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Abstract

This thesis investigates the cash management problem from a multidimensional
perspective. Cash management focuses on finding the balance between cash
holdings and short-term investments. Typically, cash managers make decisions
based usually on a firm’s optimal cash balance for operational and precaution-
ary purposes. We here explore the opportunities for improved decision-making
derived from modeling cash flow uncertainty with the help of data-driven pro-
cedures within a multiobjective context. On the one hand, cash managers may
achieve cost savings by forecasting future cash flows. To this end, we perform
an empirical analysis of daily cash flow time-series to take advantage of mod-
ern machine learning techniques as a key step to connect data analysis and
optimization methods in cash management. On the other hand, cash man-
agers may be interested not only in the cost but also in the risk associated to
decision-making. Thus, we address the cash management problem from a mul-
tiobjective perspective focusing on both cost and risk. In addition, under the
current situation of time-varying financial circumstances, the selection of cash
management models according to operating conditions and its robustness are
worth considering questions. We also show the utility of forecasts through a
new cash management model which outperforms the state-of-the-art by guaran-
teeing optimal solutions. Since most firms usually deal with cash management
systems with multiple accounts, we develop a framework to formulate and solve
the multiple bank accounts cash management problem. Finally, in an attempt
to fill the gap between theory and practice, we also provide a software library
in Python for practitioners interested in building decision support systems for
cash management.
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Resumen

Esta tesis investiga el problema de gestión de tesorería desde un punto de
vista multidimensional. La gestión de tesorería trata de equilibrar la cantidad
que se mantiene en efectivo y la que se dedica a inversiones a corto plazo.
Normalmente, los tesoreros toman decisiones basándose en el nivel óptimo de
tesorería por motivos operativos y de precaución. En esta tesis exploramos las
oportunidades para mejorar la toma decisiones derivadas de modelar la incer-
tidumbre presente en los flujos de caja con la ayuda de procedimientos basados
en datos en un entorno multiobjetivo. Por un lado, los tesoreros pueden con-
seguir ahorros a través de la previsión de tesorería. Para ello, realizamos un
estudio empírico con el objetivo de aprovechar las más recientes técnicas de
aprendizaje automático como paso clave para conectar el análisis de los datos
disponibles con los procesos de optimización en la gestión de tesorería. Por otro
lado, los tesoreros pueden estar interesados no solo en el coste sino también en
al riesgo asociado a sus decisiones. Por esta razón, tratamos el problema de
gestión de tesorería desde una perspectiva multiobjetivo, considerando tanto
el coste como el riesgo. Además, debido a la cambiante situación financiera
actual, exploramos la selección de modelos de gestión de tesorería en función
de diferentes condiciones operativas y de su robustez. También demostramos la
utilidad de las previsiones a través de un nuevo modelo de gestión de tesorería
que mejora el estado del arte al garantizar soluciones óptimas. Como la may-
oría de las empresas trabaja con sistemas de tesorería con múltiples cuentas
bancarias, desarrollamos un marco para la formulación y solución del problema
de gestión de tesorería con múltiples cuentas bancarias. Finalmente, en un in-
tento de acercar teoría y práctica, también ofrecemos una librería de software
en Python para usuarios interesados en la construcción de sistemas de ayuda
a la toma de decisiones en gestión de tesorería.
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Resum

Esta tesi investiga el problema de gestió de tresoreria des d’un punt de vista
multidimensional. La gestió de tresoreria tracta d’equilibrar la quantitat que es
manté en efectiu i la que es dedica a inversions a curt termini. Normalment, el
tresorers prenen decisions basant-se en el nivell òptim de tresoreria per motius
operatius i de precaució. En aquesta tesi explorem les oportunitats per millorar
la presa de decisions derivades de modelitzar la incertesa present en els fluxos de
caixa amb l’ajuda de procediments basats en dades. Per un costat, els tresorers
poden aconseguir estalvis de costos mitjançant la previsió de tresoreria. Per
tal d’aconseguir-ho, realitzem d’un estudi empíric amb l’objectiu d’aprofitar
les més recents tècniques d’aprenentatge automàtic per connectar l’anàlisi de
les dades disponbiles amb els procesos d’optimització en la gestió de tresoreria.
Per altra banda, els tresorers poden estar interessats no sols en el cost sinó
també en el risc associat a les seues decisions. Per tant, tractem el problema
de gestió de tresoreria des d’un punt de vista multiobjectiu, fixant-se tant en el
cost com en el risc. A més a més, degut a la canviant situació financera actual,
explorem la selecció de models de gestió de tresoreria en funció de diferents
condicions operatives i de la seua robustesa. També demostrem la utilitat de les
previsions mitjançant un nou model de tresoreria que millora l’estat de l’art
al garantir solucions òptimes. Com que la majoria d’empreses treballa amb
sistemes de tresoreria amb múltiples comptes bancaris, desenvolupem un marc
per a la formulació i solució del problema de gestió de tresoreria amb múltiples
comptes bancaris. Finalment, en un intent d’apropar teoria i pràctica, també
oferim un llibreria en Python per a usuaris interessats en la construcció de
sistemes d’ajuda a la presa de decisions en la gestió de tresoreria.
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Chapter 1

Introduction

This thesis investigates the cash management problem from a multiobjective
perspective. Cash management focuses on finding the balance between cash
holdings and short-term investments. Typically, cash managers make daily de-
cisions based usually on a firm’s optimal cash balance for operational and pre-
cautionary purposes. In this thesis, we argue that opportunities for improved
decision-making by both modeling cash flow uncertainty and by considering
additional objectives are significant in cash management. On the one hand,
cash managers may achieve cost savings by forecasting future cash flows. On
the other hand, they may be interested not only in the cost but also in the
risk associated to cash management decision-making. In what follows, we first
motivate the key research topics presented in this thesis. Next, we describe the
challenges and how our research contributes to tackle such topics and, finally,
we summarize the structure of this thesis.

1.1 Motivation

In addition to collections from customers and payments to vendors, cash man-
agers handle bank account balances, short-term loans and investments on a
daily basis. Although necessarily influenced by long-term decisions, the corpo-
rate cash management problem is mainly a short-term financing problem. The
focus is placed on how companies manage their cash and other liquid assets
like interest bearing accounts or marketable securities. However, uncertainty
about the near future is an important issue for cash managers. Cash flow fore-

13



Chapter 1. Introduction

casts play then a key role in cash management as a way to reduce uncertainty.
As a result, it is common practice to predict future cash flows in an attempt
to maintain average cash balances sufficient to face payments. However, we
observe that there is always some degree of inaccuracy in cash flow forecasts
and, consequently, cash management involves not only costs but also the risk
associated to short-term financial operations as the target goals to optimize.

It was John Maynard Keynes (1936) who, in The General Theory of Employ-
ment, first identified three motives for holding cash:

1. The transaction motive, which is the need for cash for the current
transaction of personal and business exchanges.

2. The precautionary motive, which is the desire for security as to the
future cash equivalent of a certain proportion of total resources to act as
a financial reserve.

3. The speculative motive or the object of securing profit from knowing
better than the market what the future will bring forth. The goal is to
take advantage of future investment opportunities.

From the above motives, one can infer what kind of problems cash managers
face and what kind of solutions they should seek to do their job. On the
one hand, they have to pay for the bills but, at the same time, they have
to collect payments from customers. The result from this initial task is the
cash balance obtained as previous balances plus the net cash flow which, in
turn, is determined by the difference between collections and disbursements in
a given period. The higher this difference the better. However, the amount of
cash that companies hold in cash is an important variable. Cash is the main
resource of a company and cash managers must use it efficiently due to the
cost associated to obtain cash either from banks or from shareholders.

Cash is the life blood of a company and, from an operational point of view,
has different origins and ends. Incoming cash comes from customers, banks,
shareholders or even from public institutions in the form of grants or subsidies.
Outgoing cash goes to vendors, employees and, again, banks, public institutions
and shareholders in the form of taxes and dividends respectively. Collections,
disbursements, investments, control, efficiency and costs involved are some of
areas where many decisions have to be made by cash managers on a daily basis.
In this sense, information technology and all the related tools and techniques
can be of great help.
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Intuitively, the cash management problem (CMP) can be viewed as a control
problem. Think of a water tank like the one in Figure 1.1. The level of the tank
needs to be monitored to keep the water between two bounds, for instance, a
low bound and a high bound. To this end, some control actions can be taken
to increase or decrease the level of water. Replace water with money and you
will be dealing with the typical vision of the cash management problem.

Figure 1.1: Cash management as a control problem.

More precisely, the cash management problem aims to keep the balance be-
tween what a company holds in cash and what is placed in alternative invest-
ments. For example, consider a company with two bank accounts depicted as
numbered circles in Figure 1.2. Account 1 receives payments from customers
and it is also used to send payments to suppliers. Both inflows and outflows are
summarized through the net cash flow f1. Account 2 represents the amount of
alternative investments available to be converted into cash through transaction
x1 when needed. In addition, idle cash balances from account 1 can be allo-
cated in account 2 for a profit through transaction x2. The sequence of control
actions deployed over a period of time, for instance, the next five working days,
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is called a policy and it is charged with a given cost. As a result, the challenge
for cash managers is to find a policy that optimizes some objective function.

1

f1

2

x1

x2

Figure 1.2: The cash management problem.

In what follows, we focus on the main dimensions of the cash management
problem as a framework to identify open research questions.

1.1.1 Cash management models

A first attempt to face the cash management problem can be derived from
its main traditional tasks (Myers and Brealey, 2003; Ross, Westerfield, and
Jordan, 2002):

1. How is cash to be collected and paid out?

2. How much cash should a firm hold?

The first of these tasks deals with two commonsense goals: speeding up collec-
tions and control disbursements, or more plainly, "collect early and pay late"
(Ross, Westerfield, and Jordan, 2002). From a cash manager point of view,
the primary concern is speeding up timing of receipts into available funds and
controlling the release and timing of disbursements. In the second one, cash
managers have a choice between holding cash and investing it in short-term
liquid assets. From a cost perspective, they should minimize borrowing costs
of working capital needs and, at the same time, maximize yields from short
term investments of temporary cash excess. They should keep minimum cash
balances in order to meet future cash requirements without incurring in unex-
pected costs. If the timing and amount of future cash flow was known, no cash
buffer would be necessary. However, this situation is far from reality.

In an attempt to solve the CMP, a number of cash management models have
been proposed to control cash balances based on a set of levels or bounds. A
comprehensive review of models, from the first proposals to the most recent
contributions, can be found in Gregory (1976) and Srinivasan and Kim (1986)

16



1.1 Motivation

and Costa Moraes, Nagano, and Sobreiro (2015). The CMP was first proposed
from an inventory control point of view by Baumol (1952) in a deterministic
way. Later on, Miller and Orr (1966) followed a stochastic approach assuming
that cash balance changes are totally random. From these two seminal works,
many other models were developed, each one focusing on a particular dimension
of the problem. For instance, Girgis (1968) considered continuous net cash
flows with both fixed and linear transaction costs, Eppen and Fama (1969)
focused on discrete net cash flows with only variable transaction costs. The
use of forecasts in the corporate cash management problem was first introduced
by Stone (1972). More recently, Gormley and Meade (2007) claimed the utility
of cash flow forecasts in the cash management problem.

All previous models are based on assuming a set of bounds to control cash
balances. However, notice that the ultimate goal of the cash management
problem is not to find a set of bounds that defines a policy, but the policy
itself. Consequently, we argue that a new class of cash management models
can be explored by imposing no restriction on the form of control policy.

1.1.2 Cash flow process

Cash flow statistical characterization is also a key issue in understanding cor-
porate cash management. Separation between inflows and outflows, or receipts
and disbursements, is the basic breaking down, but a more detailed separation
can be of help when trying to extract patterns from data. In this sense, Stone
and Miller (1981) and Stone and Miller (1987) suggest the utility of problem
structuring, or breaking down a problem in different subproblems, to appro-
priately handle cash flow forecasting as a key task in cash management. They
proposed the separation of cash flows in two streams: major cash flows and
non-major cash flows. Major cash flows are defined as flows that are not gener-
alized from past history but are easy to handle in daily forecasting since most
are known in both timing and amount. Transfers between bank accounts, pay-
roll, taxes and loan payments are examples of major flows. Non-major cash
flows are all other transactions usually related to customers and vendors. Note
that the separation between customers and vendors produces an implicit divi-
sion between inflows and outflows. Summarizing, a detailed representation of
the cash flow process is a mandatory step in cash management.

In addition, common assumptions on the statistical properties of cash flows
include: (i) normality, meaning that its values are centered around the aver-
age following a Gaussian distribution; (ii) absence of correlation, meaning that
its values are not correlated with each other; (iii) and stationarity, meaning
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that its mean and variance are constant with time. However, little empirical
evidence on the statistical properties of cash flow have been provided with the
exception of Mullins and Homonoff (1976), Emery (1981), and Pindado and
Vico (1996). Negative normality tests were reported in Mullins and Homonoff
(1976) for a manufacturing company. Later on, Emery (1981) reported nor-
mally distributed cash flow, after data transformation, and Pindado and Vico
(1996) provided negative normality and independence results on 36 companies
but considering daily cash flow for one month. Both Emery (1981) and Pindado
and Vico (1996) reported the influence of day-of-week effect on cash flows in
line with the works of Stone and Wood (1977), Stone and Miller (1981), Miller
and Stone (1985), and Stone and Miller (1987).

1.1.3 Costs in cash management

The main objective in managing cash is to keep the amount of available cash as
low as possible while still keeping the company operating efficiently. In addi-
tion, companies may place idle cash in short-term investments (Ross, Wester-
field, and Jordan, 2002). Then, the cash management problem can be viewed
as a trade-off between holding and transaction costs as shown in Figure 1.3. On
the one hand, holding costs are usually opportunity costs due to idle cash that
could be allocated in alternative investments. Holding too much cash is then
inefficient but holding too little may produce high shortage costs. On the other
hand, transaction costs are associated to the movement of cash from/into a
cash account into/from any other short-term asset available, for example, trea-
sury bills and other marketable securities. Summarizing, if a company tries to
keep balances too low, holding cost will be reduced but undesirable situations
of shortage will force to sell available marketable securities, hence increasing
transaction costs. In contrast, if the balance is too high, low trading costs
will be produced due to unexpected cash flow, but the company will carry
high holding costs because no interest is earned on cash. Therefore, there is a
target cash balance which the company must optimize.

1.1.4 Desired objectives

In the cash management literature, the focus is typically placed on a single
objective, namely, cost. With the exception of Zopounidis (1999), cash man-
agement and multi-criteria decision-making are not usually linked concepts in
the financial literature. However, analyzing additional objectives derived from
a cash management model is necessary if a full understanding of the problem
is meant to be achieved. An interesting additional goal in cash management is
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Figure 1.3: Cost of holding and transferring cash.

the risk of policies. Risk analysis is widely used in portfolio selection when high
expected returns and low variances are desired objectives (Markowitz, 1952;
Ballestero and Romero, 1998; Ballestero and Pla-Santamaria, 2004; Steuer,
Qi, and Hirschberger, 2007). Furthermore, risk preferences are also an impor-
tant issue for decision-makers. An example of techniques for approximating
the utility optimum when considering risk preferences can be found in Balles-
tero (1998). However, the design of cash management models that consider
both cost and risk (and possibly other goals) by incorporating the particular
preferences of cash managers remains a rather unexplored problem.

Intuitively, risk is associated to uncertainty and possible loss and, to some
extent, managers can choose the risk that a business takes (Brealey and Myers,
2003). Consequently, the reduction of risk makes financial planning easier, but
one of the main problems cash managers face everyday is that they do not
exactly know future cash flows. This fact introduces much uncertainty in their
daily work. High cash buffers could be a solution, but companies would be
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incurring in high opportunity costs by leaving idle an amount of money that
otherwise could be generating a return by investing it. In the particular context
of cash management, uncertainty is introduced by the particular variability of
future cash flows. Risk management is then an important task in decision-
making, and since different cash strategies entail different degrees of risk, a
quantitative approach to measure risk is required.

1.1.5 Solving the cash management problem

Cash management poses a general optimization problem, namely, determining
the policy that optimizes some objective function. Within a single objective
framework, one suitable method to solve this problem is dynamic program-
ming, which was initially proposed by Eppen and Fama (1969) and Neave
(1970), and more recently followed by Penttinen (1991), Chen and Simchi-Levi
(2009), and Melo and Bilich (2013). On the other hand, compromise program-
ming (CP) and goal programming (GP) (Zeleny, 1982; Yu, 2013; Ballestero
and Romero, 1998; Ballestero and Pla-Santamaria, 2004; Bravo, Ballestero,
and Pla-Santamaria, 2012; Pla-Santamaria and Bravo, 2013) are possible ap-
proaches to deal with multiple objectives. When the CMP is formulated as
a linear/quadratic program, we can benefit from state-of-the-art mathemati-
cal programming solvers to obtain optimal solutions. Alternative approaches
such as Monte Carlo methods or meta-heuristics may provide a sufficiently
good solution when non-linear objectives or constraints are considered. In
this case, only approximate solutions can be achieved. Monte Carlo methods
(Glasserman, 2003) are based on the law of large numbers which ensures that
estimates derived from a random sample converge to the real value as the size
of the sample increases. On the other hand, meta-heuristics such as evolution-
ary algorithms (Gormley and Meade, 2007; Costa Moraes and Nagano, 2014)
deploy a given search strategy over a large set of feasible solutions.

1.1.6 Managing multiple bank accounts

In the cash management literature, cash management systems with multiple
bank accounts have received little attention from the research community with
the exception of Baccarin (2009). Indeed, there is a lack of cash manage-
ment models that are able to handle multiple bank accounts. However, cash
management systems with multiple bank accounts are the rule rather than the
exception in most firms. Then, a formal framework to both design and analyze
such systems is required.
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1.1.7 Integrating machine learning and optimization

In an attempt to reduce risk and uncertainty, forecasting deserves the attention
of cash managers. Experience indicates that the success of cash management
is closely related to reliable forecasts of future cash flows (Stone and Miller,
1981). Planning and forecasting are required when there is a need to know
when an event will occur. Because of that, predicting cash flow is one of the
most useful tools for cash management. Any effort done in the line of reducing
uncertainty should be rewarded.

From an operational perspective, cash flow forecasting is usually performed
on a daily basis. Weekly and monthly predictions can be of help as well,
but cash management is typically associated to short term decision-making,
mainly decisions to be made daily. Nonetheless, the great majority of cor-
porate cash managers report dissatisfaction with their efforts at daily cash
forecasting (Miller and Stone, 1985). Several possible explanations can be ar-
gued to be the reason for these failures (Stone and Miller, 1987): major flow
separation, component identification, information system support and pattern
resolution. The uncertain nature of industrial markets and the lack of materials
requirements planning systems can be additional reasons.

There is no doubt that the main resource available to cash flow forecasting
is data. The size of business data bases may continue to increase on a daily
basis as a result of decision-making or transaction recording. Data-driven
decision-making refers to the practice of basing decisions on the analysis of
data, rather than purely on intuition. In the context of business and finance,
decision-making is performed on a daily basis and it is essentially based on
data. Consequently, there is a need to benefit from data and, at the same
time, there is also a need for a sound strategy to incorporate data into the
decision-making process.

To this end, machine learning or, in a broader sense, artificial intelligence rep-
resents a suitable alternative to integrate forecasts in the CMP. Synthetically,
machine learning is concerned with the question of how to construct computer
programs that automatically improve with experience (Mitchell et al., 1997).
More formally, machine learning is the field of artificial intelligence that deals
with making computers modify or adapt their actions so that these actions
get more accurate, where accuracy is measured by how well the chosen actions
reflect the correct ones (Marsland, 2009). When machine learning techniques
are utilized in the development of alternatives for the decision-maker, the re-
sulting systems are referred to as intelligent decision support systems, and
several examples can be found in Doumpos and Grigoroudis (2013). However,
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there is a lack of research on the link between machine learning and the cash
management problem.

1.2 Challenges

Next, we focus on a number of challenges derived from the open research
questions identified above that we tackle in this thesis. To this end, consider
a typical situation in which one or more bank accounts are characterized by
a cash balance which starts in an initial value and fluctuates according to a
particular cash flow process in absence of control actions. At any time, cash
managers can take control actions by increasing/decreasing the cash balance,
paying a cost defined by some cost function. Given an initial condition and
a cash flow process, a cash management model defines the sequence of control
actions, namely, a policy, according to some predefined rules. The ultimate
goal of the cash management problem is to find the policy that optimizes some
objective function with one or more objectives over a time horizon. Any
procedure or algorithm used to find the best policy is called a cash management
solver. These are the main dimensions of the CMP. We next consider a number
of challenges worth tackling.

Decision-making in cash flow management has been supported by different
models designed to establish a policy, i.e., a number control actions by increas-
ing/decreasing the cash balance. The main implication for cash management
derived from the assumption of a distribution modeling a cash flow process is
its predictability. As mentioned in Section 1.1.2, we must explore empirical
cash flow data sets from which some patterns may be extracted. Seasonality
and other alternative features from cash flow can be used to increase predictive
accuracy of any forecasting technique used in cash management. Thus, in this
thesis we consider the next question:

Question 1: The savings hypothesis. Can cash flow pre-
dictive accuracy achieve cost savings in the cash management
problem?

Furthermore, common statistical assumptions on daily cash flow include nor-
mality, stationarity, absence of correlation and also linearity, meaning that
cash flows are proportional to a set of explanatory variables. However, some
results questioning these assumptions detailed in Section 1.1.2 lead us to face
in this thesis the following question:
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Question 2: Cash flow assumptions. Are common statis-
tical assumptions of daily cash flow supported by recent empir-
ical data?

In addition, data transformation is usually considered as a necessary previous
step by time-series analysis techniques to achieve normality and linearity as
required as common assumptions by the cash management literature. In this
thesis, we face the underlying question:

Question 3: Data transformations. Is it always possible
to achieve a Gaussian, noise-free and linear time-series through
data transformations?

If the answer to this question was negative, alternative approaches such as
non-linear time-series forecasting could be considered as a key tool in cash
management. On the other hand, it is easy to understand that most decision-
making problems must take into account multiple objectives. This fact is
particularly true in cash management where several, but often conflicting, goals
are pursued by decision-makers with possibly different preferences for each goal.
Usually, different goals are often translated into economic terms or introduced
in the optimization problem as additional constraints. However, since risk
is inherent to any decision-making process that involves a certain degree of
uncertainty, as it is the case of the CMP, in this thesis we formulate the next
question:

Question 4: Risk as an additional goal. Can we incor-
porate risk as an additional goal to the cash management prob-
lem?

Under the current situation of time-varying financial circumstances, cash man-
agers, may be interested in identifying the best compromise policies in terms
of cost and risk that are also robust to cash flow regime changes. As a result
we pose the following question:

Question 5: Robust models. Can we provide a robust coun-
terpart for any cash management model?
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A closely related topic to the previous research question is the concept of
operating condition, which we use in this context to refer to any factor that
may influence the performance of a model. Being able to analyze the tradeoff
between cost and risk for different models and operating conditions can be of
help for cash managers. In this thesis, we also consider the following open
research question:

Question 6: Operating conditions. Under what circum-
stances or operating conditions a model is better than another?

The cash management models mentioned in Section 1.1.1 are based on a set
of control limits. They aim to obtain the best set of bounds that minimizes
holding and transaction costs. However, the ultimate goal of the cash man-
agement problem is not to find the best set of bounds, but the best sequence
of control actions. We argue that the constraints imposed by these models in
the form of bounds reduce the space of possible control actions. In this thesis,
we aim to answer the following question:

Question 7: Boundless models. Are control bounds really
necessary in cash management?

An additional question derives from the methods used to derive policies as
mentioned in Section 1.1.5. How are these policies determined in practice?
Alternative approaches include methods providing optimal solutions such as
dynamic programming and approximate methods such as genetic algorithms.
The inclusion of additional goals, possibly expressed as non-linear functions,
lead us to consider in this thesis the question:

Question 8: Optimal solutions. Can we obtain optimal
solutions for the multiobjective cash management problem?

Cash management systems with multiple bank accounts present particular
characteristics that require a different approach. Cash managers aim to obtain
a feasible policy that minimizes some objective function. When dealing with
multiple bank accounts, a feasible policy requires the allocation of available
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funds in a set of accounts. Furthermore, transactions between any pair of
bank accounts are permitted at a certain cost provided that there is enough
balance in the source account. As pointed out in Section 1.1.6, the lack of a
formalization of the CMP for multiple bank accounts forces us to consider in
this thesis the question:

Question 9: Multiple bank accounts. Can we derive op-
timal policies for cash management systems with multiple bank
accounts?

Selecting the best policy to keep the balance between what a company holds in
cash and what is placed in alternative investments in cash management systems
with multiple bank accounts is by no means straightforward. Automating
decision-making in cash management is also a challenge that is worth tackling.
This leads to the final research question that we pose in this thesis:

Question 10: Software for cash management. Can we
automate decision-making in cash management through the use
of software?

Summarizing, in Section 1.1 we established the framework for the study of
the CMP based on six dimensions: models, cash flow process, cost functions,
objectives, solvers and number of bank accounts considered. This framework
allows us to formulate a number of important research questions. The answer
to these questions becomes the main contributions of this thesis that we next
describe.

1.3 Contributions

In this section, we enumerate the main contributions of this thesis and how
they are linked to the aforementioned research questions within the framework
of the six dimensions of the CMP discussed in Section 1.1. By means of
this six-dimensional framework, we map each contribution to a family of cash
management problems defined by the particular values of each dimension.
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1.3.1 The savings hypothesis

Our first contribution relies on bound-based cash management models that
accept empirical cash flow process, considering linear cost functions, a single
objective, namely, cost, and that are solved by Monte Carlo methods (Glasser-
man, 2003) for only one bank account as shown in Figure 1.4.

The utility of cash flow forecasts has received little attention in the literature
with the exception of Stone (1972) and Gormley and Meade (2007). A measure
of quality of any forecasting technique is its predictive accuracy (Makridakis,
Wheelwright, and Hyndman, 2008) and, under an economic perspective, pre-
dictive accuracy must be mapped to estimated cost savings. Surprisingly, it
is unknown whether even small improvements in cash flow predictive accuracy
may lead to savings that could perhaps amount to millions of euros in total.
We claim this step as a mandatory one, specially when improving forecasting
accuracy may be correlated with cost savings, that we here call the savings
hypothesis. As a result, our first contribution is a test to accept or reject the
savings hypothesis as an answer to Question 1. More precisely, we provide a
procedure to estimate how much companies can save by improving predictive
models and, consequently, the cost of not predicting, i.e., the missed savings
minus the cost of implementing the model.

Moreover, we present and compare different forecasting methods including lin-
ear and non-linear models. Using two real data sets from companies in the
textile industry in Spain, as a proof of concept: (i) we show empirically that
forecasting accuracy is highly correlated with savings in cash management and,
thus, a comparison in terms of accuracy and savings between different forecast-
ing models is performed; (ii) we argue that the effect of forecasting accuracy
on cash management can be estimated in advance and, thus, we propose a new
methodology for estimating this effect. As a result, cash managers are then
able to know if extra effort in improving accuracy is worthwhile.

1.3.2 Cash flow assumptions

In our second and third contribution, we focus only on the empirical properties
of the cash flow process as shown in Figure 1.5. First, in an attempt to answer
Question 2, we provide recent evidence on the statistical properties of 54 real
cash flow data sets from small and medium companies in Spain, with annual
revenue up to 10 million euro each. To the best of our knowledge, this is the
most comprehensive empirical study on daily cash flow so far. We base this
statement on the range of statistical properties considered, and on both the
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Models Deterministic Bound
Based Boundless

Dimensions Values Values Values

Cash flow process Gaussian Empirical Deterministic

Cost functions Linear Non-linear

Objectives Single Multiple

Solvers Monte
Carlo

Linear
Programming

Quadratic
Programming

Number of
accounts One Multiple accounts

Figure 1.4: Contribution 1. The savings hypothesis.

number and the length of the data sets, which amounts to 58,005 observations
in total.

Contrarily to what it is assumed in the literature, our results show the un-
likely occurrence of normality, stationarity and absence of correlation, and this
fact leads to consider alternative forecasting linear and non-linear forecast-
ing models. Consequently, we also consider linearity, meaning that cash flow
is proportional either to another variable or to a combination of explanatory
variables. In order to determine whether a non-linear model is preferable to a
linear one, we propose a new cross-validated test for non-linearity that is able
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to consider any non-linear functional form. Our test is based on time-series
cross validation (Hyndman and Athanasopoulos, 2013) to avoid the potential
problem of overfitting the data.

1.3.3 Data transformations

As a solution to the previous problems of lack of normality and linearity, data
transformation is usually considered as a general technique by state-of-the-art
time-series forecasting techniques. Therefore, we face the underlying additional
Question 3, namely, whether it is always possible to achieve a Gaussian, noise-
free and linear time-series through data transformations. We rely both on
common statistical tests and on our novel non-linearity test to answer this
question and we find that: (i) outlier treatment and Box-Cox transformation
is not enough to achieve normality; (ii) outlier treatment produce mixed results
in terms of noise reduction and information loss; (iii) linear models obtain no
benefit from outlier treatment; (iv) a Box-Cox transformation produces similar
results in our cross-validated non-linearity test. These results suggest that non-
linear models represent a more realistic alternative for time-series forecasting.

1.3.4 Risk as an additional goal

Our contributions 4, 5, and 6 focus also on bound-based models using empirical
cash flow data and linear cost functions, but extending the number of objectives
to consider not only cost but also risk in the search for the best policies and a
single bank account as shown in Figure 1.6.

One of the most common features of most decision-making problems is the
optimization of multiple objectives. However, current research on cash man-
agement does not approach the CMP from a multiobjective perspective. In this
thesis, we propose a multiobjective approach to the CMP. Since risk is inherent
to any decision-making process that involves a certain degree of uncertainty,
we incorporate risk analysis in the CMP providing an answer to Question 4.
We further provide theoretical results on the characterization of compromise
solutions, and also a procedure to deal with discrete efficient frontiers and
uncertain risk preferences.
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Models Deterministic Bound
Based Boundless

Dimensions Values Values Values

Cash flow process Gaussian Empirical Deterministic

Cost functions Linear Non-linear

Objectives Single Multiple

Solvers Monte
Carlo

Linear
Programming

Quadratic
Programming

Number of
accounts One Multiple accounts

Figure 1.5: Contributions 2 and 3. Empirical evidence on daily cash flow.

