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Jesús Cerquides1, and Francesc X. Noria1

1 iSOCOLab
Intelligent Software Components, S. A.

Edificio Testa, C/ Alcalde Barnils, 64-68 A
08190 Sant Cugat del Vallès, Barcelona, Spain
{jar,toni,andrea,cerquide,fxn}@isoco.com

http://www.isoco.com
2 Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain.
jar@iiia.csic.es

http://www.iiia.csic.es

Abstract. Negotiation events in industrial procurement involving mul-
tiple, highly customisable goods pose serious challenges to buyers when
trying to determine the best set of providers’ offers. Typically, a buyer’s
decision involves a large variety of constraints that may involve at-
tributes of a very same item as well as attributes of different, multiple
items. In this paper we present the winner determination capabilities of
iBundler [10], an agent-aware decision support service offered to buyers
to help them determine the optimal bundle of received offers based on
their constraints and preferences. In this way, buyers are relieved with the
burden of solving too hard a problem, and thus concentrate on strategic
issues. iBundler is intended as a negotiation service for buying agents
and as a winner determination service for reverse combinatorial auctions
with side constraints.

1 Introduction

One particular, key procurement activity carried out daily by all companies con-
cerns the negotiation of both direct and indirect goods and services. Throughout
negotiations the decision-making of buyers and providers appears as highly chal-
lenging and intricate because of an inherently high degree of uncertainty and the
large number of parameters, variables, and constraints to take into account.

Consider the problem faced by a buyer when negotiating with providing
agents. In a negotiation event involving multiple, highly customisable goods,
buyers need to express relations and constraints between attributes of different
items. On the other hand, it is common practice to buy different quantities of the
very same product from different providers, either for safety reasons or because



offer aggregation is needed to cope with high-volume demands. This introduces
the need to express business constraints on the number of suppliers and the
amount of business assigned to each of them. Not forgetting the provider side,
suppliers may also impose constraints or conditions over their offers. Offers may
be only valid if certain configurable attributes (f.i. quantity bought, delivery
days) fall within some minimum/maximum values, and assembly or packing
constraints need to be considered. Once the buyer collects offers, he is faced
with the burden of determining the winning offers. The problem is essentially an
extension of the combinatorial auction (CA) problem, which can be proven to
be NP[11]. It would be desirable to relieve buyers from solving such a problem.

We have tried to make headway in this direction by deploying iBundler [10], a
decision support service acting as a combinatorial negotiation solver (solving the
winner determination problem) for both multi-attribute, multi-item, multi-unit
negotiations and auctions. Thus, the service can be employed by both buyers and
auctioneers in combinatorial negotiations and combinatorial reverse auctions [13]
respectively. In this paper we introduce the formal model and the computational
realisation of the decision problem solved by iBundler.

The paper is organised as follows. Section 2 introduces the market scenario
where buyers and traders are to negotiate, along with the requirements and con-
straints they may need. Next, a formal model capturing such requirements is put
forward to set the foundations for the decision problem. The actual computa-
tional realisation of our decision support for negotiations is thoroughly detailed
in section 4. Finally, section 5 provides some hints on the expected performance
of the service.

2 Market scenario

Although the application of combinatorial auctions (CA) to e-procurement sce-
narios (particularly reverse auctions) may be thought as straightforward, the
fact is that there are multiple new elements that need to be taken into con-
sideration. These are new requirements explained by the nature of the process
itself. While in direct auctions, the items that are going to be sold are physi-
cally concrete (they do not allow configuration), in a negotiation event involving
highly customisable goods, buyers need to express relations and constraints be-
tween attributes of different items. On the other hand, it is common practice
to buy different quantities of the very same product from different providers,
either for safety reasons or because offer aggregation is needed to cope with
high-volume demands. This introduces the need to express constraints on the
number of providers and the amount of business assigned to each of them. Not
forgetting the provider side, providers may also impose constraints or conditions
over their bids/offers. Offers may be only valid if certain configurable attributes
(f.i. quantity bought, delivery days) fall within some minimum/maximum values,
and assembly or packing constraints need to be considered.

