
Norm Consistency in Electronic Institutions

M. Esteva1, W. Vasconcelos2, C. Sierra1, J. A. Rodŕıguez-Aguilar1

1 Institut d’Investigació en Intel·ligència Artificial
CSIC, Campus UAB

08193 Bellaterra, Spain
{marc, sierra, jar}@iiia.csic.es

2 Department of Computing Science
University of Aberdeen

AB24 3UE, Aberdeen, United Kingdom
wvasconc@csd.abdn.ac.uk

Abstract. Electronic institutions are a formalism to define and analyse
protocols among agents with a view to achieving global and individ-
ual goals. In this paper we elaborate on the verification of properties
of electronic institutions based on the dialogues that agents may hold.
Specifically, we provide a computational approach to assess whether an
electronic institution is normatively consistent. In this manner, given an
electronic institution we can determine whether its norms prevent norm-
compliant executions from happening. For this we strongly rely on the
analysis of the dialogues that may occur as agents interact by exchanging
illocutions in an electronic institution.

1 Introduction

An important aspect in the design of heterogeneous multiagent systems concerns
the norms that should constrain and influence the behaviour of its individual
components [1–3]. Electronic institutions have been proposed as a formalism
to define and analyse protocols among agents with a view to achieving global
and individual goals [4, 5]. In this paper we propose a definition for norms and a
means of assessing whether an electronic institution is normatively consistent. In
other words, given an electronic institution specification, we want to determine
whether its norms prevent norm-compliant executions from taking place.

Norms are a central component of electronic institutions. As such, it is funda-
mental to guarantee that they are not wrongly specified, leading to unexpected
executions of electronic institutions, and that an electronic institution indeed
complies with its norms. For this purpose we strongly rely on the analysis of
the dialogues that may occur as agents interact by exchanging illocutions in an
electronic institution. Since the execution of an electronic institution can be re-
garded as a multi-agent dialogue, we can analyse such dialogue to assess whether
it abides by the institutional norms. Hence, execution models of electronic insti-
tutions can be obtained as dialogue models. Thus, our approach can be regarded
as a model checking process based on the construction of models for the enact-
ment of electronic institutions. Hereafter, the purpose of the verification process
is to evaluate whether such models satisfy the institutional norms.

In the next section we define the components of an electronic institution. In
the ensuing section we introduce a precise definition of norms and subsequently
show how they can be verified. Finally we present our conclusions, compare our
research with related work and give directions for future work.

2 Electronic Institutions

In general terms, electronic institutions (EIs) structure agent interactions, es-
tablishing what agents are permitted and forbidden to do as well as the con-
sequences of their actions. Next, we put forth definitions of the components of



an EI – these are more thoroughly described in [6]. We assume in this paper
the existence of a finite and non-empty set Ag = {ag1, . . . , agn} of unique agent
identifiers ag i 6= agj , i 6= j, 1 ≤ i, j ≤ n.

2.1 Dialogic Frameworks and Dialogues

In the most general case, each agent immersed in a multi-agent environment
is endowed with its own inner language and ontology. In order to allow agents
to interact with other agents we must address the fundamental issue of putting
their languages and ontologies in relation. For this purpose, we propose that
agents share, when communicating, what we call the dialogic framework that
contains the elements for the construction of the agent communication language
expressions. Furthermore the dialogic framework also defines the roles that par-
ticipating agents can play.
Definition 1. A dialogic framework is a tuple DF = 〈O,LO, P,R〉 where O stands for
an ontology (vocabulary); LO stands for a content language to express the information
exchanged between agents using ontology O; P is the set of illocutionary particles; and
R is the set of internal roles.
Within a dialogic framework the content language allows for the encoding of the
knowledge to be exchanged among agents using the vocabulary offered by the
ontology. The expressions of the agent communication language are defined as
below:
Definition 2. The language LDF of a dialogic framework DF = 〈O,LO, P,R〉 is the
set of expressions ι(ag , r, ag ′, r′, p, t) such that ι ∈ P ; ag, ag′ ∈ Ag, the set of agent
identifiers; r, r′ ∈ R; p ∈ LO a variable-free expression of LO; t ∈ IN is a time tag.

