
Implementing Norms in Electronic Institutions

A. Garcia-Camino, P. Noriega, J. A. Rodrı́guez-Aguilar
Artificial Intelligence Research Institute, IIIA

Spanish Council for Scientific Research, CSIC
Campus de la UAB

08193 Bellaterra, Barcelona, Spain

{andres,jar,pablo}@iiia.csic.es

ABSTRACT
Ideally, open multi-agent systems (MAS) involve heteroge-
neous and autonomous agents whose interactions ought to
conform to some shared conventions. The challenge is how
to express and enforce such conditions so that truly au-
tonomous agents can adscribe to them. One way of address-
ing this issue is to look at MAS as environments regulated
by some sort of normative framework. There have been
significant contributions to the formal aspects of such nor-
mative frameworks, but there are few proposals that have
made them operational. In this paper a possible step to-
wards closing that gap is suggested. A normative language
is introduced which is expressive enough to represent the fa-
miliar types of MAS-inspired normative frameworks; its im-
plementation in JESS is also shown. This proposal is aimed
at adding flexibility and generality to electronic institutions
by extending their deontic components through richer types
of norms that can still be enforced on-line.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Law ; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Multi-agent systems

General Terms
Languages

Keywords
Norms,Electronic institutions,Implementation,Expert system

1. INTRODUCTION
Multi-agent systems (MAS) have emerged as a promising

approach for creating agile information systems suited for
addressing problems that have multiple problem-solving en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

tities [12]. MAS are considered open systems [11] when the
following essential characteristics prevail [19]:

Hetereogeneity. Open MAS must be capable of acommo-
dating heterogeneous agents, i.e. agents possibly de-
veloped in different languages, by different parties, with
different purposes and preferences.

Reliability. “Open systems must be reliable. They must
be designed so that failures of individual components
can be accomodated by operating components while
the failed components are repaired or replaced.”[11]

Accountability and legitimacy. Since agents may possibly
exhibit either deviating or fraudulent behaviour, their
actions must be monitored to detect and prevent dys-
functional behaviours which may jeopardise the overall
functioning of the system.

Societal change. Agent societies are not static; they may
evolve over time by altering, eliminating or incorpo-
rating rules. Hence the need of demanding flexible
societies capable of accomodating future changes.

In this work we assume that open MAS put together het-
erogeneous, self-interested agents whose actions might devi-
ate from expected behaviour. Moreover, their uncontrolled
actions may be harmful to other agents and even to the
multi-agent system, leading to unwanted states. In this set-
ting, there is a pending, fundamental issue: the constitu-
tion of safe environments that guarantee the constraining of
agents’ behaviours without restricting their essential char-
acteristic: autonomy. Along this direction, normative sys-
tems allow to ensure that agents’ behaviours will never bring
about unwanted states by specifying the set of illegal actions
to be forbidden under particular conditions.

We differentiate three main research lines dealing with
normative systems: theoretical models of norms, formal spec-
ification of norms and computational models. Current work
on theoretical models focuses mainly on the formalization
of normative systems with deontic logics [14]. For instance,
Dignum et al. propose a variation of deontic logic that in-
cludes conditional and temporal aspects [3][5]. These ap-
proaches are fundamentally theoretical and have no current
implementation.

As to formal specifications, a remarkable example of nor-
mative MAS model is the extension of the SMART agent
specification framework by López y López et al. [16] [15].

667

They tackle norm reasoning from an agent-centered perspec-
tive, defining different types of agents depending on their
strategy to comply with norms (for instance, a greedy agent
would choose to comply with the set of norms that maximize
its benefits). A different perspective is taken in [20] where
the major concern is to offer an general definition of norm
(which integrates conditional and temporal aspects) from
an organizational point of view. Finally, as for computa-
tional models, current normative frameworks are either do-
main specific or their normative component is not expressive
and flexible enough. An example of the former is the im-
plementation realized by Michael et al. [17], which permits
the specification of market mechanims by the definition of
rights, permissions and obligations. An example of the latter
is AMELI [7], which makes operational the notion of Elec-
tronic Institution (EI for short), guaranteeing the preserva-
tion of a legal state of the environment. However, its nor-
mative component seriously restricts agents’ behaviours by
imposing actions when norms are activated. Another recent
computational model is based on the use of event calculus
for the formalization of norm-governed computational sys-
tems [2][1]. Obligations, permissions and prohibitions are
expressed as changing predicates called fluents. Although
some examples have been implemented in Prolog, this for-
malization focuses on norms triggered by actions, it does not
include the formalization of norms triggered by temporal is-
sues.