Current CA reviewed do not model these features with the exception of[3, 12],
where coordination and procurement constraints can be modelled. The rest of



work focuses more on computational issues (CA is an NP-complete problem[11])
than in practical applications to e-procurement. Suppose that we are willing to
buy 200 chairs (any colour/model is fine) for the opening of a new restaurant, and
at that aim we employ an e-procurement solution that launches a reverse auction.
If we employ a state-of-the-art CA solver, a possible resolution might be to buy
199 chairs from provider A and 1 chair from provider B, simply because it is 0.1%
cheaper and it was not possible to specify that in case of buying from more than
one provider a minimum of 20 chairs purchase is required. On the other hand
the optimum solution might tell us to buy 50 blue chairs from provider A and
50 pink chairs from provider B. Why? Because although we had no preference
over the chairs’ colour, we could not specify that regarding the colour chosen
all chairs must be of the same colour. Although simple, this example shows
that without means of modeling these natural constraints, solutions obtained
are seen as mathematically optimal, but unrealistic and with a lack of common
sense, thus obscuring the power of decision support tools, and preventing the
adoption of these technologies in actual-world settings.

Next we detail the capabilities required by buyers in the kind of negotiation
scenario outlined above. The requirements below are intended to capture buyers’
constraints and preferences and outline a powerful providers’ bidding language:

Negotiate over multiple items. A negotiation event is usually started with
the preparation of a request for proposal (RFQ) form. The RFQ form describes
in detail the requirements (including attribute-values such as volume, quality
specifications, dates as well as drawings and technical documentation) for the
list of items (goods or services) defined by the negotiation event.

Offer aggregation. A specific item of the RFQ can be acquired from several
providers simultaneously, either because not a single provider can provide with
the requested quantity at requested conditions or because buyers explicit con-
straints (see below).

Business sharing constraints. Buyers might be interested to restrict the num-
ber of providers that will finally trade for a specific item of the RFQ, either for
security or strategical reasons. It is also of usual practice to define the minimum
amount of business that a provider may gain per item.

Constraints over single items. Every single item within an RFQ is described
by a list of negotiable attributes. Since: a) there exists a degree of flexibility
in specifying each of these attributes (i.e. several values are acceptable) and
b) multiple offers referring the very same item can be finally accepted; buyers
need to impose constraints over attribute values. An example of this can be the
following: suppose that the deadline for the reception of certain item A is two
weeks time. However, although items may arrive any day within two weeks, once
the first units arrive, the rest of units might be required to arrive in no more
than 2 days after.

Constraints over multiple items. In daily industrial procurement, it is com-
mon that accepting certain configuration for one item affects the configuration
of a different item, for example, when dealing with product compatibilities. Also,



buyers need to express constraints and relationship between attributes of differ-
ent items of the RFQ.

Specification of providers’ capacities. Buyers cannot risk to award con-
tracts to providers whose production/servicing capabilities prevent them to de-
liver over-committed offers. At this aim, they must require to have providers’
capacities per item declared. Analogously, next we detail the expressiveness of
the bidding language required by providers. The features of the language below
are intended to capture providing agents’ constraints and preferences.

Multiple bids over each item. Providers might be interested in offering al-
ternate conditions/configurations for a same good, i.e., offering alternatives for
a same request. A common situation is to offer volume-based discounts. This
means that a provider submits several offers and each offer only applies for a
minimum (maximum) number of units.

Combinatorial offers. Economy efficiency is enhanced if providers are allowed
to offer (bid on) combination of goods. They might lower the price, or improve
service assets if they achieve to get more business.

Multi-unit offering. Each provider specifies the minimum (maximum) amount
of units to be accepted in a contract.

Homogeneous combinatorial offers. Combinatorial offering may produce
inefficiencies when combined with multi-unit offering. Thus a provider may wind
up with an award of a small number of units for a certain item, and a large
number of units for a different item, being both part of the very same offer
(e.g. 10 chairs and 200 tables). It is desirable for providers to be able to specify
homogeneity with respect to the number of units for complementary items.

Packing constraints. Packing units are also a constraint, in the sense that it
is not possible to serve an arbitrary number of units (e.g. a provider cannot sell
27 units to a buyer because.his items come in 25-unit packages). Thus providers
require to be capable of specifying the size of packing units.

Complementary and exclusive offers. Providers usually submit XOR bids,
i.e., exclusive offers that cannot be simultaneously accepted. Also, there may
exist the need that an offer is selected only if another offer is also selected. We
refer to this situation as an AND bid. This type of bids allows to express volume-
based discounts. For example, when pricing is expressed as a combination of base
price and volume-based price (e.g. first 1000 units at $2.5 p.u. and then $2 each).

Obviously, many more constraints regarding pricing and quantity can be con-
sidered here. But we believe these faithfully address the nature of the problem.
Actually, iBundler has been applied to scenarios where some of these constraints
do not apply while additional constraints needed to be considered. This was the
case of a virtual shopping assistant, an agent that was able to aggregate several
on-line supermarkets and optimize the shopping basket. To do so, it was neces-
sary to model the fact that delivery cost depends on the amount of money spent
at each supermarket.



