node is less than 5% of the examples in the root node. Once
built, the steps to convert the decision tree into advices are
the same as those employed by the first technique, namely
Branch elimination and Rule generation.

The Pruned technique (see (3) on figure 5) is similar to the
Local, but before performing the Branch elimination, we
use a post-pruning method. The Pruned technique has four
steps: Decision tree induction, Post-pruning, Branch elim-
ination, and Rule generation. The Decision tree induction
step, the Branch elimination step and, the Rule generation
step are the same as in the Local technique.

The Post-pruning step is based on pruning the subtrees of
the nodes of the decision tree that satisfy either equation 2
or equation 3:

ratio(n) >~y A VlI€leaf(n):ratiol) >1—~ (2)

ratio(n) <1—v A Vl€leaf(n):ratioll) <~y (3)

A node n of the tree satisfies equation 2 if the node has a
success ratio greater or equal than - and all their subtree
leafs have a success ratio greater or equal than 1 —v. While
a node n satisfies equation 3 if the node has a success ratio
less or equal than 1 — 7 and all their subtree leafs have a
success ratio less or equal than .

With the Post-pruning step we expect generate less rules

and less conditions in the rules without lost of accuracy.
For example, in our experiments we prune the subtree of
a node n that has a success ratio greater or equal than 0.7
and that all their subtree leafs have a success ratio greater or
equal than 0.3. We prune the subtree of the node n because
if we did not prune its subtree, all branches of its subtree
either will be eliminated through the Branch elimination
step (because its leaves’ success ratio range between 0.3 and
0.7) or will remain in the trimmed tree (because its leaves’
success ratio is greater than 0.7, like the node). As to the
latter case, the leafs in the subtree would generate the very
same type of advice ("do pass”’) than the node m, which
makes such advice redundant.

6. EMPIRICAL EVALUATION

In order to validate our hypothesis stating that learning
advices help significantly increase the number of success-
ful passes between teammates we run two of experiments.
In the first experiment, Experiment 1, the coach sends to
the players the “do/dont pass” learned advice. In the sec-
ond experiment, Experiment 2, the coach only sends to the
players the “dont pass” learned advice.

To run our experiments we employ the Wyverns soccer team
players [3], developed by Patrick Riley. In order to use
Wyverns’ players in the scenario explained in section 4 we
needed to change the way players communicate their inten-
tion to pass to the coach. Then, when a player intends to
make a pass, he sends a message to the coach to communi-
cate his intention so that the coach can accordingly create
a new example. Therefore, notice that we do not make any
extensions to the behavior of players; we only add a new
communication action with the coach. On the other hand,
we use the UvA Trilearn 2003 soccer simulation team [2] as
opponent to Wyverns because its players play good enough
and do not need a coach to play.

The first step is generating the training data. We launch all
players, namely two teammates and one opponent, to play
in the scenario described in section 4. We also launch our
coach, that sends to the teammates the “pass always” ad-
vice. In the training scenario, our coach generated a total
of 1176 examples in one game. These examples have a ratio
of successful passes of 38%. Once the coach has generated
the training data, we use these examples to run the three
learning techniques explained above (see section 5). We con-
sider that the 1176 examples generated during the game are
enough. We run each learning technique three times, one
for a each heuristic measure (Gain criterion, GainRatio cri-
terion and Mantaras normalized Distance). Altogether we
perform nine different runs to learn advices. As a result, we
obtain nine different trees along with a set of advices per
tree.

In table 1 we show the percent of correctly classified exam-
ples by both the decision tree and the trimmed tree over
a total of 1176 examples. The Measure/Technique column
lists each combination of technique with heuristic measure.
The DTree column lists the accuracy of the decision tree
obtained before applying branch elimination. The Trimmed
tree column lists the accuracy of the trimmed tree obtained
with the Branch elimination step (the tree used for building
the advice rules). The Trimmed tree column also shows, in

parentheses, the percentage of examples that the trimmed
tree classified. Notice that while the decision tree is able to
classify all training examples the trimmed tree is not.

Table 1: Percentage of correctly classified instances
of training data for the decision tree and for the
trimmed tree.

