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Abstract

Auction-based electronic commerce is an increasingly
interesting domain for developing trading agents. In this
paper we present our first contributions towards the con-
struction of such agents by introducing both a formal and a
more pragmatical approach for the design of bidding strate-
gies that provide buyer agents with useful heuristic guide-
lines to participate in auction-based tournaments. On the
one hand, our formal view relies on possibilistic-based de-
cision theory as the means of handling possibilistic un-
certainty on the consequences of actions due to the lack
of knowledge about the other agents’ behaviour. On the
other hand, for practical reasons we also propose a two-
fold method for decision making that does not require the
evaluation of the whole set of alternative actions. This ap-
proach utilizes global (market-centered) probabilistic infor-
mation in a first decision step which is subsequently re-
fined by a second decision step based on the individual
(rival-centered) possibilistic information induced from the
memory of cases composing the history of tournaments. In
this way, the resulting bidding strategy balances the agent’s
short-term benefits, related to the probabilistic information,
with its long-term benefits, related to the possibilistic infor-
mation.

1. Introduction

Online auctions such as Auctionline, Onsale, InterAUC-
TION, eBay and many others have proliferated over the In-
ternet as well-established mechanisms for multi-party nego-
tiation. As a matter of fact, auction-based electronic com-
merce appears to be an area where the Web is proving to be
better than traditional alternatives due mainly to its highly
interactive nature, the implication of many traders—instead
of a conventional sale’s single buyer and seller—, and the
fact that online auctions do significantly reduce costs. As
a major benefit of dynamically negotiating a price through

auctions, the task of determining the value of a good is
transferred from the merchant to the market, leading to a
fair allocation of limited resources (to those who value them
most). This is the reason why auctions are not only em-
ployed in online retail, but also as the key element for build-
ing solutions to resource allocation problems(f.i. energy
management[20], climate control[8], flow problems[19]).
Hence, auctions must be regarded as an attractive domain
for developing agents.

Nonetheless, designing, building, and tuning trading
agents before letting them loose in wildly competitive sce-
narios like electronic auctions inhabited by (both human
and software) expert traders happens to be an arduous task.
This fact motivated the construction of FM97.6, a test-bed
for electronic auctions [14] that intends to provide support
to agent developers in such a challenge. FM97.6 permits
the definition, activation, and evaluation of experimental
game-like trading scenarios calledtournamentswhich de-
fine standardized conditions under which agents compete
for maximizing their benefits.

Trading within an auction house demands from buyers
to decide on an appropriate price on which to bid, and from
sellers, essentially only to choose a moment when to sub-
mit their goods. But those decisions —if rational— should
profit from whatever information may be available in the
market: participating traders, available goods and their ex-
pected re-sale value, historical experience on prices and par-
ticipants’ behaviour, etc. However, richness of information
is not the only source of complexity in this domain. The
actual conditions for deliberation are not only constantly
changing and highly uncertain –new goods become avail-
able, other buyers come and leave, prices keep on chang-
ing; no one really knows for sure what utility functions
other agents have, nor what profits might be accrued– but on
top of all that, deliberations are significantly time-bounded.
Consequently, if a trading agent intends to behave aptly in
this context, the agent’s decision-making process may be
quite elaborate.

The problem of choosing a successful bidding strategy



by a trading agent inn-agents auction tournaments is clearly
not deterministic and it will depend on many factors, in par-
ticular on the strategies themselves of the other competing
agents. As long as the knowledge the agent will have about
the other agents’ strategies will be usually incomplete, our
approach presented in this paper consists in looking at this
problem as a decision making problem under uncertainty.