1.3.5 Robust models

In addition, there is a need for providing support to cash managers to test
policies under a changing financial context. Then, we introduce a robustness
index based on a data-driven procedure using distances in the cost-risk space.
This index helps identify the best compromise policies in terms of cost and risk,
which are also robust to cash flow regime changes, hence answering Question 5.
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1.3.6 Operating conditions

The concept of operating condition is closely related to changing contexts.
Therefore, the analysis of cost and risk for different models and operating con-
ditions is at the core of decision support systems for cash managers. Conse-
quently, we also introduce the use of ROC (Receiver Operating Characteristic)
analysis and loss curves in cash management. We allow model comparison
through the use of graphical tools to: (i) show models in the cost-risk space;
(ii) choose models according to risk preferences; (iii) derive cost-risk curves for
different operating conditions.

1.3.7 Boundless models

Our seventh and eighth contribution are new cash management models that
use forecasts derived from empirical cash flow processes to determine opti-
mal multiobjective policies with linear cost functions by relying on linear and
quadratic programming as shown in Figure 1.7.

In addition to the lack of risk analysis in state-of-the-art cash management
models, most of them have a common feature: they are based on setting con-
trol limits or bounds. Within the framework of Bound-Based Models, cash
balance is allowed to wander around between some bounds, usually a high
bound and a low bound. When any of these bounds is reached, a control ac-
tion is made to restore the balance to some target level. At this point, we face
Question 7 by testing if these bounds are really necessary to derive optimal
policies. In all previous models, cash managers have to determine the bounds
which minimize transaction and holding costs. However, the ultimate goal of
the cash management problem is not to find the best set of bounds, but the
best sequence of control actions.

In this thesis, we propose a new class of cash management models without
bounds in order to enlarge the search space for alternative policies. Further-
more, we show that usual constraints imposed by these models, in the form
of bounds, are not necessary to derive optimal policies. As a result, we first
linearize the CMP in order to guarantee the optimality of solutions. Then,
we use this approach to reformulate the Gormley and Meade (2007) model as
a linear program ensuring optimality. Finally, we propose an equivalent but
simpler model that we call the Boundless Model (BM) in which no constraint
or restriction is imposed on the form of the policy.
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Models Deterministic Bound
Based Boundless

Dimensions Values Values Values

Cash flow process Gaussian Empirical Deterministic

Cost functions Linear Non-linear

Objectives Single Multiple

Solvers Monte
Carlo

Linear
Programming

Quadratic
Programming

Number of
accounts One Multiple accounts

Figure 1.6: Contributions 4, 5, and 6. Multiobjective cash management.

1.3.8 Optimal solutions

In an attempt to answer Question 8, we propose two different solvers for cash
management problems based on linear programming (LP) and quadratic pro-
gramming (QP). Linear and quadratic programming counterparts of compro-
mise programming models result in an automated and optimal decision making
technique when preferences and the extreme values of both cost and risk ob-
jectives can be reasonably estimated by cash managers.
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Models Deterministic Bound
Based Boundless

Dimensions Values Values Values

Cash flow process Gaussian Empirical Deterministic

Cost functions Linear Non-linear

Objectives Single Multiple

Solvers Monte
Carlo

Linear
Programming

Quadratic
Programming

Number of
accounts One Multiple accounts

Figure 1.7: Contributions 7 and 8. Boundless models for multiobjective cash management.

1.3.9 Multiple bank accounts

Figure 1.8 shows graphically our ninth and tenth contribution as a method to
automate cash management systems with multiple bank accounts relying on
linear programming for a single objective with linear cost functions. Nonethe-
less, it is important to highlight that our model can be readily extended to
consider multiple objectives.

Cash managers usually deal with multiple banks to receive payments from
customers and to send payments to suppliers, employees and other creditors.
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Models Deterministic Bound
Based Boundless

Dimensions Values Values Values

Cash flow process Gaussian Empirical Deterministic

Cost functions Linear Non-linear

Objectives Single Multiple

Solvers Monte
Carlo

Linear
Programming

Quadratic
Programming

Number of
accounts One Multiple

accounts

Figure 1.8: Contribution 9 and 10. Automating cash management systems with multiple
bank accounts.

Hence, a cash management system can be viewed as a set of bank accounts and
their relationship. Operating a cash management system implies a number of
transactions between accounts to maintain the system in a state of equilibrium,
meaning that there exist enough cash balance to face payments and avoid an
overdraft. In the cash management literature, systems with multiple bank
accounts have received little attention of the research community with the
exception of Baccarin (2009). However, there is a lack of cash management
models that are able to handle multiple bank accounts. Hence, our ninth
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contribution answers Question 9 by means of a formalization of the CMP with
multiple bank accounts. In order to handle the uncertainty introduced by cash
flow forecasts, we provide robust solutions through linear programming.

1.3.10 Software for cash management

In an attempt to reduce the gap between theory and practice, we also provide
a software tool called PyCaMa to define, analyze and solve the CMP with
multiple bank accounts as an answer to research Question 10. More precisely,
we provide a software library in Python that can be used for cash management
systems with multiple bank accounts and also for a single bank account. Fur-
thermore, PyCaMa can also solve the CMP considering both cost and risk of
the policies.

1.3.11 Integrating contributions

As a final contribution of this thesis, Figure 1.9 represents a logical proce-
dure to be followed by cash managers to improve daily decision-making. Cash
managers provided with both a cash flow data set and a cash management
model are now able to perform a savings test to know if predictive accuracy
may lead to enough savings. If these savings are worthwhile, then a detailed
empirical study on cash flow data will necessary improve the understanding of
the cash management problem. As a result, a number of suitable forecasters
can be used as a key input to: (i) follow a multiobjective approach in which
not only cost but also risk is considered; (ii) use a new family of boundless
models that are able to consider a wider input space than state-of-the-art cash
management models; (iii) solve the cash management problem within a more
realistic framework with multiple bank accounts.

1.4 Structure

This thesis is organized in three parts, twelve chapters, including this intro-
ductory chapter, and one appendix with useful terminology and acronyms:

Chapter 2 reviews cash management related work focusing on models pro-
posed to determine optimal policies. We discuss the main contributions of
each model highlighting common assumptions and those characteristics closely
related to our six dimensions framework established in Section 1.1 for cash
management analysis. We finally provide a comparative study of cash man-
agement models.
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Figure 1.9: Integrating the contributions of this thesis.

Chapter 3 presents the savings hypothesis contribution as a proof of concept
to assess the utility of forecasting in cash management. The underlying idea be-
hind the savings hypothesis is that cash managers can estimate in advance how
much savings can be achieved using any particular cash management model
and any cash flow process within the framework of the current cost structure.
Thus, the notion of simulation is of central importance. We first show that
alternative forecasting techniques are able to produce better predictions than
a trivial forecaster. Then, we demonstrate that better forecasts lead to cost
savings, and we finally provide a simulation methodology to estimate savings
derived from predictive accuracy. If the result of this proof of concept is posi-
tive, i.e., the estimated savings are worthy, then cash managers may consider
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better forecasting techniques and alternative cash management models. The
material contained in this chapter has been published in:

• Salas-Molina, F., Martin, F. J., Rodríguez-Aguilar, J. A., Serrà, J., Ar-
cos, J. L. (2017). Empowering cash managers to achieve cost savings
by improving predictive accuracy. International Journal of Forecasting.
Volume 33. Issue 2. Pages 403-415.

Chapter 4 provides a comprehensive empirical study on daily cash flow based
on 54 real cash flow data sets as a contribution regarding the common cash
flow assumptions in the cash management literature. We propose a novel cross-
validated test for time-series non-linearity and we also analyze the impact
of data transformations. The material contained in this chapter has been
published in:

• Salas-Molina, F., Rodríguez-Aguilar, J. A., Serrà, J. Empirical analysis
of daily cash flow time-series and its implications for forecasting. (2016).
arXiv:1611.04941v3.

Chapter 5 approaches the cash management problem from a multiobjective
perspective. We motivate the use of risk as an additional goal in cash manage-
ment and we further describe our multiobjective approach including a method
to solve the multiobjective CMP. The material contained in this chapter has
been published in:

• Salas-Molina, F., Pla-Santamaria, D., Rodríguez-Aguilar, J. A. (2016).
A multiobjective approach to the cash management problem. Annals of
Operations Research.

Chapter 6 aids cash managers to select the best policies under a changing
context by incorporating robustness as an additional goal to cost and risk
within a multiobjective framework. We propose to calculate robustness as a
multiple criteria distance index that helps identify the robust policies that are
also efficient in terms of cost and risk. Using this multiobjective index, cash
managers can transform a cash management model in a more robust one. The
material contained in this chapter has been published in:

• Salas-Molina, F., Pla-Santamaria, D., Rodríguez-Aguilar, J. A. (2017).
On the use of multiple criteria distance indexes to find robust cash man-
agement policies. Information Systems and Operational Research.

Chapter 7 adapts Receiver Operating Characteristic (ROC) analysis to cash
management. We provide a range of visual and quantitative tools for showing
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model performance; choosing models; and assessing the impact of operating
conditions on model performance. The material contained in this chapter has
been published in:

• Salas-Molina, F., Rodríguez-Aguilar, J. A., Díaz-García, P. (2017). Se-
lecting cash management models from a multobjective perspective. An-
nals of Operations Research.

Chapter 8 proposes a new boundless cash management model based on fore-
casts that guarantees the optimality of solutions in a multiobjective framework
in which cost and risk are goals to be minimized. We also offer an extensive
evaluation of the impact of forecasting errors using real data sets from 54
different companies.

Chapter 9 formulates alternative compromise programming models for cash
management as a method to minimize the sum of weighted distances to an
ideal point where both cost and risk are minimum. We discuss the pros and
cons of different measures of risk. Furthermore, we propose and compare three
different solvers to cover a wide range of possible situations such as Monte
Carlo methods, linear programming and quadratic programming.

Chapter 10 develops as a sound formal framework to automate cash manage-
ment systems with multiple bank accounts. In this chapter, we approach the
cash management problem from a multidimensional perspective to provide a
formal specification of cash management systems with multiple bank accounts.
We provide a methodological framework that allows to define multidimensional
cash management systems and to obtain a solution by using state-of-the-art
mathematical programming solvers.

Chapter 11 introduces PyCaMa, a Python module for multiobjective cash
management based on linear programming that allows to derive optimal poli-
cies for cash management with multiple bank accounts in terms of both cost
and risk. The material contained in this chapter has been published in:

• Salas-Molina, F., Rodríguez-Aguilar, J. A., Díaz-García, P. (2017). Py-
CaMa: Python for cash management. arXiv:1702.05005

Chapter 12 concludes summarizing the main contributions of this thesis and
highlighting future lines of action.
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Chapter 2

Background and
related research

In this chapter, we summarize and analyze the research appearing in the lit-
erature which is relevant to this thesis. We mainly focus on the alternative
solutions, in the form of cash management models, that have been proposed to
the cash management problem. Remaining related works on other topics will
be covered in their respective chapter. In order to put these works into perspec-
tive, we dedicate the first part of this chapter to define the cash management
problem. Next, we introduce models and we finally present a comparative
analysis highlighting the main characteristics of these models according to the
framework provided in Chapter 1.

2.1 Definition of the cash management problem

The Cash Management Problem (CMP) was first addressed from an inventory
point of view by Baumol (1952). Cash was then viewed as a stock, as a buffer,
like an inventory of wheat or bolts. Holding cash has a cost because of being
idle but, at the same time, transferring idle money to alternative investments
is also costly. How much money should companies keep in cash to operate
efficiently? This question defines the CMP. However, additional information
about the cash flows’ properties and both holding and transaction costs are
required. Consequently, we can synthetically define the CMP by means of
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a statement containing all the required inputs to determine the amount of
cash balance that optimizes a given objective function, usually holding and
transaction costs. Probably, the most detailed definition of the CMP was
given by Eppen and Fama (1969), as follows:

"To meet its day-to-day transactions requirements a firm keeps
a cash balance, either in the form of cash on hand or as a bank
deposit. In controlling the level of the cash balance, the goal of
the firm is to choose an operating policy or decision rule which
minimizes discounted costs over some horizon period. An in-
centive to keep the cash balance low arises from the fact that
each unit of positive cash leads to holding cost since cash has
alternative uses (i.e., as dividends or as investment in earn-
ing assets). On the other hand, if the cash balance goes below
zero (or some other finite level), penalty costs will be incurred
as a result of delay in meeting demands for cash. Finally, the
firm can increase its cash balance either by raising new capi-
tal or by selling some earning asset, and the cash balance can
be reduced by paying dividends or investing in earning assets.
Adjusting the cash balance will in either case involve transac-
tions or transfer costs. To complicate the problem, day-to-day
inflows and outflows of cash are, at least to some extent, un-
predictable."

The first approach by Baumol (1952) was deterministic, meaning that the basic
premise was that the demand for money was assumed to be perfectly known.
Later on, Miller and Orr (1966) approached the problem from a stochastic
perspective by considering a symmetric Bernouilli process in which both inflows
and outflows were exactly of the same size and had probability 1/2. These two
approaches were considered extreme cases by Stone (1972), who postulated
that real-world cash flows were neither completely certain as in Baumol (1952),
nor completely unpredictable as in Miller and Orr (1966). On the contrary,
Stone considered that most companies can forecast their cash flows although
there is always some uncertainty in this task.

The main goal of cash management was briefly stated in Gregory (1976). Cash
flow management is concerned with the efficient use of the company’s cash and
short-term investments. In this review the author pointed out that under stable
economic conditions, this is a matter of deciding when to transfer assets and
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how much. As a result, one may consider that the development of models to
answer these questions is a task worth tackling.

Note that from the seminal work by Baumol (1952), the CMP was viewed as
an inventory control problem which maps a number of inputs to an output
solution. However, cash management covers a wider range of administrative
tasks which deserve to be mentioned, though they are beyond the scope of
this thesis. A first definition of the corporate cash management can be found
in Fabozzi and Masonson (1985): the actual management of incoming and
outgoing cash on a daily basis is managed effectively. However, this definition
has a remarkable problem: the use of the word management, not only once but
twice, to define management itself. Common definitions of management break
down the term in four tasks or processes: plan, organize, execute and control.
Therefore, we next reformulate the previous definition to increase clarity:

cash management tries to effectively plan, organize, execute an
control incoming and outgoing cash.

Moreover, Fabozzi and Masonson (1985) extended their definition by enumer-
ating five basic elements of corporate cash management:

1. Collections: speeding up timing of receipts into available funds.

2. Disbursements: controlling the release and timing of payments.

3. Concentration: inexpensively mobilizing funds from outlying banks to
one location for their efficient use.

4. Investments: maximizing yield within acceptable levels of risk and matu-
rity.

5. Information and control: externally obtaining accurate, timely data on
bank balances, bank deposits, and internally obtaining data for accurate
short-term cash forecasts.

In the most general case, cash managers have to deal with collections, disburse-
ments, concentration, investments and information and control. Interestingly,
information and control are placed in the last position but, if we carefully look
at the problem, we will see that all of them would fail to succeed if they were
not based on timely data and if they were not appropriately controlled. In this
work, we will particularly focus on information and control.
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Another comprehensive definition can be found in Srinivasan and Kim (1986).
In this cash management review, the authors first focus on seeking answers to
several questions: What does the cash manager do? What kinds of decisions
does the literature suggest the cash manager is involved in? The answers to
these questions contain the concepts of planning and control: the cash manage-
ment function has the responsibility to mobilize, control and plan the firm’s
cash resources. Finally they consider four different decision types that fall
under these decision processes:

1. Cash position management.

2. Short-term borrowing.

3. Short-term investing.

4. Cash forecasting.

As expected, the definitions by Fabozzi and Masonson (1985) and Srinivasan
and Kim (1986) have many common points. It seems clear that cash manage-
ment is a problem with two directions: one into the company and another one
out from the company, inflows and outflows, collections and disbursements.
On the other hand, there is a clear interest on controlling cash balances or
cash positions in the different bank accounts needed for operational purposes.
Therefore, cash management also focuses on allocating balances among bank
accounts to avoid overdrafts. Moreover, this cash mobilization can be done by
short-term borrowing or by selling short-term assets, such as interest-bearing
securities. Excess cash positions can be used for short-term investing. Finally,
an important point is also mentioned: forecasting. This thesis focuses on the
use of data-driven procedures such as forecasting in cash management with a
goal in mind: improving daily decision-making processes.

Finally, a recent review on stochastic cash management models since the 1980s
can be found in Costa Moraes, Nagano, and Sobreiro (2015). Although clearly
referring back to the seminal works by Baumol (1952) and Miller and Orr
(1966), and to the previous reviews by Gregory (1976) and Srinivasan and Kim
(1986), new perspectives on cash management are given through the concepts
of profitability, liquidity and risk such as any other investment decision.

From the basic characteristics of cash management and its several perspectives
given above, a number of cash management models have been proposed in the
literature. These models represent alternative ways to determine the ideal
amount of available cash to be held by firms that we next review.
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2.2 A review of cash management models

2.2 A review of cash management models

In the following sections, we present a chronological review of the most relevant
previous works on the cash management problem. We respect the original
author’s notation and clarify issues on notation when necessary for comparison
purposes. After a detailed description, we discuss how each cash management
model contributed to the research questions stated in Section 1.2.

2.2.1 The Baumol model

It was 1952 when Baumol first introduced the inventory control approach to the
cash management problem. Baumol (1952) expected that inventory theory and
monetary theory can learn from one another. However, a number of important
assumptions were made to, using the exact Baumol’s words, abstract from
precautionary and speculative demands. The most important one was that
transactions are perfectly foreseen and occur in a steady stream. Consequently,
we are dealing with a deterministic model. Baumol assumed that an outflow
of T dollars occurs for a given period of time in a steady stream. On the other
hand, in order to offset these outflows, inflows can be obtained by borrowing
or by withdrawing from an investment at the cost of i dollars per dollar per
period. One more assumption is made by considering that these withdrawals
are done in lots of C dollars evenly spaced in time with a fixed cost of b
dollars (see Figure 2.1). Under these constraints, cash managers make T/C
withdrawals for a given period and total cost is given by:

bT

C
+
iC

2
(2.1)

where the first part of the equation is the number of transactions multiplied by
the unitary fixed cost of each of transaction and, the second one is the average
cash balance multiplied by the cost of holding this balance.

Then, the goal for cash managers is choosing C so that equation (2.1) is min-
imized. Setting the derivative of the total cost with respect to C to zero,
we obtain that the value of C that minimizes (2.1) is given by the following
expression:

C =

√
2bT

i
. (2.2)

This initial simple model was extended to consider the possibility of withhold-
ing some or all of the receipts from investment and keeping the cash until
is needed. From the total outflow T, the cash manager can decide to invest

43



Chapter 2. Background and related research

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

B
a
la

n
ce

C

Figure 2.1: The Baumol model.

I dollars and withhold the remainder R dollars. In this case, Baumol also
considered fixed (bw) and variable (kw) withdrawing costs and fixed (bd) and
variable (kd) depositing or investing costs. Then the total cost of cash oper-
ations is given by the sum of the total cost of withholding the R dollars and
investing the I dollars, and the cost of obtaining cash for the remainder of the
period as follows:

T − I
2

i
T − I
T

+ bd + kdI +
C

2
i
I

T
+ (bw + kwC)

I

C
. (2.3)

Again the optimal value of C is given by the equation (2.2) with b = bw. Now
partially differentiating equation (2.3) with respect to I we obtain the optimum
average cash balance before drawing on invested receipts begins:

R = T − I =
C

2
+
bwT

Ci
+
T (kd + kw)

i
. (2.4)
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Substituting equation (2.2) in (2.4) we obtain a simpler expression:

R = C + T

(
kd + kw

i

)
. (2.5)

Note that the analysis assumes a continuous steady stream of outflows and
discontinuous inflows, but it also applies to the case of continuous receipts and
discontinuous payments.

On the application of this model to the real corporate cash management prob-
lem, it is interesting to say that, in his work, Baumol pointed out that his
model was "only a suggestive oversimplification". The emphasis was on the
description of the demand for money by firms or household economies. The
steady stream of payments and the absence of receipts during the relevant pe-
riod make this model impractical in many real applications. However, a first
step in the inventory control approach to the cash management problem was
done. Interestingly, Baumol also envisioned the inherent task of forecasting
the cash flow by stating that, with sufficient foresight, if receipts can meet
payments, savings in the use of cash can be achieved.

Baumol (1952) initiated the inventory approach to the cash
management problem and highlighted the utility of forecasts as
stated in Question 1.

2.2.2 The Tobin model

Tobin (1956) argued that cash requirements depend inversely on the rate of
interest for a given volume of transactions governed by the lack of synchro-
nization of receipts and disbursements. The higher the lack of synchronization
the higher the need for transaction balances. However, there is no need for
holding these balances in cash. Instead, cash managers have the opportunity
to keep these balances in assets with higher yields, such as bonds or marketable
securities. At the time that cash is needed these assets would be shifted into
cash again to face payments. Consequently, it is likely that the amount of cash
held for transaction purposes is related inversely to the interest rate on such
alternative assets.

Given an interest rate r, the problem is to find the relationship between what
is held in cash and what is held in alternative assets so as to maximize interest
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earnings, net of transaction costs. At the beginning of each period t = 0, an
amount Y is held by the cash manager that is uniformly disbursed until the
end of the period t = 1 when no cash is available, as shown in Figure 2.2. Thus,
the total transactions balance is T (t) = Y (1 − t), with 0 ≥ t ≥ 1. However
this total T (t) can be divided between cash C(t) and bonds B(t) such that
T (t) = C(t) + B(t), with B(t) yielding an interest r per time period. Three
different questions are then faced by Tobin: (i) given r and a fixed number n
of transactions, determine the optimal timing and amounts to be held in cash
and bonds; (ii) given r but a variable number n of transactions, determine the
optimal n∗; and (iii) how does n∗ depend on r?.
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Figure 2.2: The Tobin model.

Considering a transaction x between bonds and cash, the transaction cost is
given by a+ b · x, with a, b > 0. Then, for the general case, Tobin proves that
the average amount of bonds is given by:

B =
n− 1

2n
Y

(
1− 4b2

r2

)
(2.6)
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with n ≥ 2 and r ≥ 2b. In order to determine the optimal number of transac-
tions, the next profit function is maximized:

πn =
n− 1

2n
Y r

(
1− 2b

r

)2

− na (2.7)

which is a decreasing function of n. Then, the optimal number of transactions
n∗ is greater than 2, when 1/12 Y r(1 − 2b/r)2 ≥ a holds. Finally, the rela-
tion of the optimal number of transactions n∗, and the interest rate is given
by equation (2.6). Since Bn is an increasing function of n, and n∗ varies di-
rectly with r, the optimal proportion of bonds also varies directly with r, and
consequently, the proportion of cash varies inversely with r, for high enough
rates.

Later on, Smith (1986) proposed a Dynamic Baumol-Tobin Model of Money
Demand based on a stochastic model described by Frenkel and Jovanovic
(1980). However, this Baumol-Tobin model has much more to do with the
Constantinides and Richard (1978) model than with the first proposals by
Baumol (1952) and Tobin (1956). More recently, Mierzejewski (2011) followed
Tobin’s approach, according to which companies hold cash as a behavior to-
wards risk, to propose a theoretical model of equilibrium in markets of cash
balances which is beyond the scope of this thesis.

Summarizing, the Tobin (1956) model is also a deterministic model dealing
with a uniform cash flow such as the Baumol (1952) but incorporating the
interest rate as a key parameter. In addition, Tobin considered not only fixed
costs but also variable transaction costs between two alternative assets, namely,
bonds and cash.

Tobin (1956) considered an operating condition such as the in-
terested rate as key factor to include in cash management as
we identified in Question 6.

2.2.3 The Miller-Orr model

The Baumol (1952) model was later considered by Miller and Orr (1966) to
apply reasonably well to much of the household sector, particularly to salary-
earning households. Baumol focused on the cost of putting idle cash to work
by means of the wide variety of interest-bearing securities of very low risk and
very quickly convertible to cash. Although this is a more common practice in
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business firms than in household economies, Miller and Orr argued that cash
balance does not fluctuate steadily but irregularly for many companies, hence
resulting in an impractical application of the Baumol model.

In "A Model of Demand for Money by Firms", Miller and Orr developed a sim-
ple model following an opposite approach to Baumol by considering stochastic
cash flows. From a predictability point of view, Miller and Orr leaped from
the perfect knowledge of cash flows in Baumol model to cash flows generated
by a stationary random walk, from a deterministic approach to completely
stochastic cash flows. Particularly, Miller and Orr considered cash flows to
be characterized as a sequence of independent and symmetric Bernoulli trials.
They supposed that cash balance will either increase or decrease by m dollars
with probability p = 1/2. The main features of this approach are indepen-
dence, stationarity, zero-drift, and the absence of regular swings in the cash
flow. Moreover they ignored shortage and variable transaction costs.

In a first attempt to deal with the corporate cash management problem, they
assumed that companies seek to minimize long-rung average cost of managing
cash balances under some simple policy. This policy sets a lower bound, zero,
and an upper bound, h, where the cash balance is allowed to wander around
between the lower and upper levels. We say then that the Miller and Orr
(1966) model is a Bound-Based Model (BBM). Apart from the cash balance,
the model also assumes the existence of a second asset of any kind like interest
bearing assets or marketable securities grouped in a portfolio of investments
which are easily transformed in cash at the company convenience. The policy
implies that when the upper bound is reached a withdrawal transfer will be
made to restore the balance to a target level of z. In the same way, when the
cash balance reaches zero a positive transfer will be made to again restore the
balance to z.

Although Miller and Orr set the lower limit to zero in their work, in practice a
real cash manager should set a lower limit above zero for precautionary motives.
This lower limit represents a safety cash buffer and its selection will depend
on the level of risk the company is willing to accept. This model variation can
be found in Ross, Westerfield, and Jordan (2002), which sets a lower limit l,
and a upper bound, h. When h is reached a withdrawal transfer is made to
restore the balance to a target level of z. In the same way, when the cash
balance reaches l, a positive transfer is made to again restore the balance to
z. Formally, the transfer occurring at time t, xt, is elicited by comparing the
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Figure 2.3: The Miler-Orr model.

current cash balance, bt−1, to the lower and upper bounds:

xt =

 z − bt−1, if bt−1 > h
0, if l < bt−1 < h
z − bt−1, if bt−1 < l

(2.8)

To obtain the limits, once the cash manager has set the lower limit l, the
optimal values of the policy parameters h and z are derived from the expected
cost per day over any planning horizon of T days given by:

E(c) = γ
E(N)

T
+ vE(M) (2.9)

where E(c) is the expected cost per day, E(N) is the expected number of
transfers during the planning period T ; γ is the the cost per transfer; E(M)
is the average daily cash balance; and v is the daily rate of interest earned on
the portfolio as an opportunity cost of the idle cash. Setting Z = h − z, the
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problem can be stated in terms of the variance of the net cash flow as:

argmin
Z,z

E(c) = argmin
Z,z

γσ2

Zz
+
v(Z + 2z)

3
(2.10)

where the first part of the equation is the transfer cost term and the second
one is the holding cost term. Note that the average cash balance is (h+ z)/3.
Hence the optimal parameters are given by:

z∗ =

(
3γσ2

4v

)1/3

(2.11)

and
Z∗ = 2z∗. (2.12)

or in terms of the original parameters:

h∗ = 3z∗. (2.13)

The equivalent equations for the case of a lower bound (l) distinct from zero
can easily be derived as presented in Ross, Westerfield, and Jordan (2002) to
obtain:

z∗ = l +

(
3γσ2

4v

)1/3

(2.14)

and
h∗ = 3z∗ − 2l. (2.15)

The reasoning followed was indeed given by Miller and Orr in their original
work Miller and Orr (1966) by stating that it would pay to increase z by ∆
and to reduce Z by 2∆ since the higher value of the denominator in equation
(2.10) implies a lower value for the transfer cost term. The major implication
and the main novelty of this model in comparison to the Baumol model is
the presence of the observable variance of the net daily cash flow. As in the
case of Baumol model, the greater the transfer cost (γ), the higher the target
cash balance (z), and the greater the daily rate of interest (v), the lower the
target cash balance (z). However the greater the uncertainty of the net daily
cash flow, measured by σ2, the higher is the target cash balance (z), and the
higher the difference between the lower bound (l) and the higher bound (h).
This represents a first step towards a more practical approach to the corporate
cash management problem since common sense shows that the greater the
uncertainty, the greater is the chance that the balance will drop below the
lower bound.
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A number of extensions of the model have been considered to incorporate
systematic drift in the cash balance and to allow for more than one portfolio
asset with different transfers and holding costs. Despite the assumption of
the totally stochastic mechanism of cash flow, the authors pointed out the
presence of both stochastic and deterministic, or at least highly predictable,
elements in the cash flow such as payroll disbursements or dividend payments.
However, they argued that the gains from exploiting any cash flow pattern are
by no means large enough to offset the added costs of model development and
implementation. Although a first attempt to a cost sensitive approach to cash
optimization models is done (another example is given in Daellenbach (1974)),
no proof is given to justify their argument. They will be right when costs of
development are higher than savings from optimization models, but they will
be wrong otherwise. In this sense, different costs of development and savings
will lead to different results depending on the case.

An interesting extra comment is done by the authors regarding the use of
forecasts. The transformation of lower and upper bounds into zones rather
than single point limits is likely to be produced when forecasts about the near
future are used by cash managers. An example is when a firm will not transfer
funds to the portfolio when the cash balance is higher than h but important
payments will have to be done in the very near future. This procedure would
later become the main motivation used by Stone (1972) to develop his cash
management model.

Summarizing, the Miller and Orr (1966) model was the first stochastic cash
management model proposed in the literature. They introduced the concept of
bounds or control limits which are directly linked to the statistical properties
of cash flows, which they assumed to be a random walk. Since we here deal
with stochastic cash flows and most of recent cash management models stem
from this model, we will revisit it several times in this thesis.

Regarding Question 1, Miller and Orr (1966) pointed out the
possibility of using forecasts to improve their model. However,
they assumed cash flows to be completely unpredictable which
is closely related to Question 2 on the statistical assumptions
of daily cash flows.
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2.2.4 The Archer model

Archer (1966) proposed a "A model for the determination of firm cash bal-
ances". He essentially followed a practical approach without almost any math-
ematical apparatus. Archer referred to an indication in Baumol (1952) pointing
out the tendency of cash flow to be normally distributed. In addition, he pro-
posed that the precautionary cash requirements might also grow as the square
root of the volume of its transactions, i.e., its standard deviation. Archer
claimed that Baumol’s model was incomplete due to the lack of attention paid
to this precautionary use of cash.