3 Formal model

In this section we provide a formal model of the problem faced by the buyer
(auctioneer) based on the description in section 2. Prior to the formal definition,
some definitions are in place.

Definition 1 (Items). The buyer (auctioneer) has a vector of items Λ = 〈λ1, . . . , λm〉
that he wishes to obtain. He specifies how many units of each item he wants
U = 〈u1, . . . , um〉, ui ∈ IR+. He also specifies the minimum percentage of units
of each item M = 〈m1, . . . ,mm〉,mi ∈ [0, 1], and the maximum percentage of
units of each item M̄ = 〈m̄1, . . . , m̄m〉, m̄i ∈ [0, 1], m̄i ≥ mi, that can be al-
located to a single seller. Furthermore, he specifies the minimum number of
sellers S = 〈s1, . . . , sm〉, si ∈ IN, and the maximum number of sellers S̄ =
〈s̄1, . . . , s̄m〉, s̄i ∈ IN, s̄i ≥ si, that can have simultaneously allocated each item.
Finally, a tuple of weights W = 〈w1, . . . , wm〉, 0 ≤ wi ≤ 1, contains the degree of
importance assigned by the buyer to each item.

Definition 2 (Item attributes). Given an item λi ∈ Λ, let 〈ai1 , . . . , aik
〉 de-

note its attributes.

Definition 3 (Sellers’ capacities). Let Π = 〈π1, . . . , πr〉 be a tuple of providers.
Given a provider πi ∈ Π the tuple Ci = 〈ci

1, . . . , c
i
m〉 stands for the minimum

capacity of the seller, namely the minimum number of units of each item that
the seller is capable of serving. Analogously, the tuple C̄i = 〈c̄i

1, . . . , c̄
i
m〉 stands

for the maximum capacity of the seller, i.e. the maximum number of units of
each item that the seller is capable of providing.

Definition 4 (Bid). The providers in Π submit a tuple of bids B = 〈B1, . . . , Bn〉.
A bid is a tuple Bj = 〈∆j , P j ,M j , M̄ j , Dj〉 where ∆j = 〈∆j

1, . . . ,∆
j
m〉 are tuples

of bid values per item, where ∆j
i = 〈δj

i1
, . . . , δj

ik
〉 ∈ IRk, 1 ≤ i ≤ m, assigns values

to the attributes of item λi; P j = 〈pj
1, . . . , p

j
m〉, p

j
i ∈ IR+, are the unitary prices

per item; M j = 〈mj
1, . . . ,m

j
m〉,m

j
i ∈ IR+, is the minimum number of units per

item offered by the bid; M̄ j = 〈m̄j
1, . . . , m̄

j
m〉, m̄

j
i IR

+, m̄j
i ≥ mj

i , is the maximum
number of units of each item offered by the bid; and Dj = 〈dj

1, . . . , d
j
m〉 are the

bucket or batch increments in units for each item ranging from the minimum
number of units offered up to the maximum number of units.

Given a bid Bj ∈ B, we say that Bj does not offer item λi ∈ Λ iff mj
i =

m̄j
i = 0.
In order to model homogeneity constraints, we define a function h : B → 2Λ.

Given a bid Bj ∈ B, h(Bj) = {λj1 , . . . , λjk
} indicates that the bid is homoge-

neous with respect to the items in h(Bj). In other words, if the buyer (auctioneer)
picks up bid Bj the number of units allocated for the items in h(Bj) must be
equal.

Furthermore, in order to relate sellers to their bids we define function ρ :
Π × B → {0, 1} such that ρ(πi, B

j) = 1 indicates that seller πi is the owner of
bid Bj . This function satisfies the following properties:



– ∀Bj ∈ B ∃πi ∈ Π such that ρ(πi, B
j) = 1; and

– given a bid Bj ∈ B if ∃πi, πk ∈ Π such that ρ(πi, B
j) = 1 and ρ(πk, Bj) = 1

then πi = πk.

The conditions above impose that each bid belongs to a single seller.

Definition 5 (XOR bids). Let xor : 2B → {0, 1} be a function that defines
whether a subset of bids must be considered as an XOR bid. Only bids owned by
the very same seller can be part of an XOR bid. More formally xor(B) = 1 ⇒
∃! π ∈ Π such that ρ(π,Bi) = ρ(π,Bj) = 1 ∀Bi, Bj ∈ B, Bi 6= Bj. Thus, f.i.
if ∃Bj , Bk ∈ B xor({Bj , Bk}) = 1 both bids are mutually exclusive, and thus
cannot be simultaneously selected by the buyer.