Measure / technique | DTree | Trimmed tree
Gain

Global 81.5 86.8 (79%)
Local 82.4 86.8 (84%)
Pruned 82.4 84.8 (90%)
GainRatio

Global 81 81 (100%)
Local 80.4 82 (93%)
Pruned 80.4 80.4 (100%)
Mantaras Distance

Global 81 87 (76%)
Local 82.7 89.3 (74%)
Pruned 82.7 86.8 (81%)

The accuracy of the DTree is similar for the three techniques
and for the three heuristic measures (around 80%). As to
the Trimmed tree, we observe an increment of accuracy as
well as a decrement of the percentage of classified examples
compared with respect to DTree. Notice also that the mea-
sure that classifies more examples is Gain Ratio, and the
Pruned technique is the one that classifies more examples.

We have also compared the nine different sets of advices by
evaluating the effects of each advice on the players’ perfor-
mance when passing the ball. For testing purposes, we run
two experiments where the coach sends the advice generated
by the tree to the Wyverns’ teammates. The coach uses the
same scenario used for generating the training data (see sec-
tion 4) to evaluate the advice. A test consists on launching
the two teammates and one opponent and also launching our
coach to send to the teammates the learned advice. We have
run a test for each combination of technique and heuristic
measure. Each test finishes when 1000 passes are make by
the teammates.

The players use the received advice to help them decide their
actions. Notice that since not all situations are covered by
the advice the time needed to generate the very same num-
ber of examples can be greater in a test scenario than in the
training scenario. At testing time, there are situations where
one of the teammates owns the ball for which he does not
have any advice, and however he has to choose the action to
do, (either “pass to teammate” or some other action). These
are situations that are not covered by the advice. Among
the situations covered by the advice, there are situations
where one of the players owns the ball and the player has
to consider to do the pass after receiving a “do pass”; and
other situations where the advice is “dont pass” and he has
to consider which other action to choose.

In table 2 we show the success ratio of the nine different
sets of advices in 1000 passes after sending the learned ad-
vices (Experiment 1). We need now to compare these values
with 38% of successful passes of the players obtained in the
baseline scenario, when the coach does not use any learning

advice.

The results show that only the Global technique with the
Mantaras Distance measure is not statistically significant
worse than the 38% of successful passes without learning.
The other results present a statistically significant improve-
ment of percentage of successful passes with respect to the
38% of successful passes without learning; they improve the
percentage of successful passes around 15%. In particular,
the measure producing the best results is the Gain, whereas
the measure leading to the worst results is the Mantaras Dis-
tance. The technique producing the worst results is Global,
whereas Local technique produces the best results. The
combination showing best results is composed of the Local
technique along with the Gain Ratio measure, improving
19% the percentage of successful passes.

Table 2: Ratio of successful passes in Experiment 1.
(38% baseline)

Measure Global | Local | Pruned
Gain 54.7 55.4 55.5
GainRatio 47.5 57 54.1
Mantaras Distance 35.5 52.7 47.6

The results show that the learnt advices improve the per-
centage of successful passes. However, we have observed that
while in the training scenario the players only need one game
to generate 1176 examples, in the test scenario the players
need several games to generate 1000 examples. This creates
a time overhead to generate the same number of examples
for the test scenario. This time overhead is motivated by
the fact that in the training scenario the sent advice was
“pass always”, which covers all possible situations; whereas
in the test scenario the learning advice does not cover all
possible situations. Moreover, in the test scenario there are
situations where the advice rule is “dont pass”. In particu-
lar, the Local technique with the Gain Ratio measure is the
combination that needs more games to generate 1000 ex-
amples in the test scenario. It is also the combination that
shows best success ratio results.

In order to reduce the time to generate test examples, we
have run Experiment 2. In Experiment 2, we have evalu-
ated the effects of the coach only sending the learnt “dont
pass” advices, and the “do pass” advice is simply “pass al-
ways”. Thus, the player is always enforced to pass except
in those situations where the coach advices against it. In
other words, the coach only advices against the bad situa-
tions where the pass must be avoided and, thus, increase
the probability to pass between teammates and decrease
the time to generate the examples. Since the technique
producing the worst results in Experiment 1 is Global we
have not evaluated this technique in Experiment 2. Table 3
shows the success ratio of the six different sets of advices in
1000 passes after sending only the “dont pass” advice (Ex-
periment 2). The results show that in general the ratio of
successful passes improves considerably over 38% (baseline).
Although the improvement is less significant than in Exper-
iment 1, the reduction of the time needed to generate 1000
examples is remarkable. In this experiment, the measure
leading to best results is the Gain Ratio. The combination
that shows best results is the one composed of the Local

technique and the Gain Ratio measure, improving 16% the
percent of successful passes. While the Pruned technique
with the Mantaras Distance measure improves the percent-
age of successful passes 16% and the Pruned technique with
the Gain Ratio Measure improves 15%.

