An Integrated Development Environment for
Electronic Institutions

Josep Arcos, Marc Esteva, Pablo Noriega, Juan
Rodriguez and Carles Sierra

Abstract. There is an increasing need of methodologies and software tools
that ease the development of applications where distributed heterogeneous
entities can participate. Multi-agent systems, and electronic institutions in
particular, can play a main role on the development of this type of systems.
Electronic institutions define the rules of the game in agent societies, by fixing
what agents are permitted and forbidden to do and under what circumstances.
The goal of this paper is to introduce an integrated development environment
that supports the engineering of electronic institutions.

Keywords. electronic institutions, multi-agent systems, software engineering.

1. Introduction

Multi agent systems (MAS) are systems composed of autonomous agents which
interact in order to satisfy their common and/or individual goals. A main fea-
ture of MAS is that the communication occurs at knowledge level and that they
use flexible and complex interactions among their components. Thus, the design
and development of MAS suffer from all the problems associated to the develop-
ment of distributed concurrent systems and the additional problems which arise
from having flexible and complex interactions among autonomous entities [12].
The complexity of designing multi-agent systems increases when we focus on open
systems [10]. Open multi agent systems are those in which the participants are
unknown in advance and can change over time. These systems are populated by
heterogeneous agents, generally developed by different people using different lan-
guages and architectures, representing different parties, and acting to maximise
their own utility. In order to cope with these problems appropriate methodologies
that allow the analysis and design of agent systems and software tools that support
their development life cycle are needed [12, 11].



2 Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

Human societies successfully deal with similar issues by deploying institu-
tions [16] that establish how interactions of a certain sort will and must be struc-
tured within an organization. Institutions represent the rules of the game in a
society, including any (formal or informal) form of constraint that human be-
ings devise to shape human interaction. Therefore, they are the framework within
which human interaction takes place, defining what individuals are forbidden and
permitted and under what conditions. Furthermore, human institutions not only
structure human interactions but also enforce individual and social behaviour by
obliging everybody to act according to the norms.

Hence, we advocate for the introduction of their electronic counterpart, namely
electronic institutions (EIs) [15, 19, 6], to establish the rules of the game in agent
societies. An EI defines a set of artificial constraints that articulate agent inter-
actions, defining what they are permitted and forbidden to do. An EI defines
a normative environment where heterogeneous (human and software) agents can
participate by playing different roles and can interact by means of speech acts [22].
Our actual experience in the deployment of actual-world MAS as EIs [20, 4] allow
us to defend the validity of this approach. Notice though, that as noted in [6, 19] we
believe that engineers need to be supported by well-founded tools. Hence, in this
paper we introduce an integrated development environment for Els that supports
engineers through all the stages of the design and development of MAS.

As a case study we will use through this paper the Double Auction Market [8].
In this institution trader agents participate for selling and buying different com-
modities. The institution offers participating traders a brokering service in which
trader agents can register which commodities they are interested on selling and
buying. Therefore, when there are some trader agents interested in one commodity
the institution realises a double auction to facilitate the trading.

The paper is structured as follows. In section 2 we describe the components of
our EI model. From section 3 to 7 we outline the different stages for engineering Els
and how the different software tools that we have developed support them. Finally,
in sections 8 and 9 we describe the related work and draw some conclusions.

2. Electronic Institutions. Fundamental Concepts

In this section we present a short description of electronic institutions (for further
details refer to [15, 19, 6]). To define an electronic institution it is necessary to de-
fine a common language that allows agents to exchange information, the activities
that agents may do within the institution and the consequences of their actions.
Our model of electronic institutions is based on four principal elements: a dialog-
ical framework, a set of scenes, a performative structure, and a set of normative
rules.

The dialogical framework defines the valid illocutions that agents can ex-
change and the participant roles as well as their relationship. By sharing a dia-
logical framework, we enable heterogeneous agents to exchange knowledge with



An Integrated Development Environment for Electronic Institutions 3

other agents. In the most general case, each agent immersed in a multi-agent en-
vironment is endowed with its own inner language and ontology. In order to allow
agents to successfully interact with other agents we must address the fundamen-
tal issue of putting their languages and ontologies in relation. For this purpose
we propose that agents share what we call the dialogical framework. Els establish
the acceptable illocutions by defining the ontology (vocabulary) —the common
language to represent the “world”— and the common language for communica-
tion and knowledge representation. Moreover, the dialogical framework defines the
possible participating roles within the EI and the relationships among them. Each
role defines a pattern of behaviour within the institution, and any agent within an
institution is required to adopt some of them. The identification and regulation
of roles is considered as part of the formalisation process of any organisation [21].
In the context of an EI, we distinguish between two types of roles: internal and
external. The internal roles can only be played by what we call staff agents, i.e. the
agents that belong to the institution. We can regard them as the electronic version
of the workers in human institutions. Since an institution delegates its services and
duties to the internal roles, an external agent can never play an internal role.

The activities in an electronic institution are the composition of multiple,
distinct, possibly concurrent, dialogic activities, each one involving different groups
of agents playing different roles. For each activity, interactions between agents are
articulated through agents group meetings, which we call scenes, that follow well-
defined communication protocols. In fact, no agent interaction within an EI takes
place out of the context of a scene. We consider the protocol of each scene to model
the possible dialogic interactions between roles. In other words, scene protocols
are patterns of multi-role conversation. Then, they can be multiply instantiated
by different groups of agents. A distinguishing feature of scenes is that they allow
agents, depending on their role, either to enter or to leave a scene at some particular
moments(states) of an ongoing conversation.