Definition 6 (AND bids). Let and : ∪n
i=1B

i → {0, 1} be a function that
defines whether an ordered tuple of bids must be considered as an AND bid. Thus,
given an ordered tuple of bids 〈Bj1 , . . . , Bjk〉 such that and(〈Bj1 . . . Bjk〉) = 1
then the buyer can only select a bid Bji , 1 < i ≥ k, whenever Bj1 , . . . , Bji−1

are also selected. Furthermore, all bids in an AND bid belong to the very same
seller. Put formally, and(B) = 1 ⇒ ∃! π ∈ Π such that ρ(π,Bi) = ρ(π,Bj) =
1 ∀Bi, Bj ∈ B, Bi 6= Bj.

AND bids are intended to provide the means for the buyer to express volume-
based discounts. However, they should be regarded as a generalisation of bidding
via price-quantity graphs.

Based on the definitions above we can formally introduce the decision prob-
lem to be solved to provide support to the buyer (auctioneer):

Definition 7 (Multi-attribute, multi-unit combinatorial reverse auc-
tion). The multi-attribute, multi-unit combinatorial reverse auction winner de-
termination problem (MMCRAWDP) accounts to the maximisation of the fol-
lowing expression:

n∑
j=1

yj ·
m∑

i=1

wi · Vi(q
j
i , p

j
i ,∆

j
i )

subject to the following constraints:

1. qj
i ∈ 0 ∪ [mj

i , m̄
j
i ]

2. qj
i mod dj

i = 0
3.

∑n
j=1 qj

i = ui
3

4. ∀πk ∈ Π qj
i · ρ(πk, Bj) ∈ {0} ∪ [ck

i , c̄k
i ]

5. ∀πk ∈ Π qj
i · ρ(πk, Bj) ∈ {0} ∪ [mi · ui, m̄i · ui]

6. ∀λjt
, t ∈ h(Bj) qj

i = qj
t

7. ∀λi ∈ Λ
∑r

k=1 xk
i ∈ [si, s̄i]

8. and(〈Bj1 , . . . , Bjk〉) = 1 ⇒ yj1 ≥ . . . ≥ yjk

9. ∀B′ ⊆ B such that xor(B′) = 1
∑

Bj∈B′ yj ≤ 1

3 We assume here that there is no free disposal, i.e. sellers are not willing to keep any
units of their winning bids, and the buyer is not willing to take any extra units.



10. a · vi,l + b ≥ δj
i,l ≥ a′ · vi,l + b′ where a, b, a′, b′ ∈ IR

11. c · vi,l + d ≥ vj,k ≥ c′ · vi,l + d′ where c, d, c′, d′ ∈ IR

where

– yj ∈ {0, 1}, 1 ≤ j ≤ n, are decision variables for the bids in B;
– xk

i ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ k ≤ r, are decision variables to decide whether
seller πk is selected for item λi;

– qj
i ∈ IN ∪ {0}, 1 ≤ j ≤ n, 1 ≤ i ≤ m, are decision variables on the number of

units to select from Bj for item λi;
– Vi : IR+ × IR+ × IRik → IR, 1 ≤ i ≤ m, are the bid valuation functions for

each item; and
– vi,l stands for a decision variable for the value of attribute al of item λi.
– a, b, a′, b′, c, c′, d, d′ are buyer-defined constant values.

Next, we detail the semantics of the restrictions above:

1. This constraint forces that when bid Bj is selected as a winning bid, the
allocated number of units of each item qj

i has to fit between the minimum
and maximum number of units offered by the seller.

2. The number of allocated units qj
i to a bid Bj for item λi must be a multiple

of the batch dj
i specified by the bid.

3. The total number of units allocated for each item must equal the number of
units requested by the buyer.

4. For each item, the number of units allocated to a seller cannot exceed his
capacities.

5. The total number of units allocated per seller cannot exceed or be below
the maximum and minimum percentages that can be allocated per seller
specified by the buyer.

6. For homogeneous bids, the number of units allocated to the items declared
homogeneous must be the same.

7. The number of sellers to be awarded each item cannot exceed or be below
the maximum and minimum number of total sellers specified by the buyer.

8. Bids being part of an AND bid can only be selected if the bids preceding
them in the AND bid are selected too.

9. XOR bids cannot be jointly selected.
10. Intra-item constraints are modelled through this expression. It indicates that

only those bids whose value for the attribute item related to the decision
variable that satisfy the expression can be selected.

11. Inter-item constraints are modelled through this expression. It puts into
relation decision variables of attributes belonging to different items.