As in any Decision Theory problem, the trading agent
has to choose a decision (bid) among a set of available al-
ternatives, taking into account her preferences on the set of
possible consequences in terms of maximising her benefit.
In decision problems, given a (finite) set of possible states or
situationsSit and a (finite) setX of possible consequences
or outcomes of the decisions, a decisiond is represented by
a functiond : S ! X assigning to each situations the
consequenced(s) of having taken the decisiond at the states. On the other hand, consequences are ranked by a utility
functionu : X ! IR modelling the decision maker’s pref-
erences among them. In a decision process, uncertainty may
be involved in knowing either what the real situation is or
what the precise consequences of decisions are. Classical
approaches to decision making under uncertainty assume
that uncertainty is represented by probability distributions.
In the first case it is assumed that a probability distributionP on the set of situations is known. Then, the utility of a
decisiond : Sit! X is measured by the expected value ofu w.r.t. toP : U(d) = �s2SitP (s)u(d(s)):
In the case when we know the real situation but the con-
sequences of decisions are not precisely known (for each
decisiond we only know the probabilityPd(x) of each con-
sequencex 2 X), then the utility of a decisiond is evalu-
ated in an analogous way as the expected value ofu w.r.t.
toPd: U(d) = �x2XPd(x)u(x):
This kind of approaches correspond to the well-known Ex-
pected Utility Theory (EUT) [12, 16], but they present some
problems and paradoxes, basically related with inferring
the probabilities. Indeed, EUT is well suited when the
spaceS of the possible states is well-known, it is easy
to figure out which is the outcome of each decision at
each state, and of course when the probability distributions
over states or outcomes are also well-known. However, in
our problem of trading agents the working assumption is
that the knowledge the agent has about the other agents’
strategies is reduced to a memory (or history) of success-
ful bids corresponding to previous tournaments. This is
precisely the kind of decision problems addressed by the
so-called Case-based Decision Theory (CBDT) proposed
by Gilboa and Schmeidler in [6], where cases are viewed
as instances of decision making and where the decision

maker only knows cases which have been previously ex-
perienced. In that case, given a memoryM of prece-
dent decision problem instances, represented by triples(situation; decision; outcome), and a real-valued similar-
ity functionS among situations, they propose in a new sit-
uations0 to choose the decision which maximises the fol-
lowing expressionU(d) = �(s;d;x)2MS(s0; s)u(x):
In [3, 4] another case-based view of decision making is pro-
posed and shown to be in close connection with a possibilis-
tic decision model earlier introduced by Dubois and Prade
in [5]. Indeed, the process of looking at the winning be-
haviour of other trading agents in previous similar situations
and adopting a similar behaviour for our agent induces an
uncertainty which is of possibilistic nature rather than prob-
abilistic: the more similar are the cases, the more plausible
is to assume the outcome of a given decision in one case for
the other one.

In this paper we adapt this latter decision model to de-
sign bidding strategies for trading agents. Next section
sketches out the auction tournament environment FM97.6,
and presents how tournament scenarios can be formally de-
fined. In Section 3, the theoretical underpinnings of the de-
cision model are described, while Section 4 is devoted to
explain how this decision model can be employed in the de-
sign of bidding strategies for tournament scenarios. Finally,
we end up with a discussion about related work and an out-
line of our future work.

2. A Test-bed for Auction Tournaments

Following [13], the fish market can be described as a
place where severalscenesrun simultaneously, at different
places, but with some causal continuity. The principal scene
is the auction itself, in which buyers bid for boxes of fish
that are presented by an auctioneer who calls prices in de-
scending order according to thedownward bidding protocol
whose dynamics is described as follows:

[Step 1 ] The auctioneer chooses a good out of a lot of
goods that is sorted according to the order in which
sellers deliver their goods to the sellers’ admitter.

[Step 2 ] With a chosen good, the auctioneer opens a
bidding roundby quoting offers downward from the
good’s starting price, previously fixed by the sellers’
admitter, as long as these price quotations are above a
reserve pricepreviously defined by the seller.

[Step 3 ] Several situations might arise during this round:

Bids: One (or several) buyer(s) submit his/their bids
at the current price. If there is only one bid, the



good is sold to the bidder. Otherwise, a collision
comes about, the good is not sold, and the auc-
tioneer restarts the round at a higher price.

No bids: No buyer submits a bid at the current price.
If the reserve price has not been reached yet, the
auctioneer quotes a new lower price, otherwise
the auctioneer declares the goodwithdrawnand
closes the round.