A scene protocol is specified by a directed graph whose nodes represent the
different states of the conversation and the arcs are labelled with illocution schemes
or timeouts that make the conversation state evolve. Thus, at each point of the
conversation, it is defined what can be said, by whom and to whom. As we want
the protocol to be generic, state transitions cannot be labelled by grounded il-
locutions, instead illocution schemes have to be used, where, at least, the terms
referring to agents and time must be variables while the other terms can be vari-
ables or constants. Thus, the protocol is independent of concrete agents and time
instants. Moreover, arcs labelled with illocution schemes can have some constraints
associated which impose restrictions on the valid illocutions and on the paths that
the conversation can follow. This allows, for instance, to specify that in an auction
scene following the English auction protocol, buyers’ bids must be always greater
than the last submitted bid.

While a scene models a particular multi-agent dialogic activity, more complex
activities can be specified by establishing relationships among scenes which are
captured in the performative structure. In general, the activity represented by



4 Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

a performative structure can be depicted as a collection of multiple, concurrent
scenes. Agents navigate from scene to scene constrained by the rules defining the
relationships among scenes. In order to capture the relationship between scenes we
use a special type of scenes: transitions. The type of transition allows to express
agents synchronisation, choice points where agents can decide which path to follow
or parallelisation points where agents are sent to more than one scene. Transitions
can be regarded as a type of routers in the context of a performative structure.
Moreover, the very same agent can be possibly participating in multiple scenes at
the same time. Likewise, there may be multiple concurrent executions of a scene.
Therefore we must also consider whether the agents following the arcs from one
scene to another are allowed to start a new scene execution, whether they can
choose to join just one or a subset of the active scenes, or even join all the active
scenes.

A performative structure can be regarded as a network of scenes whose con-
nections are mediated by transitions that determine the role flow policy among
different scenes. That is, how agents depending on their role can move among the
different scenes and when new conversations can be started. Finally, an initial and
a final scene determine the entry and exit points of the institution respectively.

Agent actions in the context of an institution have consequences, usually
in the shape of compromises which impose obligations or restrictions on dialogic
actions of agents in the scenes wherein they are acting or will be acting in the
future. The purpose of normative rules is to affect the behaviour of agents by
imposing obligations or prohibitions. Notice that since we are considering dialogic
institutions the only actions we consider are the utterance of illocutions. Therefore,
we can refer to the utterance of an illocution within a scene or when a scene
execution is at a concrete state. The intuitive meaning of normative rules is that
if illocutions are uttered in the corresponding scene states, and some predefined
expressions are satisfied, then other illocutions satisfying other expressions must
be uttered in the corresponding scene states in order to fulfil the normative rule.

To summarise, the notions above picture the regulatory structure of an EI as
a “workflow” (performative structure) of multi-agent protocols (scenes) along with
a collection of (normative) rules that can be triggered off by agents’ actions (speech
acts). Notice too that the formalisation of an EI focuses on macro-level (societal)
aspects, instead of on micro-level (internal) aspects of agents.

3. Engineering Electronic Institutions

Next we detail the steps to be followed when engineering and subsequently execut-

ing institutions. These steps cover the engineering of both the institutional rules

and the participating agents. Thus, we propose the engineering of Els through the
following stages:

e Specification. Formal specification of the institutional rules. In other words,

a formal specification of Els concepts introduced in section 2. The result



An Integrated Development Environment for Electronic Institutions 5

is a precise description of the kinds and order of messages that agents can
exchange, along with a collection of norms to regulate their actions.

o Verification. Once specified an institution, it should go through a verifica-
tion process before opening it to participating agents. This step is twofold.
There is a first verification process focusing on static, structural properties
of the EI specification. A second verification process follows concerned with
the expected dynamic properties of the EI. We advocate that the dynamic
verification of Els should be done by means of simulation, with the aim of ex-
ploring the institution performance with different populations of agents. The
institution designer should analyse the results of the simulation and eventu-
ally introduce changes in the specification if they differ from the expected
ones.

e Agent generation. Once the institution specification is validated, it can be
made available for agent participation. At this point, agent designers have to
implement their agents. We want to remark that we do not impose restrictions
on the type of agents that can participate in the institution. Hence, agent
designers can choose the language and architecture that better fulfill their
goals.

o Fxecution & Analysis. An EI defines a normative environment that shapes
agent interactions. As an institution will be populated at execution time by
heterogeneous and self-interested agents, we cannot expect that these agents
will behave according to the institutional rules encoded in the specification.
For this purpose, we advocate that the institution should be executed via an
infrastructure that facilitates agent participation, while enforcing the institu-
tional rules. Furthermore, it is important to give support to the monitoring
of EIs executions to detect agents’ misbehaviours and unexpected situations.

In order to facilitate the engineering of Els we have developed a set of software
tools that give support to all the above-mentioned steps. These tools are integrated
in the Electronic Institutions Integrated Development Environment (EIDE). EIDE
allows for engineering both the institutional rules and the participating agents.
EIDE is composed of the following tools:

ISLANDER: A graphical tool that supports the specification and static verifi-
cation of institutional rules.

SIMDEI: A simulation tool to animate and analyse ISLANDER specifications.
In other words, SIMDEI supports the dynamic verification of ISLANDER spec-
ifications.

aBUILDER: An agent development tool that, given an ISLANDER specifica-
tion from an EI, generates agent skeletons. The generated skeletons can be
used either for EI simulations supported by SIMDEI or for actual executions
of the institution supported by AMFELI.

AMELI: A software platform to run Els. The platform facilitates agent partic-
ipation in the institution while enforcing the institutional conventions. Elec-
tronic institutions specified with ISLANDER are run by AMFELI.



6 Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

Monitoring tool: A tool that permits the monitoring of EI executions run by
AMELI Tt graphically depicts all the events occurring during an EI execution.

In what follows we describe how the different EIDE tools are employed for
the engineering of Els. In order to illustrate how the different tools work, we use
the Double Auction Market.