Archer also suggested that payments for interest, dividends, or capital ex-
penditures are non-operating cash outflows and recommended a separate cash
planning for them. This situation will be also covered later by Stone and Miller
(1987). Moreover, he pointed out that seasonal activities of companies may
result in a different handling of non-normal periods. Another of the useful
suggestions made by Archer was the utility of plotting inflows, outflows and
net cash flows from operations as a way to study its behavior over the whole
planning period. The very likely lack of synchronization between inflows and
outflows during the days of the month forces cash managers to maintain a stock
of cash sufficient to cover this transaction gap. Assuming that the inflows and
outflows are stable for all months this can be easily view by simply plotting
inflows and outflows, or simply net cash flows as shown in Figure 2.4. A simple
graphical analysis may result in detecting usual patterns such as the common
business practice of grouping payments on one or two fixed days in the month,
for example, the 10th and 25th.

Archer followed a statistical approach by: (i) plotting the expected variability
of net cash flow in an histogram of frequencies; (ii) computing its mean, its
standard deviation and extreme values, i.e., minimum and maximum. We
entirely agree with Archer in the sense that this graphical exploratory analysis
can be of great help in practice as we will see below. As a consequence of this
analysis, Archer suggested a basic procedure that cash managers should follow
assuming a month as a planning period:

1. Tabulate net cash flow.

2. Compute a mean for each month.

3. Derive its needed cash balance at the beginning of the month for trans-
actions purposes as the mean of monthly net cash flow.
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Figure 2.4: Monthly net cash flow example with two fixed days of payment.

4. Compute a measure of variability of the transactions cash balance re-
quired such as the standard deviation of the transactions cash balances
required for the various months

5. Set an accepted level of risk and derive the needed amount of cash for
precautionary purposes

6. Add the precautionary requirement to the transactions requirement of
cash from step 2 to obtain the amount of cash needed at the beginning of
the month to cover all payments and avoid a shortage of cash for a given
level of risk

The implications of the last step of the above mentioned procedure are of
great importance. Intuitively one can think that high variability cash flows
are likely to produce unexpected cash drains or a cash shortage rather than a
more stable pattern of cash flow. Here the concept of probability of running
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out of cash is introduced by Archer to show that cash managers may decide
the level of risk they are willing to accept. For example, either if we assume
or we effectively know that our net cash flow is normally distributed, we can
empirically determine that standard deviation of the necessary cash balance
at the beginning of the month, e.g., 1000 e. Then, we should add a quantity
equivalent to 2 times 1000 e, that is, 2000 e to the initial cash balance if we
want to accept a risk of running out of cash of 5%. Recall that values within
the band of the mean plus/minus two times the standard deviation of a normal
distribution account for 95% of the total set of observations or, in other words,
5% of the observations are left out of the band. Consequently, the cash balance
needed at the beginning of the month meets the transaction requirement and
the added quantity meet the precautionary requirement of cash.

As a summary, Archer suggested to perform an empirical analysis of daily cash
flow to improve its understanding. He did not provide a quantitative technique
but a general procedure to manage cash that can be repeated as many times
as needed to adjust to any particular situation.

Archer (1966) recommends to explore data to improve the un-
derstanding of the cash management problem along the lines of
Question 2.

2.2.5 The Eppen-Fama model

A variation of the Miller and Orr (1966) model was introduced by Eppen and
Fama (1969) following a dynamic programming approach. However, it was a
previous publication (Eppen and Fama, 1968) the one that provided a complete
analysis on the effect of variations of transfer, and holding and penalty costs
on the optimal policies. The Eppen-Fama model is a generalization of the
stochastic Miller-Orr model in which transfer costs contain both fixed and
variable components. They showed that if transfer costs have a fixed cost as
well as a cost proportional to the amount transferred, the optimal strategy
was of the form of two limits (u, d) and two return points (U,D), one for each
limit. In this model, when the cash balance reaches the upper bound (d), it
is immediately restored to the upper return point (D), and when the cash
balance reaches the lower bound (u), it is restored to the lower return point
(U), as shown in Figure 2.5.

Following a Markovian approach, they assumed that the probability mass func-
tion of the transitions between different possible states was known and station-
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Figure 2.5: Eppen-Fama model representation with two return points.

ary. This assumption implies a process of discretization of the cash balance.
At any point in time, the cash balance can be in one of N possible states
i = 1, 2, ...N , each one representing a discrete level of the cash balance. The
lowest level occurs in state 1 and the highest in state N , and each successive
level differ by some constant R, for example 1000 e.

For the general case, two cost functions are defined: firstly, the transfer cost
(tki ) caused by moving the cash balance from state i to state k:

tki =

 Ku + cu(k − i) if k > i;Ku, cu > 0,
0 if k = i,
Kd + cd(i− k) if k < i;Kd, cd > 0

(2.16)

where Ku and cu are respectively the fixed and variable components of a pos-
itive cash movement, and Kd and cd are respectively the fixed and variable
components of a negative cash movement; secondly, the holding or penalty
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cost (L(k)) associated to starting a period in state k can be defined as:

L(k) =

{
cp(M − k) if k < M ; cp > 0,
ch(k −M) if k > M ; ch > 0

(2.17)

where cp is the marginal penalty cost per period per R unit of cash, ch is the
marginal holding cost per period per R unit of cash, say 1000 e, and M is the
minimum cash balance that has to be kept because of any condition required by
banks. In absence of this restriction, M is usually set to zero as the minimum
cash balance required to be held in the bank account. Recall that Miller and
Orr (1966) suggested the use of two or three bounds. In order to account for
fixed and variable transaction costs, the Eppen and Fama (1968) BBM model
proposed the use of four bounds, resulting in an optimal policy of the following
form:

a) If the cash balance at the beginning of the period is below u, move it up
to U .

b) If the cash balance at the beginning of the period is above d, move it
down to D.

c) If the cash balance at the beginning of the period is between U and D,
do nothing.

Further discussion on the properties of the solutions to the corporate cash
management problem for different probability distributions and a wide vari-
ety of values of the cost parameters can be found in Eppen and Fama (1968).
From an experimental perspective, the authors pointed out that higher dis-
persion in the probability distribution caused the outer bounds, u and d, and
the return points, U and D, to be further away from zero. In this sense,
in practical applications, it is highly recommended to carefully estimate the
probability distribution, specially in the extremes. Moreover, when both the
probability distribution and the cost function are symmetric about zero the
optimal policies are also symmetrical. In addition, the optimal policy seems
to be relatively insensitive to small changes of the cost parameters. This fact
may be important when estimating costs since allowing higher errors may be
relatively unimportant.

Summarizing, a number of interesting contributions on the practical side of
the corporate cash balance problem were made by Eppen and Fama. They
considered both fixed and variable transaction costs resulting in a policy based
on four bounds. On the utility of the cash balance problem, they pointed out
that the cash balance problem captures the essence of the dynamic portfolio
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management that has to be performed on a daily basis not only by most of the
companies, but also by mutual funds and other financial institutions. They
suggested that in many corporate cash balance problems it is reasonable to
extend the problem to the consideration of three possible type of assets: 1)
cash; 2) an intermediate low return asset such as bonds; and 3) high return
assets such as common stocks. The interesting question to be considered con-
cerns the conditions under which the intermediate asset should be treated as
a buffer stock between cash and the high-return asset.

Eppen and Fama (1968) provided a general cost structure based
on fixed and variable transaction costs, and also linear holding
costs which is extensively used in this thesis. They also assumed
stochastic cash flows following a random walk, which is related
to Question 2.

2.2.6 The Daellenbach model

Daellenbach (1971) proposed an improvement of the Eppen-Fama model in "A
stochastic cash balance model with two sources of short-term funds". Daellen-
bach claimed that his model was a generalization of the Eppen-Fama model to
situations where bank account overdrafts are not possible, and using two differ-
ent sources of short-term funds, namely, marketable securities and short-term
loans. Furthermore, in contrast to previous models, the probability distribu-
tion of cash flows is not necessarily stationary and, the length of the review
periods may vary from period to period. Again, a decision about the adjust-
ment of the cash balance has to be made but, in this model, an allocation
decision about either marketable securities or borrowing transactions is also
necessary. A dynamic programming approach was proposed labeling periods
in the planning horizon as n = N for the first period chronologically, and n = 1
for the last period. Then, three state variables were considered to describe the
cash balance situation:

1. Bn or the cash balance at the beginning of period n carried forward from
n+ 1.

2. Zn or the borrowing balance at the beginning of period n carried forward
from n+ 1.

3. Sn or the marketable securities balance at the beginning of period n
carried forward from n+ 1.
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If Xn and Yn denotes transactions in the form of borrowings or marketable
securities respectively and, Rn is the sum of uncontrollable cash transactions
in period n, with probability density function fn(rn), the following balance
equation is used to link period n− 1 to period n:

Bn−1 = Bn +Xn + Yn +Rn (2.18)

Zn−1 = Zn +Xn, Zn ≥ 0 (2.19)

Sn−1 = Sn − Yn, Sn ≥ 0 (2.20)

subject to:
Bn +Xn + Yn ≥ 0 (2.21)

Zn +Xn ≥ 0 (2.22)

Sn − Yn ≥ 0 (2.23)

meaning that: (i) the beginning cash balance before any adjustment has to be
non-negative; (ii) the outstanding borrowing balance cannot be reduced below
zero; and (iii) marketable securities cannot be sold short.

According to the previous equations, the state variable set for the cash position
at the beginning of period n, prior to any cash balance adjustment, is denoted
by Ωn = (Bn, Zn, Sn), the decision variables are (Xn, Yn), and the total cost
is the sum of: (i) fixed and variable transaction costs for borrowing; (ii) fixed
and variable transaction costs for marketable securities; (iii) interest cost on
borrowings; (iv) returns on marketable securities (note that this is a negative
cost or a benefit); and (v) penalty costs for cash shortages. All these costs can
be summarized as follows:

Tn(Xn, Yn; Ωn) = H1(Xn) +H2(Yn) + c1n(Zn +Xn)

−c2n(Sn − Yn) + Ln(Bn +Xn + Yn)
(2.24)

where H1(Xn) is the borrowing cost function computed as:

H1(Xn) =

{
−b−1 Xn if Xn < 0,
b+1Xn if Xn ≥ 0,

(2.25)

where b−1 , b
+
1 are respectively variable borrowing transaction cost for cash in-

creases (+) and cash decreases (-); H2(Yn) is the marketable securities cost
function computed as:

H2(Yn) =

{
−b−2 Yn if Yn < 0,
b+2 Yn if Yn ≥ 0,

(2.26)
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where b−2 , b
+
2 are respectively variable marketable securities transaction cost for

cash increases (+) and cash decreases (-); c1n is the interest cost on ending loan
balances; c2n is the return on ending marketable securities holdings; Ln(Bn) is
the expected cost of cash shortage incurred at the end of period n computed
as:

Ln(Bn +Xn + Yn) = c3n

∫ −(Bn+Xn+Yn)
−∞

(Bn +Xn + Yn + rn)fn(rn)drn (2.27)

where c3n is the penalty on negative ending cash balances in period n.

Considering alternative funding sources such as borrowings and marketable
securities, introduces additional considerations on the priorities based on the
feasible permutations of the cost coefficients as follows:

• Case 1. If −b−2 + c2 ≤ −b−1 + c1 ≤ b+1 + c1 ≤ b+2 + c2, then borrowing
transactions are preferred over marketable securities.

• Case 2. If −b−1 + c1 ≤ −b−2 + c2 ≤ b+2 + c2 ≤ b+1 + c1, then marketable
securities transactions are preferred over borrowing.

• Case 3. If −b−2 + c2 ≤ −b−1 + c1 ≤ b+2 + c2 ≤ b+1 + c1, then borrowing
transactions are preferred over marketable securities for cash withdrawals,
and marketable securities are preferred over borrowings for cash procure-
ments.

• Case 4. If −b−1 + c1 ≤ −b−2 + c2 ≤ b+1 + c1 ≤ b+2 + c2, then marketable
securities are preferred over borrowing transactions for cash withdrawals,
and borrowings are preferred over marketable securities for cash procure-
ments.

• Case 5. If −b−2 + c2 ≤ b+2 + c2 ≤ −b−1 + c1 ≤ b+1 + c1, then borrowing
transactions are preferred over marketable securities for cash withdrawals,
and marketable securities are preferred over borrowings for cash procure-
ments.

The Daellenbach model can be regarded as an extension of the Eppen and
Fama (1968) and Eppen and Fama (1969) model, but with four return points:
{U1n, D1n} denoting the use of borrowings as the source of funds, and {U2n, D2n}
denoting the use of marketable securities as the source of funds. The optimal
policy gives preference to the source of funds dictated by the previous five cases
based on the cost coefficients. In the case that either constraint (2.22) or (2.23)
prevents completion of the transaction, then use the return point relevant for
the other source of funds.
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Later on, Daellenbach (1974) pointed out an important issue by posing the
following general question: Are cash management models worthwhile? The
objective was to determine upper bounds of the potential savings that can
be realized by applying cash management models. In this paper, a variant of
the model in Daellenbach (1971) was proposed to consider fixed and variable
transaction costs. In addition, a deterministic shortage cost function charg-
ing negative cash balances at the end of the day was defined instead of the
stochastic previous one. The main criticism to cash management models was
done on the assumption of perfectly predictable cash flows. Any cost estimates
based on perfect predictions will provide optimistic lower bounds for the actual
cost incurred which corresponds to determine what the optimal policy would
have been given the actual cash flows. By using random normal simulations,
the author estimated the upper bounds obtained by this variant of his cash
management model to the performance of a hypothetical cash manager. The
author concluded that the benefits from cash management optimization models
were in most cases highly uncertain and that they offer a very small economic
return.

As a summary, Daellenbach (1971) used dynamic programming to provide a
solution to the CMP as a set of control bounds, but considering two available
sources of funds, namely, marketable securities and short-term loans. In addi-
tion, the usual assumption on stationary cash flows was relaxed. However, in
Daellenbach (1974), the author raised doubts about the benefits derived from
the deployment of cash management models. In this thesis, we approach this
open research question from a general multiobjective perspective.

Daellenbach (1974) discussed the utility of cash management
models under different circumstances, which is closely related
to the open research Question 6.

2.2.7 The Stone model

"The use of forecasts and smoothing in control-limit models for cash man-
agement" was proposed by Stone (1972). In this work, Stone first reviewed
the assumptions of the Baumol and the Miller-Orr models summarized in Ta-
ble 2.1 and pointed out a series of limitations of these models in real world
cash management situations. Stone argued that cash flows are neither com-
pletely certain, uniform, and continuous (as they are in the Baumol model)
nor are they completely unpredictable (as they are in the Miller-Orr model).
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Concept Baumol Model Miller-Orr Model

Cash flow Continuous and known Stochastic and iid
Transfer cost Constant and fixed Constant and fixed
Holding cost Constant and fixed Constant and fixed
Assets considered Cash and securities Cash and securities
Securities treatment Reinvested Reinvested
Minimum cash balance Yes Yes

Table 2.1: Assumptions of the Baumol and Miller-Orr models.

Most firms can forecast their cash flows. This is the first time that the con-
cept of forecasting cash flows appears as a key input to any cash management
model. The author focuses on the generally attempted tasks performed by
cash managers. They usually:

1. Look ahead when buying and selling securities to incorporate data from
their cash forecasts.

2. Smooth cash flows by coordinating security maturities with predicted
cash needs.

3. Buy the highest yielding securities subject to portfolio and liquidity con-
straints.

4. Maintain cash balances sufficient to meet banking requirements.

From these generally performed tasks, Stone derived the idea of including both
forecasts and maturing securities in his model. Operation of this control-limit
model is based on the ability to buy and sell securities of different maturities in
order to reduce transaction costs by smoothing cash flows and thereby reducing
the number of transactions. It is assumed that the current cash balance, CB0,
is known and that a forecast of the net cash flow, E(Ct), that will occur on
each day t over the next k days is available. Then, the expected level of cash
balances k days from now is the sum of the current level of cash balances and
the sum of k daily net cash flows. This can be expressed as:

E(CBk) = CB0 +
k∑
t=1

E(Ct). (2.28)
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Alternatively, if the sum of net cash flows over the next k days are lumped into
a single figure, this last equation can be rewritten as:

E(CBk) = CB0 + E(SCk). (2.29)

Next a number of simple rules are proposed to be followed by cash managers to
return to a desired target balance TB, based on two sets of control limits. One
set is defined by h1 and h0 as the upper and lower control limit for initiating
considerations of a transactions. The other set is defined by h1−δ1 and h0 +δ0
as the upper and lower limits that determine if a transaction will actually be
made.
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Figure 2.6: Structure of the Stone model with two sets of limits

The set of rules followed by cash managers to operate the model are summa-
rized as follows:

1. If the current cash balance CB0 is inside the control limits defined by h1

and h0, no action is taken.
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2. If the control limits h1 and h0 are exceeded, the forecasts over the next
k days is considered to decide whether a transaction should be made.

(a) If the expected cash balances in the next k days, E(CBk), exceed
the control limits defined by h1 − δ1 and h0 + δ0, a transaction is
made to return the expected cash balance to the target level TB in
k days.

(b) No action is taken otherwise.

The innovation introduced by the Stone model is that when a transaction is
made, the model returns the expected level of balances to the target level in
k days rather than immediately returning the current balance to the target.
Furthermore, the actual cash balance is the target plus the net cumulative
forecast error. Being Kt, the amount of the transaction to be made, these
rules can be represented mathematically as follows:

Kt =

 TB − CB0 − E(SCk), if CB0 > h1 and CB0 + E(SCk) > h1 − δ1,
0, if h0 < CB0 < h1

TB − CB0 − E(SCk), if CB0 < h0 and CB0 + E(SCk) < h0 + δ0.
(2.30)

An example of the application of this k-day look-ahead procedure is given by
the author where the target balance TB = 20, the control limits h1 = 27, and
h0 = 13; and δ1 = δ0 = 2, all figures in millions of dollars. A comparison
between a 3-day look-ahead procedure and a no-day look-ahead is presented
in Table 2.2, where more transaction cash flows are observed in the case of the
no-day look-ahead. Surprisingly, no evaluation of the total cost of the policy
was performed. From Miller and Orr (1966) and Eppen and Fama (1968) a
general cost function considering the transfer cost and the holding cost could
be defined to evaluate the average cost of the policy. For instance, assuming
the cost of transaction being formed by a fixed part, γ0 = $5, and a variable
part, γ1 = 0.01% of the transaction, and the holding cost per money unit of a
positive cash balance at the end of the day, h = 0.00027, i.e., 10% p.a. divided
by 365 days, the total cost of the policy over the period of 16 days considered
can be easily computed using the following expression:

Cost =
T∑
t=1

(Γ(Kt) + hBt) (2.31)
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Cash forecast and cash flow 3-day look-ahead No-day look-ahead

Day Pred
CF

Actual
CF

Error Trans
CF

Final
Balance

Trans
CF

Final
Balance

1 1 1 0 0 21 0 21
2 2 1 1 0 22 0 22
3 3 6 -3 0 28 -8 20
4 -1 -1 0 0 27 0 19
5 -2 -3 1 0 24 0 16
6 -3 -3 0 0 21 7 20
7 -8 -9 1 0 12 9 20
8 5 6 -1 0 18 0 26
9 6 4 2 0 22 -10 20
10 4 6 -2 -17 11 0 26
11 5 3 2 0 14 -9 20
12 4 4 0 0 18 0 24
13 0 1 -1 0 19 0 25
14 2 -1 3 0 18 0 24
15 -3 -2 -1 0 16 0 22
16 -1 2 -3 0 18 0 24

Table 2.2: Comparison of the Stone 3-day look-ahead with the no-day look-ahead procedure

where T = 16 is the considered time horizon, Bt is the cash balance at the end
of day t, and Γ(Kt) is the transfer cost function that can be defined as:

Γ(Kt) =

 γ0 − γ1Kt if Kt < 0,
0 if Kt = 0,
γ0 + γ1Kt if Kt > 0.

(2.32)

Hence, the total cost for the look-ahead procedure of the example is $86,363,
and $99,941 for the no-day look-ahead procedure. Note that, under the cost
structure defined by γ0, γ1, and h, cost savings obtained by the proposed pro-
cedure comes from both, the reduced number of transactions and the smaller
average cash balance.

Since the cash policy is fixed for a k-days period, the use of forecasts forces the
cash manager to monitor errors for k days after a transaction has occurred.
However, the impact of predictive accuracy of the forecasts on the performance
of the policy was not evaluated. It is expected that a better prediction will
lead to better policies as hypothesized in Gormley and Meade (2007) and,
consequently, an evaluation of the impact of predictive accuracy is a mandatory
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step. Furthermore, efforts in improving predictive accuracy have associated
costs that have to be compared to savings obtained in order to decide if further
efforts are worth. The impact of cash flow forecasts is an ongoing issue in cash
management that we here address in Question 1, since we consider it a crucial
challenge.

On the selection of the model parameters, no particular procedure was speci-
fied by Stone although some suggestions were made, namely, not to treat them
as fixed parameters, but rather adjust them as necessary. Simulation and the
practitioner’s judgment were suggested to be the best approach to parameteri-
zation. Involvement of cash managers in the process of parameter selection was
considered in this case an advantage of this method. An alternative approach
to deal with cash flow uncertainty was followed by Hinderer and Waldmann
(2001) who developed a rigorous mathematical framework to include in the
cash manager decision-making process varying environmental factors.

Furthermore, using this look-ahead procedure, once a transaction is decided,
the maturity of the security should be specified. This subpart of the prob-
lem represents an additional issue that was not addressed by the previous
approaches. The maturity structure decision is a trade-off between returns ob-
tained and the opportunity to smooth cash flows and reduce transaction costs.
For instance, when buying securities the logical maturity dates for smoothing
cash flow are dates when a future sale of securities is forecast. A heuristic
is proposed by the author for specifying quantities and maturities due to the
nonlinear dependence of transaction costs and the amount of each maturity
that is transacted.

Summarizing, Stone was the first author to formally develop a cash manage-
ment model using forecasts as a key input. Consequently, they assumed that
cash flows are, to some extent, predictable. Several works on daily cash flow
prediction (Stone and Wood, 1977; Stone and Miller, 1981; Miller and Stone,
1985; Stone and Miller, 1987) represent an important contribution to cash
management literature. However, the lack of a formal procedure to determine
the set of parameters (bounds) of the look-ahead procedure rather, apart from
the mere suggestion of using simulation, become a serious limitation.
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Stone (1972) is another crucial model that decisively con-
tributed to the use of forecasts as a key input to cash man-
agement that we here address in Question 1. In addition,
Stone pointed out the importance of changing contexts as a mo-
tive to adapt cash management models to current circumstances
(Questions 5 and 6).

2.2.8 The Constantinides model

Although Neave (1970) showed cases in which the Eppen and Fama (1969)
model was not optimal, Constantinides and Richard (1978) proved the exis-
tence of optimal simple policies for discounted costs when the net cash flow
followed a Wiener process. They studied the case of fixed and variable trans-
action costs and linear holding and penalty costs, and used impulse control
techniques to find sufficient conditions for an optimal policy defined by pa-
rameters d ≤ D ≤ U ≤ u. In the same way of other bound-based models,
control actions are only taken whenever the cash level either rises above u or
falls below d money units.

Instead of a discrete time framework which was considered in Eppen and Fama
(1968), Eppen and Fama (1969), Girgis (1968), and Neave (1970), Constan-
tinides and Richard assumed that decisions are made continuously in time.
Moreover, they assumed that demand over any length of time is generated
by a Wiener process, meaning that it is normally distributed with both mean
and standard deviation proportional to the length of time considered. On the
other hand, they followed the impulse control approach by Bensoussan and Li-
ons (1975) that was later extended by Richard (1977). This control technique
is based on control actions taken at stochastic stopping times.

The problem formulation was similar to previous works in cash management.
The cash balance at time t is defined as x = x(t) and it is charged with
holding/penalty cost C(x) = max{hx,−px}, with h, p > 0. The transaction
cost of changing the cash level from x0 to x1 is given by:

B(x1 − x0) =

{
K+ + k+(x1 − x0) if x1 ≤ x0,
K− + k−(x0 − x1) if x1 < x0,

(2.33)

with k+, k−,K+,K− > 0, such that a zero control action incurs a fixed cost.

In addition, the cumulative demand for cash in the interval [t, s], denoted
by D(t, s), is independent and normally distributed with mean E[D(t, s)] =

66



2.2 A review of cash management models

µ(s − t) and variance var[D(t, s)] = σ2(s − t), where µ and σ2 are constants.
Thus, the cumulative demand is given by:

D(t, s) = µ(s− t) + σ(w(s)− w(t)) (2.34)

where w is a Wiener process in R with zero drift and diffusion coefficient one.
However, the use of diffusion processes to represent cash holding evolution was
not new (Miller and Orr, 1966).

Under this framework, cash managers continuously observe the cash level and
perform control actions when necessary. At any stopping time τi, the control
applied φi, is a random variable that is independent of the future state of the
system. An impulse control policy v is represented as a sequence of stopping
times and controls: v = [τ1, φ1; τ2, φ2; . . .]. If x(τ−i ) denotes the cash level at
stopping time τi before the control action φi is applied and x(τi) denotes the
cash level after the control action, then the state equations of the cash level
when policy v is applied are given by:

dx(t) = −µdt− σdw(t) (2.35)

when 0 ≤ t < τi, with x(0−) = x0, and:

x(τi) = x(τ−i ) + φi, dx(t) = −µdt− σdw(t) (2.36)

when τi ≤ t < τ−i+1, with i ≥ 1. From that, given a policy v and an initial
cash balance x(0−) = x0, the expected total cost from time zero to infinity,
discounted to time zero is:

Jx0
(v) = E

[
∞∑
i=1

e−βτiB(φi) +

∫ ∞
0

e−βsC(x(s))ds

]
(2.37)

where β is the discount rate. The final goal is to choose a policy v∗ such that
Jx0

(v∗) ≤ Jx0
(v), ∀v ∈ Ω, being Ω the class of all impulse control policies.

Let V (x) = Jx(v) be the expected total cost from time t to infinity discounted
to time t and conditional on the cash level x(t−) = x. Note also that V (x) ≥ 0
since all costs are non-negative. There are only two possible alternatives for
the cash manager: to take no control action or to make the most convenient
transaction in terms of future costs. Applying dynamic programming and
assuming that the subsequent decisions are also optimal, V (x) must satisfy:

V (x(t−)) = min

{
infξ[B(ξ) + E(C(x(t))dt+ e−βdtV (x(t) + dx))],
E(C(x(t))dt+ e−βdtV (x(t) + dx)).

(2.38)

From that, the authors derive the following theorem:
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Theorem 1. Suppose that h > βk− and p > βk+ holds. Then there exists an
optimal policy to the cash management problem. This policy is simple and is
given by:

y(x) =

 D if x ≤ d,
x if d < x < u,
U if u ≤ x,

(2.39)

Note that the previous theorem implies that if h < βk−, it will never be optimal
to reduce the cash level as long as K− > 0. Similarly, if p < βk+, it will never
be optimal to increase the cash level as long as K+ > 0. If both conditions,
h < βk− and p < βk+, hold the optimal policy prescribes no intervention. In
the special case of h < βk− and p > βk+, it is optimal to increase the cash
level but its never optimal to decrease the cash level. They are dealing then
with an inventory problem where the control action ξ(x), is constrained to be
non-negative.

This model was later extended to the case of quadratic holding-penalty costs
in Baccarin (2002), and to a multidimensional cash management system and
general cost functions in Baccarin (2009), when cash balances fluctuates as
a diffusion process. Premachandra (2004) also used a diffusion process to
propose a more generalized version of the Miller-Orr model which relaxes most
of its restrictive assumptions. Note that the Wiener process is also a diffusion
process (Itô, 1974).

Summarizing, apart from considering continuous time in cash management,
the most important contribution of the Constantinides and Richard (1978)
model was Theorem 1, which provided the necessary conditions to avoid the
triviality of the cash policy. Furthermore, it represents the origin of a number
of recent works (Baccarin, 2002; Premachandra, 2004; Baccarin, 2009) on cash
management. However, the strong assumption on modeling cash flows as a
diffusion process represents a serious limitation in practical applications.

Theorem 1 by Constantinides and Richard (1978) is a neces-
sary condition that must hold to avoid non-triviality in cash
management, which we extend in this thesis to a multiobjective
framework when addressing Questions 6.
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2.2.9 The Penttinen model

Penttinen (1991) presented myopic and stationary solutions for linear costs us-
ing the logistic distribution as the probability density function of random cash
demand. Myopic one-period solutions were suggested to avoid computational
difficulties in multi-period applications with a large number of discrete states.
Contrarily to Constantinides and Richard (1978), Penttinen chose a discrete
time framework due to the fact that common planning and control practices
in most organizations are typically performed in discrete intervals.

His main goal was to analyze the amount of suboptimality in the myopic so-
lutions. To this end, the problem formulation considered a stochastic cash
balance in which demand δ is a random variable. The amount of cash at the
beginning of each period n is denoted by x and the cash balance after a control
action is taken is denoted by y(x). The author considered transactions costs
an(y − x) as:

an(y − x) =

 Kn + kn · (y − x) if y − x > 0,
0 if y = x,
Qn + qn · (x− y) if y − x < 0,

(2.40)

where Kn, Qn, kn, qn ≥ 0. In addition, the retain and penalty cost mn(y)
charges the cash level y at the beginning of each period according to:

an(y − x) =

{
rn(y) if y > 0,
pn(−y) if y ≤ 0.

(2.41)

Finally, the holding and shortage cost ln(z) charges the cash level z at the end
of each period. Here, the amount of cash remaining is given by z = y − δ and
the optimal balance at this point is zero since any positive balance is subject
to a holding cost and any negative to a shortage cost:

ln(z) =

{
hn(z) if z > 0,
sn(−z) if z ≤ 0.

(2.42)

The expected holding and shortage costs are given by the following loss func-
tion:

Ln(y) =

∫ ∞
−∞

ln(y − δ)φn(δ)dδ (2.43)

which is actually the convolution of ln(y− δ) with probability density function
φn(δ). Then, the optimal discounted value of future costs in the beginning of
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period n is:

Cn(x) = inf
y
{an(y − x) +mn(y) + Ln(y) + αφn ∗ Cn+1(y)} (2.44)

in which α is a discount factor and ∗ stands for convolution. Note that when
α = 0, the dynamic model is called a myopic model. The optimal policy of
this general convex model is given by:

L′(T ) = −k −m′(T ) (2.45)

L′(U) = q −m′(U) (2.46)

L(t)− L(T ) = K + k(T − t) +m(T )−m(T ) (2.47)

L(u)− L(U) = Q+ q(u− U) +m(U)−m(u) (2.48)

where t ≤ T ≤ U ≤ u define a transaction rule in the form of a simple policy
yn(x) such that:

yn(x) =

 Tn if x < tn,
x if tn ≤ x ≤ un,
Un if x > un.