That is, the language of a dialogic framework is the collection of all the grounded,
variable-free expressions that agents employing the dialogic framework may ex-
change. Intuitively, ι(ag , r, ag ′, r′, p, t) denotes that agent ag incorporating role
r sent to agent ag ′ incorporating role r′ contents p at instant t.

We also need to refer to expressions which may contain variables. We provide
the following definition with this aim:
Definition 3. The pattern language L∗DF of a dialogic framework DF = 〈O,LO, P,R〉
is the set of expressions ι(ag∗, r∗, ag ′∗, r′∗, p∗, t∗) such that ι ∈ P ; ag∗, ag ′∗ are agent
variables or agent identifiers from the set Ag; r∗, r′∗ are role variables or role identifiers
in R; p∗ ∈ LO is an expression which may contain variables; and t∗ is either a time
variable or a value in IN .

Henceforth we shall refer to LDF expressions as illocutions, represented generi-
cally as i, and to L∗DF expressions as illocution schemes, represented generically
as i∗. It follows from the definitions above that LDF ⊆ L∗DF .

Although a dialogic framework defines a set of illocutions that agents may
exchange, we consider that agents, as human beings, engage in conversations.
Conversations structure agents’ interactions, by imposing an order on the illo-
cutions exchange and represent the context where exchanged illocutions must
be interpreted. As a conversation evolves, a dialogue, an ordered sequence of all
illocutions exchanged among agents, is generated.

Dialogues represent the history of conversations and the analysis of the prop-
erties of a conversation can be conducted on the basis of its dialogues. We hence
formally introduce the notion of dialogue as a core element upon which we carry
out the analysis of conversations and, ultimately, of dialogic institutions:
Definition 4. Given a dialogic framework DF and its language LDF , we define a
dialogue over LDF as any non-empty, finite sequence 〈i1, . . . , in〉 such that ii = ιi(ag i,
ri, ag

′

i, r
′

i, pi, ti) ∈ LDF , 1 ≤ i ≤ n, and ti ≤ tj , 1 ≤ i ≤ j ≤ n.



From the definition above we obtain all the possible dialogues that a group of
agents using a dialogic framework may have. We next define the set of all possible
dialogues of a dialogic framework:
Definition 5. Given a dialogic framework DF , we define the dialogue set over LDF ,
noted as DDF , as the set containing all possible dialogues over LDF .

Clearly, the set DDF of all possible dialogues is infinite, even though the com-
ponents of the corresponding dialogic framework DF are finite – the very same
illocution can be uttered an infinite number of times with different time stamps.

A single dialogue solely contains only grounded illocutions. If we consider in-
stead a sequence of illocution schemes i∗, the very same sequence may produce
multiple dialogues as values are bound to the free variables in the illocution
schemes. Therefore, we can employ a sequence of illocution schemes for repre-
senting a whole set of dialogues that may occur. And thus, we can think of
undertaking the analysis of a set of dialogues from the sequence of illocution
schemes that generates them.

Definition 6. Given a dialogic framework DF and its pattern language L∗

DF , we de-
fine a dialogue scheme over L∗DF as any non-empty, finite sequence 〈i∗1, . . . , i

∗

n〉 such
that i∗i ∈ L

∗

DF , 1 ≤ i ≤ n.

In order to relate dialogue schemes and dialogues we rely on the concept of
substitution, that is, the set of values for variables in a computation [7, 8]:

Definition 7. A substitution σ = {x0/T0, . . . , xn/Tn} is a finite and possibly empty
set of pairs xi/Ti, xi being a first-order variable and Ti an arbitrary first-order term.

A dialogue scheme and a dialogue are thus related:

Definition 8. Given a dialogic framework DF , we say that a dialogue scheme 〈i∗1, . . . , i
∗

n〉 ∈
L∗DF is a scheme of a dialogue 〈i1, . . . , in〉 ∈ LDF iff there is a substitution σ that when
applied to 〈i∗1, . . . , i

∗

n〉 yields (or unifies with) 〈i1, . . . , in〉, that is, 〈i
∗

1, . . . , i
∗

n〉 · σ =
〈i1, . . . , in〉.