[Step 4 ] The first three steps repeat until there are no more
goods left.

However, before those boxes of fish may be sold, fisher-
men have to deliver the fish to the fish market, at thesell-
ers’ registration scene, and buyers need to register for the
market, at thebuyers’ registration scene. Likewise, once a
box of fish is sold, the buyer should take it away by pass-
ing through abuyers’ settlements scene, while sellers may
collect their payments at thesellers’ settlements sceneonce
their lot has been sold.

In [15, 21, 13] we present an electronic auction house
based on the traditional fish market metaphor. In a highly
mimetic way, the workings of FM96.5 also involve the con-
currency of several scenes governed by the market interme-
diaries identified inFishMarket. Therefore, seller agents
register their goods with a seller admitter agent, and can
get their earnings (from a seller manager) once the auction-
eer has sold these goods in the auction room. Buyers, on
the other hand, register with a buyer admitter, and bid for
goods which they pay through a credit line that is set up
and updated with a seller manager. Buyer and seller agents
can trade goods as long as they comply with theFishMar-
ket institutionalconventions. Those conventions that affect
buyers and sellers have been coded into what we call amar-
ket interagent[11] which constitutes the sole and exclusive
means through which a trader agent—be it a software agent
or a human trader—interacts with the market institution. A
market interagent gives a permanent identity to the trader
and enforces aconversation protocolthat establishes what
illocutions can be uttered by whom and when —and con-
sequently what their language and content, sequencing and
effects may be1.

In order to obtain an auction tournament environment,
more functionality has been added to FM96.5 to turn it into
a test-bed, FM97.6. The resulting test-bed has the following
salient characteristics2:� It is domain-specificin the sense that it models and

simulates anelectronic auction house.

1In [15] we used the termnomadic agent interface; in [13, Chpt.10] the
notion of institutor is defined and discussed.

2Refer to [14] for a more thorough discussion.

� It is realistic, since it follows the actual conventions
of a complex real-world institution, the traditional fish
market.� The use of market interagents makes FM97.6
architecturally–neutralsince no particular agent archi-
tecture (or language) is assumed or provided.� FM97.6 allows for very flexiblescenario generation
to enable designers to produce systematic experimen-
tation. FM97.6 allows for the specification, and subse-
quent activation, of a large variety of market scenarios:
from very simple artificial scenarios to complex realis-
tic scenarios.� Explicit parameter-fixing and participant-registration
modes are involved in the scenario generation facility,
to allow for therepeatabilityof experiments.� A trace tool keeps track of all illocutions and trans-
actions that take place during an auction. Hence, a
whole auction can be audited and re-enacted step-by-
step, and the evolving performance of all the agents
involved in a tournament can be traced, evaluated, and
analyzed.

Summarizing, the resulting environment, FM97.6, con-
stitutes a test-bed where a very rich variety of experimental
conditions, tournament scenarios, can be explored system-
atically and repeatedly, and analyzed and reported with lu-
cid detail if needed.

Each one of these tournament scenarios will involve a
collection of explicit parameters that characterize an arti-
ficial market. Such parameters define the bidding condi-
tions (timing restrictions, increment/decrement steps, pub-
licly available information, etc.), the way goods are identi-
fied and brought into the market, the resources buyers may
have available, and the conventions under which buyers and
sellers are going to be evaluated. In this section we identify
the elements composing tournament scenarios by introduc-
ing our formal notion oftournament descriptor.

The type of tournaments that we do consider follow the
downward bidding protocol described in the section above.
Though the protocol thus defined is vague, notice, how-
ever, that a finite set of parameters that control the dy-
namics of the bidding process are implicit in this proto-
col definition. Hence, we formally define aDownward
Bidding Protocol Dynamics Descriptor DDBP as the
tuple h�price;�offers;�rounds;�coll;�sanction;�rebidi
such that� �price 2 IN (price step). Decrement of price between

two consecutive quotations uttered by the auctioneer.� �offers 2 IN (minimum time between offers). Delay
between consecutive price quotations.