(2.49)

Penttinen introduced the logistic distribution as a way to ease calculations. In
this case, the optimal myopic policy is given by:

T = µ+
ln[−(k + r − s)/(k + r + h)]

d
(2.50)

U = µ+
ln[(q − r + s)/(−q + r + h)]

d
. (2.51)

The reorder point t, and the disposal point u are derived numerically from T
and U from equations (2.47) and (2.48). To this end, an iterative procedure was
presented to compute solutions which is supposed to achieve rapid convergence.
Different empirical results showed the proportionality of policy parameters t,
T , U , and u with the shortage cost ratio so that the higher shortage cost the
higher the reorder and disposal points.

On the other hand, stationary solutions are based on the assumption that each
period possesses the same cost functions and that cash demand is independent
and identically distributed. Then, Penttinen presented additional empirical re-
sults on the amount of suboptimality between myopic and stationary solutions
in the case of no fixed costs. His results show that the stationary model leads
to slightly more cautious ordering policies.
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As a summary, it is important to highlight the assumption of the logistic dis-
tribution within the commonly used family of Gaussian cash flows, as a way
to better represent empirical cash flows. He also assumed fixed and linear
transaction costs to derive by dynamic programming two kind of optimal poli-
cies, namely, myopic (minimizing shor-term costs) and stationary (minimizing
long-term costs).

In relation to this thesis, Penttinen (1991) motivated the selec-
tion of the logistic distribution to represent cash flows as a way
to close the gap between theory and practice in cash manage-
ment, along the lines of Question 2.

2.2.10 The Gormley-Meade model

Gormley and Meade (2007) claimed "The utility of cash flow forecasts in the
management of corporate cash balances" and proposed a Dynamic Simple Pol-
icy (DSP) to demonstrate that savings can be obtained by using cash flow
forecasts. They suggested the use of an autoregressive model as the key in-
put to their model. However, gains in forecast accuracy over the naive model
were scant. Gormley and Meade expected that savings from using a non-naive
forecasting model would increase if there were more systematic variation in
the cash flow and, consequently, higher forecast accuracy. If this hypothesis
is correct, the savings produced by a better forecasting model are expected
to be significantly higher than those obtained by the naive forecasting model.
However, no evaluation of the impact of predictive accuracy on savings was
performed by the authors becoming an open research question as we stated in
Section 1.2.

In their approach to the corporate cash management problem, Gormley and
Meade used an inventory control stochastic model where cash balances are al-
lowed to move freely between two limits: the lower (D) and the upper balance
limit (V ). When the cash balance reaches any of these limits a cash transfer
is made to return to the corresponding rebalance level (d, v). For illustration
purposes, we here reproduce this model using the same notation. The manage-
ment of the cash balance over a time period T is determined by a set of policy
parameters or limits for the instant t that can be extended τ days ahead:

• Dt+τ : Lower balance limit at time t+ τ .

• Vt+τ : Upper balance limit at time t+ τ .
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• dt+τ : Lower rebalance level at time t+ τ .

• vt+τ : Upper rebalance level at time t+ τ .

The transfers for any prediction horizon are determined by:

Kt+τ =

 vt+τ − Õt+τ−1 − ŵt+τ |t, if Õt+τ−1 + ŵt+τ |t > Vt+τ ,
0, otherwise,
dt+τ − Õt+τ−1 − ŵt+τ |t, if Õt+τ−1 + ŵt+τ |t < Dt+τ

(2.52)

where Õt+τ−1 is the predicted opening balance at time t+ τ − 1, ŵt+τ |t is the
predicted cash flow for t+ τ using a model which has been trained up to time
t. In this model, Dt+τ ≤ dt+τ ≤ vt+τ ≤ Vt+τ , and the following continuity
function holds:

Õt+τ = Õt+τ−1 +Kt+τ + ε̃t+τ |t (2.53)

Notice that the the transfer function reproduced here in equation (2.52) is
different to the original one Õt+τ−1 − ŵt+τ |t < Dt+τ in Gormley and Meade
(2007). The equation in Gormley and Meade (2007) is mistaken because the
reference value for comparison must be Õt+τ−1 + ŵt+τ |t < Dt+τ , namely the
opening balance at t+ τ − 1 plus the predicted cash flow for t+ τ .

The expected cost over horizon T is given by the following objective function
to be minimized:

Cost =
T∑
τ=1

Γ(Kt+τ ) + Õt+τ (h · IÕt+τ>0 + u · IÕt+τ<0) (2.54)

where the transfer cost function Γ is defined as:

Γ(Kt+τ ) =

 γ−0 − γ−1 Kt if Kt < 0,
0 if Kt = 0,
γ+
0 + γ+

1 Kt if Kt > 0.
(2.55)

The notation used by the expected and transfer cost functions is described
below:

• h: The holding cost per money unit of a positive cash balance at the end
of the day.

• u: The shortage cost per money unit of a negative cash balance at the
end oh the day.
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• γ+
0 : Fixed cost of transfer into account.

• γ−0 : Fixed cost of transfer from account.

• γ+
1 : Variable cost of transfer into account.

• γ−1 : Variable cost of transfer from account.

• IÕt+τ>0: Boolean variable that equals 1 if Õt+τ > 0 is true, 0 otherwise.

• IÕt+τ<0: Boolean variable that equals 1 if Õt+τ < 0 is true, 0 otherwise.

The authors used genetic algorithms to solve the CMP, i.e., to estimate the
parameters {Dt+τ , dt+τ , vt+τ , Vt+τ}, from τ = 1, . . . , T . Moreover, since the
model accepts forecasts as its main input, a cash flow autoregressive fore-
casting model was developed. To this end, a Box-Cox transformation (Box
and Cox, 1964) was used to achieve normality of the real cash flow data set
used in the paper. Stationarity in mean and variance of the transformed data
was confirmed by low values of autocorrelation and by Box-Ljung tests. The
autorgressive model was fitted to non-holiday dates but the coefficient of de-
termination, R2 was only of 6.5%, due to high volatility. Normalized mean
square errors, for different prediction horizons from 1 up to 100 days were also
reported with results ranging in 0.95 to 0.99 showing the low predictive ability
of the autoregressive model. An additional non-linear least squares predictive
model was tried with even lower predictive accuracy.

A cash management example was given comparing the DSP model using fore-
casts from the autoregressive forecasting model, the DSP model using forecasts
from the constant mean model and the Penttinen (1991) model. Equal hold-
ing and shortage costs and only fixed transactions costs were considered but
results were so similar that no claim in favor of the cash management model
and the forecasting technique could be done. However, the authors concluded
that the expected savings from using better forecasting models with higher
accuracy would increase.

Summarizing, Gormley and Meade (2007) proposed a cash management model
using forecasts as a key input. Surprisingly, they did not refer to the work by
Stone (1972) on the use of forecasts in cash management. They proposed
evolutionary algorithms to approximately derive cash policies. This solving
procedure has been recently followed by Costa Moraes and Nagano (2014).
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Gormley and Meade (2007) hypothesized, but did not prove,
that forecasting accuracy leads to cost savings in cash manage-
ment as we point out in Question 1. As a result, we use
this model to empirically prove the savings hypothesis. Fur-
thermore, they used an empirical data set providing detailed
information about its statistical properties in an first attempt
to address Question 2. Finally, we use this model as a bench-
mark to answer Question 7.

2.2.11 The Chen and Simchi-Levi model

The concept of K-convexity was first used by Neave (1970) to show that the
Eppen and Fama (1969) model might not be optimal. When there are fixed
costs for both inflows and outflows, Chen and Simchi-Levi (2009) used the
concept of (K,Q)-convexity by Ye and Duenyas (2007) to provide a character-
ization of the optimal policy in the stochastic cash balance problem. Their
approach was so closely related to inventory control that they used common
inventory terminology rather than that usually employed by cash management
research. For example, they speak about order and return rather than increase
and decrease cash transactions.

They considered a general cost function with holding and transaction costs.
At the beginning of each time period, a transaction decision has to be made.
Let x be the cash balance at the beginning of time period n before a decision
is made, and let y be the cash balance after an transaction was made. The
transaction cost is computed as follows:

c(x, y) =

 K + k(y − x) if y > x,
0 if y = x,
Q+ q(x− y) if y < x.

(2.56)

where K ≥ 0, Q ≥ 0, and k+q ≥ 0, assuming that k ≥ q, i.e., the positive vari-
able transaction cost is greater or equal than the negative variable transaction
cost.

On the other hand, the holding cost at time period n is described as a general
cost function ln(z), which depends on the inventory level at the end of the
day z which, in turn, depends on the stochastic cash flow ξn. Therefore, the
expected holding or penalty cost at period n is given by:

Ln(y) = E[ln(z)] = E[ln(y − ξn)] (2.57)
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In this work, the stochastic cash balance problem is formulated as a dynamic
program where Cn(x) is the cost-to-go function at the beginning of a period
when there are n periods left in the planning horizon and the initial inventory
level is x:

Cn(x) = min
y
{c(y, x) + Ln(y) + γE[Cn−1(y − ξn)]} (2.58)

where γ ∈ (0, 1] is a discount factor. For clarification, in intervals notation
parenthesis or "( )" means exclusive and brackets or "[ ]" means inclusive. In
addition, braces "{ }" are used to denote the elements of a set.

They built the process to obtain the optimal policy on the concept of (K,Q)-
convexity (Ye and Duenyas, 2007) of the recursive function Cn(x). A real value
function is called (K,Q)-convex for K,Q ≥ 0, if for any x0, x1 with x0 ≤ x1

and λ ∈ [0, 1], the following condition holds:

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1)

+ λK + (1− λ)Q−min{λ, 1− λ}min{K,Q}. (2.59)

We refer the interested reader to Chen and Simchi-Levi (2009) for both further
details about the properties of (K,Q)-convex functions and for a proof that
the cost-to-go function Cn(x) is a (K,Q)-convex function. However, a number
of additional definitions are required to derive the optimal policy:

Hn(x) = Ln(x) + γE[Cn−1(x− ξn)] (2.60)

Tn ∈ argminx{kx+Hn(x)} (2.61)
tn = min{x|kx+Hn(x) = K + kTn +Hn(Tn)} (2.62)

t′n = min{x|kx+Hn(x) = K −Q+ kTn +Hn(Tn)} (2.63)
Un ∈ argminx{−qx+Hn(x)} (2.64)

un = max{x| − qx+Hn(x) = Q− qUn +Hn(Un)} (2.65)
u′n = min{x| − qx+Hn(x) = K −Q− qUn +Hn(Un)} (2.66)

where tn ≤ t′n ≤ Tn and u′n ≤ Un ≤ un. Based on the previous definitions and
assuming K > Q ≥ 0, it is optimal to the set cash level yn(x), after a decision
is made, according to:

yn(x) =


Tn if x ≤ tn
∈ {x, Tn} if x ∈ (tn, t

′
n)

x if x ∈ [t′n, u
′
n)

∈ [t′n, x] if x ∈ [u′n, un)
Un if x ≥ un.

(2.67)
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Summarizing, Chen and Simchi-Levi (2009) followed a sequential decision-
making approach using dynamic programming to minimize the total expected
costs over the planning horizon. They proposed a model based on bounds,
without assuming any particular density function for cash flows but a general
one. However, no practical application was given to illustrate the model using
a real case.

Chen and Simchi-Levi (2009) provided a general framework for
bound-based models without assuming any particular distribu-
tion for cash flows that is related to Question 2.

2.2.12 The Baccarin model

To the best of our knowledge, quadratic holding and penalty costs where con-
sidered for the first time in Baccarin (2002). Furthermore, a general multidi-
mensional approach to the cash management problem was also first introduced
by Baccarin (2009) using generalized cost functions and providing theoretical
results for two bank accounts. Baccarin considered cash management systems
with multiple bank accounts where the cash balances fluctuate as a homoge-
neous diffusion process in Rn. He formulated the model as an impulse control
problem with unbounded cost functions and linear costs.

The optimization problem considering a n-dimensional Wiener cash flow pro-
cess Wt that determines the dynamics of cash balances x(t) in absence of any
control action by means of the following Ito stochastic differential equation:

dx(t) = b(x(t))dt+ σ(x(t))dWt, x(0) = x (2.68)

where b(x), σ(x) ∈ W 1,∞(Rn). Then, an impulse control strategy within a
continuous time framework is a sequence of control actions ξi made at time ti
to form policy V = {ξ1, t1; . . . ξi, ti; . . .} with ti ≤ ti+1. Then, given a policy
V , the controlled process y(t) is defined as follows:

y(t) = y(0) +

∫ t

0

b(y(s))ds+

∫ t

0

σ(y(s))dWs + ξ1 + . . .+ ξαt . (2.69)

Holding costs are given by some function f(y) and transaction costs by some
function C(ξ), which is assumed to be lower semicontinuous and unbounded
from above when |ξ| → ∞. As a result, each control policy V has an associated
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cost:

Jx(V ) = E

{
∞∑
i=1

C(ξi)e−γtiχti<∞ +

∫ ∞
0

e−γsf(yx(s))ds

}
(2.70)

where γ > 0 is a discount rate and χti<∞ = 1 if ti < ∞, zero otherwise. The
problem is then to minimize Jx(V ) over the set A of admissible controls V . The
optimal control is obtained by dividing Rn in two complementary regions: a
continuation set where the system evolves freely and an intervention set where
the system is controlled in an optimal way.

Notice that the n-dimensional cash management system proposed by Baccarin
is built by replicating n cash accounts. Control policies are applied to the n
cash accounts but no transaction between accounts is allowed in this model
avoiding possible control actions within the system itself.

Summarizing, Baccarin (2009) provided a sound theoretical framework for cash
management systems with multiple bank accounts within a continuous time
framework with general costs functions and an single objective, namely, cost.
Cash flows are assumed to follow a Wiener process and the numerical solution
to the optimization problem can be obtained by the finite elements method as
described in Cortey-Dumont (1985) and Boulbrachene (1998), which consider a
discrete approximation of the continuous framework described above. However,
transactions between accounts were not considered.

Baccarin (2009) provided a general framework for cash man-
agement systems with multiple bank accounts that is closely re-
lated to Question 9.

2.2.13 Alternative cash management models

In this section, we briefly refer to alternative cash management works that
received little attention from the research community, in terms of citations, but
that we believe they deserve to be mentioned due to interesting characteristics
present in their proposal. In addition, Baccarin (2002) and Baccarin (2009)
considered the case of cash balance fluctuations following a diffusion process.
Smith (1986) and Premachandra (2004) also used a diffusion process to propose
generalized versions of the Baumol-Tobin model (Frenkel and Jovanovic, 1980),
and the Miller and Orr (1966) model, respectively. When addressingQuestion
2, we empirically test the validity of these assumptions.
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On the other hand, Hinderer and Waldmann (2001) formally introduced the
concept of environment uncertainty in the CMP by providing a rigorous math-
ematical framework and by exploring different cases for cash flow processes.
Melo and Bilich (2013) proposed an Expectancy Balance Model to minimize
combined holding and shortage costs in an attempt to also deal with uncer-
tainty. The authors argued that previous models based on inventory theory
or linear programming were not able to represent the complexity of cash man-
agement because of their mathematical structure. The procedure of control
fluctuations around lower and upper cash balance bounds, namely, a simple
policy, does not produce the minimum total cost in the long run due to ac-
curacy failure. This model also considers the existence of both deterministic
flows, that are certainly known in advance, and stochastic flows grouped into
intervals of occurrence. In this thesis, we address uncertainty introduced by
cash flows in a distinct way, namely, by using forecasts (Question 1), and also
by providing a robust counterpart of cash management models (Question 5).

Recently, Costa Moraes and Nagano (2014) proposed the use of genetic al-
gorithms and particle swarm optimization to solve the CMP using the Miller
and Orr (1966) model. They provided numerical examples using Gaussian cash
flows for both solvers within a structure of a single bank account and two alter-
native investment accounts. On the contrary, we here aim to provide linear or
quadratic programming formulations (Question 8) to the CMP from a double
multidimensional perspective, namely, multiple bank accounts (Question 9)
and multiple criteria to incorporate risk analysis (Question 4). The under-
lying motive is to efficiently derive optimal solutions to the CMP by relying
on state-of-the-art solvers such as CPLEX or Gurobi, since optimality is not
guaranteed by approximate solutions.

2.3 Analysis

One may conclude that all possible situations that cash managers face in their
daily tasks have been covered by any of the cash management models that
have been proposed so far. However, there exist some rather unexplored topics
in the cash management literature as we next point out. In what follows,
we summarize the main cash management models presented in the literature
according to the six dimensions introduced in Section 1.2, as shown in Table 2.4.
By following this approach, we are able to extract useful insights in terms of
questions that have received little attention from the research community.
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1. Models. The use of Bound-Based Models (BBM), whose policies are
determined by a set of level or bounds, is a common pattern. From the
initial inventory approach to the CMP by Baumol (1952), most models
have attempted to derive optimal policies within the framework of some
simple policy, typically employing constant cash balance bounds. A slight
departure of this framework was considered by Stone (1972) and Gormley
and Meade (2007) to introduce forecasts as key inputs to a BBM model.
A more practical approach was followed by Archer (1966) to focus on the
statistical exploration of data to deal with the lack of synchronization of
inflows and outflows.

2. Cash flow process. A wide variety of cash flow processes have been con-
sidered in the literature, ranging from the uniform and perfectly known
cash flow in Baumol (1952) and Tobin (1956), to purely stochastic be-
havior in Miller and Orr (1966), Eppen and Fama (1969), Constantinides
and Richard (1978), Premachandra (2004), Baccarin (2009), and Costa
Moraes and Nagano (2014), which usually implies a Gaussian distribu-
tion. The selection of any cash flow process implies the assumption of
either a continuous time framework (Constantinides and Richard, 1978;
Baccarin, 2009) or a discrete time framework (Stone, 1972; Penttinen,
1991; Gormley and Meade, 2007). Since we here follow a data-driven
approach based on empirical cash flow data sets, we require a discrete
time framework.

3. Cost functions. The linear cost assumption is also a common pattern
with the exception of Baccarin (2002) and Baccarin (2009), that con-
sidered quadratic holding and penalty costs. However, there also exist
differences in the linear approach. While Baumol (1952) and Miller and
Orr (1966) considered only fixed costs, Tobin (1956) and the rest of sub-
sequent works included fixed and variable costs in their models.

4. Objectives. It is also important to note that all models focus on a single
objective, namely, cost, neglecting risk analysis. However, the works by
Stone (1972), Hinderer and Waldmann (2001), and Gormley and Meade
(2007) are remarkable initial attempts to include uncertainty in the anal-
ysis of the best policies. The use of forecasts seems to be a sound strategy
to reduce uncertainty in the CMP.

5. Solvers. There are also differences in the techniques used for solving the
CMP. However, three solving techniques outstand: analytic solutions as
in Baumol (1952), Tobin (1956), Miller and Orr (1966), Constantinides
and Richard (1978), and Hinderer and Waldmann (2001); dynamic pro-
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gramming as in Eppen and Fama (1969), Daellenbach (1971), Penttinen
(1991), and Chen and Simchi-Levi (2009); and approximate techniques
as in Archer (1966), Stone (1972), Gormley and Meade (2007), and Costa
Moraes and Nagano (2014).

6. Bank accounts. Although cash management systems with multiple
bank accounts are the the rule rather than the exception, almost all pre-
vious models derive policies for a single bank account and provide no
method to extend their results to multiple bank accounts. Only Baccarin
(2009) approached the CMP from a multidimensional perspective to deal
with multiple bank accounts.

At this point, it is important to recall the set of research questions introduced
in Section 1.2 in order to link these questions to previous works. This task
ultimately allow us to identify rather unexplored topics in cash management
to be covered in this thesis as detailed in Table 2.3.

• Question 1. Can cash flow predictive accuracy achieve cost savings in
the cash management problem?

• Question 2. Are common statistical assumptions of daily cash flow
supported by recent empirical data?

• Question 3. Is it always possible to achieve a Gaussian, noise-free and
linear time-series through data transformations?

• Question 4. Can we incorporate risk analysis to the cash management
problem?

• Question 5. Can we provide a robust counterpart for any cash manage-
ment model?

• Question 6. Under what circumstances or operating conditions a model
is better than another?

• Question 7. Are control bounds really necessary in cash management?

• Question 8. Can we obtain optimal solutions for the multiobjective cash
management problem?

• Question 9. Can we derive optimal policies for cash management sys-
tems with multiple bank accounts?

• Question 10. Can we automate decision-making in cash management
through the use of specific software?
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Question 1 deals with predictive accuracy and with the utility of forecasts
in the CMP. Although Gormley and Meade (2007) hypothesized that better
forecasts may lead to cost reductions, they did not prove it. We here empiri-
cally address this question by considering alternative forecasting methods and
a general procedure to estimate cost savings without requiring any forecasting
technique. Question 2 updates the works by Emery (1981), Pindado and Vico
(1996), and Gormley and Meade (2007) with recent data from 54 companies in
Spain. Gormley and Meade (2007) suggested the use of data transformations
to achieve Gaussian cash flows. Question 3 goes a step further to empiri-
cally prove if it is always possible to achieve a Gaussian, noise-free and linear
time-series through data transformations. To the best of our knowledge, risk
analysis is neglected in cash management literature. Consequently, Ques-
tion 4 addresses this question resulting in the main contribution of this the-
sis. The inherent uncertainty introduced by cash flow variability in the CMP,
was approached by Stone (1972) and Gormley and Meade (2007) through the
use of forecasts, and by Hinderer and Waldmann (2001) from a theoretical
point of view. Question 5 explores alternative ways of dealing with uncer-
tainty based on data-driven procedures. Daellenbach (1974) raised questions
about the utility of cash management models and Constantinides and Richard
(1978) provided the necessary conditions to avoid trivial cash policies. Ques-
tion 6 extends these works to a multiobjective framework. Since most cash
management models present in the literature are BBM, Question 7 consider
Boundless Models in which no restriction is placed on the form of the policy to
enlarge the decision variable space. Question 8 aims to formulate and solve
the cash management problem as a linear or quadratic problem ready to be
solved by state-of-the-art mathematical programming solvers. Baccarin (2009)
approached the multiple bank accounts cash management problem from a the-
oretical perspective and assuming purely stochastic cash flows. Question 9
aims to provide a more practical and data-driven approach to derive optimal
policies for cash management systems with multiple bank accounts. Finally,
Question 10 intends to fill the gap between theory and practice that is usually
neglected in cash management literature.
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Chapter 2. Background and related research

Research
Question

Previous works

Question 1
Question 2 Emery (1981) Pindado(1996) Gormley (2007)
Question 3 Gormley (2007)
Question 4
Question 5 Stone (1972) Hinderer (2001) Gormley (2007)
Question 6 Daellenbach (1974) Constantinides (1978)
Question 7
Question 8
Question 9 Baccarin (2009)
Question 10

Table 2.3: Open research questions in cash management
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Part I

Data-driven cash flow analysis





Chapter 3

The savings hypothesis

The central question addressed in this chapter is: does a better forecast pro-
duce better cash policies in terms of cost? To achieve a deeper understanding
of this question, we first explore state-of-the-art machine learning forecasting
models such as autoregression, linear regression, radial basis functions, random
forests, and a seasonal interaction model. We later rely on time-series cross
validation to compare the relative performance of a simple cash management
policy derived from each model in terms of savings with respect to a baseline.
Finally, we provide a new method to help cash managers estimate if efforts in
improving predictive accuracy are proportionally rewarded by cost savings. As
a result, cash managers are empowered to test their own savings hypothesis,
i.e., if better forecasting models are in place to reduce cash management costs.

3.1 Motivation

In this chapter, we study the performance of cash management models. More
precisely we focus on the impact of predictive accuracy on potential cost savings
achieved by using cash management models using forecasts as the main input.
A measure of quality of any forecasting technique is its predictive accuracy
and, under an economic perspective, predictive accuracy must be mapped to
estimated cost savings. This analysis assesses how much companies can save by
improving predictive models and, consequently, the cost of not predicting, i.e.,
the missed savings minus the cost of implementing the model. For example, if
a reduction of 32% in forecasting error produced 320,000 e in savings per year,
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Chapter 3. The savings hypothesis

it can be stated that, on average, each percentage point of predictive accuracy
is 10,000 e worth.

In this chapter, our discussion seeks to assess the quality of alternative forecast-
ing methods. To this end, we first present and compare different forecasting
methods including linear and non-linear models. In this sense, we expect that
non-linear models can deal with cash flow time-series in a cost-saving approach.
For simplicity reasons, we restrict our analysis to transaction and holding costs
for cash balances in a single currency. Using two real data sets from companies
in the textile industry in Spain, we develop a proof of concept with respect
to the impact of predictive accuracy in the CMP in two steps: first, we show
empirically that forecasting accuracy is highly correlated with savings in cash
management and, thus, a comparison in terms of accuracy and savings be-
tween different forecasting models is performed; second, we propose a method
to estimate the effect of forecasting accuracy on cash management in advance.

The rest of this chapter is organized as follows. We firstly describe our two
real cash flow data sets in Section 3.2. We later enumerate different forecast-
ing models: linear models such as autoregressive and regression models; and
non-linear models, such as radial basis functions, random forests and seasonal
indicator models in Section 3.3. These forecasting models will be ranked ac-
cording to its predictive accuracy in the evaluation Section 3.4. In Section 3.5,
we empirically verify that a better forecast produces a better policy. More-
over, we estimate how much savings (if any) can be obtained by the cash
policies produced by an improvement in forecasting accuracy. Finally, Section
3.6 summarizes the chapter.

3.2 Description and data preprocessing

In this section, we describe the two real cash flow data sets used in this chap-
ter. Data sets 1 and 2 gather net daily flow on workdays from two different
companies in the textile industry. Both sets of observations are in the domain
of real numbers and their values’ distributions present a bell-like shape but ex-
cess kurtosis. Besides, an additional transformation is performed to deal with
anomalies. More specifically, following the recommendations in Gormley and
Meade (2007) and Hyndman (2016), any observation greater than five times
the standard deviation is considered an outlier and it is replaced by a linear
interpolation. After time-series cleaning, our cash flow data sets empirical dis-
tributions are shown in Figure 3.1. In order to cover a wider range of realistic
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3.2 Description and data preprocessing

industrial company cases, a number of cash flow data sets are derived from the
two real data sets as follows:

Data set 1

De
ns

ity

Data set 2

De
ns

ity

Figure 3.1: Histogram for data sets 1 and 2 compared to a normal distribution.

• Real cash flow: data sets 1 and 2.

• Stable cash flow: data set 3 is derived from data set 1 and applies to
companies in a more stable environment with daily cash flows character-
ized by a low variance. In this case, observations greater than three times
the standard deviation are replaced by values of exactly three times the
standard deviation.

• Unstable cash flow: data set 4 also derives from data set 1 and applies
for companies with high variances in their daily cash flow due to different
reasons such as a reduced number of customers or suppliers as it is the
case of small companies. In this case, observations greater than three
times the standard deviation are replaced by values of exactly two times
the original observation.

• Random shock cash flow: data sets 5 and 6 are derived from the original
data sets 1 and 2 respectively, before anomaly detection, and aim to
cover the likely occurrence of unexpected changes in industrial markets.
In this case, 5% of the observations are randomly chosen and replaced
by randomly selected values from the previous set of labeled outliers.
This transformation simulates a disturbance that, to some extent, may
break existing patterns and increase deviation from expected cash flow
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Chapter 3. The savings hypothesis

by introducing a number of outliers in the original data. In addition, it
helps estimate the impact of outliers in accuracy.

A summary of the characteristics of each data set is presented in Table 3.1.

Data Set Length Case Std.Dev. Kurtosis
1 2717 Real cash flow 92615 4.08
2 1218 Real cash flow 42514 3.55
3 2717 Stable cash flow 87780 2.40
4 2717 Unstable cash flow 126303 18.05
5 2717 Random shock cash flow 151462 6.49
6 1218 Random shock cash flow 100883 20.33

Table 3.1: Data set summary.

For comparison purposes with Gormley and Meade (2007), here we assume
that, apart from daily cash flow data, no other extra features are provided
by the company. However, a set of available explanatory variables can be
proposed. According to Miller and Stone (1985), and Stone and Wood (1977),
we may find seasonal patterns in daily cash flow data. Thus, we consider
basic calendar effects such as the day-of-week, the day-of-month and month
effect by using categorical or dummy variables. In the latter case, each dummy
variable takes a value of one if time t occurs at the corresponding day of the
week/month, and zero otherwise. A further step in the search of explanatory
power is explored by considering past values of the time-series. From that, a
tentative set of explanatory variables is listed below:

• Day-of-month (DOM): Day of month categorical variables or dummy vari-
ables (dt1, . . . , dt31).

• Day-of-week (DOW): Day of week categorical variables or dummy vari-
ables for working days (st1, . . . , st5).

• Month: Month dummy variables (mt1, . . . ,mt12).

• Week: Week dummy variables (wt1, . . . , wt53).

• Past values: Previous observations of the daily cash flow time-series
(yt−1, . . . , yt−p) where p is the total number of observations considered.

From a combination of these explanatory variables, different predictive models
can be built and compared in terms of forecasting accuracy.
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3.3 Building forecasting models

3.3 Building forecasting models

The accuracy of any forecasting model depends on its ability to capture the
specific characteristics of the data used. According to Stone (1972), real-world
cash flows are neither completely known in advance nor are they completely
unpredictable. However, a wide set of tools and techniques are available to
improve forecasting accuracy. We claim that exploring alternative models to
improve forecasting ability is mandatory, specially if improving forecasting
accuracy can lead to cost savings.

In this section, we present a number of forecasting models to be evaluated
allowing us to identify our best-in-class forecaster that will ultimately be used
as the main input to the cash management model. We do not intend to deter-
mine the best cash flow forecaster among all methods presented in forecasting
research literature. Instead, our final goal is to verify if a better forecaster, in
terms of forecasting accuracy, is able to produce a better cash policy in terms
of cost savings. In this sense, we expect that non-linear models outperform two
of the most usual linear models in cash flow forecasting allowing cash managers
to deploy better cash policies.

Then, we here consider five different forecasting models: autoregressive, regres-
sion, radial basis functions, random forests and seasonal interaction models.
Firstly, we follow the autoregressive approach to daily cash flow forecasting
along the lines of Gormley and Meade (2007). In contrast to such approach,
we expect that the use of the set of explanatory variables mentioned earlier
rather than only a number of previous values of a time-series can help obtain
a more accurate prediction. Then, we secondly consider a linear regression
model with a set of explanatory variables.