4. Specification and Verification via ISLANDER

The specification and static verification of Els is supported by ISLANDER [7].
As to the specification of Els, the tool combines both graphical and textual spec-
ifications. More precisely, the tool permits the graphical specification of the roles
and their relationships, the scene protocols, and the performative structure. We
believe that graphical specifications facilitate the work of agent designers as they
are easier to create and to understand. In order to textually define the remain-
ing elements of a specification, the tool structures the way in which it has to be
introduced. Whenever possible, pop-down menus are used. This is used for fields
that contain references to other specified elements and for fields whose value is one
out of a predefined set. This facilitates the designer’s work because he has only to
select the element from a list and thus reduces typing errors.

ISLANDER supports the static verification of specifications by checking their
structural correctness. Thus, the tool carries out the following verifications:

e Integrity. The tool checks that cross references among the different elements
of the specification are correct. In other words, it checks that each element
which is referenced is actually defined.

e Liveness. It checks that agents will not be blocked at any point of the perfor-
mative structure, that each scene is reachable for each of its roles, and that
agents can always reach the final scene from each scene.

e Protocol Correctness. It checks that scene protocols are correctly specified.
That is, that each state of the graph is accessible from the initial state, that
a final state is reachable from each state and that the labels of the different
arcs are correctly specified according to the scene dialogical framework.

e Normative rules correctness. It checks that normative rules are specified
correctly and that agents can fulfill them. The later means that agents can
reach the scenes where they have to utter the illocutions for fulfilling each
normative rule.

Figure 1 depicts the graphical user interface of ISLANDER. The menus con-
tain the general operations of the application and they are similar to other ap-
plications. For instance, the file menu contains options to save the current spec-
ification, and open a new one, while the insert menu pemits the user to insert a
new EI component on the current specification. The tool bar contains icons for
a quick access to the operations. There is also a specific icon that activates the
verification process. On the project structure pane the user can see all the elements
and sub-elements that belong to the current specification ordered by category. It



An Integrated Development Environment for Electronic Institutions 7

Project Structure Pane Menu Toolbar Graph Element Tab Graph Pane Toolbar

iyt xnl

File Insert View| Graph Help

BEEE IR RICIE
o F klectricity. mafket E ‘"DHHHl EE‘ .H;
GFf_orum,uutpuLs ene |

@ 2o halancing_mafket B electricity_market
@ Lo double_auctio '
W2
o
W1
w3
- W0 -3
34 43 -1
e

elnsititution

JERIE

x50 P x:DAMar
|4

new

e
@ 2o second_market
? fi dframework

5 sMmgr
) consumer
) generatar a
L DAMor e 5 =
5o —
i &
f& electricity_contr: Name:
£ withdraw roat
fo offer
{o accepr Scene type:
root_output_scene ﬂ
Starting the verification process ] List
Scene ‘second_market': Incomplete arc from state “W3{1o state ‘W4’
Scene ‘second_market Missing receiver in the arc from state "W2't
Endl of verification process 4
a
T il
Verification message Pane GraphEditor Pane Inspect Pane

FIGURE 1. Islander GUI

permits the user to navigate among them. When he changes the selection the
other panes are modified appropriately in order to show the information of the
selected element or sub-element. The graph editor pane supports the edition of the
graphical components of Els, namely the edition of the graphical component of
performative structures, dialogical frameworks and scenes. The user can edit the
different graphs and modify them using the mouse. The graph editor pane is used
for the creation and modification of the graph topology while the textual infor-
mation associated to the graph is introduced and modified using the inspect pane.
For instance, the graph pane is used for adding a new node to the graph but the
name of the node is introduced using the inspect pane. Furthermore, the inspect
pane is used for the specification of the rest of the elements of an EI. Finally, the
verification message pane at the bottom of the figure, is used for showing the er-
rors when the user activates the verification of the current specification. Moreover,
ISLANDER allows the user to move to the element containing the error by simply
selecting the error message text. When a user selects an error all the panes of the
application are modified in order to show the element containing the error. Once
an EI has been specified and verified, the user can export the institution to XML,
employed at further stages of the development cycle.



8 Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

(& DFramework |

Dialogic framework: DFramework.

sub)!’ I Specification = Description |
ssd

tradehge=: = supplier Nama:

DF k

subg, rarmewor

Ontology:

onto v
—J

Content Language:
PROLOG &

Illocutionary particles:
inform

FIGURE 2. Double Auction Dialogical Framework

Summarising, ISLANDER supports the specification of Els, facilitating the
designer’s work by combining graphical and textual specifications. Furthermore,
the verification process permits checking the correctness of the specifications. The
result of this stage is a sound, unambiguous and correct specification of the insti-
tutional rules. In the next subsections we present the specification of the double
auction market using ISLANDER.

4.1. Specifying the Double Auction Market

4.1.1. Dialogical Framework. Figure 2 depicts the specification of the Double Auc-
tion Market dialogical framework. Notice that there are four different roles, namely:
tradeM gr, trader, buyer and seller. They are specified graphically using the graph
editor pane. In order to differentiate between the internal and external roles, in-
ternal roles are displayed in yellow, while external roles are displayed in brown.
Hence, we can see that there is only one internal role (tradeM gr), whereas there
are three external roles (trader, buyer and seller). The tradeMgr role will be
played by a staff agent in charge of the brokering service and in charge of start-
ing and realising the double auctions. The rest of the roles will be played by the
external agents entering the institution for buying and selling commodities.

Furthermore, there are also some relationships among roles. On the one hand,
the tradeM gr and the trader roles are incompatible (denoted by the ssd relation
in figure 2) meaning that agents cannot play both roles within the institution. On
the other hand, the trader role subsumes (denoted by the sub relation in figure 2)
the buyer and seller roles, meaning that agents authorised to play the trader role
can also play the buyer and seller roles.



An Integrated Development Environment for Electronic Institutions 9

{ 22 doubleAuction l

FIGURE 3. Double Auction Performative Structure

Finally, the specification contains the definition of the rest of the elements
of a dialogical framework, namely: the ontology, the content language and the
illocutionary particles. Concretely, the specification defines that the institution
ontology is the D AOntology, that the content language is PROLOG and that the
illocutionary particles are inform, failure and request.

