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Abstract. Auction-based electronic commerce is an increasingly inter-
esting domain for AI researchers. In this paper we present an attempt
towards the construction of trading agents capable of competing in multi-
agent auction markets by introducing both a formal and a more prag-
matic approach to the design of bidding strategies for buyer agents in
auction-based tournaments. Our formal view relies on possibilistic-based
decision theory as the means of handling possibilistic uncertainty on
the consequences of actions (bids) due to the lack of knowledge about
the other agents’ behaviour. For practical reasons we propose a two-fold
method for decision making that does not require the evaluation of the
whole set of alternative actions. This approach utilizes global (market-
centered) information in a first step to come up with an initial set of
potential bids. This set is subsequently refined in a second step by means
of the possibilisitic decision model using individual (rival agent centered)
information induced from a memory of cases composing the history of
tournaments.

1 Introduction

Auctions are an attractive domain of interest for AI researchers in at least two
areas of activity. On the one hand, we observe that the proliferation of on-
line auctions in the Internet —such as Auctionline1, Onsale2, InterAUCTION3,
eBay4 and many others— has established auctioning as a main-stream form of
electronic commerce. Thus, agent-mediated auctions, and more generally agent-
mediated institutions[18], appear as a convenient mechanism for automated trad-
ing, mainly due to the simplicity of their conventions for interaction when multi-
party negotiations are involved, but also to the fact that on-line auctions may
successfully reduce storage, delivery or clearing house costs in many markets.
This popularity has spawned AI research and development in auction servers[28,

1 http://www.auctionline.com
2 http://www.onsale.com
3 http://www.interauction.com
4 http://www.eBay.com



23] as well as in trading agents and heuristics[9, 16]. On the other hand, auctions
are not only employed in web-based trading, but also as one of the most preva-
lent coordination mechanisms for agent-mediated resource allocation problems
(f.i. energy management[29], climate control[12], flow problems[27]).

¿From the point of view of multi-agent interactions, auction-based trading
is deceivingly simple. Trading within an auction house demands from buyers
merely to decide on an appropriate price on which to bid, and from sellers,
essentially only to choose a moment when to submit their goods. But those
decisions—if rational—should profit from whatever information may be available
in the market: participating traders, available goods and their expected re-sale
value, historical experience on prices and participants’ behaviour, etc. However,
richness of information is not the only source of complexity in this domain.
The actual conditions for deliberation are not only constantly changing and
highly uncertain—new goods become available, buyers come and leave, prices
keep on changing; no one really knows for sure what utility functions other agents
have, nor what profits might be accrued—but on top of all that, deliberations
are significantly time-bounded. Bidding times are constrained by the bidding
protocol which in the case of DBP5 auctions—like the traditional fish market6—
proceeds at frenetic speeds.

Consequently, if a trading agent intends to behave aptly in this context, the
agent’s decision-making process may be quite elaborate. Clearly, the problem of
choosing a successful bidding strategy by a trading agent in n-agents auction
tournaments is clearly not deterministic and it will depend on many factors, in
particular on the strategies themselves of the other competing agents. As long
as the knowledge the agent will have about the other agents’ strategies will be
usually incomplete, our approach presented in this paper consists in looking at
this problem as a decision-making problem under uncertainty.

As in any decision problem, the trading agent has to choose a decision, i.e.
a bid, among a set of available alternatives, taking into account her preferences
on the set of possible consequences in terms of maximising her benefit. In deci-
sion problems, given a (finite) set of situations Sit and a (finite) set of conse-
quences X , a non-uncertain decision d is represented by a function d : Sit → X .
Then, in each situation, decisions can be easily ranked using, for instance, a real-
valued utility function u : X → ℜ modelling the preferences over consequences.
However, uncertainty may be involved in many different aspects of the decision
process, in particular, in a given situation, we may be uncertain on what the
consequences of a decision are. Classical approaches to decision making under
uncertainty assume that uncertainty is represented by probability distributions.

5 Downward bidding protocol
6 We will use the expression fish market to refer to the actual, real-world, human-

based trading institution, and FishMarket to denote the artificial, formal, multi-agent
counterpart. Hence, FM96.5 refers to a particular implementation of the FishMar-
ket model of the fish market. Notice that we use the term institution in the sense
proposed by North [19] as a ”. . . set of artificial constraints that articulate agent
interactions”.