While linear models are often employed in finance due to their simplicity, many
non-linear models have been proposed to explain financial phenomena. Per-
haps one of the most widely known non-linear model in finance is the Black
and Scholes (1973) option pricing model. Moreover, there is a reason for opti-
mism about the use of non-linear models in time-series prediction and finance
as stated in Weigend (1994), Kantz and Schreiber (2004), and Small (2005).
Firstly, several limitations of linear models were pointed out by Miller and
Stone (1985) in daily cash flow forecasting such as interactions and holiday
effects. Additionally, statistical hypothesis such as normality and stationarity
are required by linear models to produce reliable results. On the other hand,
alternative approaches to discover the relationship between time-series obser-
vations are also available. In this sense, non-linear models allow to explore
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Chapter 3. The savings hypothesis

beyond the constraints imposed by linear models through a much wider class
of functions.

Although non-linear time-series analysis is not as well established as its linear
counterpart (De Gooijer and Hyndman, 2006), works by Teräsvirta (2006),
Bradley and Jansen (2004), Clements, Franses, and Swanson (2004), Sarantis
(2001), and Conejo et al. (2005) constitute good examples of its application to
finance and economics. In this chapter, we consider non-linear models such as
radial basis functions and random forest models due to the lack of attention of
the research community. Next, we briefly describe our selection of forecasters
and provide details on the implementation of non-linear models.

3.3.1 Autoregressive model

A widespread linear model in time-series data is the autoregressive (AR) pro-
cess, where predictions are based on a linear combination of previous obser-
vations (Box and Jenkins, 1976). AR models for cash flow forecasting can be
found in Gormley and Meade (2007) and Laukaitis (2008). On the other hand,
as mentioned in Section 3.2, our cash flow data have a bell-like shape but ex-
cess kurtosis. Hence, we follow the recommendations in Gormley and Meade
(2007) and use an extension of the Box-Cox transformation described in Box
and Cox (1964) to approximate our data to a Gaussian distribution by tuning
a parameter λ. Predictions are assessed using the following equation:

y
(λ)
t = β0 +

p∑
i=1

βiy
(λ)
t−i + ε (3.1)

where y(λ) is the cash flow forecast at time t, [y
(λ)
t−1, y

(λ)
t−2 · · · , y

(λ)
t−p] are the p-

previous observations of a transformed time-series, βi is the i-th estimation co-
efficient, and ε stands for the prediction error. Superscript (λ) in both forecasts
and previous observations denotes data transformation. This transformation
is reversible and, therefore, yt can be derived from y

(λ)
t .

3.3.2 Regression model

An autoregressive model is only based on the previous observations of the time-
series and misses possible patterns, if any, hidden in the data. When dealing
with daily data, these patterns refer to calendar variations such as holidays,
day of the month or day of the week. Trying to identify these patterns, here we
consider a general regression model based on different explanatory variables.
Regression models have been used for cash flow forecasting purposes in Stone
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3.3 Building forecasting models

and Wood (1977), Stone and Miller (1987), and Miller and Stone (1985). In
this case, it is important to say that the ability of the modeler in the search
for the best explanatory variables plays a key role. A general regression model
is represented by the following equation:

yt =
n∑
i=0

βixti + ε. (3.2)

In this general model (3.2) we relate yt, the value of the cash flow at time t to
a linear combination of explanatory variables xt1, xt2, . . . , xtn at the same time
t, being βi the i -th regression coefficient, and ε the prediction error. From
the general model (3.2), a number of particular models can be derived for
predictions depending on the different explanatory variables considered. For
the implementation of these models we use the lm function in R.

3.3.3 Radial basis function model

Financial data are usually originated by complex systems that may include
non-linear processes. In order to capture non-linearity in the data, we also
consider Radial Basis Function (RBF) models as described in Weigend (1994)
and Broomhead and Lowe (1988). To use an RBF model, we first partition the
input space by applying the k-medoids algorithm (Park and Jun, 2009) over
the training set. Then a scalar Gaussian RBF φ(x) is used for forecasting:

yt = b0 +
K∑
k=1

bkφ(‖xt − ck‖) + ε (3.3)

where yt is the value of the target variable at time t, K is the total number of
clusters, bk is the coefficient associated to the k -th cluster, ck is the k -th cluster
medoid, xt is the input data point at time t, ‖ ‖ is the Euclidean distance and
ε is the prediction error. Finally, φ(x) is the following Gaussian function:

φ(x, α) = e−x
2/αρk (3.4)

where α is a positive integer parameter and ρk is the mean distance between
the elements inside the k -th cluster. In this case, predictions are produced
using our tentative set of explanatory variables and general matrix functions
in R.

Next, we provide an example of predictions obtained using RBF for the last
3 days of data set 1 based on the previous 21 cash flow observations. Two
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parameters have to be chosen to produce forecasts using RBF: the total num-
ber of clusters K, defining the degree of partition of the input space and the
parameter α, determining the contribution of deviate points to the prediction.
For the sole purpose of this example, we set K = 5 and α = 10. Then, we
proceed as follows:

1. We create the input space (2714 − 21) × 21 matrix X by embedding in
each row 21 consecutive cash flows. Firstly, we transform cash flows to
y
(λ)
t , as explained in Section 3.3.1. To avoid high values bias, we later
standardize transformed cash flows by demeaning and dividing by the
standard deviation.

2. We create a column vector y of length 2693 with subsequent cash flows.

3. We select each cluster medoids ck from rows in X using the k-medoids
algorithm.

4. We compute ρk as the mean Euclidean distance between the elements of
the k-th cluster to its medoid ck.

5. We compute the 2693 × 5 matrix Φ where each row contains distances
computed using the function φ(‖xt−ck‖) for each point in the input space
to each cluster.

6. We obtain the column vector b of weights by solving b = (ΦTΦ)−1ΦTy
using least squares.

7. We produce a 3×21 matrix X̂ with the previous 21 observations prior to
each of the 3 cash flows to be predicted and a 3× 6 matrix Φ̂ where the
first column is set to 1 and the rest of elements are distances computed
using the function φ(‖xt−ck‖) for each point in X̂ to each cluster medoid.

8. We forecast by means of ŷ = Φ̂b, that has to be re-scaled by multi-
plying by the standard deviation and adding the mean and, finally, λ-
transformed.

Now, we are in a position to compare these forecasts to real values and to other
forecasts and compute predictive accuracy as we will see below.
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3.3.4 Random forest model

Decision trees are non-linear models that split the input space in subsets based
on the value of a particular feature. On the other hand, an ensemble method-
ology is able to construct a predictive model by integrating multiple trees in
what is called a decision forest (Dietterich, 2000). Regression forests are used
for the non-linear regression of dependent variables given independent inputs
based on an ensemble of slightly different trees. Particularly, random forests
(RF) are ensembles of randomly trained decision trees (Ho, 1995; Ho, 1998;
Criminisi and Shotton, 2013). Recent examples of time-series forecasting us-
ing random forests can be found in Kumar and Thenmozhi (2006), Kane et al.
(2014), Mei et al. (2014), and Zagorecki (2015).

We make predictions using the R package randomForest by Liaw and Wiener
(2002) which implements Breiman’s random forest algorithm for classification
and regression (Breiman, 2001). In this chapter, we limit ourselves to select
three parameters: the number (a) of randomly trained trees, the number (b)
of variables randomly sampled as candidates at each split, and the node size
(c) or the minimum amount of observations in a terminal node used to control
overfitting.

For instance, assume that we know there is a strong daily seasonality in our
cash flow. One possible way to assess how strong is this seasonality is to
produce predictions using two explanatory variables: Day-of-month and Day-
of-week. Hence, we aim to create a random forest model and predict the last
100 days of data set 1 based on these two variables. An example on how to
proceed is as follows:

1. Create a 2617×2 matrix X containing in each row the Day-of-month and
the Day-of-week of past cash flows.

2. Create a column vector y of length 2617 with the corresponding cash
flows.

3. Create a model based on X and y, with a = 100 randomly trained trees,
with b = 2 randomly sampled variables and node size c = 50.

4. Produce a 100×2 matrix X̂ with the Day-of-month and the Day-of-week
of last 100 cash flows of data set 1.

5. Input matrix X̂ to the model to obtain the forecasts.
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3.3.5 Seasonal interaction model

Miller and Stone (1985) proposed a method to daily cash flow forecasting by
spreading an estimated monthly total over the days of this time period. This
distribution approach requires the separation of net cash flow in components,
at least, inflows and outflows, that is a different case that the data set in our
study. However, we rely on the Miller and Stone (1985) model to forecast cash
flow yt, ranging in t = 1, 2, . . . , T , based on seasonal interactions as follows:

yt =
T∑
j=1

δjIj,t + ε (3.5)

where Ij,t, is a seasonal indicator (SI) that takes value one, when a given
seasonal condition holds, zero otherwise. For instance, we can define I1,t = 1,
when the day t occurs on the first of January and Monday. To account for
all possible combinations of working days and months, we initially consider
a full set of 31 × 5 × 12 = 1860 different seasonal indicators. To speed up
computations, we estimate δj by averaging cash flow grouped by day-of-month,
day-of-week and month. When no data is available for estimation purposes,
we set δj = 0, and forecast using the estimated mean. Simplicity, lack of
estimation issues and account for interactions are the main advantages of this
model. Now, we are in a position to assess the importance of each explanatory
variable or to test the quality of our predictions.

3.4 Forecasting models’ comparison

In this section, we aim to evaluate the forecasting accuracy of the presented
models for comparison purposes. Alternative models may produce different
predictions with different accuracy. The comparison will allow us to determine
our best-in-class forecaster to be later used as the input to establish the best
cash management policy available. More precisely, we use time-series cross-
validation for different prediction horizons (h) from 1 up to 100 days ahead by
comparing the mean square error ε(h) for different models:

ε(h) =

∑
test(ŷt+h − yt+h)2∑
test(y − yt+h)2

(3.6)

where h is the prediction horizon in days, ŷt+h is the prediction at time t+ h,
yt+h is the real observation at the time t+ h, and y is the the arithmetic mean
of the real observations on the training set. Note that the closer ε is to zero,
the better the predictive accuracy. If ε is close to one, the performance is
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similar to that of the mean as a naive forecast. Values greater than one show
that the forecaster has no predictive ability.

In Hyndman and Athanasopoulos (2013), two different time-series cross valida-
tion approaches were suggested: one with a fixed origin for the training set, and
one with a rolling origin. Algorithm 1 implements these two cross-validation
methods.

Algorithm 1: time-series cross validation algorithm
1 Input: Cash flow data set of T observations, FixedOrigin, minimum number
g of observations to forecast and prediction horizon h;

2 Output: Forecast accuracy for different prediction horizons;
3 for i = 1, 2, . . . , T − g − h+ 1 do
4 Select the observation at time g + h+ i− 1 for the test set;
5 if FixedOrigin = True then
6 Estimate the model with observations at times 1, 2, . . . , g + i− 1;
7 else
8 Estimate the model with observations at times i, i+ 1, . . . , g + i− 1;
9 end

10 Compute the h-step error on the forecast for time g + h+ i− 1;
11 end
12 Compute ε(h) based on the errors obtained;

If binary variable FixedOrigin is set to True, the training set is formed by all the
observations that occurred prior to the first observation that forms the test set
(Method 1). We can get rid of the oldest observations by setting FixedOrigin
to False (Method 2) and considering only the g most recent values (e.g., the
last two or three years) by applying a sliding window of observations. In both
methods we assume that the minimum number of g observations required to
produce a reliable forecast is the first 65% of the data. In our experiments,
high values of g produced almost no difference between Method 1 and Method
2. Using Method 2, smaller values of g in steps of 250, equivalent to 1 year of
observations, were also tried with worse results. Because of that, here we only
present results for Method 1.

For model selection, we follow an automatic selection method along the lines
of Doornik (2008), Hyndman and Athanasopoulos (2013), and Hendry and
Doornik (2014). More precisely, we perform a backwards stepwise regression
starting with a model containing all potential predictors and removing one
predictor at a time. We select the model with the minimum average error ε,
for prediction horizons ranging in 1, 2, . . . , 100, computed using Algorithm 1.
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For statistically significant differences in performance between models, the U
Mann-Whitney test for independent samples with a 95% confidence interval
is used (Hollander, Wolfe, and Chicken, 2013). In addition, when parameters
selection is necessary, an evaluation of the coefficient of determination, R2,
over a training set with the oldest 65% of the observations is used to choose
the best value for each of the parameters. The final model selection, summa-
rized in Table 3.2, shows that the day-of-month and the day-of-week variables
present the best forecasting ability. However, the number of coefficients that
are relevant in the case of autoregression and regression using dummy variables
are different for data set 1 and 2.

Model Input variables Data Set 1 Data Set 2
AR Past values 12 coefficients 15 coefficients
REG DOM, DOW 29 coefficients 10 coefficients
RBF DOM, DOW K = 35, α = 10 K = 10, α = 10
RF DOM, DOW a = 20, b = 11, c = 50 a = 20, b = 11, c = 50
SI DOM-DOW Indicators 155 coefficients 155 coefficients

Table 3.2: Model selection according to average error ratio (ε) for horizons up to 100 days.

The relative performance for different prediction horizons using models from
Table 3.2 is plotted in Figures 3.2 and 3.3, and results for all data sets using
the previously selected models are shown in Table 3.3. Autoregressive models
performed no better than the mean as a naive forecaster. A statistically signif-
icant difference in average forecasting accuracy was found in favor of the RF
model for data sets 1 and 4, whereas it was almost equal to the SI model in
the case of data set 3. However, the performance of the regression model was
the best in data set 2, suggesting a linear behavior. Interestingly, RBF were
less affected than the rest of models by the introduction of outliers in data
sets 5 and 6. The poor performance of the SI model on data sets 2 and 6 may
be caused by the smaller number of the observations than in the rest of data
sets. Summarizing, it is clear that forecasting accuracy of the autoregressive
model can be improved by considering alternative models. Next, we measure
the savings produced by a better prediction.
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Figure 3.2: Mean square error comparison for different predictive models (Data set 1).
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Figure 3.3: Mean square error comparison for different predictive models (Data set 2).

3.5 Does a better forecast produce better policies?

Gormley and Meade (2007) proposed a Dynamic Simple Policy (DSP) to
demonstrate the utility of cash flow forecasts in the management of corpo-
rate cash balances. They proposed the use of an autoregressive model as the
main input to their model. However, gains in forecast accuracy over a naive
mean model were scant. Gormley and Meade expected that savings obtained
using a non-naive forecasting model would increase if there were more sys-
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Set AR REG RBF RF SI
1 0,997 (0,008) 0,705 (0,007) 0,765 (0,005) 0,678(0,010) 0.690 (0.008)
2 0,997 (0,008) 0,925 (0,008) 0,934 (0,009) 0,952 (0,008) 1,057 (0,015)
3 0,997 (0,009) 0,696 (0,007) 0.786 (0.019) 0,661 (0,023) 0.667?(0.023)
4 0,998 (0,006) 0,766 (0,008) 0.785 (0.004) 0,754 (0,010) 0.785 (0.012)
5 1,000 (0,000) 0,920 (0,004) 0.859 (0.070) 0,914 (0,006) 0.942 (0.004)
6 1,001 (0,002) 1,003 (0,003) 0.984 (0.004) 1.003 (0.004) 1.217 (0.020)

Table 3.3: Average predictive error for prediction horizons from 1 to 100 days using Method
1. Standard deviations are shown in parenthesis and best values are bold. Non-significant
different models to the best in each row with a 95% confidence interval are marked with ?.

tematic variation in the cash flow and, consequently, higher forecast accuracy.
In the previous section, we showed that a better cash flow prediction can be
obtained by using different forecast models. In this section, we verify that a
better prediction produces a better policy. As a consequence, we find that the
savings produced by a better forecasting model are significantly higher than
those obtained by a naive forecasting model.

Here, we exploit a simple policy equivalent to that of Gormley and Meade
using the best forecasters as detailed in Section 3.4 and compare to the results
obtained by a constant mean forecast. This control limit framework is limited
to cash balance holding and transaction costs. Other major benefits derived
from forecasting accuracy such as short-term investment improvement and
prearranged credit lines cost savings are not considered in this chapter. Better
forecasting accuracy allows companies to invest in less marketable securities
but with higher returns if held to maturity. In addition, companies relying
on credit lines can reduce the amount of prearranged credit if better forecasts
are available. A good example of cost-benefit analysis considering short-term
investment and borrowing costs can be found in Stone (1973).

On the other hand, since the forecast accuracy of the autoregressive model
almost equals the mean forecast accuracy (Table 3.3), the comparison to the
mean is equivalent to the comparison to the autoregressive model. In what
follows, we firstly introduce our empirical settings; secondly, we show empir-
ically that forecasting accuracy leads to cost savings in the corporate cash
management problem using a simple policy; and finally, we analyze potential
cost savings of improving predictive accuracy of daily cash flow forecasts and
a simple policy.
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3.5.1 Empirical settings

The corporate cash management problem can be approached from a stochastic
point of view by allowing cash balances to wander between two limits: the
lower (D) and the upper balance limit (V ). When the cash balance reaches
any of these limits a cash transfer is made to return to the corresponding
rebalance level (d, v). A model of this kind using daily forecasts was proposed
by Gormley and Meade (2007) as a trade-off between transaction and holding
costs as follows: q is the holding cost per money unit of positive balances at the
end of the day; u is the shortage cost per money unit of negative balances at
the end of the day; γ+

0 is the fixed cost of transfer into account; γ−0 is the fixed
cost of transfer from account; γ+

1 is the variable cost of transfer into account;
and γ−1 is the variable cost of transfer from account.

Recall from section 3.2 that we are dealing with a real business problem. Hence,
we focus on current costs charged by banks to industrial companies in Spain.
Current bank practices tend to charge a fixed cost for transfers between e1 and
e5 and no variable cost so that we set γ+

1 = 0 and γ−1 = 0. The shortage cost
(u) per money unit of a negative cash balance is around 30% which represents
a high penalty for negative cash balances. Finally, the holding cost (q) per
money unit of a positive cash balance is an opportunity cost of returns not
obtained from alternative investments. Since this is not an actual cost but
an opportunity cost based on judgmental criteria, we set a range between 3%
p.a.1 and 20% p.a. based on the concept of weighted average cost of capital.
This wide range allows us to consider not only the cost of debt but also the
cost of equity as an estimate for the holding cost. We firstly try 20 different
cost structures considered as the most likely scenario under current costs in
Spain, denoted by (1) in Table 3.4. We also consider two additional scenarios,
denoted by (2) and (3), to evaluate the effect of changes in particular costs.
The second scenario tests the variation of the shortage cost (u) and the third
one considers the introduction of variable transfer costs (γ1).

In our experiments, parameter selection of the cash management model is
performed under a business perspective. In Gormley and Meade (2007) the
policy parameter values D, d, v, V were chosen to minimize the expected cost
over horizon T using a genetic algorithm (Chelouah and Siarry, 2000). Here,
since the focus is placed on the comparison between policies obtained from
different forecasting models, parameter optimization plays a secondary role.
Therefore, these parameters are empirically chosen and kept unaltered in the
comparison between savings for each forecasting model and each cost scenario.

1Per annum.
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Cost Alternative Scenarios
Scenario (1) Scenario (2) Scenario (3)

Holding cost q 3, 10, 15, 20 % 15 % p.a. 15 % p.a.
Shortage cost u 30 % 10, 20, 40 % 30 %
Fixed into account γ+

0 1, 2, 3, 4, 5 e 3 e 3 e
Fixed from account γ−0 1, 2, 3, 4, 5 e 3 e 3 e
Variable into account γ+

1 0 % 0 % 0.01, 0.02, 0.04 %
Variable from account γ−1 0 % 0 % 0.01, 0.02, 0.04 %

Table 3.4: Cost scenarios. (1) Most likely scenario; (2) Varying the shortage cost u; (3)
Introduction of the variable cost γ1.

However, in order to evaluate the influence of these parameters on the utility
of the forecast, three different cases are studied based on risk tolerance. Since
the cost of a negative balance is very high, common sense leads us to set D to
a minimum level so that only a given percentage (MaxPct) of expected cash
flows can bring the balance from value D to a negative value. The higher
the percentage, the higher the probability of an overdraft and, consequently,
the riskier the policy under these cost structures. We study three cases with
different levels of risk: (i) Low risk or MaxPct = 5%; (ii) Medium risk or
MaxPct = 10%; (iii) High risk or MaxPct = 15%.

On the other hand, the use of dynamic simple policy assumes that an unlimited
cash buffer is available to transfer into the bank account whenever it is neces-
sary. In practice, this situation is unrealistic. Thus, we restrict high balance
levels by setting an upper limit to 1.5 times the lower cash balance limit. Fol-
lowing the recommendations in Gormley and Meade (2007), the positive shift
from the lower balance limit (D) of lower rebalance level (d) is proportional
to the difference between the higher (V ) and the lower balance (D) limits. Fi-
nally, the negative shift from the higher balance limit (V ) to obtain the higher
rebalance level is proportional to the difference between the higher balance
limit (V ) and the lower rebalance level (d). Here, we chose proportionality
constants α1 = 0.5 and α2 = 0.5 to produce an even distance between policy
parameters. The entire analysis would remain the same when varying this
setting. As a summary, parameters selection is done according to:

• D = |oth| where oth is the N ·MaxPct-th element of vector ot of ascending
ordered values of cash flow being N the total number of observations.

• V = 1.5D, then V −D =
D

2

• d = D + α1(V −D) with α1 = 0.5
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• v = V − α2(V − d) with α2 = 0.5.

Predicted cash flows using different forecasters are used to compare the effect
on the total cost over different prediction horizons (h) from 1 up to 100 days
ahead. We set g to the minimum number of observations required to estimate
the model that is equivalent to 65% of the data set. We proceed as detailed in
Algorithm 2.

Algorithm 2: Comparison algorithm
1 Input:Cash flow data set of T observations, g, h,MaxPct, and a forecaster;
2 Output:Average cost difference between a forecaster and the mean as a
forecast;

3 for i = 1, 2, . . . , T − g − h+ 1 do
4 Estimate the model with observations at times 1, 2, . . . , g + i− 1;
5 Predict for times g + i up to g + h+ i using the forecaster;
6 Predict for times g + i up to g + h+ i using the mean forecaster;
7 for j = 1, 2, . . ., Number of cost structures do
8 Compute cost for the ith forecast when using the j -th structure;
9 Compute cost for the ith mean forecast and the j -th structure;

10 end
11 end
12 Compute average cost for each cost structure using the forecaster;
13 Compute average cost for each cost structure using the mean forecaster;
14 Compute difference between average cost of the mean and the forecaster;

3.5.2 Impact of predictive accuracy on cost savings

Cost savings are computed as the daily average cost differences between the
naive forecast and the best-in-class forecaster for each of the data sets (Table
3.5). Recall that this comparison to the mean is equivalent to the comparison
to the autoregressive model. From these results, we can say that, in general, an
increase in forecast accuracy leads to significant cost savings using a simple pol-
icy. A better forecasting model produces higher savings for either conservative
or riskier policies. The effect of forecasting accuracy in daily costs dramatically
rises when the policy bounds are reduced as a consequence of a riskier policy.
In these cases, forecasting accuracy is much more important in reducing daily
cost due to the risk of an overdraft. As expected, cost reductions for the data
set 2 are smaller but still significant due to less predictive accuracy.
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Data set Best Scenario Low Risk Medium Risk High Risk
1 RF Most likely 183 (71%) 1432 (74%) 2039 (55%)
1 RF Varying u 143 (55%) 1115 (72%) 1587 (54%)
1 RF Introducing γ1 184 (63%) 1434 (73%) 2040 (55%)
2 REG Most likely 85 (27%) 363 (34%) 448 (25%)
2 REG Varying u 66 (25%) 282 (33%) 349 (25%)
2 REG Introducing γ1 84 (26%) 362 (33%) 448 (25%)
3 RF Most likely 181 (71%) 1422 (74%) 2025 (55%)
4 RF Most likely 207 (57%) 1437 (74%) 2156 (53%)
5 RBF Most likely 455 (25%) 1953 (49%) 3292 (55%)
6 RBF Most likely -11 (7%) 173 (19%) 174 (13%)

Table 3.5: Average daily saving for different levels of risk and alternative scenarios.
RF=Random Forest; REG=Regression; RBF=Radial Basis function; u = shortage cost,
γ1 = variable transaction cost.

A deeper insight on the different scenarios shows that changes in cost parame-
ters have a reduced impact on cost savings. A scenario of particular importance
nowadays is that of low holding costs such as 3% p.a. due to current low inter-
est rates. Our results show that, even in such a scenario, 88%, 75% and 55%
savings for the three levels of risk can be obtained in data set 1 using random
forests forecasts. Moreover, changes in the variability of cash flow data, studied
here by introducing less (data set 3) or more variance (data set 4), produced
no major changes. However the effect of random shocks in the cash flow data
(data sets 5 and 6), reduced cost savings due to the higher uncertainty of the
cash flow data.

3.5.3 Analyzing potential cost savings

Our best-in-class forecasting models, i.e., regression, radial basis functions and
random forests models, are attempts to reduce uncertainty in predicting daily
cash flow. They represent special cases in which improving predictive accuracy
resulted in increasing cost savings over a naive forecast. However, cash man-
agers may be interested in determining how much savings can be achieved by
any extra effort in improving predictive accuracy. Since enhancing any fore-
casting model has a cost in terms of both time and money, it is important to
know if this cost is offset by the savings obtained using a better forecasting. We
can estimate savings associated to predictive accuracy by obtaining a number
of synthetic predictions and evaluate the corresponding policy costs.
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Daellenbach (1974) and Costa Moraes and Nagano (2014) synthesized cash flow
data for simulation purposes from normal distributions. Here, from a given
cash flow time-series (yt+h), a new time-series (ŷt+h) is synthesized by adding
a random normal term of mean zero and a variable standard deviation (σ)
using the following equation:

ŷt+h = yt+h +N (0, σ). (3.7)

Increasing the value of σ, a set of time-series with a decreasing degree of similar-
ity to the original time-series can be obtained. This is equivalent to generating
a set of synthetic predictions with controlled predictive accuracy that can be
evaluated in terms of mean square error ratio ε(h) for different prediction hori-
zons using equation (3.6). We obtain synthetic predictions covering a range
from ε = 0 to values greater than 1. Here ε denotes the average of ε(h) for
prediction horizons up to 100 days on a test set formed by the last 35% of the
observations of data sets 1 and 2. Later, savings for each of these synthetic
forecasts are obtained following Algorithm 2 but using the synthetic forecasts
previously generated rather than estimating and predicting.

Results from this simulation for data sets 1 and 2 and three different levels of
risk are shown in Figures 3.4 and 3.5. As a reference, the vertical lines locate
savings achieved by the best-in-class forecaster for each of the examined levels
of risk. For example, using random forests for data Set 1, a value of ε = 0.68
(from Table 3.3) was obtained which produced savings of 71, 74 and 55% (from
Table 3.5) for the three levels of risk considered.

As expected, improving prediction accuracy, i.e., reducing ε, leads to an im-
portant increase in cost savings up to 100% in the case of a perfect prediction.
Efforts in increasing predictive accuracy are notably rewarded. However, the
behavior is different depending on the level of risk chosen by the company.

1. Low risk: the effect of improving predictive accuracy tends to a stable
point where any further effort yields no additional saving. In spite of
the considerable percentage saved, it seems that improvement potential
in predictive accuracy is limited when the risk is low.

2. Medium risk: the effect of limited cost savings when improving predictive
accuracy is also present but to a lesser extent.

3. High risk: the behavior is almost linear in the considered ε interval.

It is interesting to point out that the relationship is almost linear in most of the
range of the average error ε for each of the three levels of risk. This fact should
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Figure 3.4: Savings for different predictive errors and levels of risk for data set 1 in the
most likely scenario. S=Synthetic forecasts, RF=Random Forest.
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Figure 3.5: Savings for different predictive errors and levels of risk for data set 2 in the
most likely scenario. S=Synthetic forecasts, RBF=Radial Basis Function.

encourage practitioners to work hard to obtain a better prediction because they
can expect a proportional reward in terms of cost savings. However, in the case
of our best-in-class forecasting model using random forests and data set 1, an
error ε of 0.68 (from Table 3.3) places the savings in the highest value likely
to be obtained for the low level of risk. Any effort in improving predictive
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accuracy will be useless. This behavior is confirmed by the fact that a perfect
prediction was unable to achieve a 100% difference in cost savings.

Summarizing, we propose a new and more comprehensive methodology (shown
in Figure 3.6) for the practitioner, i.e., the cash manager, based on the effect
of predictive accuracy on cash management cost using daily cash flow forecasts
and a simple policy. In order to allow different models to capture patterns,
cash managers should consider an additional previous step of feature engineer-
ing to obtain a series of extra features. They can also adopt a wider modeling
approach that allow them to compare a set of forecasters in terms of forecast-
ing accuracy. At this point, cash managers can easily generate a number of
synthetic predictions to cover a wide range of different predictive accuracy by
tuning a parameter. These synthetic predictions, and those obtained using our
best-in-class forecasters from Table 3.3, are tested in their ability to reduce the
cost of the policies by using a simple policy. This step results in a graphical
estimation on how much cost savings can be achieved by improving predic-
tive accuracy of our selected forecasters. If estimated savings are greater than
the cost of improving the accuracy of the forecasting models, a new modeling
process is worth undertaking.

3.6 Summary

From the above-described results, we derive two main findings. First, assessing
predictive accuracy is a must in the context of corporate cash management,
specially when employing daily forecasts as an input to a cash flow manage-
ment model. Indeed, we empirically find that cost savings are highly sensi-
tive to improvements on prediction accuracy when using a simple policy, and
hence major savings may stem from accurate predictions. Second, from a cost
sensitive perspective, cash managers may consider our methodology to decide
whether improving the predictive accuracy at hand is financially worthy. These
two findings, which we further dissect next, are meant to yield benefits for cash
managers.

On the impact of predictive accuracy on cost savings. Gormley and
Meade (2007) hypothesized that the more accurate the cash flow forecasting
accuracy, the larger the cost savings expected. Here, for the first time in the
literature, we have empirically confirmed such hypothesis. Furthermore, we
have analyzed the impact of predictive accuracy on average daily cost savings
when considering a variety of cost structures (of real-world bank finance con-
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ditions) and cash flow policy parameters. From our analysis we have learned
that:

• Predictive accuracy is strongly correlated with cost savings when using
daily forecasts in cash management models. Thus, cost savings were
highly sensitive to improvements on prediction accuracy when using a
simple policy and two real-world cash flow data sets.