4.1.2. Performative structure. Figure 3 shows the specification of the performative
structure of the Double auction market as shown by ISLANDER. Its activities are
represented by the meetingRoom scene, where traders are matched by the trade
manager based on their interests in commodities, and the tradeRoom scene, where
a Double auction is run to rule the trading. Observe that trading agents switch
their role to either buyer or seller when moving from the meetingRoom to the
tradeRoom. Notice too that while there is a sole execution of the meetingRoom
scene, multiple executions of the tradeRoom scene may occur, being dynamically
created depending on trading agents’ interests. Finally, the root scene and the
output scene represent the institution’s entry and exit points.

4.1.3. Double Auction Scene. Figure 4 depicts the specification of the double auc-
tion scene where commodities are traded following a double auction protocol. In
this protocol agents playing the buyer and seller roles have some time to submit
their offers, which are matched later on to decide which transactions are done.
The first issue to address when specifying a scene is the definition of the
roles that can participate in it and size of their populations. In this scene can
participate agents playing the trade M gr, buyer and seller roles. The scene requires
the participation of exactly one agent playing the tradeM gr role, while there are
no constraints on the number of agents playing the buyer and seller roles (zero
is the default value for the Maz field for a role meaning that there is no limit on
the number of agents that can participate playing the role). We can also observe



10Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

[ £ double_auction_scene }

Scene type: double_auction_scene

| Specification ~ Properties = Description '

Name:

double_auction_scene

Role Participates Min Max

buyer ™ 0 0
tradeMgr ™ 1 1
saller = n n
Dialogic framework: Initial state:
DFramework L: W0 :}
Final states:

w2

FIGURE 4. Double Auction scene

that the dialogical framework, that will be used to construct the illocution schemes
labeling the arcs of the scene protocol, is the Double AuctionDF.

On the right part of the figure we can observe the specification of the scene
protocol introduced using the graph editor panel. The following labels are associ-
ated to the arcs:

1 inform(?s:seller, ?t:tradeMgr, offer(?offer))

2 inform(?b:buyer, ?t:tradeMgr, demand(?demand))
3 inform(?s:seller, ?t:tradeMgr, offer(?offer))

4 inform(?b:buyer, ?t:tradeMgr, demand(?demand))
5 [5000]

6 [5000]

7

inforn(?t:trade Mgr,all,performed_contracts(?contract))

The scene starts at its initial state w0 where buyers and sellers can start to
submit their offers, labels 1 and 2. Notice that after the first offer is made the
scene will evolve to state wl, where they can continue submitting offers, labels
3 and 4, until the timeout specified by label 5 expires making the scene evolve
to w3. Furthermore, the connection from w0 to w3 labeled also with a timeout
guarantees that the scene will not be blocked if there are no offers. Once at state
w3 the tradeM gr calculates the contracts matching buyers and sellers offers using
the rules of the double auction protocol. The scene concludes when the tradeM gr
announces the contracts, label 7, making the scene evolve to its final state w2.

Finally, in the figure it can be observed that buyer and seller agents can enter
the scene at states w0 and w1, while they can leave the scene at the states w0
and w2. Complementarily, the tradeM gr agents can enter the scene at w0 and
can leave it at w2.



An Integrated Development Environment for Electronic Institutions 11

5. Dynamic verification via SIMDEI

While ISLANDER permits the static verification of Els, their dynamic verification
is done via simulation. The purpose of the simulation is to study the dynamic be-
haviour and performance of the specified institution under different circumstances.
For instance, in the case of the double auction the institution designer could sim-
ulate the performance of the system with different populations of buyer and seller
agents.

Simulations of Els can be run by means of the SIMDEI simulation tool that
we have developed over REPAST !. Before running the simulation institution
designers must develop different type of agents playing the different institution
roles. This process is partially supported by the aBUILDER tool as explained in
the next section. It is a task of the institution designers to develop types of agents,
as similar as possible to the ones that will populate the institution when it will
be open to external agents. Once agents have been developed simulations can be
executed thanks to the SIMDEI simulation tool to conduct what-if analysis. The
institution designer is in charge of analyzing the results of the simulations and
return to the specification stage if they differ from the expected ones.

6. Agent development via aBUILDER

Once the institution has been specified and verified, it is time for designing the
agents. Notice that within an institution we distinguish between the internal roles
played by the staff agents and the external roles played by the external agents.
Since staff agents are those in which the institution delegates their services and
duties, they are necessary for the correct execution of the institution. Thus, it is
a task of institution designers to develop them. On the contrary, external agents
playing the external roles must be developed by the parties that they will represent.
At this point we want to remark that we do not impose restrictions on the type
of agents which can participate in the institution. Agent designers can choose the
language and architecture that is better to fulfill their goals as well as they can
use any software tools that facilitate their work. Therefore, it is not mandatory
for them to use the aBUILDER tool.

Agent development is partially supported by the aBUILDER tool. Notice
that an EI specification defines what agents can do within the institution but it
does not define how agents must take their decisions. For instance, the specification
of the double auction market defines how and when buyer and seller agents can
submit their offers on the double auction scene, but it is a decision of every agent to
decide which offers to submit. Of course, this will depend on each agent preferences
and on their decision making mechanisms, which are probably different for each
agent. Given an EI specification aBUILDER allows for defining agent skeletons

Lhttp://repast.sourceforge.net



12Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

iGYs)s) Abuilder $Revision: 1.12 § :project.xml §
File Edit Add Generate Help
= 7
Ooloca: | erass) = 7
v B DoubleAuction
v @ es Class package es.csic.iiia.doubleauction.trademgr
v @ csic -
v & iia Class name MainTask
¥ (@ doubleauction Task Properties.
v |
& supplier Name Required List Type Default value Add
% SupplierAgent
@ MainTask Remove |
@ BuyerTask Up
@ SellerTask Down

@@ MeetingRoomPerf

@ BuyerTradeRoomPerf

@ sellerTradeRoomPerf |,
¥ @ trademgr

Task Actions

% TradeMgragent Scene Location Action
B MainTask root ) exitedScene Go access scenes.[_rneetngoum]
meetingRoom enteredScene  Launch scene:MeetingRoomPerf
[& TradeTask meetingRoom exitedScene  Launch task TradeTask S
@@ MeetingRoomPerf
@@ TradeRoomPerf

A EiDoubleAuction ( moveup )

add )

p

remove )

( modify >

(_move down ',l

FIGURE 5. aBUILDER GUI

that must be later on completed by agent designers with the decision making
mechanisms.