In such a case, if we are in a situation s0 and we know the probability Ps0,d(x)
of each possible consequence x ∈ X of a decision d, then the global utility of the
decision d is usually evaluated as the expected value of u with respect to Ps0,d:

Us0
(d) = Σx∈XPs0,d(x)u(x).

This utility is used then to rank decisions (the greater the better). This kind of
approach corresponds to the well-known Expected Utility Theory (EUT) [17],
but it presents some problems and paradoxes, basically related to inferring the
probabilities. Indeed, in our problem of trading agents the working assumption
is that the knowledge the agent has about the other agents’ strategies is reduced
to a memory (or history) of previous successful biddings. In such a framework,
we propose a kind of case-based reasoning to observe behaviour in previous simi-
lar situations. The uncertainty induced in these kind of processes is due to what
extent we may consider two situations similar enough to presume a similar be-
haviour, and this kind of uncertainty is possibilistic rather than probabilistic.
Recently, Dubois and Prade have proposed in [7] a qualitative decision theory
which relies on the basic assumption that uncertainty about a decision problem
is of qualitative nature and representable by possibility distributions over the
set of consequences X . Given a qualitative7 uncertainty scale V , a possibility
distribution π : X → V provides a plausibility ordering on X in such a way
that π(x′) ≤ π(x) means that the consequence x is at least as plausible as x′.
Based on such uncertainty representation, (qualitative) utility functions are de-
fined and characterised by a set of axioms which can be regarded as a qualitative
counterpart of Von Neumann and Morgenstern’s axiomatics for the EUT.

In this work we build on this decision model to design bidding strategies
for trading agents. After this introduction, Section 2 briefly describes the auc-
tion tournament environment. In Section 3, our theoretical decision model is
described. Next section 4 is devoted to explain how this decision model can be
applied to the design of bidding strategies while section 5 presents an heuristic-
based approach for applying our model. Finally, we end up with some conclusions
and an outline of our future work.

2 Auction-based Tournament Scenarios

In [23] we presented FM96.5, an electronic auction house based on the traditional
fish market metaphor as an alternative approach to other proposals for electronic
marketplace architectures(f.i. [25, 3]). In a highly mimetic way, the workings
of FM96.5 involves the concurrency of several scenes governed by the market
intermediaries identified in the fish market. Namely, seller agents register their
goods with a seller admitter agent, and wait for receiving their earnings from a
seller manager until the auctioneer has sold them in the auction room. Buyers,
on the other hand, register with a buyer admitter, and bid in the auction room
for goods which they pay through a credit line that is set up and updated with a

7 In the sense that the ordering is the only that matters.



seller manager. The main scene is the auction itself, in which buyers bid for boxes
of fish that are presented by an auctioneer who calls prices in descending order -
the downward bidding protocol. Buyer and seller agents can trade goods as long as
they comply with the FishMarket institutional conventions, incarnated in what
we call an interagent [15], which constitutes the sole and exclusive means through
which a trader agent —be it a software agent or a human trader— interacts with
the market institution. An interagent gives a permanent identity to the trader
and enforces an interaction protocol that establishes what illocutions can be
uttered by whom and when.

In order to obtain an auction tournament environment, FM96.5 has been
extended with some innovations that turn it into a multi-agent test-bed, as de-
scribed in [21, 22]8. This test-bed permits the definition, activation and evalua-
tion of a wide variety of experimental trading scenarios (from simple toy scenarios
to complex real-world scenarios) that we shall refer to as tournaments.

A tournament scenario will involve a collection of explicit parameters that
characterize an artificial market. Such parameters define the bidding conditions
(timing restrictions, increment/decrement steps, publicly available information,
etc.), the way goods are identified and brought into the market, the resources
buyers may have available, and the conventions under which buyers and sellers
are going to be evaluated.

In rest of this section we sketch out our simplified9 (formal) view of such
tournament scenarios by introducing some of the elements composing them. We
start by explicitly describing the dynamics of the downward bidding protocol

governing the main activity within the FishMarket :

[Step 1 ] The auctioneer chooses a good out of a lot of goods that is sorted
according to the order in which sellers deliver their goods to the sellers’
admitter.

[Step 2 ] With a chosen good, the auctioneer opens a bidding round by quot-
ing offers downward from the good’s starting price, previously fixed by the
sellers’ admitter, as long as these price quotations are above a reserve price

previously defined by the seller.
[Step 3 ] Several situations might arise during this round:

Bids: One (or several) buyer(s) submit his/their bids at the current price.
If there is only one bid, the good is sold to the bidder. Otherwise, a
collision comes about, the good is not sold, and the auctioneer restarts
the round at a higher price.