Table 3: Ratio of successful passes in Experiment 2.
(38% baseline)

Measure Local | Pruned
Gain 50.8 474
GainRatio 54.8 53.1
Mantaras Distance 36.9 54.7

7. CONCLUSIONSAND FUTURE WORK

In this paper we have explored how coaching can help to
improve the performance of RoboCup players. We have pre-
sented a coaching approach based on learning how to advice
the playing agents. We have employed decision trees to learn
advices from observing the actions of the agents to be ad-
viced. We have proposed three different learning techniques
to create the advice and have evaluated each technique with
the Gain, Gain Ratio and Mantaras Distance measures.

We have empirically validated our hypothesis stating that
learning advices help significantly increase the number of
successful passes. In the baseline scenario, when the coach
does not use any learning advice, the ratio of successful
passes is 38%. We have run two experiments and we have
observed that the success in passing the ball significantly
improves when exploiting learnt advices. Thus, the learnt
advice sent by the coach increases between 9% and 19% the
number of successful passes made by players over the 38%.

Concerning what learning technique is better for learning
advices, the results show that there is not a clear winner.
The Pruned technique has worse results than the Local tech-
nique, but it generates less amount of advice, and thus less
rules to send to players. Not all combinations of heuristic
measures and techniques have the same results. The com-
binations that lead to the best results depends on the type
of experiment. In Experiment 1, when the coach sends the
learning advice to the players, the measure Gain has good
results with the three techniques, whereas the measure Gain
Ratio has good results with the Local and Pruned tech-
niques. In Experiment 2, when the coach only sends the
“dont pass” advice learned, the measure Mantaras Distance
has good results with the Pruned technique and Gain Ratio
with both techniques, Local and Pruned.

Notice that the experiments have been only performed with
one team, [3], and these final conclusions of witch combina-
tion is better are based only for these players. We plan to
perform the same experiments with other players to com-
pare the results between different players. In the future we
plan to extend the learning to further scenarios with more
teammates and more opponents. We also consider to apply
our learning methods to other actions, not only to passes.
These extensions can help us evaluate experiments in a real
game.

8. REFERENCES

(1]

[6]

[9]

[10]

[11]

[12]

[13]

Robocup soccer server manual for soccer server
version 7.07 and later, 2003.
http://sourceforge.net/projects/sserver.

Uva trilearn 2003 soccer simulation team,
http://staff.science.uva.nl/ jellekok/robocup/2003.

Wyverns soccer team source code,
http://www.cs.cmu.edu/ pfr/thesis/wyverns.tar.bz2.

S. Konur, A. Ferrein, and G. Lakemeyer. Learning
decision trees for action selection in soccer agents. In
Proc. of Workshop on Agents in dynamic and
real-time environments, 2004.

G. Kuhlmann, P. Stone, and J. Lallinger. The UT
Austin Villa 2003 champion simulator coach: A
machine learning approach. In D. Nardi,

M. Riedmiller, and C. Sammut, editors,
RoboCup-2004: Robot Soccer World Cup VIII, pages
636-644. Springer Verlag, Berlin, 2005.

R. L. D. Méntaras. A distance-based attribute
selection measure for decision tree induction. Mach.
Learn., 6(1):81-92, 1991.

J. Quinlan. C4.5: Programs for machine learning.
1993.

J. R. Quinlan. Induction of decision trees. Mach.
Learn., 1(1):81-106.

P. Riley and M. Veloso. Advice generation from
observed execution: Abstract Markov decision process
learning. In aaa:2004, 2004.

P. Riley and M. Veloso. Coaching advice and
adaptation. In D. Polani, A. Bonarini, B. Browning,
and K. Yoshida, editors, RoboCup-2003: The Sizth
RoboCup Competitions and Conferences. Springer
Verlag, Berlin, 2004.

P. Riley, M. Veloso, and G. Kaminka. An empirical
study of coaching. In H. Asama, T. Arai, T. Fukuda,
and T. Hasegawa, editors, Distributed Autonomous
Robotic Systems 5, pages 215-224. Springer-Verlag,
2002.

P. Stone and M. Veloso. A layered approach to
learning client behaviors in the RoboCup soccer
server. Applied Artificial Intelligence, 12:165-188,
1998.

U. Visser and H.-G. Weland. Using online learning to
analyze the opponent’s behavior. In RoboCup, pages
78-93, 2002.