The application of a substitution to a dialogue scheme 〈i∗1, . . . , i
∗
n〉 · σ is defined

as the application of the substitution σ to each i∗i , that is, 〈i
∗
1, . . . , i

∗
n〉 ·σ = 〈i∗1 ·σ,

. . . , i∗n ·σ〉. The application of a substitution to i∗i follows the usual definition [8]:

1. c · σ = c for a constant c.
2. [ι(ag∗, r∗, ag ′∗, r′∗, p∗, t∗)] · σ = ι(ag∗ · σ, r∗ · σ, ag ′∗ · σ, r′∗ · σ, p∗ · σ, t∗ · σ).
3. x · σ = T · σ for a variable x such that x/T ∈ σ; if x/T 6∈ σ then x · σ = x.

The first case defines the application of a substitution to a constant c. Case 2
describes the application of a substitution to a generic illocution scheme i∗ =
ι(ag∗, r∗, ag ′∗, r′∗, p∗, t∗): the result is the application of σ to each component of
the scheme. Case 3 describes the application of σ to a generic variable x: the
result is the application of σ to the term T to which x is associated (if x/T ∈ σ)
or x itself if x is not associated to terms in σ.

2.2 Scenes

Within the framework of an electronic institution, agent conversations are ar-
ticulated through agent group meetings, called scenes, that follow well-defined
interaction protocols. In other words, not all sequences in DDF make sense, so
some structure upon dialogues seems unavoidable.

A scene protocol is specified by a directed graph whose nodes represent the
different states of a dialogic interaction among roles. From the set of states we



differentiate an initial state (non reachable once left) and a set of final states
representing the different dialogue ends. In order to capture that final states
represent the end of a dialogue they do not have outgoing arcs. The arcs of the
graph are labelled with illocution schemes (whose sender, receiver, content, and
time tag may contain variables). We formally define scenes as follows:

Definition 9. A scene is a tuple S = 〈R,DF,W,w0,Wf , Θ, λ,min,Max 〉 where R is
the set of scene roles; DF is a dialogic framework; W is the set of scene states; w0 ∈W
is the initial state; Wf ⊆ W is the set of final states; Θ ⊆ W ×W is a set of directed
edges; λ : Θ −→ L∗DF is a labelling function, which maps each edge to an illocution
scheme in the pattern language of the DF dialogic framework; min,Max : R −→ IN
min(r) and Max(r) return the minimum and maximum number of agents that must
and can play role r ∈ R.

We formally define the dialogue schemes of a scene:

Definition 10. The dialogue schemes D∗

S of a scene S = 〈R,DF,W,w0,Wf , Θ, λ,
min,Max〉, is the set of sequences 〈(s∗, w2, λ(w1, w2)), . . . , (s

∗, wn, λ(wn−1, wn))〉, where
s∗ is the identifier for scene S or a variable, and w1 = w0, and wn ∈Wf .

The dialogue schemes of a scene are the sequence of labels λ(w,w′) of all paths
connecting its initial state w0 to a final state wn ∈ Wf . The s and w’s are
required to precisely identify the context in which an illocution was uttered –
this is essential to our notion of norms, as we shall see below.

The dialogue schemes of a scene allow us to obtain all the concrete dialogues
accepted by the scene via appropriate substitutions assigning values to all vari-
ables of the illocutions. We define the set of all (concrete) dialogues of a scene
as follows:

Definition 11. The dialogues DS of a scene S = 〈R,DF,W,w0,Wf , Θ, λ,min,Max〉,
is the set of sequences 〈(s∗, w2, λ(w1, w2)), . . . , (s

∗, wn, λ(wn−1, wn))〉 ·σ, where s is the
identifier for scene S, w1 = w0, and wn ∈Wf , and σ is a substitution providing values
to all variables of the illocution schemes λ(w,w′).