No bids: No buyer submits a bid at the current price. If the reserve price
has not been reached yet, the auctioneer quotes a new lower price, other-
wise the auctioneer declares the good withdrawn10 and closes the round.

[Step 4 ] The first three steps repeat until there are no more goods left.

8 The sof tware package of this test-bed can be donwloaded from the FM project web
page[30] and has been fully reported in [20].

9 The interested reader may refer to [22] for a more thorough discussion.
10 The good is returned to its owner.



Next, we identify the elements composing a FishMarket -like tournament
scenario by introducing the notion of Tournament descriptor, which intends to
encompass all the information characterizing tournament scenarios using the
above downward bidding protocol. We define a Tournament Descriptor T as
the 6-tuple

T = 〈∆price,B,S, Cr, µ, E〉

where ∆price is the decrement of price between two consecutive quotations ut-
tered by the auctioneer; B = {b1, . . . , bn} is a finite set of identifiers correspond-
ing to all participating buyers, analogously S for the participating sellers; Cr is
the initial endowment of each buyer at the beginning of each auction; µ ∈ M is
the tournament mode where M = {random, automatic, one auction, fish market,
. . . } is the set of tournament modes; and E is the buyer’s evaluation function
calculated as the cumulative benefits.

It is worth noticing that a number of tournament scenarios of varying de-
grees of realism and complexity can be generated by instantiating the definition
above11.

3 Possibilistic-based Decision Theory

In this section we describe the possibilistic-based decision making model that
we shall subsequently employ for designing competitive bidding strategies for
trading agents.

We start by introducing the basics of Dubois and Prade’s possibilistic decision
model[7] (with some simplifications), and then we follow with some extensions
that we propose in order to show how this decision model generalizes other
decision models such as, f.i., Gilboa and Schmeidler’s CBDT[10].

3.1 Background

First of all we introduce some notation and definitions. X = {x1, . . . , xp} will
denote a finite set of consequences, (V,≤) a linear scale of uncertainty, with
inf(V ) = 0, sup(V ) = 1. Pi(X) will denote the set of consistent possibility
distributions on X over V , i.e. Pi(X) = {π : X → V | ∃x ∈ X such that
π(x) = 1}. Finally, (U,≤) will denote a linear scale of preference (or utility),
with sup(U) = 1 and inf(U) = 0, and u : X → U a utility function that assigns
to each consequence x of X a preference level u(x) of U . For the sake of simplicity
here, we make the assumption that U = V = [0, 1].

The working assumption of the decision model is that every decision d ∈ D
induces a possibility distribution π : X → V on the set X of consequences. Thus,
ranking decisions amounts to ranking possibility distributions of Pi(X). In such
a framework, Dubois and Prade [7] propose the use of two kinds of qualitative
utility functions to order possibility distributions. The basic underlying idea is

11 [21] provide examples of several tournament instantiations.



based on the fact that a utility function u : X → U on the consequences can be
regarded as specifying a fuzzy set of preferred, good consequences: the greater
u(x) is, the more preferred the consequence x is and the more x belongs to the
(fuzzy) set of preferred consequences. On the other hand, a possibility distribu-
tion π : X → V specifies the fuzzy set of which consequences are plausible: the
greater π(x), the more plausible is the consequence x. Therefore, a conservative
criterion is to look for those π’s which, at some extent, make hardly plausible
all the bad consequences, or in other words, all plausible consequences are good.
On the contrary, an optimistic criterion that may be used to break ties is to
look for those π’s that, also to some extent, make plausible some of the good
consequences.

For each utility function u : X → U the conservative and optimistic qualita-
tive utilities used in the possibilistic decision model are respectively:

QU−(π | u) = min
x∈X

max(1 − π(x), u(x))

QU+(π | u) = max
x∈X

min(π(x), u(x)).

One can easily notice that QU−(π | u) and QU+(π | u) are nothing but the
necessity and possibility degrees of the fuzzy set u w.r.t. the distribution π [1],
or in other words, the Sugeno integrals of the utility function u with respect to the
necessity and possibility measures induced by the distribution π. Moreover, when
π denotes a crisp subset A (i.e. π(x) = 1 if x ∈ A, π(x) = 0 otherwise), QU−(π |
u) = minx∈A u(x) and QU+(π | u) = maxx∈A u(x), and hence, maximizing QU−

and QU+ generalizes the well-known maximin and maximax decision criteria
respectively. See [6] for an axiomatization of the preference relation induced by
QU−, QU+, and other related utility functions.