Although there are new emerging approaches, there is
still a gap between theoretical proposals and computational
models. On the one hand, there are worthy theoretical mod-
els and specifications with no implementation [14] [3] [5] [15]
[20]. On the other hand, there are robust frameworks which
lack the degree of expressiveness and flexibility needed for a
normative system [17] [7].

The objective of this paper is to try to fill this gap by
adapting a formal approach [20] to enrich an existing frame-
work [7] . More precisely, we have extended the normative
language of an EI to increase its expressiveness and flex-
ibility. We have also proposed the use of Jess [13] for the
implementation of the norm engine which mantains the nor-
mative state of an institution, i.e. the permissions, prohibi-
tions and obligations that hold in the current state of execu-
tion. Our implementation has been carried out by translat-
ing the norms specified in our normative language into Jess
rules. At run-time our norm engine can be updated with
new utterances and queried about permissions, prohibitions
or pending obligations.

It is worth remarking that we consider autonomous norm
compliance from an institutional point of view. That is, we
do not care how an agent decides which norms to comply
with, but instead we define the norms and the sanctions to
be applied when the violation of norms occurs as part of the
institution. With this approach we allow agents to reason
about norm compliance while the choice and implementation
of the agents’ architecture is left to the agent developers.

The paper is organised as follows. In section 2 we sum-
marise the notion of EI. Next, we define the normative lan-
guage in section 3 and show its implementation in section
4. We draw some conclusions and outline our future work
in section 5.

2. ELECTRONIC INSTITUTIONS
Electronic institutions, as we consider them [6] [19] [18],

shape agent environments that restrict the behaviour of agents
to ensure that agents interact in safe conditions. EIs con-
straint agent behaviour by defining the valid sequences of
dialogical interactions that agents can hold to attain their
goals. We differentiate two types of norms in EIs: protocol-
based and rule-based. Protocol-based norms are defined
by a group of scenes, a performative structure, and a di-
alogical framework that establish the permitted actions at
each instant of time taking into account the past actions
of agents. Rule-based norms are defined by a certain type
of first-order formulae that establish a dependency relation
between actions. Some actions under certain conditions fire
normative rules which produce new commitments, estab-
lishing new pending obligations (actions to be carried out
by agents).

2.1 Protocol-based norms
The dialogical framework defines all the conventions re-

quired to make the interaction between two or more agents
possible. Moreover, it defines what the participant roles
within the EI and the relationships among them will be. We
take interactions to be a sequence of speech acts between two
or more parties. Formally, we express speech acts as illocu-
tionary formulae of the form: ι(speaker, hearer, �, t). The
speech acts that we use start with an illocutionary parti-
cle (declare, request, promise) that a speaker addresses to
a hearer, at time t, whose content � is expressed in some
object language whose vocabulary stems from an EI’s ontol-
ogy.

A dialogical framework encompasses all the illocutions
available to the agents in a given institution. Formally,

Def. 1. A dialogical framework is a tuple DF = 〈O, LO,

P, R, RS〉 where O stands for an ontology (vocabulary); LO

stands for a content language to express the information ex-
changed between agents using ontology O; P is the set of
illocutionary particles; R is the set of roles; RS is the set of
relationships over roles.

For each activity in an institution, interactions between
agents are articulated through agent group meetings, which
we call scenes. A scene is a role-based multi-agent protocol
specification. A scene defines the valid sequences of interac-
tions among agents enacting different roles. It is defined as
a directed graph where each node stands for scene state and
each edge connecting two states is labelled by an illocution
scheme. An illocution scheme is an illocutionary formula
with some unbound variables. At run-time, agents playing
different roles make a scene evolve by uttering illocutions
that match the illocution schemes connecting states. Each
scene mantains the context of the interaction, that is how
the dialogue is evolving, i.e. which have been the uttered
illocutions and how the illocution schemes have been instan-
tiated.