There are several aspects that make our model differ from related work.
Firstly, traditionally all combinatorial auction models assume that the buyer
(auctioneer) equally prefers all items. Such constraint is not considered in our
model, allowing the buyer to express his preferences over items. Secondly, multi-
attribute auctions and combinatorial auctions with side constraints have been



separately dealt with. On the one hand, Bichler [2] extensively deals with multi-
attribute auctions, including a rich bidding language. On the other hand, Sand-
holm et al. [13] focus on multi-item, multi-unit combinatorial auctions with side
constraints where items are not multi-attribute. We have attempted at formu-
lating a model which unites both. Lastly, to the best of our knowledge neither
inter-item nor intra-item constraints have been dealt with in the literature at
the attribute level [7] though they help us better cope with multiple sourcing.

4 Implementation

The problem of choosing the optimal set of offers sent over by providing agents
taking into account the features of the negotiation scenario described in section 2
is essentially an extension of the combinatorial auction (CA) problem in the sense
that it implements a larger number of constraints and supports richer bidding
models. The CA problem is known to be NP-complete, and consequently solving
methods are of crucial importance. In general, we identify three main approaches
that have been followed in the literture to fight the complexity of this problem:

– As reported in [8], attempts to make the combinatorial auction design prob-
lem tractable through specific restrictions on the bidding mechanism have
taken the approach of considering specialised structures that are amenable
to analysis. But such restrictions violate the principle of allowing arbitrary
bidding, and thus may lead to reductions in the economic outcome.

– A second approach sacrifices optimality by employing approximate algo-
rithms [6]. However, and due of the intended actual-world usage of our ser-
vice, it is difficult to accept the notion of sub-optimality.

– A third approach consists in employing an exact or complete algorithm that
guarantees the global optimal solution if this exists. Although theoretically
impractical, the fact is that effective complete algorithms for the CA problem
have been developed .

Many of the works reviewed in the literature adopt global optimal algorithms
as a solution to the CA because of the drawbacks pointed out for incomplete
methods. Basically two approaches have been followed: traditional Operations
Research (OR) algorithms and new problem specific algorithms[4]. It is always
an interesting exercise to study the nature of the problem in order to develop
problem specific algorithms that exploit problem features to achieve effective
search reduction. However, the fact is that the CA problem is an instance of the
multi-dimensional knapsack problem MDKP (as indicated in [5]), a mixed integer
program well studied by the operation research literature. It is not surprising,
as reported in [1], that many of the main features of these problem specific new
algorithms are rediscoveries of traditional methods in the operations research
community. In fact, our formulation of the problem can be regarded as similar
to the binary multi-unit combinatorial reverse auction winner determination
problem in [13] with side constraints[12]. Besides, expressing the problem as a
mixed integer programming problem with side constraints enables its resolution



by standard algorithms and commercially available, thoroughly debugged and
optimised software which have shown to perform satisfactorily for large instances
of the CA problem.

With these considerations in mind, the core of our service has been modelled
and implemented as a mixed integer programming problem. We have imple-
mented two versions: a version using ILOG CPLEX 7.1 in combination with
SOLVER 5.2; and another version using using iSOCO’s Java MIP modeller that
integrates the GLPK library [9]. In both cases it takes the shape of a software
component. Hereafter we shall refer to this component as the iBundler solver.

5 Validation and performance

After the above-described implementation two major issues arose. On the one
hand, unitary tests were needed in order to guarantee that iBundler ’s behaviour
is sound or, in other words, that iBundler produces the optimal solution taking
into account the variety of constraints and bidding expressivenes described in
section 2. On the other hand, since combinatorial auction solvers are computa-
tionally intensive, a major issue is whether our service was to behave satisfacto-
rily in highly-demanding trading scenarios.

At this aim, we devised a customisable generator of data sets targeted at
serving for the two purposes above. Our generator artificially created negotia-
tion problems for iBundler by wrapping an optimal solution with noisy bids.
Thus iBundler is fed by the generator with an RFQ, plus a buyer’s constraints,
plus a set of bids of varying features (single, combinatorial, AND, and XOR).
The generator constructs the artificial negotiation problem based on several pa-
rameters, namely: number of providers, number of items, number of bids per
provider (mean and variance), number of items per bid (mean and variance),
offer price per item (mean and variance). In this way, not only were we able to
measure the performance of iBundler but also to automatically verify its sound
behaviour.

Figure 1 shows how iBundler behaves when solving negotiation problems
as the number of bids, the number of items, and the items per bid increase.
The results show that iBundler can be employed to conduct real-time decision-
making in actual-world negotiation scenarios. It is hard to imagine a negotiation
event in which several hundreds of bids are concurrently submitted by a given
set of providers to compete for RFQs containing dozens of items. Nonetheless
iBundler performs well even in such extreme scenarios. Therefore, its scalability
is also ensured.
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