� �rounds 2 IN (minimum time between rounds). De-
lay between consecutive rounds belonging to the same
auction.� �coll 2 IN (maximum number of successive colli-
sions). This parameter prevents the algorithm from en-
tering an infinite loop as explained above.� �sanction 2 IR (sanction factor). This coefficient
is utilized by the buyers’ manager to calculate the
amount of the fine to be imposed on buyers submitting
unsupported bids.� �rebid 2 IR (price increment). This value determines
how the new offer is calculated by the auctioneer from
the current offer when either a collision, or an unsup-
ported bid occur.

Note that the identified parameters impose significant
constraints on the trading environment. For instance,�offers and�rounds affect the agents’ time-boundedness,
and consequently the degree of situatedness viable for bid-
ding strategies.

Next we introduce the notion of tournament descriptor
as an attempt to encompass all the information characteriz-
ing tournament scenarios. Thus, we define aTournament
Descriptor T as the tuplehn;�auctions; D; P;B; S; F;Ei
such that:� n is the number of auctions to take place during a tour-

nament.� �auctions is the time between consecutive auctions.� D is a finite set of bidding protocols’ dynamics de-
scriptors.� P is a finite family of communication protocols that a
buyer agent must employ to interact with itsinteragent
indexed by different bidding protocol types (f.i.P =fPDBP ; PEnglish; : : : g).� B = fb1; : : : ; bpg is a finite set of identifiers corre-
sponding to all participating buyers.� S = fs1; : : : ; sqg is a finite set of identifiers corre-
sponding to all participating sellers.� F = [F1; : : : ;Fn] is a sequence ofn descriptors.
EachF i specifies the way auctionAi is dynamically
generated.� E = hEb; Esi is a pair of winner evaluation function
that permit to calculate respectively the score of buyers
and sellers.

Observe that a multitude of experimental tournament
scenarios of varying degrees of realism and complexity can
be generated by the tournament designer when instantiating
the definition of tournament descriptor3. The information
within the tournament descriptormust be conveyed to the
buyers participating in tournaments so that they know the
features of the competitive scenario they are immersed in.

3. Possibilistic-based Decision Theory

In this section we describe the possibilistic-based deci-
sion making model that we shall subsequently employ for
designing competitive bidding strategies for trading agents.

We start by introducing the basics of Dubois and Prade’s
possibilistic decision model[5] (with some simplifications),
and then we follow with some extensions that we propose in
order to show how this decision model generalizes other de-
cision models such as, f.i. Gilboa and Schmeidler’s CBDT.

3.1. Background

First of all we introduce some notation and definitions.X = fx1; : : : ; xpg will denote a finite set of conse-
quences,(V;�) a linear scale of uncertainty, withinf(V ) =0; sup(V ) = 1. Pi(X) will denote the set of consistent
possibility distributions onX overV , i.e. Pi(X) = f� :X ! V j 9x 2 X such that�(x) = 1g. Finally, (U;�)
will denote a linear scale of preference (or utility), withsup(U) = 1 and inf(U) = 0, andu : X ! U a utility
function that assigns to each consequencex of X a prefer-
ence levelu(x) of U . For the sake of simplicity here, we
make the assumption thatU = V = [0; 1].

The working assumption of the decision model is that
every decisiond 2 D induces a possibility distribution�d : X ! V on the setX of consequences. Thus, rank-
ing decisions amounts to ranking possibility distributions
of Pi(X). distribution. In such a framework, Dubois and
Prade [5] propose the use of two kinds of qualitative util-
ity functions to order possibility distributions. The basic
underlying idea is based on the fact that a utility func-
tion u : X ! U on the consequences can be regarded
as specifying a fuzzy set ofpreferred, good consequences:
the greater isu(x), the more preferred is the consequencex and the morex belongs to the (fuzzy) set of preferred
consequences. On the other hand, a possibility distribu-
tion � : X ! V specifies the fuzzy set of which conse-
quences are plausible: the greater�(x), the more plausible
is the consequencex. Therefore, a conservative criterion is
to look for those�’s which, at some extent, make hardly
plausible all the bad consequences, or in other words, all
plausible consequences are good. On the contrary, an opti-
mistic criterion that may be used to break ties is to look for

3[14] provides an example of a tournament instantiation



those�’s that, also to some extent, make plausible some of
the good consequences.