Def. 2. A scene is a tuple S = 〈s,R, DF, W,w0, Wf , Θ,

λ, min, Max〉 where s is the scene identifier; R is the set of
scene roles; DF is a dialogical framework; W is the set of
scene states; w0 ∈ W is the initial state; Wf ⊆ W is the
set of final states; θ ⊆ W × W is a set of directed edges;
λ : θ −→ L�

DF is a labelling function, which maps each
edge to an illocution scheme in the pattern language of the

668

DF dialogical framework; min, Max; R −→ N min(r) and
Max(r) are, respectively, the minimum and the maximum
number of agents that must and can play each role r ∈ R.

The activities in an EI are the composition of multiple,
distinct, possibly concurrent, dialogical activities, each one
involving different groups of agents playing different roles. A
performative structure can be seen as a network of scenes,
whose connections are mediated by transitions (a special
type of scene), and determines the role-flow policy among
the different scenes by showing how agents, depending on
their roles and prevailing commitments, may get into dif-
ferent scenes, and showing when new scenes will be started.
The performative structure defines the possible orders of ex-
ecution of the interaction protocols (scenes). It also allows
agent synchronization, and scene interleaved execution.

Def. 3. A performative structure is a tuple PS = 〈S, T, s0,

sΩ, E, fL, fT , fO
E , µ〉 where S is a finite, non-empty set of

scenes; T is a finite, non-empty set of transitions; s0 ∈ S is
the initial scene; sΩ ∈ S is the final scene; E = EI ∪EO is a
set of edge identifiers where EI ⊆ S×T is a set of edges from
scenes to transitions and EO ⊆ T ×S is a set of edges from
transitions to scenes; fL : E −→ DNF

2
VA×R maps each

edge to a disjunctive normal form of pairs of agent variable
and role identifier representing the edge label; fT : T −→ T
maps each transition to its type; fO

E : EO −→ E maps each
edge to its type; µ : S −→ {0, 1} sets if a scene can be mul-
tiply instantiated at execution time;

The institutional state consists of the list of scene exe-
cutions (described by their participanting agents and inter-
action context) along with the participating agents’ state
(represented by their observable attributes).

2.2 Normative rules
As mentioned above, actions within an electronic insti-

tution are speech acts. Those speech acts that are made
in accordance with the performative structure of an institu-
tion may create obligations or commitments on participants.
Commitment fulfillment needs to be warranted by the in-
stitution. We make such intended effects of commitments
explicit through what we have called normative rules.

Def. 4. Normative rules are first-order formulae of the
form

(
nV

i=1

uttered(si, wk, i�li) ∧
mV

j=0

ej)→

(
n′V

i=1

uttered(s′i, w
′

k, i′�li) ∧
m′V

j=0

e′j)

satisfying that t� ≥ t�i , 1 ≤ i ≤ n, t′� ≤ t′�j , 1 ≤ j ≤ n′, t� <

t′� where si, s
′

i are scene identifiers, wk, w′

k are states of si

and s′i respectively; i�li , i
′�

li
are illocutions schemes li of si and

s′i respectively; and t�, t�i are the time stamps of, respectively,
i�i and i�j , t� being the greatest value of time stamp on the
left-hand side illocutions (that is, the time stamp of the latest
illocution) and t′� the lowest value of the time stamp on
the right-hand side illocutions (that is, the time stamp of
the earliest illocution); ej , e

′

j are boolean expressions over
variables from the illocution schemes i�li and i′�li , respectively.

The intuitive meaning of normative rules is that they
create obligations in the sense that if grounded illocutions

matching i�l1 , . . . , i�ln are uttered in the corresponding scene
states, and expressions e1, . . . , em are satisfied, then, grounded
illocutions matching i′�l1 , . . . , i′�l

n′
satisfying the expressions

e′1, . . . , e
′

m′ must be uttered in the corresponding scene states.

3. NORMATIVE LANGUAGE
In the definition stated above normative rules are strict in

the sense that entailed actions are forced upon the agents at
given scenes and states. However, it is convenient to have,
also, less strict normative rules where action execution might
be dependent on temporal constraints or the occurrence of
events.

Although normative rules are an efficient method to for-
malize strict obligations, there is also the need for specifying
permissions, prohibitions and obligations with conditional
and temporal constraints. As an exercise in this direction,
we have extended the normative language recently proposed
in [20]. That proposal is enriched with new types of norms,
namely norms that we keep active during a time interval,
and conditional norms over the institutional state, (e.g. the
observable attributes of agents and objects of the environ-
ment). Moreover, our extension of that language includes
the possibility to sanction agents by modifying their insti-
tutional state, i.e. their observable attributes. Nonetheless,
since in EIs alls actions are speech acts, actions expressed
by the language are limited to the utterance of illocutions.