The current version of the aBUILDER tool permits to define agents composed
by tasks and behaviours. On the one hand, tasks define general activities for an
agent and each one can involve the participation in different scenes. On the other
hand, a behaviour defines what an agent will do within a scene. In other words, a
behaviour defines which information an agent stores from the received messages,
and which utterances it utters. Therefore, the tasks determine how agents will
be moving among the performative structure scenes, while the behaviours define
what agents will do within the different scenes.

In order to specify a task an agent designer has to define what the agent has
to do when leaving and entering scenes. On the one hand, it has to be specified
which scene to join next or which task to launch when the agent leaves a scene.
On the other hand, it has to be specified which behaviour to launch when the
agent enters the scene. In order to know the different scenes and the rest of the
institutional rules, the a BUILDER tool is capable of loading Els specification as
generated by ISLANDER.

Figure 5 depicts the graphic user interface of the a BUILDER tool to design
agents for the Double Auction market. We can see on the left part the agents
being defined. Notice that the tool permits the definition of multiple agents at the
same time. In this case, two types of agents are defined, namely: trader Agent and



An Integrated Development Environment for Electronic Institutions 13

Agent
aBUILDER
NP
~ N\ N
A Participating
' Agents Layer
- J
¥ ) )
- N o
Institution §
Specification
ISLANDER (XML format) . AMELI
QW
o

Communication Layer '

FIGURE 6. Electronic institution architecture

tradeM gr Agent. We can also observe the tasks and behaviours defined for each of
them. For instance, for the tradeMgr two tasks (M ainTask and TradeTask), and
two behaviours (M eetingRoom Per f and TradeRoomPer f) are defined. When a
user selects any of them, its information is shown and can be modified on the right
part of the aBUILDER graphic user interface. Concretely, in figure 5 the informa-
tion shown on the right part correspond to the MainTask of the tradeM gr Agent,
which is the task that will be executed when it will enter in the institution. It can
be observed that three actions are defined within this task. The first one defines
that the agent will go to the meetingRoom scene when leaving the root scene.
The second one defines that the MeetingRoom Per f behaviour will be launched
when entering the MeetingRoom scene. Finally, the third one specify that the
TradeTask task will be launched when leaving the MeetingRoom scene.

Once all the tasks and behaviours have been specified the tool permits the
generation of code standing for agent skeletons for the different types of agents. In
the current version the code is generated in JAVA. The generated code is capable to
navigate through the institution performative structure and scenes, launching the
specified tasks and behaviours at the defined points. However, they must be filled
up with the decision making mechanisms before to send them to the institution.

Summarising, given an EI specification the aBUILDER tool supports the
definition of different types of agents and the generation of agent skeletons.

7. Execution and Analysis

7.1. Execution via AMELI

As depicted in figure 6, our architecture is composed of the following layers:



14Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

e Participating agent layer. The agents taking part in the institution.

e Social layer (AMELI). An infrastructure that mediates and facilitates agents’
interactions while enforcing the institutional rules.

e Communication layer. In charge of providing a reliable and orderly transport
service. The current implementation can either use JADE [1] or a publish-
subscribe event model as communication layer.

Notice that unlike approaches that allow agents to openly interact with their
peers via a communication layer, we advocate for the introduction of a social
layer (AMELI) which mediates agent interactions at run time. On the one hand,
AMELIprovides participating agents with information about the current execu-
tion. For instance, information about the participating agents within a scene exe-
cution. On the other hand, it enforces the institutional rules to the participating
agents. At this aim, AMELI keeps track of the execution state, and uses it along
with the institutional rules encoded in the specification to validate agents actions.

As we can observe in figure 6 AMFELI is composed of the following types of
agents:

o Institution Manager (IM). It is in charge of starting an EI, authorising agents
to enter the institution, as well as managing the creation of new scene exe-
cutions. It keeps information about all participants and all scene executions.
There is one institution manager per institution execution.

e Transition Manager (TM). It is in charge of managing a transition control-
ling agents’ movements towards scenes. There is one transition manager per
transition.

e Scene manager (SM). Responsible for governing a scene execution (one scene
manager per scene execution).

e Governor (G). Each one is devoted to mediating the participation of an agent
within the institution. There is one governor per participating agent.

Since external agents can only communicate with their governors, we can re-
gard AMELI as composed of two layers: a public layer, formed solely by governors;
and a private layer, formed by the rest of AMFELI agents, not directly accessible to
external agents. Furthermore, all these agents collaborate to guarantee the correct
evolution of an EI execuution.