• The riskier the cash management policy, the higher the average daily cost
reduction in cash.

• The realistic cost structures considered in the most likely scenario have
little influence on cost savings obtained by the forecasting models.

What if predictive accuracy increases? Analyzing potential savings.
Cash managers may wonder if efforts on improving forecasting accuracy are
expected to be proportionally rewarded by cost savings. Along this direction,
we proposed a method for estimating the cost savings potentially delivered by
improving predictive accuracy. Independently of the predictive accuracy of the
forecaster available to a cash manager, our results help her estimate the cost
savings that she might expect. Moreover, even if the cash manager does not
count on any forecaster, she can estimate the cost savings that she currently
misses. Overall, we learned that different risk levels yield different estimation
results so that:

• When assuming low risk, cost savings are limited and further efforts in
enhancing predictive accuracy are expected to be useless, in terms of
both time and money, when a particular point in predictive accuracy is
reached; and

• The higher the risk a cash manager assumes, the higher the expected re-
ward when improving predictive accuracy.

The analysis of the relationship between predictive accuracy and cost savings
leads to confirm the importance of better forecasting models when predictions
are used as the main input to cash management models. Some additional
intuition can be derived in the sense that this behavior may be caused by a
number of reasons: (i) whenever it is possible to reduce uncertainty about
the future, better decisions can be made; (ii) improving predictive accuracy
is closely linked to discover patterns and an appropriate response to these
patterns is necessarily useful; (iii) chances are that cash management models
using forecasts as the main input do not work well with low quality forecasts.
All of them highlight again the utility of forecasts in cash management.
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Besides the above-mentioned benefits, it is important to note that there are
additional benefits that companies can derive from improving forecasting ac-
curacy such as short-term investment improvement and credit lines savings.
Moreover, since our analysis can be extended to a multiple currency frame-
work, larger multinational companies can also benefit the results presented
here.

As an answer to the first research question addressed in this thesis, this chapter
confirms the savings hypothesis for the first time in the cash management
literature.

Question 1. Can cash flow predictive accuracy achieve cost
savings in the cash management problem?

Contribution 1. We empirically confirm the savings hypoth-
esis showing that predictive accuracy is strongly correlated with
cost savings.

This chapter has demonstrated the utility of forecasts in the cash management
problem. In the next chapter, we go one step further by deeply exploring the
empirical properties of cash flows and its implications for forecasting.
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Chapter 4

Empirical analysis
of daily cash flow

Usual assumptions on the statistical properties of daily cash flow include nor-
mality, absence of correlation and stationarity. In this chapter, we provide a
comprehensive study based on a real-world cash flow data set from small and
medium companies, which is the most common type of companies in Europe.
We also propose a new cross-validated test for time-series non-linearity show-
ing that: (i) the usual assumption of normality, absence of correlation and
stationarity hardly appear; (ii) non-linearity is often relevant for forecasting;
and (iii) typical data transformations have little impact on linearity and nor-
mality. Our results provide a forecasting strategy for cash flow management
which performs better than classical methods. This evidence may lead to con-
sider a more data-driven approach such as time-series forecasting in an attempt
to provide cash managers with expert systems in cash management.

4.1 Motivation

In this chapter, we study the main statitstical properties of real-world cash flow
data. Zopounidis and Doumpos (2013) highlight the three different levels of
analysis that facilitate the decision-making process of operational approaches
for financial problems: (i) the focus on building models that describe the char-
acteristics of financial problems; (ii) the development on empirical studies that
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seek to test the theoretical models and identify new unobserved explanatory
factors; and (iii) the construction of possible solutions and the selection of the
most appropriate ways of action. Here, we mainly focus on the second of the
previous levels although we also provide possible solutions derived from our
findings.

Since Baumol (1952), a number of cash management models have been pro-
posed to control cash balances. These models are based either on the specific
statistical properties of cash balances or on cash flow forecasts. A comprehen-
sive review of models, from the first proposals to the most recent contributions,
can be found in Gregory (1976) and Srinivasan and Kim (1986), and Costa
Moraes, Nagano, and Sobreiro (2015). Most of them are based on assuming a
given probability distribution for cash flows such as: (i) a random walk in the
form of independent Bernouilli trials as in Miller and Orr (1966); (ii) a Wiener
process as in Constantinides and Richard (1978) and Premachandra (2004),
and Baccarin (2009); (iii) a double exponential distribution as in Penttinen
(1991). From these and other works, we observe that common assumptions on
the statistical properties of cash flow time-series include:

• Normality: cash flows follow a Gaussian distribution with observations
symmetrically centered around the mean, and with finite variance.

• Absence of correlation: the occurrence of past cash flows does not affect
the probability of occurrence of the next ones.

• Stationarity: the probability distribution of cash flows does not change
over time and, consequently, its statistical properties such as the mean
and variance remain stable.

• Linearity: cash flows are proportional either to another (external) ex-
planatory variable or to a combination of (external) explanatory vari-
ables.

Surprisingly, little and/or contradictory empirical evidence on these assump-
tions has been provided besides individual cases through time. Early on, neg-
ative normality tests were reported in Homonoff and Mullins (1975) for the
times-series samples of a manufacturing company. Contrastingly, later on,
Emery (1981) reported normally distributed cash flow, after data transforma-
tion, for two out of three companies, and a small serial dependence for all
of them. Pindado and Vico (1996) provided negative normality and indepen-
dence results on 36 companies, but considering daily cash flow for only a single
month. Previous works also reported day-of-week and day-of-month effects on
cash flows, in line with the works of Stone and Wood (1977), Stone and Miller
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(1981), and Miller and Stone (1985), and Stone and Miller (1987). Recently,
Gormley and Meade (2007) described the time-series from a multinational
company with a non-normal distribution and serial dependence.

We consider that the evidence derived from these works is inconclusive due
to: (i) the disagreement between the conclusions of some of the works; (ii) the
limited number of companies analyzed; and (iii) the short time range of the
observations. Moreover, none of the previous works considered the presence
of non-linear patterns for forecasting purposes. In what follows, we provide
an analysis of the statistical properties of 54 real cash flow data sets from
small and medium companies in Spain as a representative sample of the most
common type of companies in Europe. Indeed, small and medium companies
contribute to 99.8% of all enterprises, 57.4% of value added, and 66.8% of
employment across the EU28 (Muller et al., 2015). To the best of our knowl-
edge, this is the most comprehensive empirical study on daily cash flow so
far. We base this statement on the range of statistical properties considered,
and on both the number and length of the data sets, which amount to 58005
observations in total, with a minimum, average and maximum time range of
170, 737, 1508 working days, respectively. A further contribution of the present
work is to make all the aforementioned data publicly available online1. Finally,
from a forecasting perspective, we also aim to identify the family of forecasters
that best accommodate to our cash flow time-series data sets. To this end,
we propose a new and simple cross-validated test for non-linearity that pro-
vides further knowledge to cash managers in their search for better forecasting
models.

Our results show the unlikely occurrence of normality, absence of correla-
tion and stationarity. These results are consistent with the cited reports of
Homonoff and Mullins (1975), based on only one time-series, and Pindado and
Vico (1996), based on a very short time range, raising doubts about the claim
of independence. However, we also report that normality could not be achieved
through removing outliers, contrary to what was reported by Emery (1981),
based on only three time-series. Thus, we consider that our results provide
stronger evidence against normality, uncorrelatedness and stationarity than
previous works. Note that we do not claim that these results can be extrapo-
lated to all kind of companies. On the contrary, we provide further evidence
against standard assumptions in cash management. This evidence may lead to
consider a more data-driven approach such as time-series forecasting in order
to provide cash managers with expert systems in cash management.

1http://www.iiia.csic.es/~jar/54datasets3.csv
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In an attempt to achieve Gaussian and stationary time-seres, practitioners typ-
ically use the Box-Cox transformation (Box and Cox, 1964), and time-series
differencing (Makridakis, Wheelwright, and Hyndman, 2008). Furthermore,
some kind of outlier treatment is also a recommended practice. Then, we also
study the impact of outlier treatment by replacing them with linear interpo-
lations between two consecutive observations. However, in our study, we find
little benefit when these methods are applied to our data sets. As a result,
we point out the underlying question about data transformation in relation
to the properties of a time-series. Is it always possible to achieve a Gaussian
and linear time-series through data transformations? We here rely both on
common statistical tests and on our novel non-linearity test to answer this
question and we find that: (i) outlier treatment and Box-Cox transformation
are not always enough to achieve normality; (ii) outlier treatment produces
mixed results in terms of noise reduction and information loss; (iii) outlier
treatment and Box-Cox transformations do not produce linearity. These re-
sults suggest that non-linear models conform a justifiable alternative for cash
flow time-series forecasting, beyond the current conjectures of the literature.

4.2 Data summary

The data set contains daily cash flows from 54 different companies from the
manufacturing and the service sector in Spain with annual revenue up to e10
million each. No company from the primary sectors is included in the sample.
We select only small and medium companies since it is the most common size
of companies in both Spain and Europe (Muller et al., 2015). This data set
covers a date range of about 8 years and is available online. An instance in
the data set contains the following fields or columns:

• Date: standardized YYYY-MM-DD dates from 2009-01-01 to 2016-28-08.

• Company: company identifier from 1 to 54.

• NetCF: daily net cash flow in thousands of e.

• DayMonth: categorical variable with the day of the month from 1 to 31.

• DayWeek: categorical variable with the day of the week from 1 (Monday)
to 7 (Sunday).

Table 4.1 shows the statistical summary of daily net cash flow on non-holidays,
grouped by company. Small and medium companies are likely to experiment
daily null cash flows, meaning that no monetary movement is observed at a
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particular working day even under regular activity. As a result, the occurrence
of null cash flows is an important characteristic of small and medium companies
due to the size of companies. Indeed, almost 30% of the companies in our data
set present more than 25% of null cash flow observations. This fact implies a
first and important characteristic for forecasting: a null cash flow prediction
will be right at least 25% of the times for this group of data sets. Therefore,
two good baseline forecasting models for comparative purposes would be an
always-predict-null or an always-predict-mean forecaster.

In addition, the average net cash flow shows that a high percentage of compa-
nies present either positive or negative drift with the exception of companies
5 and 28. High positive kurtosis indicates a peaked data distribution in com-
parison to the normal distribution that has zero kurtosis. The skewness is a
measure of the symmetry of the data distribution. Negative skewness indicates
a bias to the left, and positive skewness indicates a bias to the right.

4.2.1 Normality

Next, we study if our cash flows follow a Gaussian distribution. The observed
kurtosis and skewness can be used as a first normality test of the data dis-
tribution for each company. Table 4.1 shows that no company presents zero
kurtosis and skewness. Only company 40, with kurtosis 0.58 and skewness
1.02, could be considered close to normality. Two additional tests can be used
to either verify or reject the hypothesis of normality: the Shapiro-Wilk test for
normality (Royston, 1982) and the Lilliefors (Kolmogorov-Smirnov) test for
normality (Lilliefors, 1967). The results from these two tests allow us to reject
the hypothesis of normally distributed cash flows for all the companies in our
data set (no exception).

As pointed out elsewhere (Emery, 1981; Pindado and Vico, 1996), a possible
explanation for non-normality could be the presence of abnormally high values
or heavy tails. Thus, we repeated the Shapiro-Wilk test and the Lilliefors
(Kolmogorov-Simirnov) test for normality, but using a trimmed version of the
net cash flow time-series by deleting observations greater or lower than three
times the sample standard deviation. No difference in the results of the tests
is observed, confirming the non-normality hypothesis beyond the conjectures
of Emery (1981) and Pindado and Vico (1996).

Non-normal residuals may be problematic in the estimation process when us-
ing linear models. Data transformations such as the Box and Cox (1964)
transformation to normality represent a possible solution. Forecasts are then
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Chapter 4. Empirical analysis of daily cash flow

Id Length Null % Mean Std Kurtosis Skewness Min Max
1 856 35,7 0,01 3,38 594,81 22,37 -9,07 90,27
2 684 29,8 0,26 5,80 58,98 3,69 -56,51 62,66
3 856 8,5 0,36 35,35 163,62 6,28 -303,20 671,04
4 1201 34,9 -0,12 14,32 78,14 -6,30 -223,38 72,76
5 849 19,4 0,00 1,67 56,10 -0,48 -18,26 16,42
6 799 20,7 0,01 6,63 33,21 -2,42 -68,97 56,27
7 772 38,5 0,07 5,36 86,75 6,74 -24,41 82,91
8 695 21,7 0,05 3,15 14,27 -2,57 -24,21 11,31
9 852 18,8 0,73 56,54 18,92 -0,78 -411,41 473,36
10 744 13,2 0,12 6,95 70,63 0,60 -81,13 78,72
11 639 62,6 -0,05 8,56 391,86 -17,65 -191,53 30,74
12 503 2,6 0,48 35,30 449,38 20,70 -47,27 771,38
13 697 24,7 0,52 24,24 18,81 2,06 -99,39 227,45
14 604 4,6 0,10 13,23 8,51 1,05 -63,23 92,71
15 605 4,1 0,68 11,67 4,43 0,33 -54,75 55,61
16 596 6,4 0,01 1,46 107,82 6,68 -8,48 22,61
17 1102 25,1 0,58 13,31 215,97 11,96 -118,01 250,13
18 552 3,1 0,16 2,16 70,23 5,10 -16,14 26,36
19 503 2,4 -0,31 2,58 6,43 0,50 -15,06 15,28
20 848 27,8 0,02 1,07 96,19 3,86 -12,07 16,04
21 829 18,7 -0,06 5,99 33,36 -1,62 -70,00 53,17
22 494 1,6 -0,46 27,28 22,64 -1,96 -244,29 138,87
23 604 9,1 1,63 20,85 79,99 5,41 -124,19 269,27
24 1097 8,4 0,96 20,36 95,45 6,48 -73,33 317,85
25 587 10,9 0,49 13,94 119,60 6,93 -116,01 201,13
26 751 11,6 -0,02 1,77 15,73 0,15 -10,73 15,56
27 332 8,1 0,29 1,64 10,60 2,14 -4,36 11,84
28 855 5,1 0,00 4,64 13,83 1,77 -18,10 39,01
29 609 13,6 0,04 6,07 108,66 -6,35 -90,04 55,89
30 554 8,1 0,03 1,47 68,26 5,47 -4,81 19,82
31 372 29,6 0,37 8,05 31,46 -2,41 -80,44 34,95
32 1103 24,8 0,28 4,03 11,07 0,54 -25,76 24,50
33 854 31,0 -0,19 6,81 115,63 -1,74 -94,33 95,59
34 1508 11,5 -0,06 10,13 19,89 -2,32 -96,82 49,65
35 501 7,4 0,20 5,40 11,41 -0,58 -31,42 29,19
36 359 11,4 0,42 1,85 12,24 2,44 -7,87 11,84
37 361 3,0 -0,69 17,82 139,06 -1,38 -228,88 218,42
38 170 9,4 -1,20 7,10 43,34 -5,73 -61,93 19,66
39 1104 29,0 0,02 0,95 7,95 -0,07 -5,67 6,57
40 198 0,0 0,78 12,38 0,58 1,02 -25,63 36,91
41 341 17,6 -0,25 8,34 15,80 1,22 -44,29 64,34
42 566 11,0 0,01 1,82 308,62 -15,80 -37,02 7,48
43 750 3,2 0,34 13,10 7,66 -0,04 -65,84 73,40
44 287 4,2 0,52 11,46 81,19 -0,05 -118,74 120,34
45 1465 49,8 0,04 9,12 43,51 -2,89 -107,20 75,47
46 565 44,8 0,54 5,58 75,41 2,91 -51,16 73,83
47 503 4,4 1,98 46,81 46,03 1,37 -338,39 478,26
48 605 13,1 0,21 22,71 34,31 -1,68 -207,04 203,09
49 993 50,5 -0,08 1,36 27,18 -2,18 -10,78 12,73
50 605 45,0 -0,01 27,37 43,79 -2,01 -262,52 221,96
51 1225 0,2 15,09 96,96 2,77 0,12 -419,88 481,66
52 1225 0,4 8,94 49,39 36,23 2,81 -325,46 700,66
53 1223 39,7 0,47 9,13 203,12 -10,25 -196,88 38,48
54 1225 52,3 0,46 77,91 151,93 4,28 -1021,36 1532,10

Table 4.1: Data sets statistical summary. Mean, standard deviation, minimum, maximum
in thousands of e.
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4.2 Data summary

calculated on the transformed data, but we must reverse the transformation to
obtain forecasts on the original data, resulting in two additional steps. How-
ever, these transformations are not always the solution to the non-normality
problem. Using both the original observations and the trimmed version of our
data sets, we proceeded to transform the data using a Box-Cox transformation
of the type:

y(λ) =

 (y + λ2)
λ1 − 1

λ1

if λ1 6= 0,

log(y + λ2) if λ1 = 0,
(4.1)

where y is the original time-series, and λ1 and λ2 are parameters. In these
experiments, we first set λ2 to minus two times the minimum value of the time-
series to avoid problems with negative and zero observations. Box and Cox
(1964) provided the profile likelihood function for λ1 and suggested to use this
function as a way to tune this parameter. Then, we follow the recommenda-
tions in Venables and Ripley (2013) to compute the profile likelihood function
for λ1, and we later select the value that maximizes the log-likelihood function
when applying a linear regression model of the time-series based on day-of-
month and day-of-week dummy variables. Then, we repeated the Lilliefors
(Kolmogorov-Smirnov) test for normality obtaining again negative results for
normality, both for the original and for the trimmed version of our data sets.
As a result, we must conclude that, even after Box-Cox transformation, the
normality hypothesis does not hold.

4.2.2 Correlation and seasonality

In what follows, we test the correlation of cash flows and we also explore if
seasonality is present. Autoregressive Integrated Moving Average (ARIMA)
models by Box and Jenkins (1976), have been extensively used for time-series
analysis and forecasting. When dealing with time-series, the autocorrelation
coefficient, rk, describes the relationship between observations that are lagged
k time periods (Makridakis, Wheelwright, and Hyndman, 2008). We say that
a time-series is independent when the rk values for different lags are close to
zero. An example of an independent time-series is the so-called white-noise
model where each observation is made by adding a random component to a
certain level.

An intuitive plot to assess correlation is the Poincaré map (Kantz and Schreiber,
2004), which is a scatter plot of the original time-series and a k-periods lagged
time-series as in Figure 4.1, which shows a lag of 1 day for time-series 1 and 2
from Table 4.1. As a reference, we also include the Poincaré map for a Gaus-
sian noise and for a sinusoidal time-series. A cloud of points suggests absence
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Chapter 4. Empirical analysis of daily cash flow

of correlation, as for time-series 1 and Gaussian noise, and the presence of
any form suggests a more complex relationship, as for time-series 2 and the
sinusoidal.
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Figure 4.1: Poincaré map with lag 1 for time-series 1 and 2.

A more general approach is to consider a set of the first rk values as a whole as
in the Ljung and Box (1978) test, which we applied to our data and produced
mixed results. More precisely, we found that the hypothesis of independence
could not be rejected in 24 out of 54 companies as summarized in Table 4.2.
These results imply that some kind of serial correlation is likely to be present in
the case of companies presenting a certain degree of autocorrelation in the sam-
ple. A plausible type of serial correlation is seasonality, that is, the existence
of a pattern that repeats itself over fixed time intervals in the data (Makri-
dakis, Wheelwright, and Hyndman, 2008). It can be identified by significant
autocorrelation coefficients. Seasonal trend decomposition methods (Cleveland
et al., 1990), seasonal ARIMA models (Box and Jenkins, 1976; Franses and
Van Dijk, 2005) or linear (and non-linear) regression models based on seasonal
variables are available options to deal with seasonality. In cash flow forecast-
ing, the distribution approach by Miller and Stone (1985) also deserves to be
mentioned.
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4.2 Data summary

As mentioned in the introduction, previous works by Emery (1981), Miller
and Stone (1985), and Stone and Miller (1987); and Pindado and Vico (1996),
reported the influence of day-of-month and day-of-week effects on cash flow
patterns. Here, we test the presence of seasonality by fitting a regression
model on daily cash flows using day-of-month and day-of-week dummy vari-
ables. Then, we use the F-test to test the significance of the overall regression.
Table 4.2 reports, on the one hand, the Ljung-Box independence test and, on
the other hand, the F-statistic, the p-value and the coefficient of determina-
tion R2, derived from the regression. Interestingly, not all the data sets whose
independence (absence of correlation) tests were rejected implied a significant
regression based on dummy variables. Non-linear patterns, non-periodical tem-
poral correlations, and the effect of outliers become possible explanations as
we will see below.

4.2.3 Stationarity

In this section, we analyze if cash flows from our data set can be labeled as
stationary. Basically, stationarity means that there is no drift in the time-
series behavior over time. We can visually assess stationarity by inspecting a
time-series plot. Virtually, every process we find in nature is non-stationary,
since its parameters depend on time (Kantz and Schreiber, 2004). However,
a minimum requirement is that basic statistical properties of a distribution,
such as mean and variance, remain constant over time, when measured through
appropriately long time windows.

Emery (1981) studied stationarity by applying the Kolmogorov-Smirnov test
for normality of cash flow by months. For comparative purposes, we applied
the same procedure and, if any of the monthly tests rejected the hypothesis of
normality, the whole time-series was considered non-stationary. Following this
procedure, only company 43 could be considered stationary.

Following the recommendations in Kantz and Schreiber (2004), we also perform
a stationarity test based on the fluctuations of a sample mean and variance.
More precisely, we compute the sample mean and variance of each time-series
by months and obtain the standard errors for both. If the observed fluctuations
of the running mean and variance are within these errors, then we consider the
time-series stationary. The results from this test shows that none of the time-
series is stationary.

One way of removing non-stationarity is time-series differencing, which can be
defined as the change between two consecutive observations. After differencing,
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Id Ljung Box test F-statistic p-value R
2

1 Non-rejected 1,99 <0,05 0,08
2 Rejected 1,05 0,39 0,05
3 Non-rejected 1,87 <0,05 0,07
4 Rejected 1,51 <0,05 0,04
5 Rejected 1,85 <0,05 0,07
6 Non-rejected 1,12 0,29 0,05
7 Rejected 5,47 <0,05 0,20
8 Rejected 0,79 0,80 0,04
9 Rejected 5,30 <0,05 0,18
10 Rejected 2,04 <0,05 0,09
11 Non-rejected 0,97 0,51 0,05
12 Non-rejected 0,98 0,51 0,07
13 Rejected 5,21 <0,05 0,21
14 Rejected 7,13 <0,05 0,30
15 Rejected 1,92 <0,05 0,10
16 Non-rejected 4,31 <0,05 0,21
17 Non-rejected 4,91 <0,05 0,14
18 Rejected 2,99 <0,05 0,16
19 Rejected 2,58 <0,05 0,16
20 Non-rejected 2,71 <0,05 0,10
21 Non-rejected 1,37 0,08 0,06
22 Non-rejected 1,49 <0,05 0,10
23 Rejected 5,60 <0,05 0,25
24 Non-rejected 15,41 <0,05 0,33
25 Non-rejected 4,23 <0,05 0,21
26 Rejected 1,22 0,18 0,05
27 Non-rejected 1,24 0,18 0,12
28 Rejected 5,64 <0,05 0,19
29 Non-rejected 1,37 0,08 0,08
30 Rejected 6,18 <0,05 0,29
31 Non-rejected 1,25 0,16 0,11
32 Rejected 4,81 <0,05 0,13
33 Rejected 1,57 <0,05 0,06
34 Rejected 11,61 <0,05 0,21
35 Rejected 0,99 0,49 0,07
36 Non-rejected 1,82 <0,05 0,16
37 Rejected 1,58 <0,05 0,14
38 Non-rejected 1,06 0,39 0,21
39 Rejected 6,11 <0,05 0,16
40 Rejected 0,86 0,68 0,15
41 Non-rejected 1,72 <0,05 0,16
42 Non-rejected 3,90 <0,05 0,20
43 Rejected 2,96 <0,05 0,12
44 Non-rejected 1,89 <0,05 0,20
45 Rejected 1,26 0,15 0,03
46 Non-rejected 1,32 0,11 0,08
47 Non-rejected 0,90 0,63 0,06
48 Non-rejected 1,71 <0,05 0,09
49 Rejected 26,15 <0,05 0,48
50 Rejected 1,24 0,17 0,07
51 Rejected 16,66 <0,05 0,32
52 Rejected 5,01 <0,05 0,13
53 Non-rejected 1,59 <0,05 0,04
54 Rejected 0,88 0,67 0,02

Table 4.2: Correlation and seasonality test results.

we repeated our simple test obtaining slightly different results but none of them
can be considered stationary. Thus, as a result, we conclude that our cash flow
time-series are non-stationary, even after differencing.
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4.2.4 Discussion

Our results show that the widely extended hypothesis of cash flow normality
is not present in our data sets. The presence of high abnormal values does
not explain this behavior since non-normality persisted after removing these
abnormal values. Non-linearity could be a possible explanation as we will see
below. We also reported mixed results on autocorrelation and the influence
of day-of-month and day-of-week effects on cash flow along the lines of the
literature. We additionally report that common solutions to non-normality
and non-stationarity such as data transformation and differencing produced
little benefit when applied to our time-series. Since seasonality and serial
correlation are also present in our data set, we further explore the usefulness
of alternative forecasting models. More precisely, we next study linearity and
data transformation as an additional part of our empirical analysis for cash
flow forecasting.

4.3 A cross-validated test for non-linearity

Most forecasting models are linear for computational convenience. However,
non-linear patterns are likely to be present in finance and business time-series.
A time-series linear model is defined as a variable yt that depends on an ex-
planatory vector xt for any time t as follows:

yt = βTxt + et (4.2)

where βT is a transposed vector of coefficients, and et is the error or the residual
component. An alternative and more general model can also be considered:

yt = g(xt) + εt (4.3)

where g(xt) is any function that aims to describe the underlying time-series. By
considering non-linear relationships between the set of predictors and the cash
flow dependent variable, more complex patterns such as interactions between
the day-of-week and the day-of-month may be captured.

Different tests of linearity can be found in Ramsey (1969), Keenan (1985),
Granger, Terasvirta, et al. (1993), and Lee, White, and Granger (1993), and
Castle and Hendry (2010). Basically, all of them follow a common approach:
first, they choose a regression equation g(xt) in (4.3) including linear and
non-linear terms and, second, they test for the significance of the non-linear
terms. However, these approaches do not accommodate well for forecasting
purposes due to the following reasons: (i) the assumption of a specific form
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g(xt) for the regression equation such as quadratic, cubic or exponential forms;
(ii) cross-validation is neglected.

If we relax the assumption of linearity, different non-linear models such as
random forests (Breiman, 2001), neural networks (Hornik, Stinchcombe, and
White, 1989; Zhang, Patuwo, and Hu, 1998), or radial basis functions (Broom-
head and Lowe, 1988), could also be considered. However, the consideration
of non-linear functions may lead to overfitting to the original time-series. To
prevent this problem, we propose the use of time-series cross-validation. Cross-
validation is a method to assess the predictive performance of a forecasting
model that circumvents the problem of overfitting the data by testing the ac-
curacy of the model on subset of data not used in the estimation (Hyndman and
Athanasopoulos, 2013). As a result, we here propose a simple cross-validated
test for non-linearity as described in Figure 4.2 based on the following steps:

1. Estimate two alternative forecasting models, one linear and another one
non-linear.

2. Cross-validate the predictive accuracy of both models with respect to a
baseline.

3. Label as trivial if both models are significantly worse than the baseline.

4. Label as non-linear if the error of the non-linear model is significantly
lower than that of the linear model. Otherwise, label as linear.

Since we do not assume any distribution for the forecasting results, we use
the two-sided Wilcoxon rank-based for statistically significant differences in
performance between models. More precisely, we test the null hypothesis that
the distribution of the difference is symmetric about zero with a 95% confi-
dence interval (Wilcoxon, Katti, and Wilcox, 1970). Approximate p-values are
computed based on the asymptotic distribution of the two-sided Wilcoxon test
statistic and used to label data sets.

A common practice to assess the usefulness of forecasts derived from any model
is to compare its accuracy to that of a baseline forecasting model. The use
of a baseline model allows us to label our data sets as trivial if neither the
linear model nor the non-linear model are able to improve the accuracy of the
baseline. We here report accuracy results with respect to a mean forecaster,
meaning that forecasts are always the average of all past observations. We
also tried with an additional baseline forecaster using the last observed value

122



4.3 A cross-validated test for non-linearity

time-series

Cross-validation
Algorithm 1

Significantly bet-
ter than baseline?

Non-linear errors
significantly lower?

Linear model Non-linear model

Label as
non-linearLabel as linear

Label as trivial

one error sample for
each model

Yes

YesNo

No

Figure 4.2: Simplified flow chart for our cross-validated test for non-linearity.

as a forecast (persistence model) with much worse results in comparison to the
mean forecaster.

As detailed in Algorithm 3, we consider the minimum length k to estimate
a model as the 80% of the oldest instances forming the training set. The
remaining 20% of the instances form the test set for cross-validation. Initially,
both the linear and the non-linear model are estimated using the first 80%
of the instances. Then, forecasts for a prediction horizon up to 20 days are
computed using the estimated models and squared errors are recorded. Later,
we repeat the process by considering an increasing window with an additional
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instance in the training set to estimate the models. Again, forecasting errors
are recorded for each remaining observation in the test set resulting into two
paired error samples, one for the linear model and one for non-linear model.

Algorithm 3: Algorithm for a simple cross-validation test for non-linearity
1 Input: Cash flow data set of T instances, minimum number k of instances to
estimate a model, baseline m0, linear model m1, non-linear model m2,
prediction horizon h, level of significance α;

2 Output: Average prediction error for different prediction horizons, statistic
for the difference in means, confidence interval;

3 for i = 1, 2, . . . , T − k − h+ 1 do
4 Select the instances from time k + i to k + h+ i− 1, for the test set;
5 Estimate m0 with instances at times 1, 2, . . . , k + i− 1;
6 Estimate m1 with instances at times 1, 2, . . . , k + i− 1;
7 Estimate m2 with instances at times 1, 2, . . . , k + i− 1;
8 Compute test errors ε0, ε1, ε2 from time k + i to k + h+ i− 1;
9 end

10 Compute average h-step errors ε0(h), ε1(h), ε2(h);
11 Test for α significant differences between ε0(h), ε1(h), ε2(h);
12 if ε0(h) < ε1(h) and ε0(h) < ε2(h) then
13 Label as trivial;
14 else if ε2(h) < ε1(h) then
15 Label as non-linear;
16 else
17 Label as linear;
18 end
19 end
20 end

A critical point when using our cross-validated test for non-linearity is the
selection of both the linear and the non-linear forecast model. In essence, our
test is a comparative tool based on forecasting accuracy as a proxy for non-
linearity. Given a set of explanatory variables, a linear label result from our test
implies that the non-linear model is not able to capture non-linearity. However,
chances are that alternative non-linear models might perform differently. In
this sense, if the time-series is not a white-noise process, then the search for
a more informative set of features is meant to play a key role. As a result,
multiple runs of our test are necessary to discard/assess non-linearity by using
alternative linear and non-linear models.