The dialogues accepted by a scene are the ground versions of its dialogue schemes,
that is, the sequence of labels of a path through the scene with all variables re-
placed with constants. Given a dialogue scheme we can derive infinite ground
versions of it – however, as we shall see below, we provide means to express con-
straints on the values that the illocutions’ variables may have. Extra constraints
limit the number of possible applicable substitutions and, hence, concrete dia-
logues.

2.3 Performative Structures

While a scene models a particular multi-agent dialogic activity, more complex
activities can be specified by establishing networks of scenes (activities), the so-
called performative structures. These define how agents can legally move among
different scenes (from activity to activity). Agents within a performative struc-
ture can participate concurrently in different scenes.

Definition 12. Performative structures are recursively defined as:

– A scene S is a performative structure.
– If PS1 and PS2 are performative structures, PS1.PS2 is a performative structure,
where PS1.PS2 means that the execution of PS1 is followed by the execution of
PS2.



– If PS1 and PS2 are performative structures, PS1|PS2 is a performative structure,
where PS1|PS2 stands for the interleaved execution of PS1 and PS2.

– If PS is a performative structure, PSn is a performative structure, where PSn

stands for n executions of PS, where n ∈ IN, n ≥ 0.

A performative structure defines all the dialogues that agents may have within
an electronic institution, by fixing the scenes in which agents can be engaged and
how agents can move among them. Notice that the execution of a performative
structure must be regarded as the execution of its different scenes. Moreover,
executions of different scenes can occur concurrently.

We can define the dialogues accepted by performative structure PS, denoted
by DPS using the definition of performative structures above. For that we must
define the operator ⊕ : DPS1

×DPS2
→ DPS1|PS2

that given two input dialogues
dPS1

and dPS2
merges their illocutions taking into account their time stamps.

More formally, given dialogues d1 = 〈i11, . . . , i
1
n〉 and d2 = 〈i21, . . . , i

2
m〉, d1 ⊕ d2 =

〈i1, . . . , in+m〉, where ii = i1j or ii = i2k, for some j, k, 1 ≤ j ≤ n, 1 ≤ k ≤.
Furthermore, for any two illocutions ii = ιi(ag i, ri, ag

′
i, r

′
i, pi, ti) and il = ιl(ag l,

rl, ag
′
l, r

′
l, pl, tl), such that 1 ≤ i ≤ l ≤ n +m, then ti ≤ tl. The concatenation

operator “◦” over sequences is defined in the usual fashion.
We can now define the dialogues accepted by each performative structure.

Definition 13. The dialogues DPS of a performative structure PS are thus obtained:

– If PS = S, i.e., a scene, then DPS = DS as in Def. 11.
– If PS = PS1.PS2 then DPS = {dPS1

◦ dPS2
|dPS1

∈ DPS1
, dPS2

∈ DPS2
}.

– If PS = PS1|PS2 then DPS = {dPS1
⊕ dPS2

|dPS1
∈ DPS1

, dPS2
∈ DPS2

}.
– If PS is of the form PSn then DPS = {d0 ◦ . . . ◦ dn|di ∈ DPS , 0 ≤ i ≤ n}.

3 Norms in Electronic Institutions

Agents’ actions within scenes may have consequences that either limit or enlarge
their future acting possibilities. Some actions may create commitments for fu-
ture actions, interpreted as obligations, and some actions can have consequences
that modify the valid illocutions or the paths that a scene evolution can follow.
These consequences are captured by a special type of rules called norms which
contain the actions that will activate them and their consequences. Notice that
we are considering dialogic institutions, and the only actions we consider are the
utterance of illocutions. In order to express actions within norms and obligations
we set out two predicates:

– uttered(s, w, i∗) denoting that a grounded illocution unifying with the illo-
cution scheme i∗ has been uttered at state w of scene S identified by s.

– uttered(s, i∗) denoting that a grounded illocution unifying with the illocution
scheme i∗ has been uttered at some state of scene S identified by s.

Therefore, we can refer to the utterance of an illocution within a scene or when
a scene execution is at a concrete state.