Finally we want to outline the main features of our architecture:

e Domain independent AMFELI can be used for the deployment of any speci-
fied institution without any extra coding. For this purpose, agents compos-
ing AMFELI load institution specifications as XML documents generated by
ISLANDER. Thus, the implementation impact of introducing institutional
changes amounts to the loading of a new (XML-encoded) specification.

e Agent-architecture neutral Participating agents are only required to be ca-
pable of opening a communication channel with their governors.

e Scalable When employing JADE, the agents composing AMFELI can be read-
ily distributed among different machines



An Integrated Development Environment for Electronic Institutions 15

Simp
File Monitoring VYiew Help

P«

it narme: E Institution Type| Description | |
@'Ij root: root_output_scene A @@ cond: 34 conviName: tradeRaoorm tnn\rTvne double_auction_scene !
©- [ output: root_output_scene : framConyid: 23 toConvid: 34 agenthame: SupplyChainTrader agentRole: traceMar

@rrm

@ [@ mestingRoom: mesting_scene
© @ ic 5 state W1

[ ﬁlradeRuum double_auction_scene
Q- @ id 34: Finished

* SupphChainTradertradeMar comdd: 34 message: (inform {Metal [wChainTrader:tradeMgr) {nffer 1
-} MetalHarvester:seller 5
£ BIGWIre:buyer

3 ronM aking.sellr fromConet. 42 OConA =4 AgenamE FICHE] O buer 1
{ BIGMail: user S cun\fld 24 message: (mfurm (\runMakmg seller) IwhalnTradertradeMng 6

& @B ic 50: state initial ; comdd: 34 message: (inform (BIGNail buyer) (Supul\/(hamTraderIradEMgr) fdemand 650 10 [

@ [l oTradeRoom: OR-OR comdd: 34 message: (nror |

©- [ toOutputFromTradeRoom: OR-0R fromCond: 24 agenthame: MetalHarvester |

fromCordd: 24 agentiame: BIGWire !

- fromConvid: 24 agem‘l‘\iama S‘EI‘\EhainTrader 8

framCond: 36 tocomdd: 24 ageniame: Metallfarvesiar agentrole; seller
fromConwd: 28 toComdd: 34 agemName BICHire agentRole: buyer
fromConwid: 40 toConvid: 34 agentMame ImnMaklng agentRole: seller

i\.

@.

TRerormmed_cantracts [B.

4 )

T 7'5 fromConwid: 24 aééntName \rnmakmg
% fromConid: 34 agentiName: BIGNail
B condd: 34
At MESSAGE SAID FAILED
; convid: 34
1 : message; {inform (BICGWire:buyer) (SupplyChainTraderiradeMgr) {demand 0 18.0} )
reason: The message is undefined or doesn't satisfy all the constraints [11]

tStarnp: Thu Jan 08 18:52:05 CET 2004 (1073584225813)

[ Scene |
L

FIGURE 7. Double auction market monitoring

e Communication neutral Participating agents regard our architecture as com-
munication neutral since they are not affected by changes in the communi-
cation layer.

The execution of an EI starts with the creation of an Institution Manager.
Once up, the institution manager activates the initial and final scenes launching
a scene manager for them. Thereafter, external agents can begin submitting to
the institution manager their requests to join the institution. When an agent is
authorised to join the institution, it is connected to a governor and admitted
into the initial scene. From there on, agents can move around the different scene
executions or start new ones according to the EI specification and the current
execution state.

7.2. Execution Monitoring

An EI execution can be monitored thanks to the monitoring tool that depicts
graphically all the events occurring at run time. Fairness, trust and accountability
are the main motivations for the development of a monitoring tool that registers
all interactions in a given enactment of an electronic institution [15, 19]. Giving
accountability information to the participants increases their trust in the institu-
tion. This is specially important for electronic institutions where people delegate
their tasks to agents. Furthermore, the tool permits them to analyse their agent(s)
behaviour within the institution in order to improve it. From the point of view



16Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

of the institution designers, the tool is useful for testing the system and the staff
agents before making the institution available to external agents. Furthermore,
when the institution is running it can be used to detect unexpected situations and
fraudulent behaviours of external agents.

The monitoring tool displays all the interactions occurring in the different
scene and transition executions, along with agents’ movements among scenes. Fig-
ure 7 shows the monitoring of an execution of the Double Auction market. Frame
1 contains a list of the institution’s scenes and transitions along with their execu-
tions. The list includes a single execution of the meetingRoom scene (id 5) at state
W1. Furthermore, there are two different executions of the tradeRoom scene: one
ongoing execution (id 50 at the initial state), and a finished one (id 34). The figure
shows that while five agents (a trade manager —tradeMgr, two buyers, and two
sellers) have participated in scene execution 34, a single agent (a trade manager)
is waiting for buyers and sellers to join in scene execution 50. According to sec-
tion 7.1, there is a scene manager agent per ongoing scene execution (e.g. id 5, 50).
Besides, no scene manager agent is required any longer for scene execution 34 since
it is finished. Furthermore, there is one transition manager agent per transition.
Frame 2 depicts the events occurring during scene execution 34: agents’ entrance
(e.g. label 4), the utterance of valid (e.g. label 6) and wrong (e.g. label 5) illocu-
tions, transitions caused by timeouts (e.g. label 7), agents’ exit (e.g. label 8). We
must remind the reader that the coordinated activity of the scene manager of the
scene execution and the participating agents’ governors guarantee that all these
events abide by the scene specification. To illustrate the control of AMFELI agents,
frame 3 visualises an illocution rejected because a constraint in the specification
is violated when buyer BIG Wire attempts at submitting a demand of 0 units at
18 EUR. Since the scene manager evaluates the illocution as not valid, BIG Wire
is informed by its governor about the failed action.

Finally we wan to remark that the tool also allows for the monitoring of the
participation of an agent within the institution. In this case, it shows the scenes
in which the agent has taken part, along with the messages that it has exchanged.

8. Related Work

Recently, a number of MAS methodologies —e.g. GAIA [26], Tropos [9], or [23]
to name a few— have been proposed. Most MAS methodologies are based on
strong agent-oriented foundations, however, while offering original contributions
at the design level, they tend to be unsatisfactory on a development level be-
cause of the lack of support to their design and implementation. Furthermore,
most MAS methodologies are agent-centered rather than community or socially-
centered, hence focus more on the internal aspects of agent functionality than on
the interaction aspects.