3.2 Possible generalizations

It is well known in fuzzy set theory that the necessity and possibility measures
account for a qualitative notion of fuzzy set inclusionship and intersection, re-
spectively. Thus, in terms of fuzzy set operations, the decision criteria above
using the QU− and QU+ functions can be read as the higher the degree of fuzzy
set inclusionship of the π into u, the higher ranking of π according to the con-
servative criterion, while the higher the degree of fuzzy set intersection of π with
u, the higher ranking of π according to the optimistic criterion.

Thus, besides those pure qualitative utilities, one can naturally think of intro-
ducing some other expressions of a more quantitative nature, but still accounting
for a notion of inclusion and intersection. For instance, the most general way of
defining the degree of intersection of π and u is:

dg(π ∩ u) = max
x∈X

(π ∩ u)(x),



where (π∩u)(x) = π(x)⊗u(x), ⊗ being a t-norm12 operation in [0, 1]. However,
to define a degree of inclusion of π into u, there are at least two ways based on:
(i)to what extent all elements of π are also elements of u; (ii) the proportion of
elements of π ∩ u with respect to the elements of π. The former comes from a
logical view while the latter comes from a conditioning view. They lead to the
following expressions:

– dgl(π ⊆ u) = minx∈X π(x) ⇒ u(x),
where ⇒ is a many-valued implication13 function,

– dgc(π ⊆ u) = ‖π∩u‖
‖π‖ ,

where ‖ ‖ denotes fuzzy cardinality14.

At this point, the following remarks are in order.

1. If both π and u define crisp subsets of consequences, then dgl(π ⊆ u) is
either 1 or 0, while dgc(π ⊆ u) is nothing but the relative cardinality of π
inside u, and for both, the degree is 1 only if π ⊆ u.

2. When ⊗ = min and α ⇒ β = max(1 − α, β), we recover the qualitative
utility functions: dgl(π ⊆ u) = QU−(π | u) and dg(π ∩ u) = QU+(π | u).

3. When ⊗ = product, dgc(π ⊆ u) is nothing but the expected value E(u)
of the utility function u w.r.t. to the unnormalized probability distribution
P (x) = π(x), or in other words, the weighted average of the u(x) values
according to the weights π(x). When π comes from a similarity function,
then dgc(π ⊆ u) can be closely related to Gilboa and Schmeidler’s CBDT.

Finally, based on the notions of degree of inclusion and intersection defined
above, we can consider the utility functions U−

∗ (π | u) = dg∗(π ⊆ u), ∗ = l, c,
and U+(π | u) = dg(π ∩ u).

4 Possibilistic-based Design of Bidding Strategies

An agent’s bidding strategy must decide on an appropriate price on which to bid
for each good being auctioned during each round composing the tournament.
Due to the nature of the domain faced by the agent, we must demand that
such bidding strategy balances the agent’s short-term benefits with its long-term
benefits in order to succeed in long-run tournaments.

In what follows we make use of the possibilistic-based decision-making model
described above as the key element to produce a competitive bidding strategy.

12 A t-norm ⊗ is a binary operation (usually continuous) in [0, 1] which is non-
decreasing, commutative, associative, and verifying 1 ⊗ x = x and 0 ⊗ x = 0 for
all x ∈ [0, 1].

13 An implication function ⇒ is a binary operation in [0, 1] which is non-increasing
in the first variable, non-decreasing in the second variable, and verifying at least
1 ⇒ x = x and x ⇒ 1 = 1 for all x ∈ [0, 1].

14 If A denotes a fuzzy subset of X with membership function µA then ‖A‖ =
Σx∈XµA(x)



4.1 The Decision Problem

For each round composing a tournament scenario, the decision problem for a
trading agent consists in selecting a bid from the whole set of possible bids—
from the starting price down to the reserve price.

In order to apply the possibilistic decision model first we have to identify the
variables involved in the decision problem of our interest.

We model market situations faced by our agent, denoted hereafter b0, as
vectors of features

s = (r, a, τ, g, pα, prsl, κ, E, R)

characterizing round r of auction a such that τ is the type of the good g to be
auctioned, pα is its starting price, prsl is its resale price, κ is the vector of credits
(κi is the credit of buyer bi), E is the vector of scores (Ei is the score of buyer
bi), and R is the number of rounds left.