3.1 Boolean Expressions

In some cases the activation of a norm will depend on the values bound to the
variables in the illocution schemes and on the context of the scene (the previous
bindings) where the illocution is uttered. With this aim, we incorporate boolean



functions over illocution schemes’ variables as antecedents and consequents of
norms.

The expressions over illocution schemes variables have the following syntax:
ei op ej ; where ei and ej are expressions of the appropriate type. The types of
variables must be of any basic type: string, numeric and boolean, a type defined
in the ontology, or a multi-set of them. We are currently using this reduced set
of operators:

– <,≤,≥, >: numeric× numeric→ boolean
– ∨ : boolean× boolean→ boolean
– =, 6=: α=×α= → boolean where α represents a basic type or any type defined

in the ontology.
– ∈, /∈: α= × α= multiset → boolean, where α represents a basic type or any

type defined in the ontology that may have equality.
– ⊂,⊆: α= multiset×α= multiset→ boolean, where α represents a basic type

of any type defined in the ontology.

Notice that illocutions are tagged with the time at which the illocution is ut-
tered. We consider such tags as numeric, and so, we can apply to them the
same operations as to numeric expressions. Hence, order among the utterance of
illocutions can be expressed via numeric operators over them.

Moreover, when a scene is executed we keep all the bindings produced by
the uttered illocutions. Therefore, we can make reference to the last one or to a
set of bindings for a giving variable(s) and use this in the expressions mentioned
above. Concretely, we can apply the following prefix operators to obtain previous
bindings:

– !x: stands for the last binding of variable x.
– !kwiwj

x: stands for the multi-set of all the bindings of variable x in the k last

subdialogues between wi and wj . !
1
wiwj

x is noted as !wiwj
x for simplicity.

– !∗wiwj
x: stands for the multiset of the bindings of variable x in all subdialogues

between wi and wj .
– !kwiwj

x (cond): stands for the multi-set of all the bindings of variable x in the
k last sub-dialogues between wi and wj such that the substitution σ where
the binding appears satisfies the cond condition.

3.2 Integrity Norms and Obligations

We now put forth formal definitions for two types of norms in electronic institu-
tions, the integrity norms and obligations. In both definitions below we can also
have uttered(s, i∗) subformulae.

Definition 14. Integrity norms are first-order formulae of the form
“

Vn

i=1
uttered(si, wki

, ili) ∧
Vm

j=0
ej

”

→ ⊥

where si are scene identifiers, wki
is a state ki of scene si, ili is an illocution scheme

li of scene si and ej are boolean expressions over variables from the illocution schemes
ili .

Integrity norms define sets of actions that must not occur within an institu-
tion. The meaning of these norms is that if grounded illocutions matching the
illocution schemes il1 , . . . , iln are uttered in the corresponding scene states, and
expressions e1, . . . , em are satisfied, then a violation occurs (⊥).



Definition 15. Obligations are first-order formulae of the form
“

Vn

i=1
uttered(si, wki

, i∗li) ∧
Vm

j=0
ej

”

→
“

Vn′

i=1
uttered(s′i, w

′

ki
, i′∗li ) ∧

Vm′

j=0
e′j

”

where si, s
′

i are scene identifiers, wki
, w′

ki
are states of si and s

′

i respectively, i
∗

li
, i′∗li are

illocution schemes li of scenes si and s
′

i respectively, and ej , e
′

j are boolean expressions
over variables from the illocution schemes i∗li and i′∗li , respectively.

The intuitive meaning of obligations is that if grounded illocutions matching
i∗l1 , . . . , i

∗
ln

are uttered in the corresponding scene states, and the expressions
e1, . . . , em are satisfied, then, grounded illocutions matching i′∗l1 , . . . , i

′∗
l′n

satisfying

the expressions e′1, . . . , e
′
m′ must be uttered in the corresponding scene states.