For each utility functionu : X ! U the conservative
and optimistic qualitative utilities used in the possibilistic
decision model are respectively:QU�(� j u) = minx2Xmax(1� �(x); u(x))QU+(� j u) = maxx2X min(�(x); u(x)):
One can easily notice thatQU�(� j u) andQU+(� j u)
are nothing but the necessity and possibility degrees of the
fuzzy setu w.r.t. the distribution� [1], or in other words,
the Sugeno integrals of the utility functionu with respect to
the necessity and possibility measures induced by the dis-
tribution �. Moreover, when� denotes a crisp subsetA
(i.e. �(x) = 1 if x 2 A, �(x) = 0 otherwise),QU�(� ju) = minx2A u(x) andQU+(� j u) = maxx2A u(x), and
hence, maximizingQU� andQU+ generalizes the well-
knownmaximinandmaximaxdecision criteria respectively.
See [4] for an axiomatization of the preference relation in-
duced byQU�, QU+, and other related utility functions.

3.2. Possible generalizations

It is well known in fuzzy set theory that the necessity
and possibility measures account for a qualitative notion of
fuzzy set inclusionship and intersection, respectively. Thus,
in terms of fuzzy set operations, the decision criteria above
using theQU� andQU+ functions can be read as the
higher the degree of fuzzy set inclusionship of the� intou, the higher ranking of� according to the conservative cri-
terion, while the higher the degree of fuzzy set intersection
of the�d with u, the higher ranking of� according to the
optimistic criterion.

Thus, besides those pure qualitative utilities, one can nat-
urally think of introducing some other expressions of a more
quantitative nature, but still accounting for a notion of inclu-
sion and intersection. For instance, the most general way of
defining the degree of intersection of� andu is:dg(� \ u) = maxx2X (� \ u)(x);
where(� \ u)(x) = �(x) 
 u(x), 
 being a t-norm4 op-
eration in [0, 1]. However, to define a degree of inclusion
of � into u, there are at least two ways based on: (i)to what
extent all elements of� are also elements ofu; (ii) the pro-
portion of elements of� \ u with respect to the elements
of �. The former comes from a logical view while the latter
comes from a conditioning view. They lead to the following
expressions:

4A t-norm
 is a binary operation (usually continuous) in [0, 1] which
is non-decreasing, commutative, associative, and verifying 1
 x = x and0
 x = 0 for all x 2 [0; 1].

� dgl(� � u) = minx2X �(x)) u(x),
where) is a many-valued implication5 function,� dgc(� � u) = k�\ukk�k ,

wherek k denotes fuzzy cardinality6.

At this point, the following remarks are in order.

1. If both� andu define crisp subsets of consequences,
thendgl(� � u) is either 1 or 0, whiledgc(� � u) is
nothing but the relative cardinality of� insideu, and
for both, the degree is 1 only if� � u.

2. When
 = min and� ) � = max(1 � �; �), we
recover the qualitative utility functions:dgl(� � u) =QU�(� j u) anddg(� \ u) = QU+(� j u).

3. When
 = product, dgc(� � u) is nothing but the ex-
pected valueE(u) of the utility functionu w.r.t. to the
unnormalized probability distributionP (x) = �(x),
or in other words, the weighted average of theu(x)
values according to the weights�(x). When� comes
from a similarity function, thendgc(� � u) can be
closely related to Gilboa and Schmeidler’s CBDT.