We propose the BNF description of our normative lan-
guage as follows:

NORM := N(utter(S, W, I) 〈TIME〉 〈IF C〉)

N := OBLIGED | PERMITTED |

FORBIDDEN

I := ι(A, R, A, R, M, T)

TIME := BEFORE D | AFTER D |

BETWEEN (D, D) |

BEFORE uttered(S∗, W∗, I∗) |

AFTER uttered(S∗, W∗, I∗) |

BETWEEN (uttered(S
∗

, W
∗

, I
∗

),

uttered(S∗, W∗, I∗))

C := ¬ (CONDS) | CONDS

CONDS := 〈¬〉COND 〈, C〉

COND := V OP V | uttered(S
∗

, W
∗

, I
∗

) |

N(utter(S∗, W∗, I∗)) | predicate

V := AT | F | value

AT := identifier.attribute|variable

OP := > | < | ≥ | ≤ | =

SANCTION := SANCTION ((COMMS) IF NP (NORM))

NP := VIOLATED | COMPLIED

COMMS := COMM〈, COMMS〉

COMM := AT = F | F

F := identifier(< ARGS >)

ARGS := V <, V >

where S is a scene identifier; W is a state identifier; ι is
an illocutionary particle; A is an agent identifier; R is a role
identifier; M is a content message in the language LO from
the dialogical framework; T is a time stamp; D is a deadline;
S�, W �, I�, A�, R�, M�, T � are expressions which may
contain variables referring, respectively, to scenes, states,
illocutions, agent identifiers, role identifiers, messages and
time stamp; and predicate is a first-order formula whose
variables are universally quantified.

669

On the one hand, utter(s�, w�, i�) is the predicate that
represents the action (not carried out yet) of submitting an
illocution at the state w� of scene s�. This predicate is the
only one that can be restricted with deontic operators. On
the other hand, uttered(s�, w�, i�) is used to denote that
the submission of an illocution has been carried out. The
latter predicate can be used in the conditional construct of
a normative rule.

From the BNF notation follows that a norm (NORM)
can be either an obligation (OBLIGED), a permission
(PERMITTED) or a prohibition (FORBIDDEN) upon the ut-
terance of a given illocution (utter(S,W, I)) if conditions are
satisfied (IF C). The BEFORE construct is used to activate
the norm before a deadline or an action. The AFTER con-
struct is used to activate the norm after a given deadline or
an action. The BETWEEN construct results from the combi-
nation of the previous two and it is used to activate the norm
once the time specified by the first argument is reached and
de-activate it once the time specified by the second argument
is reached. The IF construct is used to introduce conditions
over variables, agents’ observable attributes or function re-
sults. The AT definition notates how attribute values can
be accessed with the language, identifier.attribute denotes
that the value of the attribute with name attribute of the
agent or object with name identifier is retrieved.

Sanctions (analogously, rewards) can also be expressed
by defining the sequence of attribute updates or functions
(COMMS) to be executed if a norm is violated (analo-
gously, complied) (VIOLATED NORM or COMPLIED NORM).

3.1 Examples
In this section we show how to use our normative lan-

guage through several examples. All these examples, along
with the rest of examples in this paper, are based on an elec-
tronic auction institution. The institution has four scenes or
activities: Registration, where agents sign in along with the
information about the goods they want either buy or sell;
Auction, where the actual bidding takes place; Payment,
where buyers pay for acquired items and sellers are paid;
and Delivery, where the sold goods are delivered to the
acquiring buyers.

OBLIGED (utter(payment, W,
inform(A, buyer, B, payee, pay(IT, P)))

BEFORE uttered(payment, w5,
inform(B, payee, all, buyer,

close()))
IF uttered(auction, w2,

inform(A, auctioneer, all, buyer,
sold(IT, P, C))),

A.credit > P

Figure 1: Conditional obligation with deadline

After the registration of agents and goods, agents join the
Auction scene to start a Dutch auction. Initially, the auc-
tioneer agent informs all buyers about the good being auc-
tioned along with its initial price. The auctioneer progres-
sively decreases the call price until a bidder stops the clock.
If the good has not been sold when the call price reaches the
reserve price, the auction finishes off and the good is with-
drawn. If there is a bid collision, i.e. more than one bid is
submitted at the same time, the call price is increased and a

new round is started. If only an agent places the bid during
a round and has enough credit, it wins the auction. When
an agent wins an auction it must proceed to the Payment

scene to pay for the purchased goods. After the payment
of goods, an agent taking on the storemanager role must
deliver them to the buyer before a deadline.