Obligations assume a temporal ordering: the left-hand side illocutions must
have time stamps which precede those of right-hand side illocutions. Rather than
requiring that engineers manually encode such restrictions, we can automatically
add them – given our definition above, we can add the extra boolean expressions
t∗ ≥ t∗i , 1 ≤ i ≤ n, t′∗ ≤ t′∗j , 1 ≤ j ≤ n′, t∗ < t′∗ to our obligations, where t∗, t∗i
and t′∗, t′∗j are the time stamps of, respectively, i∗i and i′∗j , t∗ being the greatest
value of time stamp on the left-hand side illocutions (that is, the time stamp of
the latest illocution) and t′∗ the lowest value of time stamp on the right-hand
side illocutions (that is, the time stamp of the earliest illocution).

3.3 Semantics of Norms

In order to define the semantics of our norms and obligations we need first to
define the meaning of the predicates uttered(s, w, i∗) and uttered(s, i∗). We shall
employ a function K : i∗×D×σ 7→ {true, false}, that maps illocution schemes,
dialogues and substitutions to true and false1.

Definition 16. The semantics of u = uttered(s, w, i∗) or u = uttered(s, i) wrt a set of
dialogues D and a substitution σ, K(u,D, σ) 7→ {true, false}, is:

1. K(uttered(s, w, i∗),D, σ) = true iff there is a dialogue 〈(s, w1, i
∗

1), . . . , (s, wn, i
∗

n))〉·
σ ∈ D with (s, wi, i

∗

i ) = (s, w, i∗), for some i, 1 ≤ i ≤ n.
2. K(uttered(s, w, i∗),D, σ) = true iff there is a dialogue 〈(s, w1, i

∗

1), . . . , (s, wn, i
∗

n))〉·
σ ∈ D with (s, wi, i

∗

i ) = (s, wi, i
∗), for some i, 1 ≤ i ≤ n.

Our predicates are true if there is at least one dialogue 〈(s, w1, i
∗
1), . . . , (s, wn, i

∗
n))〉·

σ in D with an element (s, wi, i
∗
i ) (an illocution of the dialogue without its sub-

stitution σ applied to it) in it that is syntactically equal to (s, w, i∗). In the case
of uttered(s, i∗) we do not care what the value of w is.

In the definition above, we can understand σ as parameter whose value is
determined, confirmed or completed by the function. The substitution σ plays
an essential role in finding the truth value of our boolean expressions.

We also need to define a semantic mapping for our boolean expressions e
over illocution scheme variables. We shall use the same K function introduced
above, extending it to cope with expressions e as introduced previously.

Definition 17. The semantics of a boolean expression e wrt a set of dialogues D and
a substitution σ, K(e,D, σ) 7→ {true, false}, is

K(e1 op e2,D, σ) = true iff K′(e1, σ) op K
′(e2, σ)

1 We distinguish between the constants “>” and “⊥” which are part of the syntax
of formulae and the truth-values true and false. Clearly, K(>,D, σ) = true and
K(⊥,D, σ) = false for any D and σ.



The “op” operators are all given their usual definition. For instance, K(x ∈
Ag ,PS , σ) = true iff K′(x, σ) ∈ K′(Ag , σ), that is, the expression is true iff
the value of variable x in σ belongs to the set of values comprising set Ag . The
auxiliary mapping K′ : e × σ 7→ =, where = is the union of all types in the
ontology, is defined below.
Definition 18. The value of a non-boolean expression e wrt a substitution σ,K′(e, σ) 7→
=, is:

1. K′(c, σ) = c for a constant c.
2. K′(x, σ) = T ′,K′(T, σ) = T ′, x/T ∈ σ.
3. K′(f(T1, . . . , Tn), σ) = f(K′(T1, σ), . . . ,K

′(Tn, σ)).
4. K′(Set, σ) = {c0, . . .}, Set/{c0, . . .} ∈ σ.

Case 1 defines the value of a constant as the constant itself. Case 2 describes how
to obtain the value of an arbitrary variable x appearing in illocution schemes.
Case 3 describes how functions are evaluated: the meaning of a function is given
by the application of the function to the value of its arguments. Finally, case 4
defines the value of a set as the set of values associated with the set name in the
substitution σ – sets are treated like any other ordinary constant.