Finally, based on the notions of degree of inclusion and
intersection defined above, we can consider the utility func-
tionsU�� (� j u) = dg�(� � u), � = l; c, andU+(� j u) =dg(� \ u).
4. Case-based Decision Model for Designing

Bidding Strategies

An agent’s bidding strategy must decide on an appro-
priate price on which to bid for each good being auctioned
during each round composing the tournament. Due to the
nature of the domain faced by the agent, we must demand
that such bidding strategy balances the agent’s short-term
benefits with its long-term benefits in order to succeed in
long-run tournaments.

In what follows we make use of the possibilistic-based
decision-making model described above as the key element
to produce a competitive bidding strategy. For each round,
the resulting strategy performs a hybrid, two-fold decision
making process that involves the usage of global(market-
centered) probabilistic information in a first decision step,
and individual(rival-centered) possibilistic information in a
second, refining decision step.

5An implication function) is a binary operation in [0, 1] which is
non-increasing in the first variable, non-decreasing in thesecond variable,
and verifying at least1) x = x andx) 1 = 1 for all x 2 [0; 1].

6If A denotes a fuzzy subset ofX with membership function�A thenkAk = �x2X�A(x)



4.1. The Decision Problem

For each round composing a tournament scenario, the
decision problem for a trading agent consists in selecting a
bid from the whole set of possible bids—from the starting
price down to the reserve price.

In order to apply the possibilistic decision model first
we have to identify the variables involved in the decision
problem of our interest.

We model market situations faced by our agent, denoted
hereafterb0, as vectors of featuressa;r = (�; g; p�; prsl; �; E;R)
characterizing roundr of auctiona such that� is the type
of the goodg to be auctioned,p� is its starting price,prsl is
its resale price,� is the vector of credits (�i = C(bi)), E is
the vector of scores (Ei = Eb(bi)), andR is the number of
rounds left.

The decision setD will consist of the set of allowed bids
our agentb0 can submit. Given a new market situations0,
we shall haveD = fbid(p) j p = p� � m:�price;m 2IN; prsv � p � C(b0)g, wherep� andprsv are the starting
and reserve prices in situations0, andbid(p) means that the
agent submits a bid at pricep.

At each round, either the agent (b0) wins, or buyerb1
wins, : : : , or buyerbn wins by submitting bids at different
prices. Therefore, the setX of outcomes (or consequences)
is defined as the setX = fwin(bi; p) j i = 0; : : : ; n ; p 2[prsv + �price; p�]g, wherex = win(bi; p) means that
buyerbi wins the round by submitting a bid at pricep.

Hereafter we shall assume that the agent keeps a memory
of casesM storing the history of (past and the current) tour-
naments, whose cases are of the formca;r = (sa;r; b; ps),
whereb is the buyer who won the round characterized bysa;r (as defined above) by submitting a bid at priceps.

Finally, we must recall from the decision model intro-
duced in the previous section that given a new market situ-
ations0, the agent has to assess, for each possible decision
(bid) d 2 D, the possibility and utility values�d(x) andu(x), 8x 2 X , in order to be able to calculate a global
utility for eachd (using eitherQU�, QU+, U�, or U+).
The way of generating possibilities and assessing utilities is
presented along the next subsections.

4.2. Reducing the Search Space

Evidently, deploying the possibilistic-based decision
mechanism from the whole set of possible decisions(bids)D appears to be prohibitively expensive. Instead, we re-
duce the decision set by considering a subset composed of
those decisions(bids) maximizing the agent’s short-term ex-
pected benefit for the current round, the so-calledset of
candidate bids. This pre-processing ofD will ideally help

the agent’s deliberation process to constrain to time and
resource-boundedness.

In order to obtain a set of candidate bids for a given
roundr of auctiona characterized by a feature vectors, we
firstly infer a probability distribution on the sale pricePs
from the past history of the tournament. Secondly, we uti-
lize such distribution to obtain the price~p which maximizes
the agent’s short-term expected benefit for the current round
given by the following expressionexpected benefita;r(p) = (prsl � p)Prob(Ps � p)
whereprsl is the resale price of the good to be auctioned,Ps follows a normal distributionN (p̂; �) such that the ex-
pected sale pricêp and the standard deviation� are esti-
mated by regression analysis on the memory of cases.