The decision set D will consist on the set of allowed bids our agent b0 can
submit. Given a new market situation s0, we shall have D = {bid(p) | p =
pα − m.∆price, m ∈ IN, prsv ≤ p ≤ κ(b0)}, where pα and prsv are the starting
and reserve prices in situation s0, and bid(p) means that the agent submits a
bid at price p.

At each round, either the agent (b0) wins, or buyer b1 wins, . . . , or buyer
bn wins by submitting bids at different prices. Therefore, the set X of outcomes
(or consequences) is defined as the set X = {win(bi, p) | i = 0, . . . , n ; p ∈
[prsv +∆price, pα]}, where x = win(bi, p) means that buyer bi wins the round by
submitting a bid at price p.

So, according to the decision model introduced in the previous subsection,
given a current market situation s0, it remains to assess, for each possible decision
(bid) d ∈ D, which are the possibility and utility values π(x) and u(x), for all
x ∈ X , to be able to calculate a global utility for each d (using either QU−,
QU+, or U). This is done in the next subsections.

Hereafter we shall assume that the agent keeps a memory of cases M storing
the history of (past and the current) tournaments, whose cases are of the form
c = (s, b, ps), where b is the buyer who won the round characterized by s (as
defined above) by submitting a bid at price ps.

4.2 Generating possibility distributions from cases

In order to obtain a possibility degree for each consequence in X , we observe the
behaviour of each agent in previous similar situations. Then, the uncertainty on
the behaviour of each agent in front of a new market situation is estimated, as
a possibility degree, in terms of the similarity between the current situation and
those market situations where the agent exhibited that behaviour.

Given the current market situation s0, for each possible bid pd ∈ D , our
agent has to evaluate the possibility of each buyer (including himself) winning
the round, i.e. the possibility of each consequence x ∈ X . Let x = win(bi, p0) be
a consequence and (s, bi, p) a case in M . We shall assume as a working principle



that “the more similar is (s0, p0) to (s, p), the more possible bi will be the winner
in s0” (a similar principle has been recently considered in a framework of fuzzy
case-based reasoning[4]). If s̃ denotes the fuzzy set of situations similar to s, the
above principle can be given the following semantics:

πs0
(win(bi, p0)) ≥ µs̃(s0) ⊗ µp̃(p0)

where µs̃ : Sit → [0, 1] denotes the membership function of the fuzzy set s̃ and
µp̃ : Prices → [0, 1] denotes the membership function of the fuzzy set p̃. They
are defined as µs̃(s

′) = S(s, s′) and µp̃(p
′) = P(p, p′), where S and P are fuzzy

relations on the set of situations and on the set of prices respectively, accounting
for a notion of proximity or similarity.

Therefore, we can estimate the possibility degrees for each bi 6= b0 as:

πs0
(win(bi, p0)) = max

{(s,bi,p)∈M|p≤p0}
µs̃(s0) ⊗ µp̃(p0)

for all win(bi, p0) ∈ X . Observe that this defnition ensures that the possibility
of winning is non-increasing with respect to the value of bids (i.e. the lower the
bid, the lesser the possibility of winning).

¿From these possibilities we can construct an initial fuzzy set Bid0
bi

of the
possible winning bids of each participating buyer bi 6= b0 by defining its mem-
bership function as

µBid0

bi

(p) = πs0
(win(bi, p))

for all p such that win(bi, p) ∈ X . However this fuzzy set may be further mod-
ified by means of a set of fuzzy rules which attempt at modelling the rational
behaviour of buyers in particular situations that may not be sufficiently de-
scribed by the cases in the memory. For instance, we consider the following set
of fuzzy rules:

if [κ(bi) is high] and [R is very short ] and [E(bi) is low ]
then ∆Bidbi

is very positive

if [κ(bi) is medium] and [R is very short ] and [E(bi) is low ]
then ∆Bidbi

is slightly positive

expressing heuristic rules describing expected changes in the strategy of a buyer
when only a few rounds are left (R is very short), and he lags behind in the
ranking (E(bi) is low). In these situations, depending on the agents’ current
credit (κ(bi)), the fuzzy rules above model an increase in the agresiveness of the
buyer, at different degrees, by yielding the expected increases (∆Bidbi

) in the
agent’s bid. In general, by applying a set of fuzzy rules of that type in the stan-
dard way, we obtain for each buyer a fuzzy set ∆Bidbi

representing the expected
variation of the observed bidding strategy of each buyer.