An Integrated Development Environment for Electronic Institutions 17

There are some agent infrastructures such as DARPA COABS [3] and FIPA
compliant platforms such as JADE [1] that deal with many issues that are es-
sential for open agent interactions —communication, identification, synchroniza-
tion, matchmaking— that can be used as building blocks for the development of
open multi-agent systems. These building blocks are arguably too distant from
organisation-centered patterns or social structures.

A different —and interesting— approach to a unified MAS development
framework are the protocol-centered approaches. The proposal by Hanachi [2] al-
lows for specifications of interaction protocols that need to be subsequently com-
piled into a sort of executable protocol brokers called moderators. In Tropos, the
specifications are transformed into agent skeletons that must be extended with
code, similar to the aBUILDER tool presented here. However, at execution time
there is no mechanism to ensure that agents follow the specification of the system.

Although some proposals agree on the need of adopting a social stance, as
far as we can tell the formal definition of organization-centered patterns and social
structures in general, along with their computational realization, remain largely
undeveloped (as noted in [26]).

In addition to these infrastructures and methodologies just mentioned, some
agent research has focused on the introduction of social concepts such as organiza-
tions (e.g. [18],[5]),or institutions (e.g. [25]), [14], [13]). Nonetheless, to the best of
our knowledge there are no tools supporting their computational realization, nor
a proper engineering methodology directly associated with them.

A promising line of work is the one adopted by Omicini and Castelfranchi
(e.g. [17]). It postulates some significant similarities with our EI approach: focus
on the social aspects of the interactions, a unified metaphor that prevails along
the development cycle, and the construction of tools to implement methodological
ideas. They discuss coordination artifacts and propose to develop them as devices
to wrap agents so that their interactions in a given MAS are subject to that
MAS protocol and keep an accurate picture of the interaction context?. While
their proposal mentions other conceptual design levels —and, consequently, other
devices— the actual development of the methodology and the associated tools
appears to be still rather tentative.

Finally, we believe that the most similar approach to ours is the one taken in
[24], where the authors take a declarative stance to specify both Els and their par-
ticipating agents. Thus, Vasconcelos et al. propose a declarative means to represent
EIs whereby they can carry out automatic checks for desirable properties. They
also show how to exploit an EI specification to synthesise agents that conform to
the specification.

2These coordination artifacts are essentially what we call governors.



18Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

9. Conclusions

In this chapter we have presented a technology that we have developed to address
the challenges of building open multi-agent systems. We do not claim to be deal-
ing with open systems in their full complexity, but rather addressing a restricted
—albeit significant enough— type of openness: that present in interactions that
involve autonomous, independent entities that are willing to conform to a com-
mon, explicit, set of interaction conventions. We will call these a-open systems>.
We argue that this type of multi-agent systems can be effectively designed and
developed as electronic institutions. Similarly, to human institutions in human so-
cieties, Els define the rules of the game in agent societies, establishing what agents
are permitted and forbidden to do. In other word, an EI structures the valid in-
teractions that agents may have as well as defining the consequences of those
interactions. Therefore, an EI defines a normative environment that constraints
agents interactions at run time.

In order to cope with the complexity of engineering Els, we early identified
the importance of developing software tools which give support to their design,
development and subsequent execution. Therefore, through this paper we have
presented an Electronic Institutions Integrated Development Environment (EIDE)
that supports the engineering of Els. Through the paper we have presented the
different tools that compose EIDE, and we have illustrated how they work us-
ing as an example the Double Auction Market. Notice, that we advocate that
Els engineering must start with a formal specification of the institutional rules
supported by ISLANDER. The result is a sound and unambiguos definition of
the institutional rules. Furthermore, ISLANDER also supports the static verifi-
cation of specifications, while dynamic verification is done via simulation using
the SIMDEI tool. Although, we do not impose constraints on the type of agents
that can partcipate in an EI, their design and development is partially suppported
by the aBUILDER tool. Finally, Els can be executed thanks to AMFELI, which
facilitates agent participation within an EI, while enforcing the institutional rules.
A main feature of AMFELI is that it can be used for the execution of any specified
instituion without any extra coding. Furthermore, EI executions can be monitored
using the monitoring tool. To conclude, we want to point out that EIDE has proven
to be highly valuable in the development of actual-world e-commerce applications
such as the Multi-Agent System for Fish Trading (MASFIT) [4].

For further information and software downloads, the interested reader should
refer to http://e-institutions.iiia.csic.es.

10. Acknowledgements

Marc Esteva enjoys a Fulbright/ MECD postdoctoral scholarship FU2003-0569.
The research reported in this paper is partially supported by the Spanish CICYT

3Openness is limited by the dscription to the conventions.



An Integrated Development Environment for Electronic Institutions 19

project Web-i (2) (TIC-2003-08763-C02-01). The authors would like to thank the
IITA Technological Development Unit’s programmers for their valuable contribu-
tion to the development of EIDE.

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with jade.
In C. Castelfranchi and Y. Lesperance, editors, Intelligent Agents VII, number 1571
in Lecture Notes in Artificial Intelligence, pages 89—103. Springer-Verlag, 2001.

[2] C. Sibertin-Blanc C. Hanachi. Protocol moderators as active middle-agents in multi-
agent systems. Journal of Autonomous Agents and Multiagent Systems, 8(2), March
2004.

[3] Control of agent-based systems. http://coabs.globalinfotek.com.

[4] Guifré Cuni, Marc Esteva, Pere Garcia, Eloi Puertas, Carles Sierra, and Teresa
Solchaga. Masfit: Multi-agent systems for fish trading. In 16th European Conference
on Artificial Intelligence (ECAI 2004), Valencia, Spain, August 2004.

[5] V. Dignum. A Model for Organizational Interaction. PhD thesis, Dutch Research
School for Information and Knowledge Systems, 2004. ISBN 90-393-3568-0.

[6] M. Esteva. Electronic Institutions: from specification to development. PhD thesis,
Universitat Politecnica de Catalunya (UPC), 2003. IIIA monography Vol. 19.