Finally, we will construct the set of candidate bidsBids
by selecting the� closest bids to~p:Bids = �~p� �0�pricej�0 = 0; 1; : : : ; � � 12 	:
From this set, we shall redefine the decision set asD =fbid(p) j p 2 Bidsg.
4.3. Generation of Possibility Distributions

In order to obtain a possibility degree for each conse-
quence inX , we observe the behaviour of each agent in
previous similar situations. Then, the uncertainty on the be-
haviour of each agent in front of a new market situation is
estimated, as a possibility degree, in terms of the similarity
between the current situation and those market situations
where the agent exhibited that behaviour.

Given the current market situations0, for each possible
bid pd 2 Bids , our agent has to evaluate the possibil-
ity of each buyer (including himself) winning the round,
i.e. the possibility of each consequencex 2 X . Letx = win(bi; p0) be a consequence and(s; bi; p) a case inM . We shall assume as a working principle that “themore
similar is (s0; p0) to (s; p), themore possiblebi will be the
winner in s0” (a similar principle has bee recently consid-
ered in a framework of fuzzy case-based reasoning[3]). If~s denotes the fuzzy set of situations similar tos, the above
principle can be given the following semantics:�s0(win(bi; p0)) � �~s(s0)
 �~p(p0)
where�~s : Sit ! [0; 1] denotes the membership function
of the fuzzy set~s and�~p : Prices ! [0; 1] denotes the
membership function of the fuzzy set~p. They are defined
as�~s(s0) = S(s; s0) and�~p(p0) = P(p; p0), whereS andP
are fuzzy relations on the set of situations and on the set of
prices respectively, accounting for a notion of proximity or
similarity.



Therefore, we can estimate the possibility degrees for
eachbi 6= b0 as:�s0(win(bi; p0)) = max(s;bi;p)2M �~s(s0)
 �~p(p0)
for all win(bi; p0) 2 X . From these possibilities we can
construct an initial fuzzy setBid0bi(p) of the possible win-
ning bids of each participating buyerbi 6= b0 asBid0bi(p) = �s0(win(bi; p))
for all p such thatwin(bi; p) 2 X . However this fuzzy

set may be further modified by means of a set of fuzzy
rules which attempt at modelling the rational behaviour of
buyers in particular situations that may not be sufficiently
described by the cases in the memory. For instance, we
consider the following set of fuzzy rules:

if [C(bi) is high] and [R is very short] and [Eb(bi) is low]
then �Bidbi is very positive

if [C(bi) is medium] and [R is very short] and [Eb(bi) is low]
then �Bidbi is slightly positive: : :

expressing heuristic rules describing expected changes
in the strategy of a buyer when only a few rounds are
left (R is veryshort), and he lags behind in the ranking
(Eb(bi) is low). In these situations, depending on the
agents’ current credit (C(bi)), the fuzzy rules above model
an increase in the agresiveness of the buyer, at different
degrees, by yielding the expected increases (�Bidbi) in
the agent’s bid. In general, by applying a set of fuzzy rules
of that type in the standard way, we obtain for each buyer
a fuzzy set�Bidbi representing the expected variation of
the observed bidding strategy of each buyer.

From the combination of the initial fuzzy set of possi-
ble bidsBid0bi(p) with the fuzzy set of expected variations�Bidbi we obtain the final fuzzy set of possible bidsBid!bi = Bid0bi ��Bidbi
where� denotes fuzzy addition, i.e.�Bid!bi (p) = maxfminf�Bid0bi (p1); ��Bidbi (p2)gjp = p1+p2g:
Finally, we make use of the fuzzy setBid!(bi) to reassign
possibilities to each consequence for eachbi 6= b0�s0;pd(win(bi; p)) = � �Bid!(bi)(p); p� � p � pd0; otherwise
Finally, to estimate the possibility of our agent winning

with a bid at pricepd we look into the memoryM for those
cases such that the sale price was not greater thanpd. LetMpd = f(s; bi; p) 2M j p < pd; bi 6= b0g. Then�s0;pd(win(b0; p)) = ( max(s;bi;p0)2Mpd �Bid!(bi)(p0); p = pd0; otherwise
These are the possibilities to be utilized when applying our
decision model.