PERMITTED (utter(auction, W,
inform(A, buyer, B, auctioneer, bid(IT, P)))

BETWEEN (uttered(auction, w0,
inform(B, auctioneer, all, buyer,

offer(IT, P)))
uttered(auction, w2,

inform(B, auctioneer, all, buyer,
sold(IT, P, C))))

Figure 2: Permission in an interval of time

Figure 1 contains a conditional obligation with deadline.
Intuitively, it means that if a buyer submitted a winning bid
for a good, he must pay for it before the payment scene is
closed: If agent A, playing the buyer role, submits to agent
C, playing the auctioneer role, a bid for a good at price P

and agent A’s credit is greater than P , then A is obliged to
pay in the payment scene to an agent playing the payee role
before the latter closes the scene.

Figure 2 shows a permission that is active during a time
interval. Its intuitive meaning is that a buyer is permitted to
bid after hearing an offer but before the auctioneer declares
the sale: Agent A playing the buyer role is permitted to sub-
mit a bid for an item IT to agent B playing the auctioneer

role in auction scene after B informs all buyers of an offer
but before B informs all buyers of the sale.

Figure 3 shows a sanction on an agent’s credit when a
deadline can not be met. If agent A is obliged to inform
about the delivery of an item before a deadline and the agent
does not meet the deadline, his credit is reduced by ten units.

SANCTION (A.credit = A.credit − 10
IF VIOLATED (OBLIGED(utter(S, W,

inform(A, R1, B, R2, deliver(IT)))
BEFORE 15/10/05)))

Figure 3: Sanction related to a deadline violation

4. EXECUTABLE NORMS
Once the normative language has been defined, we need to

handle the normative state of an institution. A rule-based
system was chosen to implement norms because the norma-
tive language is of the form preconditions postconditions,
which is easily expressable with rules. In order to facilitate
the integration with AMELI we decided to implement this
tool with Jess since both are written in Java.

In this section we first introduce the (norm) engine used
for implementing executable norms. The translation of norms
expressed in the language presented in section 3 into exe-
cutable norms written in Jess will be also detailed.

670

4.1 Jess
Jess is an expert system shell and scripting language from

Sandia National Laboratories [13] written entirely in Java
[10]. Jess supports the development of rule-based systems
that can be tightly coupled to code written in Java. It can
manipulate Java objects and can be extended with new func-
tions implemented in Java.

4.1.1 Facts
A rule-based system maintains a collection of knowledge

portions called facts. This collection is known as the knowl-
edge base. In Jess, there are three kinds of facts: ordered
facts, unordered facts, and definstance facts. Ordered facts
are simply Lisp-style lists where the first field, the head of
the list, acts as a category for the fact. Unordered facts al-
low the programmer to structure the properties of a fact in
slots. Before the creation of unordered facts, the slots they
have must be defined using the deftemplate construct.

Figure 4 shows an example of an unordered fact template
used to model the predicate uttered. An uttered fact is
composed of several slots: scene, state, agent, receiver,
performative and content. The scene and state where an
utterance takes place is specified by the scene and state

slot; while the agent and receiver slots define the sender
and receiver of the message (content). The illocutionary
particle of the illocution is stated by the performative slot.

(deftemplate uttered
(slot scene)

(slot state)
(slot agent)

(slot receiver)
(slot performative)
(multislot content))

Figure 4: Example of a Jess unordered fact

4.1.2 Rules
Rules have two parts separated by the connective =¿ :

a left-hand side (LHS) and a right-hand side (RHS). The
LHS is employed for matching fact patterns. The RHS is
a list of actions (postconditions) to perform if the patterns
of the LHS (preconditions) are satisfied. These actions are
typically method calls. An important feature of Jess is that
the RHS can call native Jess methods, instance methods of
externally referenced Java objects and static class methods.
This feature adds enormous flexibility to the code.