We finally define the meaning of our norms, depicting how the logical opera-
tors “∧” and “→” are handled in our formalisation. Our atomic formulae are u
or e, denoted generically as Atf ; Atfs denotes a conjunction of atomic formulae,
Atfs = Atf 1 ∧ · · · ∧Atf n. The logical operators are defined in the usual way:

Definition 19. The semantics of a norm is given by

1. K(Atfs
1
→ Atfs

2
,D, σ) = true iff K(Atfs

1
,D, σ) = false or K(Atfs

1
,D, σ) =

K(Atfs
2
,D, σ) = true

2. K(Atfs
1
∧Atfs

2
,D, σ) = true iff K(Atfs

1
,D, σ) = K(Atfs

2
,D, σ) = true

Case 1 depicts the semantics of the “→” operator: it yields true if the formulae
on its left and right side evaluate to the same truth-value. Case 2 captures the
semantics of the conjunction “∧”: it yields true if its subformulae yield true.
The base cases for the formulation above are u and e, whose semantics are
represented in Defs. 16 and 17 above.

3.4 Verification of Norms

We want to verify that the set of dialogues DPS of a performative structure PS
satisfies a set of norms N , that is, DPS |= N . One option is to verify that there
exists at least one dialogue in DPS such that

– All integrity norms are satisfied, that is, the performative structure does not
contain situations in which a violation occurs.

– There are no pending obligations, that is, all acquired obligations (right-hand
side of an obligation) are fulfilled.

We notice that the verification of norms in e-institutions as formalised in this
work amounts to a restricted kind of first-order theorem proving. The restric-
tion however does not affect the complexity of the task and attempts to auto-
mate it are limited by the semi-decidability of first-order theorem proving [9,
8]. Notwithstanding this theoretical result, we can adopt some practical sim-
plifications to make the verification decidable: if we assume the sets from our
ontology are all finite, then the verification process amounts to theorem proving
with propositional logics, which is decidable. Our previous formalisation nat-
urally accommodates the proposed simplification: an initial substitution σ0 =



{Set1/{c
1
1, . . . , c

1
n1
}, . . . ,Setm/{c

m
1 , . . . , c

m
nm
}} formally represents all sets from

our ontology – it is essential to our approach that all sets be finite collections
of constants. We can define our finite verification of a norm N wrt the set of
dialogues D of a performative structure as K(N,D, σ0 ∪ σ) = true, that is, we
would like to obtain a substitution σ which (added to the initial σ0) makes N
hold in D. Since the value of all variables should ultimately come from a set Seti

in our ontology and given that all these sets are finite and part of the initial sub-
stitution σ0, then we can obtain σ that assign values to each illocution scheme
variables – provided there are such values that satisfy the boolean expressions
in N . We can extend this definition to cover sets of norms N = {N1, . . . , Np}:
K(N ,D, σ0 ∪ σ) = true iff K(N1,D, σ0 ∪ σ) = · · · = K(Np,D, σ0 ∪ σ) = true.

The substitution σ0 ∪ σ functions as a model: by using its values for the
illocution scheme variables, we can construct a subset D′

PS
⊆ DPS , |D

′
PS
| = 1

(i.e. exactly one dialogue scheme), such that D′
PS
|= N . The only dialogue

scheme in D′
PS

consists of a single path through the scenes of the performative
structure. This dialogue, together with its substitution sigma provides a norm-
compliant execution for the institution.

The complexity of our verification is an exponential function on the number
of values for each variable, in the worst case. The verification works by choosing
a value for the illocution scheme variables from the appropriate sets and then
checking the boolean expressions which might relate and constrain such values. A
similar technique has been employed in [10] to obtain models for the enactment
of e-institutions. This process can be made more efficient by using standard
techniques from constraint logic programming [11].

We can now define means to obtain models D′
PS
⊆ DPS for a given perfor-

mative structure and set of norms. We employ the relationships D and K:
model(PS ,N ,D′

PS
)← D′

PS
⊆ DPS ∧ |D

′
PS
| = 1 ∧ K(N ,D′

PS
, σ)

That is, we obtain individual dialogue schemes from DPS (one at a time) and
then check via K if it satisfies the set of norms N .