[7] M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor.
In Proceedings of AAMAS 2002, pages 1045-1052, 2002.

[8] Daniel Friedman and John Rust, editors. The Double Auction Market: Institutions,
Theories, and Evidence. Addison-Wesley Publishing Company, 1991. Proceedings of
the Workshop on Double Auction Markets held June, 1991, Santa Fe, New Mexico.

[9] F. Giunchiglia, J. Mylopoulos, and A. Perini. The tropos software development
methodology: Processes. Technical Report 0111-20, ITC-IRST, November 2001.

[10] C. Hewitt. Offices are open systems. ACM Transactions of Office Automation Sys-
tems, 4(3):271-287, 1986.

[11] Carlos A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of agent-oriented method-
ologies. In J. P. Muller, M. Singh, and A. S. Rao, editors, Intelligent Agents V,
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.

[12] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Autonomous Agents and Multi-agent Systems, 1:275-306,
1998.

[13] Ismail Khalil-Tbrahim, Gabriele Kotsis, and Wieland Schwinger. Mapping abstrac-
tions of norms in electronic institutions. In Twelfth International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pages 30-35, Linz,
Austria, June 2003.

[14] Henrique Lopes-Cardoso and Eugénio Oliveira. Virtual enterprise normative frame-
work within electronic institutions. In 5th International Workshop on Engineering
Societies in the Agents World, Toulouse, October 2004.

[15] Pablo Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. Number 8 in
ITTA Phd Monograph. 1997.



20Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

[16] D. North. Institutions, Institutional Change and Economics Perfomance. Cambridge
U. P., 1990.

[17] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In Third International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’04), pages 286-293, New York, USA, July 19-23 2004.

[18] H. Parunak and J. Odell. Representing social structures in uml. In Agent-Oriented
Software Engineering II. LNCS 2222, pages 1-16. Springer-verlag edition, 2002.

[19] Juan A. Rodriguez-Aguilar. On the Design and Construction of Agent-mediated Elec-
tronic Institutions. PhD thesis, Universitat Autonoma de Barcelona, 2001. Also as
ITTA Monograph N. 14.

[20] Juan A. Rodriguez-Aguilar, Pablo Noriega, Carles Sierra, and Julian Padget. Fm96.5
a java-based electronic auction house. In Second International Conference on The
Practical Application of Intelligent Agents and Multi-Agent Technology(PAAM’97),
pages 207-224, 1997.

[21] W. R. Scott. Organizations: Rational, Natural, and Open Systems. Englewood Cliffs,
NJ, Prentice Hall, 1992.

[22] J. R. Searle. Speech acts. Cambridge U.P., 1969.

[23] A. Sturm, D. Dori, and O. Shehory. Single-model mehtod for specifying multi-agent
systems. In Proceedings of AAMAS 03, pages 121-128, Melbourne, Australia, 2003.

[24] W. W. Vasconcelos, D. Robertson, C. Sierra, J Esteva, M. Sabater, and Wooldridge
M. Rapid prototyping of large multi-agent systems through logic programming. An-
nals of Mathematics and Artifical Intelligence, 41:153-169, 2004.

[25] Javier Vézquez-Salceda. The Role of Norms and Electronic Institutions in Multi-
Agent Systems. Whitestein Series in Software Agent Technology. Birkhduser Verlag
AG, Switzerland, 2004.

[26] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems: The
gaia methodology. ACM Transactions on Software Engineering and Methodology,
12(3):317-370, 2003.

Information about Software
Software is available on the Internet as

(X) prototype version

() full fledged software (freeware), version no.:
() full fledged software (for money), version no.:
() Demo/trial version

() not (yet) available

Internet address: http://e-institutions.iiia.csic.es
Description of software:

The electronic institutions development environment (EIDE) is a set of tools
aimed at supporting the engineering of intelligent distributed applications as elec-
tronic institutions. Software agents appear as the key enabler technology behind



An Integrated Development Environment for Electronic Institutions 21

the electronic institutions vision. Thus, electronic institutions encapsulate the co-
ordination mechanisms that mediate the interactions among software agents repre-
senting different business parties. The EIDE allows for engineering both electronic
institutions and their participating software agents. Notably, the EIDE moves away
from machine-oriented views of programming toward organizational-inspired con-
cepts that more closely reflect the way in which we may understand distributed
applications. It supports a top-down engineering approach: firstly the organization,
secondly the individuals. The EIDE is composed of:

ISLANDER.: A graphical tool that supports the specification of the rules and
protocols in an electronic institution.

AMELL.: Software platform to run electronic institutions. Once an electronic
institution is specified with ISLANDER is ready to be run by AMELI without
any programming.

aBUILDER.: Agent development tool.

SIMDEI.: Simulation tool to animate and analyze specifications created with
ISLANDER prior to the deployment stage.

Download address: http://e-institutions.iiia.csic.es
Contact point for question about the software:
email: eide@iiia.csic.es

Josep Arcos

Artificial Intelligence Research Institute, IITA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.

Voice: +34 93 580 95 70 Fax: +34 580 96 61
e-mail: arcos@iiia.csic.es

Marc Esteva

(uiuc) Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign

501 E. Daniel Street, Champaign, IL 61820

Voice: +1 217 265 0235 Fax: +1 217 244 3302

e-mail: esteva@uiuc.edu

Pablo Noriega

Artificial Intelligence Research Institute, IITA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.

Voice: 434 93 580 95 70 Fax: +34 580 96 61

e-mail: pablo@iiia.csic.es

Juan Rodriguez

Artificial Intelligence Research Institute, IITA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.

Voice: 434 93 580 95 70 Fax: +34 580 96 61

e-mail: jar@iiia.csic.es



22Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez and Carles Sierra

Carles Sierra

Artificial Intelligence Research Institute, IITA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.

Voice: 434 93 580 95 70 Fax: +34 580 96 61
e-mail: sierra@iiia.csic.es