¿From the combination of the initial fuzzy set of possible bids Bid0
bi

with the
fuzzy set of expected variations ∆Bidbi

we obtain the final fuzzy set of possible
bids

Bidω
bi

= Bid0
bi
⊕ ∆Bidbi



where ⊕ denotes fuzzy addition, i.e.

µBidω
bi

(p) = max{min{µBid0

bi

(p1), µ∆Bidbi
(p2)} | p = p1 + p2}.

Then, we make use of the fuzzy set Bidω to reassign possibilities to each con-
sequence for each bi 6= b0

πs0,pd
(win(bi, p)) =



µBidω(bi)(p), if 0 < p < pd

0, otherwise

Finally, to estimate the possibility of our agent winning with a bid at price pd

we look into the memory M for those cases such that the sale price was not
greater than pd. Let Mpd

= {(s, bi, p) ∈ M | p < pd, bi 6= b0}. Then

πs0,pd
(win(b0, p)) =

(

max
(s,bi,p′)∈Mpd

µBidω (bi)(p
′), if p = pd

0, otherwise

These are the possibility values to be utilized when applying our decision model.

4.3 Assessing utilities

Given a new market situation s0, for each consequence x = win(bi, p) our agent
b0 must assess the utility value u(win(bi, p)) at the fact that buyer bi wins
the round by submitting a bid at price p. Several modelling options could be
considered here. As a matter of example we propose here a particular utility
function that aims at modelling an agent that prefers to wait and see when he
is ahead, whereas he becomes more and more agressive when he lags behind in
order to reach the first position in the tournament. It is based on the following
scoring function:

f(bi, s0, p) =

{

k · t, if k ≤ 0
k · t−1, otherwise

where k = (maxj 6=i E(bj))−E(bi) and t = (R−1)/(max(κ(bi)−p, 1) · (prsl−p)),
being prsl the resale price. We assume that prsl − p ≥ 0, and κ(bi) − p ≥ 0, i.e.,
buyers only take into consideration bids that can improve their score whenever
they have enough credit to submit them. In the above definition of f , the factor
(maxj 6=iE(bj)) − E(bi) accounts for the position of buyer bi with respect to
the other buyers in the ranking of scores, the factor prsl − p accounts for the
benefit the agent would make if he wins the round, and the factor R−1

max(κ(bi)−p,1)

estimates the cost of winning the round. Then, based on the scoring function f ,
we propose the following utility function:

u(win(bi, p)) =

{

r(f(b0, s0, p)), if i = 0
r(−f(bi, s0, p)), otherwise

where r is a normalization linear scaling function which makes u to fall into [0,1].
To summarize, given a new market situation s0, the decision process follows

the following steps:



(i) for each decision d = bid(pd), where pd ∈ D,

(a) for each consequence x = win(bi, p) ∈ X we calculate:

- the possibility πs0,d(x)

- the utility u(x)

(b) the global utility assessed to each decision d will be calculated from either
QU−, QU+, U− or U+ by combining possibilities with utilities.

(ii) Our agent b0 will choose one of the most preferred decision(one decision
valued most by the global utility function).

5 An Heuristic Approach for the Development of

Competitive Bidding Strategies

For each round, the resulting strategy performs a hybrid, two-fold decision mak-
ing process that involves the usage of global(market-centered) probabilistic in-
formation in a first decision step, and individual(rival-centered) possibilistic in-
formation in a second, refining decision step.

The outright use of the possibilistic decision mechanism described above ap-
pears to be prohibitively expensive. Therefore, when facing the design of prag-
matic bidding strategies we must attempt to propose flexible heuristic guidelines
that prevent the agent from evaluating the whole set of alternative actions so that
its deliberation process constrains to time and resource-boundedness. In what
follows we propose a two-folded approach for decision making. In the first step
a set of potential bids (as a subset of the whole set of possible bids) is selected
according to the general trend of the market. Then, the second step consists in
selecting the best bid for the agent according to the possibilistic decision model
previously described.