For illustrative purposes, we here restrict ourselves to a linear regression model
and a non-linear random forest model, both using day-of-month and day-of-
week variables as predictors. In the case of the linear regression model, each
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instance contains 34 dummy predictor variables, 30 for day-of-month and 4
for day-of week, and a cash flow observation. In the case of random forests,
each instance contains 2 categorical variables, one for day-of-month and one for
day-of-week. Random forests are ensembles of slightly different decision trees
(Ho, 1998; Breiman, 2001). An ensemble methodology is able to construct a
predictive model by integrating multiple trees in what is called a decision forest
(Dietterich, 2000). Decision trees split the input space in subsets based on the
value of features such as the day-of-month and day-of-month. In the example
in Figure 4.3, for days comprised between the 25th (node S1) and the 29th of
each month (node S2) occurring on Friday (node S3), the predicted cash flow
is -1.

S1

S2

DOM ≥ 25

2

DOM < 25

2

DOM ≥ 30

S3

DOM < 30

-1

DOW ≥ 5

-2

DOW < 5

Figure 4.3: A basic decision tree. DOM = Day-of-month; DOW = Day-of-week

Recent examples of time-series forecasting using random forests can be found
in Zagorecki (2015) and Salas-Molina et al. (2017). Summarizing, random
forests are used to forecast variables based on an ensemble of different trees.
Unlike linear regression, random forests allow to capture (if any) more complex
relationships between predictor variables allowing us to identify possible non-
linearities in the underlying cash flow process represented by our sample data
sets.

Our results, summarized in Table 4.3, show that only about half of the data
sets can be labeled as trivial because neither the linear model nor the non-
linear model were able to significantly beat the trivial forecaster. From those
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time-series in which the absence of correlation could no be rejected (see Table
4.2), 20 out of 24 were labeled as trivial, confirming a stochastic behavior. On
the other hand, only 6 of them were labeled as non-linear according to our
cross-validated definition. As mentioned above, these results depend on the
selected forecasting models. Instead of claiming that random forests are able
to better capture non-linear patterns than alternative models, we encourage
practitioners to consider additional combinations of both linear and non-linear
models.

Id Reg NSE RF NSE Statistic p-value Triviality Linearity
1 0,99 1,00 26 <0,05 Non-Trivial Linear
3 0,99 1,01 8 <0,05 Non-Trivial Linear
4 1,00 1,01 0 <0,05 Non-Trivial Linear
7 0,81 0,83 0 <0,05 Non-Trivial Linear
9 0,90 0,93 3 <0,05 Non-Trivial Linear
13 0,86 0,88 13 <0,05 Non-Trivial Linear
14 0,76 0,77 45 <0,05 Non-Trivial Linear
16 0,85 0,86 64 0,13 Non-Trivial Linear
18 0,86 0,88 63 0,12 Non-Trivial Linear
19 0,96 0,94 182 <0,05 Non-Trivial Non-linear
20 0,99 0,98 209 <0,05 Non-Trivial Non-linear
23 0,78 0,79 78 0,33 Non-Trivial Linear
24 0,73 0,79 0 <0,05 Non-Trivial Linear
25 0,77 0,81 21 <0,05 Non-Trivial Linear
28 0,84 0,90 0 <0,05 Non-Trivial Linear
29 0,99 0,99 30 <0,05 Non-Trivial Linear
30 0,73 0,80 5 <0,05 Non-Trivial Linear
33 0,94 0,93 166 <0,05 Non-Trivial Non-linear
34 0,97 0,95 172 <0,05 Non-Trivial Non-linear
39 0,96 0,96 36 <0,05 Non-Trivial Linear
42 0,88 0,87 149 0,11 Non-Trivial Linear
43 0,99 0,96 210 <0,05 Non-Trivial Non-linear
48 1,01 0,99 191 <0,05 Non-Trivial Non-linear
49 0,63 0,65 7 <0,05 Non-Trivial Linear
51 0,77 0,80 0 <0,05 Non-Trivial Linear
52 0,94 0,94 116 0,70 Non-Trivial Linear

Table 4.3: Results of the test for non-linearity. Reg NSE = Regression normalized squared
error; RF NSE = Random Forest normalized squared error.

One may assume either linearity or non-linearity from the results of our non-
linearity test, but it is important to analyze the robustness of these results to
both the presence of outliers and the impact of other data transformations.

126



4.4 The impact of data transformations

4.4 The impact of data transformations

In this section, we aim to analyze the impact of outlier treatments on noise
reduction, as intended, and on information loss, as an undesirable effect. We
also study the influence of Box-Cox data transformations on the results of our
cross-validated non-linearity test. Detection and treatment of outliers is an
ongoing issue in data mining (Rousseeuw and Leroy, 1987; Hodge and Austin,
2004). An outlier is an observation that appears to significantly deviate from
other members of the sample in which it occurs (Grubbs, 1969). Outliers arise
due to changes in systems, measurement errors or simply due to deviations
in data. It is also important to note that an outlier may also be the most
interesting part of the data.

On the one hand, from the set of cash flow time-series labeled as trivial, some
of them may be labeled as non-trivial after removing outliers as a way of noise
reduction. On the other hand, from those data sets labeled as non-trivial,
some of them may be labeled as trivial due to the information loss produced
by the treatment. We here measure the effect of removing outliers on the
prediction error using time-series cross-validation for different thresholds of
outlier replacement. For each data set, we progressively identify as outliers
cash flow observations greater than 5, 4, and 3 times the standard deviation in a
training set with the 80% oldest observations. We replace outliers with a linear
interpolation and proceed as detailed in Algorithm 3 to cross-validate triviality
and linearity. The results from this analysis are summarized in Table 4.4.

By following this procedure, we identify data sets 5, 10, 17, 32, 44 and 54 (6 out
of 28), initially labeled as trivial that, after outlier treatment, can be labeled
as non-trivial due to noise reduction. Similarly, data sets 4 and 48 that were
initially labeled as non-trivial can be labeled as trivial after outlier treatment
due to information loss. If we measure noise reduction by the error reduction
and information loss by the error increase, then we can assess the impact of
outlier treatment. Following this approach, we obtained mixed results for non-
trivial data sets after outlier treatment: an average noise reduction of 22%, and
an average information loss of 14%. It is important to recall that unexpected
observations are often the most interesting part of the data to predict, e.g.,
when the goal is to forecast unusual but genuine cash flows.

Non-linearity and outliers are closely linked. Indeed, Castle and Hendry (2012)
hypothesized that non-linear functions can align with outliers, causing func-
tions to be considered relevant spuriously, which can be detrimental for gen-
eralizing and forecasting. If this hypothesis is correct, the relative forecasting
ability of a linear model in comparison to a non-linear model would increase
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After outliers After outliers and Box-Cox
Id Triviality Linearity Noise reduction Linearity Noise reduction
1 Non-Trivial Linear 0,00 Non-linear∗ -0,01
3 Non-Trivial Linear 0,02 Non-linear∗ 0,00
5 Non-Trivial Non-linear 0,40 Non-linear 0,41
7 Non-Trivial Linear -0,10 Linear -0,13
9 Non-Trivial Linear -0,04 Linear -0,04

10 Non-Trivial Non-linear 0,46 Non-linear 0,47
13 Non-Trivial Linear -0,18 Linear -0,21
14 Non-Trivial Linear -0,05 Linear -0,07
16 Non-Trivial Linear -0,18 Linear -0,17
17 Non-Trivial Non-linear∗ 0,71 Non-linear 0,71
18 Non-Trivial Non-linear∗ -0,20 Non-linear -0,20
19 Non-Trivial Non-linear -0,03 Non-linear -0,04
20 Non-Trivial Non-linear -0,02 Non-linear -0,02
23 Non-Trivial Non-linear∗ -0,22 Non-linear -0,22
24 Non-Trivial Linear -0,20 Linear -0,06
25 Non-Trivial Non-linear∗ -0,26 Non-linear -0,25
28 Non-Trivial Linear -0,05 Linear -0,04
29 Non-Trivial Linear 0,07 Non-linear∗ 0,00
30 Non-Trivial Linear -0,06 Linear -0,04
32 Non-Trivial Non-linear 0,18 Non-linear 0,21
33 Non-Trivial Linear∗ -0,12 Linear -0,11
34 Non-Trivial Linear∗ 0,12 Linear 0,09
39 Non-Trivial Non-linear∗ -0,02 Linear∗ -0,01
42 Non-Trivial Linear -0,23 Linear -0,14
43 Non-Trivial Non-linear 0,04 Non-linear 0,03
44 Non-Trivial Non-linear∗ 0,48 Non-linear 0,82
49 Non-Trivial Non-linear∗ -0,56 Non-linear -0,61
51 Non-Trivial Linear -0,03 Linear -0,03
52 Non-Trivial Linear 0,01 Linear 0,03
54 Non-Trivial Linear∗ 0,17 Linear 0,17

Table 4.4: Results of the test for non-linearity after outlier treatment and Box-Cox trans-
formation. Changes in labels are marked with ∗.

as the presence of outliers in a training set is reduced. From the set of time-
series finally labeled as non-trivial, data sets 33, 34 and 54, initially labeled
as non-linear changed their labels to linear. Surprisingly, data sets 17, 18, 23,
25, 39, 44 and 49 (7 out of 30), could be labeled as non-linear after outlier
treatment. Except for data sets 17 and 44, in all cases there was information
loss, i.e., error increase, suggesting that non-linear models can deal better with
information loss.

We also considered a Box-Cox transformation to analyze if this kind of data
transformation may influence the results from our cross-validated non-linearity
test. From the set of non-trivial data sets we compare linearity labels, first,
after outlier treatment, and second, after outlier treatment and Box-Cox trans-
formation as described in equation (4.1). In addition, we compare information
loss computed as the difference between the sum of errors of the linear and
non-linear forecasting models before and after the outlier treatment. A pos-
itive value means noise reduction or error reduction while a negative value
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means information loss or error increase. These results show that our cross-
validated non-linearity test outputs similar results after Box-Cox transforma-
tion since the change in labels were produced in data sets with similar linear
and non-linear model performance.

A summary of the results of this section is shown in Table 4.5. The high num-
ber of trivial data sets may be caused by the general inherent randomness of
cash flows. Outlier treatment produced a small improvement in non-triviality
but also an outstanding increase in non-linearity. Finally, Box-Cox data trans-
formation yielded similar results but with better results for non-linear models.
Thus, we conclude that: (i) common data transformations had little impact
on our time-series in terms of linearity; and (ii) outlier treatment and Box-Cox
transformation were unable to transform non-linear into linear cash flows.

Label Raw data After OT After OT and DT
Trivial 28 24 24
Non-trivial 26 30 30

-Linear 20 17 15
-Non-linear 6 13 15

Table 4.5: Number of time-series data sets and their labels after transformation.
OT=Outlier treatment; DT=Data transformation.

4.5 Summary

Small and medium companies are the most common type of companies in
Europe contributing to a high percentage of all enterprises, value added and
employment. In this chapter, we provide a complete empirical study of the
statistical properties of daily cash flows based on 54 real-world cash flow time-
series from small and medium companies. To the best of our knowledge, this
study is the most comprehensive empirical study on daily cash flow so far in
terms of the range of statistical properties considered, and on both the number
and the length of the data sets that we make available online. We focus on the
implications for forecasting due to its key role in cash management.

Our results show that the extended hypothesis of normal, stationary and uncor-
related cash flows is hardly present in our cash flow data set. We do not claim
that these results can be generalized to all small and medium companies. How-
ever, we conclude that the standard assumptions of normality, stationarity and
uncorrelatedness that have been extensively used in cash management litera-
ture must be verified before the deployment of any cash management model
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based on them. We also highlight that common solutions to non-normality
and non-stationarity such as data transformation and differencing produce lit-
tle benefit when applied to our data sets, with the risk of losing important
information on extreme cash flows. Alternative and more complex data trans-
formations are nevertheless an option to consider in further research to achieve
Gaussian cash flows.

In an attempt to discover the attributes of actual-world cash flows, we also
studied the presence of non-linearity. To this end, we proposed a new simple
test for non-linearity with two main advantages in comparison to alternative
approaches. First, our test does not assume any non-linear function. Second,
it is based on time-series cross-validation to increase robustness and avoid
overfitting. It is important to note that our cross-validated definition of non-
linearity depends on the alternative models considered, one linear and another
one non-linear.

Our cross-validated non-linearity test labeled as either trivial, linear or non-
linear our cash flow data set after outlier treatment resulting in an important
increase the number of data sets labeled as non-linear. After both outlier
treatment and Box-Cox transformation, linearity could not be achieved and
non-linear models showed more robust.

Our results raise questions about two common assumptions in cash flow time-
series since we found that: (i) the usual assumption of normality, absence of
correlation and stationarity is hardly present; and (ii) common data trans-
formations such as outlier treatment and Box-Cox transformation have little
impact on normality and linearity. Contrary to the rather common assumption
in the literature, these results imply that neither it is always possible to achieve
a Gaussian, noise-free and linear time-series through data transformation nor
it is always desirable due to information loss. Thus, linear models should
be considered as an initial step towards more realistic ones which are better
adapted to real cash flow situations. The results from our cross-validated test
for non-linearity suggest that non-linear models represent a justifiable alter-
native for time-series forecasting. Moreover, since our test is both model and
outlier dependent, a promising line of future work would be the integration of
outlier treatment in the test itself in an attempt to assess noise reduction or
information loss.

As a result, we claim that a number of preliminary steps are necessary in
cash flow forecasting before model selection: (i) statistical summary including
normality, correlation and stationarity; (ii) impact of data transformations
such as outlier treatment and Box-Cox transformation; and (iii) non-linearity
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test to determine the type of model which is expected to deliver a better
performance. Finally, this process is not limited to daily cash flow, since it
can also be applied to any other time-series data set when cross-validation is
required.

To end up, recall from Chapter 1 that research questions 2 and 3 deal with the
statistical properties of daily cash flows. The lack of empirical evidence about
these properties motivated this chapter by testing the common assumptions of
normality, absence of correlation, stationarity and linearity of cash flows. As
a result, we next highlight two main contributions of this chapter.

Question 2. Are common statistical assumptions of daily cash
flow supported by recent empirical data?

Contribution 2. We demonstrated that normality, absence
of correlation and stationarity hardly appear in real-world cash
flow data sets. Non-linearity is often relevant and it can be
assessed through a new cross-validated test described in this
thesis.

Furthermore, since data transformation is usually considered as a necessary
step by time-series analysis techniques to achieve normality and linearity, we
also addressed the question of data transformations.

Question 3. Is it always possible to achieve a Gaussian, noise-
free and linear time-series through data transformations?

Contribution 3. We showed that data transformations can-
not always achieve a Gaussian, noise-free and linear cash-flow
time-series suggesting the utility of non-linear forecasting mod-
els.

Chapters 3 and 4 dealt with cash flow forecasting techniques and also with
the statistical properties of cash flows and its implications for forecasting. The
main focus was the utility of forecasts in cash management. In the next part
of this thesis, we use forecasts as a key input to cash management, but we shift
the focus to optimization procedures.
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Chapter 5

A multiobjective approach to
the cash management problem

The main goal of this chapter is to present a multiobjective approach to the
cash management problem. We take the view that cash management decision
support systems may benefit by considering not only cost but also risk. To
this end, we provide the necessary tools to solve the multiobjective cash man-
agement problem. We also provide a framework to assess the utility of cash
management models when considering multiple objectives.

5.1 Motivation

It is easy to understand that any real decision-making problem has to take
into account multiple objectives. This fact is particularly true in the fields of
business and finance in which different, but often conflicting, goals are pursued
by decision-makers. Some examples are return and risk in portfolio selection,
price and amount in sales planning, and profits and pollution in chemical
production. It is a common misconception that most problem solving activities
must align with optimizing a single objective, e.g., bringing maximum profit
or causing the smallest cost (Branke et al., 2008). As a result, different goals
are often translated into economic terms reducing the number of conflicting
goals into a single objective. However, different objectives are often measured
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using different units. We say then that the objectives are non-commensurable
because it is not possible to directly aggregate them.

In addition, the utility obtained from different objectives are very often depen-
dent on the alternatives. Consider the following example of choosing a hotel
described in Branke et al. (2008). If the alternatives are a one-star hotel for
70 euros, or a zero-star hotel for 20 euros, the user might prefer the one-star
hotel. On the other hand, if the choice is between a five-star hotel for 300
euros, and a four-star hotel for 250 euros, the four-star hotel may be sufficient.
That is, stars cannot be simply weighted with money. How much an extra star
is valued depends on the alternatives. As a result, it is more convenient to sep-
arate the decision-making process in two steps: (i) a learning phase, in which
a number of alternatives are presented; and (ii) a selection phase, in which one
alternative is chosen among according to the preferences of the decision-maker.
Summarizing, it is often easier and natural a decision-making process in which
alternative policies are presented before selection, allowing what-if analysis.

From the practitioner’s point of view, several issues arise when dealing with
real cash management problems. First, real cash flow data may not fit a the-
oretical probability distribution. This situation forces cash managers to find
alternative ways of eliciting the best cash management policies, for instance,
simulation or Monte Carlo methods. Second, the focus is typically placed on a
single objective, namely, cost. With the exception of Zopounidis (1999), cash
management and multi-criteria decision-making are not usually linked con-
cepts in the financial literature. However, the analysis of risk of the policies
proposed by a cash management model is necessary if an overdraft is meant to
be avoided. This kind of analysis is widely used in portfolio selection when high
expected returns and low variances are desired objectives (Markowitz, 1952;
Ballestero and Romero, 1998; Ballestero and Pla-Santamaria, 2004; Steuer, Qi,
and Hirschberger, 2007). Furthermore, risk preferences are also an important
issue for decision-makers. In this sense, an example of techniques for approx-
imating the utility optimum when considering risk preferences can be found
in Ballestero (1998). However, the design of cash management models that
analyze both cost and risk and that consider the particular risk preferences of
cash managers remains a rather unexplored problem.

Against this background, our main contribution is a novel multiobjective cash
management model. More precisely, we argue that cost-risk analysis is a suit-
able management tool for obtaining efficient cash policies for the CMP. Our
model is conceived to obtain policies that minimize both cost and risk incorpo-
rating the risk preferences of cash managers. Furthermore, it is able to handle
empirical cash flow probability distributions. In addition to our model, we
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provide metrics and graphical tools to characterize cash policies in terms of
cost and risk.

To illustrate our model, a real cash flow data set is used to select the best
compromise policy in terms of cost and risk by extending the Miller and Orr’s
cash management model (Miller and Orr, 1966). We empirically evaluate our
cash management model on three alternative scenarios with increasing costs
and employing two different risk measures, namely, the standard deviation and
the upper semi-deviation of daily cost. Our empirical results show that our
model is robust to cost variations and that no difference is observed in the
selection of the best compromise policies between the two measures of risk.

In this chapter, we also consider an additional question as posed by Daellenbach
(1974): Are cash management models worthwhile? We aim to answer this
question from a multiobjective perspective, when less is better, by comparing
the loss derived from a given policy to the loss derived from a trivial policy that
takes no control action and hence lets cash balance freely wander around. As a
result, we provide a formal definition of the cash management utility problem
(CMUP) within a multiobjective framework.

5.2 Formalizing the multiobjective cash management
problem

The main objective in managing cash is to keep the amount of available cash as
low as possible while still keeping the company operating efficiently. In addi-
tion, companies may place idle cash in short-term investments (Ross, Wester-
field, and Jordan, 2002). Then, the cash management problem can be viewed
as a trade-off between holding and transaction costs. On the one hand, holding
costs are usually opportunity costs due to idle cash that could be allocated in
alternative investments. Holding too much cash is then inefficient but holding
too little may produce high shortage costs. On the other hand, transaction
costs are associated to the movement of cash from/into a cash account in-
to/from any other short-term asset available, for example, treasury bills and
other marketable securities. Summarizing, if a company tries to keep balances
too low, holding cost will be reduced but undesirable situations of shortage will
force to sell available marketable securities, hence increasing transaction costs.
In contrast, if the balance is too high, low trading costs will be produced due
to unexpected cash flow but the company will carry high holding costs because
no interest is earned on cash. Therefore, there is a target cash balance which
the company must determine.
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Consequently, the CMP can be defined as an optimization problem whose goal
is to find the best sequence of transactions X = 〈x1, x2, . . . , xT 〉 ∈ R, what is
called a policy, that minimizes a cost function C(X,T ) over a time horizon of T
days. The CMP is characterized by its particular cost structure. Any ordering
transaction into a cash account may have a cost, which may include a fixed
part (γ+

0 ) and a variable part (γ+
1 ). On the other hand, a return transaction

from a cash account may also have a cost with a fixed part (γ−0 ) and a variable
part (γ−1 ). Furthermore, at the end of the day, a holding cost v per money unit
is charged if a positive cash balance occurs, or a penalty cost u per money unit
is charged if a negative cash balance occurs. According to this cost structure,
a general daily cost function can be defined as:

c(xt, bt) = Γ(xt) +H(bt) (5.1)

where Γ(xt) is a transfer cost function, xt is the transfer made on day t, H(bt)
is a holding/shortage cost function, and bt is the cash balance at the end of
day t, determined by the following continuity function:

bt = bt−1 + xt + ft (5.2)

being ft the net cash flow at day t. We define the transfer cost function Γ(xt)
as:

Γ(xt) =

 γ−0 − γ−1 · xt if xt < 0,
0 if xt = 0,
γ+
0 + γ+

1 · xt if xt > 0.
(5.3)

Additionally, we express the holding/shortage cost function as:

H(bt) =

{
−u · bt if bt < 0;u > 0,
v · bt if bt > 0; v > 0.

(5.4)

Under the framework of the aforementioned cost functions, the CMP can be
formally defined as a sequential decision-making problem where, given a data
set of past cash flows F = 〈ft−n, . . . , ft−1〉 ∈ R that determines an initial
cash balance bt−1, the goal is to find the policy X∗ = 〈xt, xt+1, . . . , xt+T 〉 that
minimizes the expected daily cost over the time horizon T :

X∗ = argmin
X

E(C(X,T )) (5.5)

where:

E(C(X,T )) =
1

T

T∑
t=1

c(xt, bt) =
1

T

T∑
t=1

[Γ(xt) +H(bt)] (5.6)
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subject to X ∈ S, where each element of X is the decision variable or the
transaction made at day t over a time horizon of T days, and S is a set of
feasible strategies defined by the constraints of the problem. Note that the
net cash flow ft over the time horizon T is unknown, but not its empirical
probability distribution given by F .

In the CMP, not only cost but also risk deserves the attention of cash man-
agers. On the one hand, managers can choose the risk that the business takes
(Myers and Brealey, 2003). From that, risk measures are often used as man-
agement tool (McNeil, Frey, and Embrechts, 2005). On the other hand, risk
management allows to determine the cash buffer that companies need to hold
for precautionary purposes (Ross, Westerfield, and Jordan, 2002). Intuitively,
risk is associated to uncertainty, danger, chance of loss or damage. Quantita-
tively, risk is also linked to the randomness of costs. In the CMP, randomness
is introduced by the particular variability of future cash flows that ultimately
produces random costs.

The main performance measure in cash management is cost and the goal is to
minimize it. But cost is a random variable characterized by its mean and its
standard deviation. Consequently, cash managers are interested in minimizing
both, the average daily cost as measure of cost and the standard deviation of
cost as a measure of risk. The utility of introducing risk in the decision-making
process is better understood through the following example. Consider two cash
policies, X1 and X2, producing the same average cost µ1 = µ2 = 20 money
units but with different standard deviations, say, σ1 = 2 and σ2 = 10. As-
suming normally distributed costs, a rational cash manager must select policy
X1 because of the lower volatility, because of the lower probability that the
cost is above a given cost reference. We say, then, that X2 is a riskier policy
than X1.

Different approaches to measuring risk have been proposed in finance. His-
torically, variance has been the dominating risk measure in finance (McNeil,
Frey, and Embrechts, 2005) due to Mean-Variance portfolio selection model
by Markowitz (1952). Moreover, its simplicity and ease of computation in ex-
perimental environments makes variance (and standard deviation) a good risk
measure. By using an empirical statistic, no assumption on the underlying
probability distribution is required. A common criticism to the use of vari-
ances points out that it makes no distinction between positive and negative
deviations. Although this fact is only a problem when the cost distribution
is asymmetric, it can be solved by using semi-variances or upside/downside
deviations as in Ballestero (2005) and Pla-Santamaria and Bravo (2013).
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In this work, we use the standard deviation (and the upper semi-deviation) to
keep unaltered the units of cost and risk. Most of the applied cash management
models in the literature consider risk incorporated into the opportunity cost
and/or the shortage cost (Penttinen, 1991; Gormley and Meade, 2007; Costa
Moraes and Nagano, 2014). In this work, we consider these traditional mea-
sures of risk but we also add additional criteria such as the standard deviation
of the cost associated with cash or the upper semi-deviation. In this way, we
reflect other risk definitions that could be relevant to a broader population of
decision-makers. These supplemental risk measures are cornerstone in finance,
but surprisingly, its use is not widespread in cash management. Some relevant
works that consider risk as volatility on the topic are Whalen (1966) where the
demand of cash is analyzed, Gao, Harford, and Li (2013) when defining the
determinants of corporate cash policy and Pinkowitz, Stulz, and Williamson
(2016) or Bates, Kahle, and Stulz (2009) that take into account the cash flow
volatility when working with industry cash holdings.

In cash management, cost and risk are often desired but conflicting objectives.
Cost reductions are achieved by reducing cash balances but, at the same time,
the risk of an overdraft is increased. From that, we define the multiobjective
cash management problem (MOCMP) as a sequential decision-making problem
where, given a set of past cash flows that determines an initial cash balance,
the goal is to find the best compromise policy in terms of cost and risk over
the considered time horizon:

X∗ = argmin
X

[E(C(X,T )), R(C(X,T ))] (5.7)

subject to X ∈ S, where R(C(X,T )) denotes a general risk function that can
be evaluated, for example, as the standard deviation of C(X,T ):

R(C(X,T )) =

(
1

T

T∑
t=1

(c(xt)− E(C))
2

)1/2

, (5.8)

where the arguments of functions C(X,T ) and Ct(xt, bt) are omitted on the
right-hand side of the equation for ease of notation, or as the upper semi-
deviation of cost:

R(C(X,T )) =
(
E
[
max (c(xt)− E(C), 0)

2
])1/2

. (5.9)

Summarizing, the MOCMP presents the following attributes:

1. It is a sequential decision-making problem with a set of cash balances,
a probability density function of cash flows (theoretical or empirically
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derived from past cash flows), a set of transactions and a multiobjective
function of cost and risk.

2. Cost and risk are desired but conflicting objectives that need to be min-
imized according to the risk preferences of the cash manager.

3. The constraints of the problem are defined by the particular characteris-
tics of the cash management model used.

4. It is a stochastic problem where the user is able to learn from experience.

Based on the previous characteristics, we propose a general procedure to solve
the MOCMP by following the next steps:

1. Define the objective functions for cost and risk.

2. Obtain a set of feasible policies evaluated in terms of cost and a risk.

3. Derive an efficient frontier in the cost-risk (C-R) space, i.e., a Pareto
efficient set of points where minimum risk can be obtained for any given
cost value.

4. Approximate the best compromise policy X∗ according to the risk pref-
erences of the cash manager.

Firstly, a definition of the objective function is required. A common and in-
tuitive way to optimize a multiobjective function when rewards can be easily
translated into monetary value is the use of a linear scalarization function (Roi-
jers et al., 2013). This function may be the weighted sum of the values for each
objective (in our case, cost and risk). However, we consider these weights to
be unknown in the learning phase. Later, when the selection phase occurs, a
policy is chosen among those computed in the learning phase according to the
risk preferences of the cash manager. Motivation for this assumption is double:
first, we want to avoid the computational burden of minimizing cost and risk
for all possible combinations of risk preferences or weights; second, we con-
sider easier and natural a decision-making process where alternative policies
are presented before selection, allowing what-if analysis.

Therefore, a compromise programming (CP) approach (Zeleny, 1982; Balles-
tero and Romero, 1998; Yu, 2013) is applied to optimize the general minimiza-
tion multiobjective function defined in equation (5.7). This CP approach is
based on the concept of ideal point and on the Zeleny’s axiom of choice (Ze-
leny, 1982). The ideal point in the MOCMP is the point where both minimum
cost and risk occur simultaneously. This point is clearly unfeasible and it is
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necessary to look for compromise solutions that can be evaluated, for example,
computing the distance to the ideal point.

Once the objective function is defined, we obtain a set of available policies
evaluated in terms of cost and the standard deviation of the daily cost as a
measure of risk. At this point, we are in a position to derive an efficient frontier
combining cost and risk with the set of daily policiesX, that are not dominated
by any other policy. Indeed, in this context, all policies are dominated by the
policy with the lowest risk from the cost perspective. Likewise, from the risk
perspective, all policies are dominated by the policy with the lowest cost.
Graphically, the efficient frontier in the C-R space, is built from a set of two-
dimensional points, (C(X,T ), R(X,T )). Here, C(X,T ) is the expected daily
cost and R(X,T ) is the risk obtained using policy X over T days.

In the next step, cash managers have to choose a policy from the efficient
frontier according to their risk/cost preferences. This is attained through the
use of two normalized indexes (Ballestero and Romero, 1998). First, a cost
index θ1, defined as:

θ1(X,T ) =
C(X,T )− Cmin
Cmax − Cmin

(5.10)

where C(X,T ) is the expected daily cost over T computed for a particular
policy X using equation (5.6), and Cmax and Cmin are, respectively, the max-
imum and minimum daily cost obtained from the set of values that forms the
efficient frontier. Second, a risk index, θ2, defined as:

θ2(X,T ) =
R(X,T )−Rmin
Rmax −Rmin

(5.11)

where R(X,T ) is a risk measure computed for a particular policy X over T
using one of the previously suggested risk functions, and Rmax and Rmin are,
respectively, the maximum and minimum values of R obtained from the set of
points under consideration. Note that θ1 and θ2 range in the interval [0,1], and
that the ideal point (θ1, θ2) = (0, 0), is clearly unfeasible. However, the closer
to this ideal point, the better the solution.