(defrule cob-1-sanction

"Reduce agent’s credit on violation"
(V (type negative) (constraints ?c) (agent ?a)

(scene deliver) (state w0) (receiver ?b)
(performative inform) (content deliver ?it))

(agent (id ?a) (attrs ?at))
=>

(bind ?old (?at get "credit"))

(bind ?new (- ?old 100))
(?at put "credit" ?new))

Figure 5: Example of a Jess rule

Figure 5 shows an example of a rule. When a violation
occurs, that is, when exists a fact V with the specified slots
and the attributes of the violator agent ?a can be retrieved
in the variable ?at then store the value of the credit of the

agent in variable ?old, store in ?new the value of variable
?old decreased by a hundred and change the credit of the
violator agent ?a into the value of variable ?new.

4.2 Norm implementation
In addition to the normative language we need to keep at

run-time the sequence of done actions and to query what ac-
tions are permitted or forbidden and what are the pending
obligations. To introduce utterances, permissions, prohibi-
tions and obligations in the norm engine, a translation from
our language to Jess rules is needed.

This translation can be carried out using the criteria es-
tablished in the following sections.

We define four types of Jess unordered facts: O, P, F and
V that stand, respectively, for obligations, permissions, pro-
hibitions and violations.

4.2.1 Conditional norms.
Conditional norms are those norms that include an IF sec-

tion. The translation of IF sections is directly realised by
placing the conditions in the LHS of a Jess rule.

OBLIGED(utter(delivery, w0,
inform(C, storemanager, A, payer, deliver(IT)))

BEFORE 15 days
IF uttered(payment, w0,

inform(A, payer, B, payee, pay(IT, P))))

Figure 6: Example of a conditional obligation with
deadline

(defrule cob-1

(uttered (agent ?a) (scene payment)
(state w0) (receiver payee)

(performative inform)
(content pay ?it ?price))

=>
(assert (O (agent storemanager) (scene delivery)

(state w0) (receiver ?a)

(performative inform)
(content deliver ?it)))

(bind ?date (new java.util.Date))
(bind ?deadline (add-date ?date 0 0 15 0 0 0 0))
(bind ?rule (str-cat

"(defrule cob-1-deadline "
"(not(uttered (agent payee)"

"(scene delivery)"
"(state w0) (receiver " ?a ")"

"(performative inform)"
"(content deliver " ?it ")))"

" => "

"(assert (V (type negative) "
"(constraints \"before "

(?deadline toString) "\")"
"(agent payee) (scene deliver)"
"(state w0) (receiver " ?a ")"

"(performative inform)"
"(content deliver " ?it "))))"))

(set-deadline ?deadline ?rule))

Figure 7: Implementation in Jess of a conditional
obligation with deadline

4.2.2 Action-dependent norms.
Action-dependent norms are those norms that include a

BEFORE, AFTER or BETWEEN section followed by an ac-

671

Norm
issue

t
0 t

2

"Before" rule
activation

t
1

"After" rule
activation

t

"After" rule thread sleep time

"Before" rule thread sleep time

Norm active
 time

Figure 8: Time diagram of rule activation for norm
OBLIGED(utter(s,w, i) BETWEEN t1, t2)

tion (as shown in figure 2). To translate an obligation to be
fulfilled before the utterance of an illocution i1, we add a rule
that asserts a violation fact if illocution i1 has been uttered
but the obliged illocution has not. The assertion of facts can
be achieved with the Jess function (assert ?fact). The
translation of permissions or prohibitions that are active
before the utterance of an illocution i1 occurs is made by
asserting the given permission or prohibition and adding to
the Jess engine a rule that retracts it when illocution i1 is
uttered.

In order to translate obligations, permissions and prohibi-
tions that are active after the utterance of a given illocution
i2; we add a rule that asserts the obligation, permission or
prohibition when i2 is uttered.

The translation of permissions, prohibitions and obliga-
tions during a time interval (BETWEEN construct) is a com-
bination of the three previous cases. We decompose the
BETWEEN construct into two Jess rules as if it had an
AFTER and BEFORE constructs. The translation of these
constructs is carried out as stated above.

4.2.3 Time-dependent norms.
Time-dependent norms are those norms that include a

BEFORE, AFTER or BETWEEN section followed by a date.
To translate rules with temporal constraints (i.e. the

BEFORE,
AFTER and BETWEEN constructs with time objects) into
Jess rules we use the user-defined function (set-deadline

?deadline ?rule) where ?deadline is an absolute date ob-
ject indicating when the rule fires and ?rule is a string-based
representation of a rule. In this way the set-deadline func-
tion adds the given rule to the Jess engine only when the
specified absolute date arrives.