We describe next how the first step is put into practice. Let s0 be the current
situation and M the available memory of cases. s0, a first Assuming the principle
that “similar market situations usually lead to similar sale prices of the good”,
the idea is to take advantge of the interpolation mechanism implicit in the fuzzy
case-based reasoning model proposed in [5]. This amounts to consider, for each
case15 (s, p) ∈ M , a gradual fuzzy rule “If Σ is s̃ then Υ is p̃”, where again
s̃ and p̃ stand for the fuzzy set of situations similar to s and the fuzzy set of
prices similar to p respectively; Σ and Υ are variables ranging over situations
and prices resp. (Caution: the fuzzy set s̃ may be different from the fuzzy set
with the same name appearing in subsection 4.2, since the criteria used to define
how similar situations are may change from one purpose to another.) Such a
fuzzy rule, together with the input situation s0 gives the following fuzzy set pbid
of prices (see [8]) for details about the semantics of fuzzy gradual rules):

µpbid(p′) = I(µs̃(s0), µp̃(p
′)).

15 Since we are only interested in the situation descriptor and the sale price we ommit
in this section the buyer’s identifier in the cases.



Here I is residuated many-valued implication16, and assuming to have defined
similarity functions S∗ : Sit × Sit → [0, 1] and T ∗ : prices × prices → [0, 1], we
may define µs̃(s0) = S∗(s, s0) and µp̃(p

′) = T ∗(p, p′). Considering all the cases
in the memory M we come up with the following (fuzzy) set of potential bids:

µpbid(p′) = min
(s,p)∈M

I(S∗(s, s0), T
∗(p, p′)).

Finally the set B̂α of candidate bids can be selected to be those having a mem-
bership degree to pbid above a certain value α > 0, i.e. B̂α = {p′ | µpbid(p′) ≥ α}.

It can be checked that B̂α = ∩(s,p)∈M{p′ | T ∗(p, p′) ≥ S∗(s, s0) ⊗ α}, where ⊗
is the t-norm whose residuum is I.

Therefore, instead of considering the whole set of alternative bids, the pro-
posed decision-making process will only evaluate those bids within B̂α. The
algorithm in figure 1 summarizes the process of selecting a bid out of B̂α using
a utility function U .

6 Conclusions and Future Work

We have described a possibilistic-based decision method that attemps at mod-
elling buyer agents’ behaviour in electronic auction tournaments. Interestingly,
competitions seem to be in vogue in the AI community as suggested by the many
emerging initiatives. Robocup[13] is attempting to encourage both AI researchers
and robotics researchers to make their systems play soccer, autonomous mobile
robots try to show their skills in office navigation and in cleaning up the tennis
court in the AAAI Mobile Robot Competition[14], and even automated theo-
rem proving systems participate in competitions [24]. But surely our proposal is
closer to the Double auction tournaments held by the Santa Fe Institute[2] where
the contenders competed for developing optimized trading strategies. However,
the main concern of our proposal consists in providing a method for performing
multi-agent reasoning under uncertainty based on the modelling of the other
agents’ behaviour likewise [26], where the recursive modelling method [11] was
used for constructing agents capable of predicting the other agents’ behaviour
in Double auction markets.

As to our future work, firstly this shall focus on the empirical evaluation of
our proposal. Secondly, we will head towards the construction of actual agents
capable of trading in actual auction markets under the rules of any bidding
protocol.

16 A residuated many-valued implication is a binary opereation in [0, 1] of the form
I(x, y) = sup{z ∈ [0, 1] | x ⊗ z ≤ y}, where ⊗ is a t-norm, i.e., a binary, non-
decreasing, associative and commutative operation in [0,1] such that x ⊗ 1 = x and
x ⊗ 0 = 0.



Function Bid Selection (M, B̂α, s0, U)

∀ candidate bid pd ∈ B̂α

∀ buyer b ∈ B such that b 6= b0

Retrieve all cases c = (s,b, ps) ∈ M

∀ price p

Consequence x := win(b, p)
if p < pd

then π(win(b, p)) = 0
else π(win(b, p)) = πs0,pd

(win(b, p))
u(win(b, p)) = r(−f(b, s0, p))

end for
end for
b = b0

Retrieve all cases c = (s, b0, ps) ∈ M

∀ price p

Consequence x := win(b0, p)
if p 6= pd

then π(win(b0, p)) = 0
else π(win(b0, p)) = πs0,pd

(win(b0, p))
u(win(b0, p) = r(f(b0, s0, p))

end for
Calculate U(bid(b0, p))

end for

return p = arg max{U(bid(b0, pd)) | pd ∈ B̂}
end function

Fig. 1. Bid Selection Procedure
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