The correctness of our definitions can be formulated as: ifmodel(PS ,N ,D′
PS

)
then D′

PS
|= N . Whereas the completeness can be stated as: if D′

PS
|= N then

model(PS ,N ,D′
PS

). It is important to notice that if σ0 contains only finite
sets, then our model relationship is correct and complete, and its complexity is
an exponential function on the number of illocution scheme variables and their
possible values.

4 Conclusions, Related Work and Directions of Research

We have presented a formal definition of norms and shown how norms can be
employed to verify electronic institutions. We provide a computational approach
to assess whether an electronic institution is normatively consistent, that is,
whether there is at least one possible enactment of it (by heterogeneous agents)
in which norms will not be subverted. Given an electronic institution we can
also determine whether its norms prevent any norm-compliant executions from
happening.

Electronic institutions provide an ideal scenario within which alternative def-
initions and formalisations of norms can be proposed and studied. In [12] we find
an early account of norms relating illocutions of an e-institution. In [13] we find
a first-order logic formulation of norms for e-institutions: an institution conforms



to a set of norms if it is a logical model for them. Our work is an adaptation and
extension of [12] but our approach differs in that we do not explicitly employ any
deontic notions of obligations [1]. Our norms are of the form Pre → Obls, that
is, if Pre holds then Obls ought to hold. The components of Pre and Obls are
utterances, that is, messages the agents participating in the e-institution send.
This more pragmatic definition fits in naturally with the view of e-institutions
as a specification of virtual environments which can be checked for properties
and then used for synthesising agents [14, 15].

We are currently investigating means to automatically verify our norms,
building dialogue schemes and sets of substitutions that can be used to restrict
the behaviour of agents taking part in the enactment of an institution.

References

1. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7
(1999) 69–79

2. López y López, F., Luck, M., d’Inverno, M.: Constraining Autonomy Through
Norms. In: Proceedings of the 1st Int’l Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS), ACM Press (2002)

3. Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)
4. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the

Formal Specification of Electronic Institutions. Volume 1991 of LNAI. Springer-
Verlag (2001)

5. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-
tronic Institutions. PhD thesis, IIIA-CSIC, Spain (2001)

6. Esteva, M.: Electronic Institutions: from specification to development. PhD thesis,
Universitat Politècnica de Catalunya (UPC) (2003) IIIA monography Vol. 19.

7. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)
8. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag,

New York, U.S.A. (1990)
9. Enderton, H.B.: A Mathematical Introduction to Logic. 2nd edn. Harcourt/Aca-

demic Press, Mass., USA (2001)
10. Vasconcelos, W.W.: Expressive Global Protocols via Logic-Based Electronic In-

stitutions. In: Proc. 2nd Int’l Joint Conf. on Autonomous Agents & Multi-Agent
Systems (AAMAS 2003), Melbourne, Australia, ACM, U.S.A (2003)

11. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of
Logic Programming 19/20 (1994) 503–581

12. Esteva, M., Padget, J., Sierra, C.: Formalizing a Language for Institutions and
Norms. Volume 2333 of LNAI. Springer-Verlag (2001)

13. Ibrahim, I.K., Kotsis, G., Schwinger, W.: Mapping Abstractions of Norms in Elec-
tronic Institutions. In: 12th. Int’l Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprise (WETICE’03), Linz, Austria, IEEE Computer
Society (2003)

14. Vasconcelos, W.W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,
M.: Rapid Prototyping of Large Multi-Agent Systems through Logic Programming.
Annals of Mathematics and A.I. (2004) Special Issue on Logic-Based Agent Imple-
mentation, to appear.

15. Vasconcelos, W.W., Sierra, C., Esteva, M.: An Approach to Rapid Prototyping
of Large Multi-Agent Systems. In: Proc. 17th IEEE Int’l Conf. on Automated
Software Engineering (ASE 2002), Edinburgh, UK, IEEE Computer Society, U.S.A
(2002) 13–22