To translate obligations with deadline (BEFORE construct),
we use the set-deadline function to add a Jess rule that
asserts a violation when the deadline has not been met. In
other words, it checks, after the deadline, if the obliged illo-
cution has not been uttered yet, in order to fire the corre-
sponding violation.

The translation of permissions and prohibitions that are
active before a deadline is done by asserting the permission
or prohibition and setting a deadline rule that retracts the
permission or prohibition when the deadline has passed.

Figures 6 and 7 show an example of the translation of a
conditional obligation with a deadline into a Jess rule. Their
intuitive meaning is that paid goods must be delivered before

15 days. If agent A playing the payer role pays for an item
to an agent B playing the payee role in the payment scene,
an agent playing the storemanager role must deliver that
item to the purchaser in the delivery scene before 15 days.

To translate obligations, permission or prohibitions that
activate after a deadline, we add a deadline rule that asserts
the obligation, permission or prohibition after the deadline.

OBLIGED(utter(deliver, w0,
inform(C, storemanager, A, buyer, deliver(IT)))

BETWEEN 3 day, 15days
IF uttered(payment, w0,

inform(A, payer, B, payee, pay(IT, P))))

Figure 9: Conditional obligation along a time inter-
val

For this purpose we use the set-deadline function to
add a Jess rule that asserts the obligation, permission or
prohibition once the deadline has passed.

Finally, obligations, permissions and prohibitions during
a time interval can be translated as a combination of the
previous two cases: we add a rule for the AFTER construct
and another one for the BEFORE construct.

Figure 8 depicts the time diagram of a rule with a BETWEEN

construct which is translated into two Jess rules that acti-
vate at times t1 and t2.

(defrule obt-1
(uttered (agent ?a) (scene payment)

(state w0) (receiver payee)

(performative inform)
(content pay ?it ?price))

=>
(bind ?date (new java.util.Date))

(bind ?t1 (add-date ?date 0 0 3 0 0 0 0))
(bind ?t2 (add-date ?date 0 0 15 0 0 0 0))

(bind ?rule1 (str-cat
"(defrule obt-1-after => "

"(assert (O (agent storemanager) (scene deliver) "
"(state w0) (receiver " ?a ")"
"(performative inform)

"(content deliver it))))"))

(bind ?rule2 (str-cat
"(defrule obt-1-before =>"

"(assert (V (type negative)"
"(constraints \"before "

(?t2 toString) "\")"

"(agent storemanager) (scene deliver)"
"(state w0) (receiver " ?a ")"

"(performative inform)"
"(content deliver it))))"))

(set-deadline ?t1 ?rule1)
(set-deadline ?t2 ?rule2))

Figure 10: Implementation in Jess of a conditional
obligation along a time interval

Figures 9 and 10 show a compound norm that has condi-
tional and temporal sections. In figure 9 the action depen-
dence of the norm is expressed in the conditional section. In
figure 10 the time dependence is described by the BETWEEN

construct. They oblige a store manager agent to deliver the
goods between 3 to 15 days after the sale date. Figure 10
shows the translation of the normative rule in 9 into a Jess
rule.

672

5. CONCLUSIONS AND FUTURE WORK
We have defined a normative language to specify obli-

gations, permissions, prohibitions, violations and sanctions
to restrict agents’ dialogical actions. This normative lan-
guage can be used as an extension of the normative rules
of the current version of electronic institutions obtaining a
higher degree of expressiveness and flexibility. We have also
implemented a norm engine which mantains the normative
state of an institution, i.e. the permissions, prohibitions and
pending obligations that hold in the current state of execu-
tion.

There are some differences between our normative pro-
posal and other recent ones, the more salient are that we
do not need norms over predicates since we have assumed
that all admissible actions within an electronic institutions
are speech acts (as in for example, [18][19][6]), we do not
make the strong assumption (as in, for example, [20]) that
there is a prohibition before an action iff there is a permis-
sion after that action, and we do have a working proof of
concept implementation of a computationally feasible frame-
work. With respect to other implementation proposals for
normative frameworks, ours is more expressive in the sense
that other implementations do not include temporal aspects
in the definition of norms and, in the test of conditional
norms or in the application of sanctions, fail to consider
observable agent attributes or attributes of objects in the
environment.