4.4. Assessing Utilities

Given a new market situations0, for each consequencex = win(bi; p) our agentb0 must assess the utility value at
the fact that buyerbi wins the round by submitting a bid at
pricep, u(win(bi; p)). In what follows we propose a utility
function for constructing an agent that prefers to wait and
see when he is ahead, whereas he becomes more and more
agressive when he lags behind in order to reach the first
position in the tournament.

For this purpose, we consider the following function:f(bi; s0; p) = ( k: R0�1max(�0i�p;1) ; if k � 0k:max(�0i�p;1)R0�1 ; otherwise
wherek = ((maxj 6=i E0j )�E0i )=(p0rsl � p), beingp0rsl the
resale price, andE the evaluation function for buyers. We
assume thatp0rsl � p � 0, and�0i � p � 0, i.e. buyers only
consider bids that can improve their score, and they have
enough credit to submit the bid at pricep. In f the factors(maxj 6=iE0j )�E0i , p0rsl� p, and R0�1max(�0i�p;1) stand for the
position of buyerbi with respect to the other buyers in the
ranking of scores, the net profit and the estimated cost of
winning the round, respectively.

And fromf , we define the utility functionu(win(bi; p)) = � r(f(b0; s0; p)) if i = 0r(�f(bi; s0; p+�price)) otherwise
wherer is a linear scaling function which makesu fall into
[0,1]. Notice thatf is decreasing with respect to the number
of rounds leftR0, but increasing with respect to the credit�0i of buyer bi. This means that the less rounds are left
and the more money the buyer has got, the more the buyer
will prefer to bid. On the other hand, when the buyer is
in the lead the utility of bidding is valued negatively (u 2[0; 12 ]), otherwise—the buyer is behind the leader–the utility
of bidding is valued positively(u 2 ( 12 ; 1]).

At this point, we do have all the ingredients for apply-
ing the decision model proposed. To summarize, given a
new market situations0, for each decisiond = bid(pd),pd 2 Bids, we calculate the possibility�s0;d(x) and utilityu(x) of each consequencex = win(bi; p) 2 X . Then, ac-
cording to our decision model the global utility assessed to
each decisiond will be calculated from eitherQU�, QU+,U� or U+ by combining possibilities with utilities. Our
agentb0 will choose the most preferred decision(the deci-
sion valued most by the global utility function).

5. Related and Future Work

Interestingly, competitions seem to be in vogue in the AI
community as suggested by the many emerging initiatives.



Robocup[9] is attempting to encourage both AI researchers
and robotics researchers to make their systems play soccer,
autonomous mobile robots try to show their skills in office
navigation and in cleaning up the tennis court in theAAAI
Mobile Robot Competition[10], and even automated theo-
rem proving systems participate in competitions [17]. But
surely our proposal is closer to theDouble auctiontour-
naments held by the Santa Fe Institute[2] where the con-
tenders competed for developing optimized trading strate-
gies. However, the main concern of our proposal consists
in providing a method for performing multi-agent reason-
ing under uncertainty based on the modelling of the other
agents’ behaviour likewise [18], where the recursive mod-
elling method [7] was used for constructing agents capable
of predicting the other agents’ behaviour in Double auction
markets.

At present, a proof-of-concept implementation of our
proposal is undergoing empirical evaluation. We are basi-
cally analyzing which utility and similarity functions yield
good performances. In general, conservative utilitiesU�l
lead to a preferring higher bids thanU�c . As to our future
work, firstly our research will head towards the construc-
tion of actual agents capable of trading in actual auction
markets under the rules of any auction protocol. Secondly,
in parallel, FM97.6 will be made to evolve to host other
(even more flexible) forms of price-fixing mechanisms (En-
glish auction, Double auction, discounting, open negotia-
tion, etc.), and will be equipped with a trading-agent shell
to help agent designers construct their agents.
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