As far as future work is concerned, we intend to produce
an upward compatible extension of the EIDE environment
through the addition of an automatic translation module to
map our normative language into Jess rules and integrates
our norm engine with AMELI. We are extending the no-
tions stated above in the formalization and development of
a norm-based agent programming language [9]. We leave
as future work the analysis of the expressiveness of our lan-
guage in comparison to another recent approaches as [8] and
[4].

Acknowledgments
The present paper was funded by the Spanish Science and
Technology Ministry as part of the Web-i-2 project (TIC-
2003-08763-C02-00). A. Garcia-Camino enjoys an I3P grant
of the Spanish Council for Scientific Research (CSIC).

6. REFERENCES
[1] A. Artikis. Executable Specification of Open

Norm-Governed Computational Systems. PhD thesis,
Department of Electrical & Electronic Engineering,
Imperial College London, November 2003.

[2] A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A
protocol for resource sharing in norm-governed ad hoc
networks. In Proceedings of the Declarative Agent
Languages and Technologies (DALT) workshop, July
2004.

[3] J. Broersen, F. Dignum, V. Dignum, and J.-J. C.
Meyer. Designing a deontic logic of deadlines. In 7th
Int. Workshop of Deontic Logic in Computer Science
(DEON’04), pages 43–56, Portugal, May 2004.

[4] H. L. Cardoso and E. Oliveira. Virtual enterprise
normative framework within electronic institutions. In
Proceedings of the Fifth International Workshop

Engineering Societes in the Agents World (ESAW),
2004.

[5] F. Dignum, J. Broersen, V. Dignum, and J.-J. C.
Meyer. Meeting the deadline: Why, when and how. In
3rd Int. Workshop on Formal Approaches to
Agent-Based Systems (FAABS), pages 30–40,
Maryland, April 2004.

[6] M. Esteva. Electronic Institutions: from specification
to development. Number 19 in IIIA Monograph Series.
PhD Thesis, 2003.

[7] M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and
J. L. Arcos. AMELI: An agent-based middleware for
electronic institutions. In Proceedings of the Third
International Joint Conference on Autonomous Agents
and Multiagent Systems, volume 1, pages 236–243,
2004.

[8] N. Fornara, F. Viganò, and M. Colombetti. A
communicative act library in the context of artificial
institutions. In Second European Workshop on
Multi-Agent Systems, pages 223–234, Barcelona, 2004.

[9] A. Garcia-Camino, J.A.Rodriguez-Aguilar, C. Sierra,
and W. Vasconcelos. A distributed architecture for
norm-aware agent societies. In Proceedings of the
Declarative Agent Languages and Technologies
(DALT) workshop, Utrecht, July 2005.

[10] J. Gossling. The Java programming Language.
Reading. Addison-Wesley, 1996.

[11] C. Hewitt. Offices are open systems. ACM
Transactions of Office Automation Systems,
4(3):271–287, 1986.

[12] N. Jennings, K. Sycara, and M. Wooldridge. A
roadmap of agent research and development. Journal
of Agents and Multi-Agents Systems, 1:7–38, 1998.

[13] Jess. Jess,the rule engine for java. Sandia National
Laboratories. http://herzberg.ca.sandia.gov/jess,
November 2004.

[14] A. Lomuscio and D. Nute, editors. Proc. of the 7th
Int. Workshop on Deontic Logic in Computer Science
(DEON’04), volume 3065. Springer Verlag, 2004.

[15] F. López y López. Social Power and Norms: Impact
on agent behaviour. PhD thesis, University of
Southampton, June 2003.

[16] F. López y López, M. Luck, and M. d’Inverno.
Constraining autonomy through norms, 2002.

[17] L. Michael, D. C. Parkes, and A. Pfeffer. Specifying
and monitoring market mechanisms using rights and
obligations. In Proc. AAMAS Workshop on Agent
Mediated Electronic Commerce (AMEC VI), New
York, USA, 2004.

[18] P. Noriega. Agent-Mediated Auctions: The Fishmarket
Metaphor. Number 8 in IIIA Monograph Series. PhD
Thesis, 1997.

[19] J. A. Rodriguez-Aguilar. On the Design and
Construction of Agent-mediated Electronic
Institutions. Number 14 in IIIA Monograph Series.
PhD Thesis, 2001.

[20] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum.
Norms in multiagent systems: some implementation
guidelines. In Second European Workshop on
Multi-Agent Systems, pages 737–748, Barcelona, 2004.

673