From the efficient frontier, a number of useful metrics can be derived to select
the best policies according to the particular risk preferences of cash managers.
In what follows, a real case study illustrating these concepts is developed.
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5.3 An illustrative example using the Miller and Orr’s model

In this section, a real case of our multiobjective approach to the CMP using the
model proposed by Miller and Orr (1966) is presented using three alternative
cost scenarios and two different risk measures, namely, the standard deviation
and the upper semi-deviation of daily cost as defined above. This real case uses
cash flow data from an industrial Spanish company. The section is divided in
five parts: (i) we introduce some background about the Miller-Orr’s model;
(ii) we derive a normalized cost-risk efficient frontier of cash policies; (iii) risk
preferences of are considered to select the best compromise policy; (iv) this
best policy will be compared to other baseline policies; (v) two useful metrics
are proposed to characterize the cost-risk efficient frontier.

5.3.1 The Miller-Orr’s cash management model

The first approach to the CMP considering stochastic cash flows, was made
by Miller and Orr (1966) where cash flows are characterized as a sequence of
independent and symmetric Bernoulli trials. They supposed that cash balance
will either increase or decrease by m dollars with probability p = 1/2. The
main assumptions of this approach are independence, stationarity, zero-drift,
and the absence of regular swings in daily cash flow. Moreover they ignored
shortage and variable transaction costs.

This model sets its policy based on a low bound1, l, and a high bound, h, and
the cash balance is allowed to wander around between these bounds. When
h is reached a withdrawal transfer will be made to restore the balance to a
target level of z. In the same way, when the cash balance reaches l, a positive
transfer will be made to again restore the balance to z. Accordingly, the
transfer occurring at time t, xt, is elicited by comparing the cash balance at
the beginning of the day, bt−1, to the low and high bounds:

xt =

 z − bt−1, if bt−1 > h
0, if l < bt−1 < h
z − bt−1, if bt−1 < l

(5.12)

By relaxing most of the Miller and Orr’s assumptions, below we use their model
in order to allow: first, the use of real world cash flow probability distributions;
second, the introduction of variable cost of transactions and shortage costs;

1Miller and Orr initially obtained optimal values setting the low bound to zero. However, setting a
low bound distinct from zero for precautionary purposes was given by Ross, Westerfield, and Jordan
(2002).
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and third, the selection of the best policy determined by the set of control
limits {h∗, z∗, l∗} that minimizes cost and risk, according to the particular risk
preferences of cash managers. Note that this problem represents a particular
case of MOCMP formalized in Section 5.2 where the policy X is determined
by the control limits {h ≥ z ≥ l} according to equation (5.12).

The objective is determining the best cash policies based on the minimization
of cost and risk. Here, instead of directly solving the general MOCMP as
defined in Section 5.2 by obtaining the set X of daily transfers, we introduce
the Miller and Orr’s cash management model in the problem. Consequently,
we help cash managers to learn the set of control limits {h, z, l} that will
ultimately determine the sequence X of daily transfers according to equation
(5.12).

In our case study, we use a data set F ∈ R from a Spanish industrial company
composed by 1000 observations of cash flows at non-bank-holidays for a period
of about 4 years. Note that cash balances are readily derived from an initial
cash balance adding the sum of cash flows up to the day we are interested
in. To illustrate our model, we make computations using three different cost
scenarios as shown in Table 5.1. Firstly, we consider a Low, Medium and High
cost scenario with increasing costs selecting values along the lines of those
suggested in Costa Moraes and Nagano (2014). Secondly, we consider that
the into-account transaction costs are higher than the from-account ones since
costs of obtaining funds are usually higher. And finally, it is important to
note that the from-account transaction cost is lower than the holding cost
(γ−1 < v), and that into-account transaction cost is lower than the shortage
cost (γ+

1 < u). Otherwise, no transaction would be made since the unitary
costs of transferring money are higher than those of holding the same amount
of money as shown in Constantinides and Richard (1978).

Cost Alternative cost scenarios
Low Medium High

Holding cost v 0.02 % 0.05 % 0.1 %
Shortage cost u 10 % 20 % 30 %
Fixed into account γ+

0 5 e 50 e 200 e
Fixed from account γ−0 2 e 20 e 80 e
Variable into account γ+

1 0.2 % 0.5 % 1 %
Variable from account γ−1 0.002 % 0.005 % 0.01 %

Table 5.1: Three alternative scenarios with increasing costs including holding/shortage and
transaction costs.
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5.3.2 Deriving the cost-risk efficient frontier

In order to derive the efficient frontier in the cost-risk space, we develop a
complete grid search over different policies derived from the Miller and Orr’s
model. These policies are determined by the control limits {h, z, l}. Since our
cost structure presents a high shortage cost, we expect better policies to be
given by high values of control limits. More precisely, we iterate over 57400
feasible combinations of {h, z, l} where h ≥ z ≥ l, and the respective ranges
are [h− σ, h+ 3σ], [z − σ, z + 3σ], [l − σ, l + 3σ], in steps of 10000 e, where σ
is the standard deviation of cash flows in the data set. Since the number of
possible combinations of policies is not high enough to produce unaffordable
computational times, we follow a complete search process. Moreover, grid
search allows a random simulation of policies and the selection of the best set
without setting any constraint. As long as the search is deep enough, meaning a
thorough exploration of alternatives, this selection will be closer to the optimal
policies.

A visual representation of the efficient frontier derived from the results obtained
for the Medium cost scenario using the standard deviation as a measure of risk
is shown in Figure 5.1. Under the CP framework, the closer to the ideal point
(0, 0), the better the policy. A sample of the best policies of the efficient frontier
from Figure 5.1 is summarized in Table 5.2, where Manhattan distances to the
ideal point are computed for each policy. From that, an average cash manager
(without defined preferences for risk or cost) would select the policy denoted
with id 10 because the distance to the ideal point is minimum.

5.3.3 Selecting policies considering risk preferences

In the context of the CMP, risk preferences of cash managers are worth consid-
ering. Recall from Section 5.2, that the goal is minimizing the multiobjective
function in equation (5.7). In our illustrative example, maximizing utility
amounts to minimizing a weighted loss function L(θ1, θ2):

L(θ1, θ2) = w1θ1 + w2θ2 (5.13)

where weights, w1 and w2, are used to introduce the cash manager’s risk pref-
erences in the problem. For instance, when 2w1 = w2, cost is considered half
as important as risk, i.e., risk is twice more important than cost. This is an
example of a conservative cash manager. On the other hand, when w1 = 2w2,
cost is considered twice more important than risk, i.e., risk is half as important
as cost, as it may be the case for a risky cash manager.
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Figure 5.1: Efficient frontier in the cost-risk (θ1, θ2) space for the Medium cost scenario
using the standard deviation as a measure of risk

According to Ballestero and Romero (1998), risk preferences can be considered
by introducing a parameter, r0 ∈ R+. Translated into the cash management
problem, r0 indicates the number of marginal units of risk, θ2, that the cash
manager is willing to accept in order to achieve a decrease of one marginal
unit of cost, θ1. Linking r0 and (w1, w2), if r0 = 0.5, our conservative cash
manager is willing to accept only 0.5 units of risk for each unit of decreased
cost, then w1 = 0.33 and w2 = 0.67. Moreover, in an attempt to bound the
location of the best policy in the normalized cost-risk space when considering
risk preferences, it is proven in Ballestero (1998) that the utility optimum lies
on the normalized efficient frontier between points L and L∞, which are defined
as follows:

• L is the point minimizing the linear loss function r0θ1 + θ2 on the nor-
malized efficient frontier.

• L∞ is the intersection of θ1 = θ2 with the efficient frontier.
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Id h z l Cost Risk θ1 θ2 θ1 + θ2 r0θ1 + θ2
7 720000 570000 270000 358 528 0,205 0,396 0,601 0,498
8 730000 580000 280000 360 486 0,228 0,323 0,551 0,437
9 740000 590000 290000 363 451 0,276 0,262 0,537 0,399
10 750000 600000 300000 366 423 0,323 0,212 0,535 0,373
11 760000 610000 310000 369 402 0,371 0,176 0,547 0,361
12 770000 620000 320000 372 391 0,418 0,156 0,575 0,365
13 680000 490000 360000 373 383 0,432 0,142 0,575 0,359
14 720000 490000 360000 373 370 0,441 0,119 0,560 0,340
15 730000 490000 360000 374 368 0,449 0,116 0,566 0,341
16 750000 490000 360000 374 362 0,451 0,105 0,556 0,330
17 760000 500000 370000 377 359 0,496 0,100 0,596 0,348
18 800000 490000 370000 381 358 0,564 0,098 0,662 0,380

Table 5.2: Central sample of the efficient frontier from Figure 5.1 (Id=policy identifier;
h=high control limit; z=target balance; l=low control limit; Cost=average daily cost in
e; Risk=standard deviation of daily cost in e; θ1=cost index; θ2=risk index; θ1 + θ2 =
Manhattan distance to the ideal point (θ1, θ2) = (0, 0); and we use r0 = 0.5).

Bounds L and L∞, referring here to cash policy performance when less is better,
delimit the compromise set that can be taken as a surrogate for approximating
the best policies for cash managers with different risk preferences defined by
the parameter r0. According to this procedure, for a conservative cash manager
with r0 = 0.5, from Table 5.2 we obtain that bound L = 16 when r0θ1 + θ2 is
minimum, and that bound L∞ = 9 when θ1 ≈ θ2.

5.3.4 Benchmarking selected policies and risk measures

In this section, we compare in Table 5.3 the best compromise policy (Id = 10)
with three policies in terms of cost and risk for a cash manager without par-
ticular preferences for cost and risk. Four different policies were considered:
(i) a No-Trans policy with no cash movement which is also used as a baseline
for comparison purposes; (ii) a policy derived from a set of bounds obtained
from the values proposed by Miller and Orr (1966) with low bound, l = 0;
and (iii) a policy derived from a Miller-Orr set of bounds but setting a low
bound, l = 2 · σF , for precautionary purposes as recommended by Ross, West-
erfield, and Jordan (2002), with σF set to the standard deviation of our real
cash flow data set F ; (iv) the best compromise policy derived from our mul-
tiobjective approach. The comparison yields that the Miller-Orr policy with
l = 0 produced the highest cost-risk due to the absence of a low bound. Set-
ting a low bound allowed cash managers to improve the performance of the
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baseline: for Medium and High costs when using the standard deviation and
only for High costs when using the upper semi-deviation. Clearly, the highest
cost-risk reductions were achieved using the best compromise policies from our
multiobjective approach.

Standard deviation Upper semi-deviation
Policy Low Medium High Low Medium High
No-Trans policy 100 100 100 100 100 100
Miller-Orr policy with l = 0 541 359 229 851 572 367
Miller-Orr policy with l = 2 · σF 161 85 51 264 138 80
Best compromise policy 21 22 23 29 30 31

Table 5.3: Relative cost-risk performance of policies for alternative cost scenarios using
two measures of risk. The lower the percentage the better.

Moreover, no difference was found in the selection of best policies when using
the standard deviation or the upper semi-deviation as a measure of risk. Since
the measure definition is different, the final cost-risk value is also different.
However, the best compromise policies selected were the same in both cases
due to the small differences observed between the standard deviation and the
upper semi-deviation of daily cost. From that, we hypothesize a certain degree
of symmetry in the cost random variable, at least enough to produce the same
selection of the best compromise policy.

5.3.5 The Sharpe-like ratio

From the analysis of the efficient frontier, a number of insights might be de-
rived. Firstly, in Figure 5.1 we observe significant discontinuities. This fact can
be quantified by computing the elasticity of the efficient frontier proposed by
Ballestero and Pla-Santamaria (2004). Risk elasticity measures the percentage
change in risk following a 1% change in cost for two consecutive policies from
the efficient frontier. Negative values indicate that risk decreases as cost in-
creases. This amount indicates the magnitude of the risk sensitivity to changes
in cost. For instance, in our example, policies 15 and 16 are equivalent in terms
of cost but not as much in terms of risk as shown in Table 5.2. For the same
cost, policy 15 is much riskier than policy 16. Thus, the latter should be cho-
sen. A visualization of the elasticity of the efficient frontier for the Medium
cost scenario and using the standard deviation as a measure of risk is shown
in Figure 5.2. In this figure, risk discontinuities from the efficient frontier can
be easily identified. From the cost perspective, changes in cost per unit of risk
can be similarly computed.
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Figure 5.2: Elasticity of the efficient frontier

Moreover, we propose the use of a Sharpe-like ratio (SLR) that can be easily
computed for each policy as a synthetic and quick performance measure. The
Sharpe ratio (Sharpe, 1966; Sharpe, 1994) was introduced to measure the
performance of mutual funds as a reward-to-variability ratio. Since high reward
and low variability are desired objectives, the higher the Sharpe ratio the
better. Its utility is based on the combination of two goals in a single figure.
Likewise, here we import this concept and propose a Sharpe-like ratio that
synthetically measures cost and risk in a single figure. We define the SLR as
the geometric average of both cost and risk of each policy:

SLR(X) =
√
θ1 · θ2. (5.14)

where θ1 and θ2 are normalized indexes. Normalization is necessary to avoid
bias towards attributes. In this case, normalization is done by dividing cost and
risk by their respective averages to avoid the problem of close-to-zero values in
the extremes of the efficient frontier. For comparison purposes, the lower the
SLR the better the policy.
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By combining cost, measured by the average, and risk, measured by the stan-
dard deviation, in the SLR, cash managers are able to estimate the global
performance of the policy in just one single value. For instance, consider two
policies X1 and X2, characterized by mean values 20 and 25, and standard
deviations 4 and 2 respectively. Even though policy X1 presents a lower cost,
a quick and simple computation shows that policy X2 is a better choice be-
cause SLR(X1) > SLR(X2). From that, when comparing a reduced number of
policies, the SLR provides a rapid performance estimator, likewise the Sharpe
ratio does when comparing, for example, two mutual funds.

Furthermore, we propose a more refined version of the SLR to incorporate risk
preferences of cash managers by means of a set of weights. In general, given
the cash manager’s cost and risk preferences expressed as weights w1 and w2,
such that 0 ≤ w1, w2 ≤ 1, with w1 + w2 = 1, we define the Weighted Sharpe
Like Ratio (WSLR) of policy X as:

WSLR(X) = [θw1
1 · θw2

2 ]
1/(w1+w2) . (5.15)

Note that when w1 = w2, the cash manager has no preference and expressions
(5.14) and (5.15) are equivalent. Figure 5.3 shows the WSLR for the Medium
cost scenario and using the standard deviation for different pair of weights.
Recall that the higher the value for w1 the higher the preference for risk of
the cash manager. Our case study is characterized by a clear decreasing trend
up to policy 10, from which a horizontal evolution, in terms of the WSLR
value, is observed regarding the rest of policies. This fact indicates that the
policies ranging from Id 10 to 32 exhibit a stable behavior, in terms of the
WSLR value, when varying a cash manager’s preferences. A closer look at the
particular policies shows that this reduced average risk is associated to policies
with higher control limits, producing higher cash balances but reducing the
probability of an overdraft.

An interesting property can be derived from the analysis of the WSLR plot
for different weights as shown in Figure 5.3. The existence of policies, around
policy 10, where the WSLR value is almost equal for any particular risk pref-
erence of the cash manager. Such a preference-neutral policy is characterized
by similar values of θ1 and θ2 and is directly linked to the efficient frontier and
the increasing diagonal in the normalized cost-risk space presented in Figure
5.1. There exists a line-to-point correspondence between the diagonal in the
normalized cost-risk space and the preference-neutral policy. Policies in this
diagonal are insensitive to the risk preferences of the cash manager. Hence,
the following proposition characterizes and links preference-neutral policies to
the normalized cost-risk space.
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Figure 5.3: Weighted Sharpe-like ratio for different risk preferences and each of the policies.
In the Risky case, w1 = 0.8, w2 = 0.2, in Neutral, w1 = 0.5, w2 = 0.5, and in Conservative,
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Definition 1. A policy X characterized by normalized cost and risk indexes θ1
and θ2, is preference-neutral to risk preferences w1 and w2 with respect to the
utility function L, iff for every w1, w2 ∈ [0, 1] such that w1 + w2 = 1, we have
that L(θ1, θ2, w1, w2) = k for some k ∈ R, i.e., the utility function is constant.

Proposition 1. A policy X whose normalized cost and risk indexes θ1 and
θ2 satisfy that θ1 = θ2 is preference-neutral to the arithmetic, geometric and
harmonic weighted average utility functions and its utility is θ1.

Proof. Since θ1 = θ2 and w1 + w2 = 1, in the case of the arithmetic mean:

w1 · θ1 + w2 · θ2 = w1 · θ1 + (1− w1) · θ1 = w1 · θ1 + θ1 − w1 · θ1 = θ1. (5.16)

For the geometric mean, such as the WSLR presented above:

[θw1
1 · θw2

1 ]
1/(w1+w2) =

[
θw1
1 · θ1−w1

1

]
= θw1+1−w1

1 = θ1 (5.17)
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and for the harmonic mean:

w1 + w2

w1

θ1
+ w2

θ2

=
1

w1

θ1
+ 1−w1

θ1

=
θ21

w1 · θ1 + θ1 − w1 · θ1
=
θ21
θ1

= θ1 (5.18)

which is constant in all three cases and independent of the risk preferences w1

and w2.

A final useful remark on the elasticity and Sharpe-like ratio measures is appro-
priate. Not only they provide a useful characterization of an efficient frontier
for different risk preferences, but they also allow the comparison of differ-
ent cash management models and different cost structures. To this end, cash
managers can plot the elasticity and WSLR curves for each model under com-
parison.

5.4 On the utility of cash management models

At this point, we formulate a fundamental question along the lines of Daellen-
bach (1974), who posed the following general question: Are cash management
models worthwhile? Under a general CP framework, the answer to Daellen-
bach’s question is equivalent to compare the loss derived from policy X to the
loss derived from a baseline policy X0. As a result, we here introduce the Cash
Management Utility Problem (CMUP) as follows:

Definition 2. The Cash Management Utility Problem is defined in a multiob-
jective framework, when less is better, as the problem of determining if policy
X is preferred to a baseline policy X0, formally expressed as:

[g1(X), . . . , gq(X)] ≤ [g1(X0), . . . , gq(X0)] (5.19)

where operator ≤ means that gi(X) ≤ gi(X0) holds for all i in the range [1, q],
and at least, there is one i such that gi(X) < gi(X0).

Then, setting X0 = 0, as a baseline policy consisting in taking no control
action, any policy X is worthwhile if it is able to reduce the value of at least
one of the considered objective functions in comparison to X0. For instance,
in the case of considering only cost, the previous comparison is equivalent to:
C(X) < C(X0). Considering both general cost and risk measures, we here
provide further insight by extending the question posed by Daellenbach (1974)
to a cost-risk framework:
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5.4 On the utility of cash management models

Definition 3. A policy X is preferred to a No-Trans policy X0 = 0, in terms
of cost and risk indexes θ1 and θ2, when less is better, if:

θ1(X) + θ2(X) ≤ θ1(X0) + θ2(X0) (5.20)

subject to:
X ∈ S. (5.21)

The implications of the CMUP are twofold. First, practitioners may be inter-
ested in finding the external conditions that must hold to ensure the utility of a
non-trivial policy. An example of this issue was pointed out by Constantinides
and Richard (1978), showing that a No-Trans policy is the best alternative in
terms of cost when γ+

1 > u and γ−1 > v. Second, researchers may be inter-
ested in establishing the particular characteristics that both cash management
models and alternative cost and risk measures must present in order to avoid
non-triviality. As an example, consider the average daily cost as a measure of
cost and the daily cost variance as a measure of risk. Let us denote c as a
τ × 1 vector of daily costs, and d as a τ × 1 vector of cost deviations around
the average that can be computed as:

d = c− 1 · 1T · c
τ

(5.22)

where 1 is a τ×1 vector of ones and superscript T denotes transposition. Cash
managers aiming to minimize both cost and variance, or tantamount standard
deviation, can derive optimal policies through the following quadratic objective
function:

min 1T · cd
T · d
τ

(5.23)

This setting reduces the CMUP to:

1T · c+ dT · d ≤ 1T · v · b̂t,0 + dT0 · d0 (5.24)

subject to:

d = c− 1 · 1T · c
n

(5.25)

d0 = v · b̂t,0 −
1 · 1Tv · b̂t,0

n
. (5.26)

In other words, the utility of a particular cash management model in the pre-
vious multiobjective framework is given by the combined ability of the model
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to reduce both the cost and risk impact by introducing some control actions
summarized in policy X. Furthermore, the CMUP can also be viewed as a
precautionary tool to avoid unnecessary efforts in forecasting and mathemati-
cal programming tools when some inputs of the problem reduce the utility of
the policy.

5.5 Summary

In the cash management problem, cash managers must control the amount of
risk that their company take. Here, we propose a new method that differs
from previous cash management approaches by considering risk and cash man-
agers’ risk preferences. Although different approaches to measuring risk have
been proposed in the literature, standard deviation has been a dominating risk
measure in finance. Along this direction, we propose a multiobjective model
to minimize cost and risk in cash management that can employ either the
standard deviation or the upper semi-deviation of cost as a measure of risk.

By relying on compromise programming, the best set of non-dominated policies
in terms of cost and risk is presented to cash managers to be selected according
to their particular risk preferences. Moreover, several examples using a real
cash flow data set are given for three alternative cost scenarios and two different
measures of risk, namely, the standard deviation and the upper semi-deviation
of daily cost. Our empirical results show that the policies derived from our
cash management model outperformed three different baseline policies: a No-
trans policy, a Miller-Orr policy with low level set to zero, and a Miller-Orr
policy with low level set to two times the standard deviation of historical cash
flows. It is important to highlight that our cash management model produced
the very same best compromise policies for the two risk measures that we
considered, the standard deviation and the upper semi-deviation of daily cost.

We also provide cash managers with further insights in the evaluation of cash
policies through elasticity plots and a weighted Sharpe-like ratio. More pre-
cisely, elasticity plots point out the magnitude of risk changes, which are not
captured in the normalized cost-risk space. On the other hand, the Sharpe-
like ratio offers a rapid performance estimator to compare a reduced number
of policies, similarly to the way the performance of mutual funds is compared.
An interesting property of this ratio is the preference-neutrality of policies with
the same cost and risk indexes.

We further elaborate on the utility of cash management models by formaliz-
ing the problem from a multiobjective perspective in which we compare the
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loss derived from a given policy to the loss derived from a trivial policy. The
analysis of the impact of any cash management model in cost-risk reductions
is useful for either avoiding unnecessary efforts when estimated benefits are
low, or realizing the potential when estimated benefits are high. This problem
formulation depends on the particular measures for the set of goals considered.
This fact opens a number of interesting future research lines aiming at estab-
lishing the particular conditions that must hold to ensure the utility of cash
management models.

Summarizing, cash managers have now new management tools to control the
amount of risk they take in their decision-making processes. Both less uncer-
tain and more stable policies can be selected by using the proposed expected
performance analysis. A new multiobjective approach to the cash management
problem based on compromise programming is now available for cash managers
answering the following research question.

Question 4. Can we incorporate risk analysis to the cash
management problem?

Contribution 4. We formulated the cash management prob-
lem from a multiobjective perspective considering both cost and
risk.

The model presented in this chapter is time-invariant, meaning that the context
in which the model is deployed does not vary with time. However, chances are
that financial circumstances vary with time. This fact makes robustness an
additional goal worth considering by cash managers as we do in the following
chapter.
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Chapter 6

On the use of distance indexes
to find robust policies

Cash management decision making can be handled from a multiobjective per-
spective by optimizing not only cost but also risk. Nevertheless, choosing the
best policies under a changing context is by no means straightforward. To
this end, we rely on compromise programming to incorporate robustness as
an additional goal to cost and risk within a multiobjective framework. As a
result, we propose to calculate robustness as a multiple criteria distance index
that is able to identify the best compromise policies in terms of cost and risk.
Such policies are also robust to cash flow regime changes. We show its utility
by transforming the Miller and Orr’s cash management model into its robust
counterpart using real data from an industrial company.

6.1 Motivation

Financial and economic methods are constantly driven by expectations. Decision-
makers usually have to deal with a set of relevant variables subject to regime
changes because of the economic cycle or other sources of instability. From
a macro-economic approach, international economic crises, credit restrictions,
or monetary policies are notably influential on decision-makers. Meanwhile,
from the micro-economic approach, market changes are usually the rule rather
than the exception. Cash flow management is particularly affected by regime
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changes. A cash manager must make daily decisions about her firm’s optimal
cash level for operational and precautionary purposes. The focus is placed
on finding the balance between cash holdings and short-term investments. A
number of cash management models have been proposed to control cash bal-
ances based on a set of levels or bounds. A comprehensive review of cash
management models, from the first proposals to the most recent contributions
can be found in Costa Moraes, Nagano, and Sobreiro (2015), Gregory (1976),
and Srinivasan and Kim (1986).

The particular characteristics of cash flows (or cash balances) are an important
dimension of the CMP. In this sense, cash flows used in the literature range
from deterministic (Baumol, 1952) to completely uncertain (Miller and Orr,
1966). The most usual cash flow probability distribution in the literature is
the Gaussian in the form of a Wiener process (Constantinides and Richard,
1978; Premachandra, 2004; Baccarin, 2009). However, empirical distributions
obtained from real data sets are hardly used with the exception of Gormley and
Meade (2007). Beyond the discussion about the most appropriate distribution,
cash management models are usually designed from a stationary perspective
without considering possible cash flow regime changes. However, economic
cycles, market evolution and customer behavior make cash flow a random
variable. Thus, optimal solutions to mathematical programming models can
be importantly affected by slight perturbations in the input data (Ben-Tal and
Nemirovski, 1999). Hence, we say that a system is robust when it is relatively
insensitive to changes in environmental factors that can negatively affect its
performance (Montgomery, 2013). However, whether cash management models
are robust to regime changes remains a question unanswered by previous cash
management contributions in the literature.

In order to provide robust solutions to optimization problems, stochastic pro-
gramming and robust optimization represent alternative approaches. Stochas-
tic programming assumes that randomness in problem parameters is restricted
to a particular probability distribution (Sahinidis, 2004; Abdelaziz, Aouni,
and El Fayedh, 2007; Aouni and La Torre, 2010). As an alternative approach
to stochastic programming, Soyster (1973) introduced the concept of interval
uncertainty within the framework of a linear program and its robust coun-
terpart. Later on, Ben-Tal and Nemirovski (1999) and Ben-Tal, El Ghaoui,
and Nemirovski (2009), established a sound framework for robust optimization.
Robust optimization is a modeling methodology, combined with computational
tools, to process optimization problems in which the data are uncertain and is
only known to belong to some uncertainty set (Ben-Tal and Nemirovski, 2002).
Instead of seeking a probabilistic solution, the decision-maker derives a solution
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that is feasible for any realization of a given uncertainty set (Bertsimas, Brown,
and Caramanis, 2011). Both approaches, stochastic programming and robust
optimization, aim to transform any optimization problem under uncertainty to
a collection of deterministic problems that can be solved using state-of-the-art
mathematical programming solvers. However, the underlying assumption on
the stationarity of probability distributions and uncertainty sets represents an
important limitation.

A suitable technique to validate the utility of solutions in a varying (non-
stationary) context is the widely used practice in machine learning known as
hold-out validation (Mitchell et al., 1997; Hastie et al., 2005; Provost and
Fawcett, 2013). Hold-out validation estimates the accuracy of predictive mod-
els on a data set different from the original data sample. On the other hand,
compromise programming (Ballestero and Romero, 1998; Yu, 2013), allows a
two-step decision making process in which alternative solutions are presented
before selection according to their particular preferences.

As a result, we rely on hold-out validation and compromise programming to
ensure the robustness of cash management models. More precisely, we follow
a data-driven approach to incorporate robustness as an additional goal to cost
and risk within a multiobjective decision-making framework. To this end, we
assume that regime changes (if any) are contained in a test data set of past
cash flows. We later compute a robustness index for cash management policies
that is finally used to select the best one. Our procedure departs from previous
approaches to deal with uncertainty in the sense that:

1. we learn uncertainty from experience through a data set of past observa-
tions;

2. we propose a data-driven approach to test robustness in cash management
when possible regime changes are contained in a test data set;

3. we introduce robustness as an additional goal to cost and risk within a
multiobjective optimization framework.

For illustrative purposes, we use a real cash flow data set to select the best
compromise policies in terms of cost, risk and robustness using an extended
version of the one by Miller and Orr (1966). By following our procedure, we
show how to transform the simple Miller-Orr’s model into its robust counter-
part. Summarizing, we support cash managers aiming to analyze cost and risk
of cash policies in a changing environment by providing a procedure to ensure
robustness in real world applications. More precisely, our contribution:
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1. follows a novel data-driven approach to deal with uncertainty in cash
management without assuming any theoretical probability distribution;

2. tests robustness of cash management models within a changing environ-
ment;

3. transforms a cash management model into its robust counterpart.

Then, under the framework of compromise programming for L1, the goal is
to find the policy X that minimizes the weighted Manhattan distance to the
ideal point (0, 0):

min [w1 · θ1(X,T ) + w2 · θ2(X,T )] (6.1)

subject to the following cash balance state equation:

b̂t = b̂t−1 + f̂t + xt (6.2)

where f̂t and b̂t denote predicted cash flows and balances, respectively. Since
cash managers make decisions in advance, predicted instead of actual values are
used for random cash flows and balances resulting in an uncertain optimization
problem. However, since neither θ1 nor θ2 are able to assess robustness of
alternative cash policies, we require a new measure to do so. Next, we consider
such a measure.

6.2 On the use of distances as a measure of robustness

A system or a process is robust when it is relatively insensitive to changes
in environmental factors, operating conditions and components that can nega-
tively affect its performance (Montgomery, 2013). Therefore, cash management
models considering cost and risk objectives must also be evaluated in terms
of robustness to deal with changing conditions. Let us illustrate this concept
with an example. Consider that an empirical probability distribution p(b) of
a cash balance b can be derived from an initial cash balance and a set F of
observed past values of cash flows. A usual assumption is that the stochastic
cash balance is stationary, i.e., the main attributes of p(b), such as its mean
and its standard deviation, do not vary with time. However, chances are that
cash flow regime changes lead to variations in both cost and risk of a particu-
lar cash policy. For example, assume that some p(b) for a particular company
is characterized by a mean value of 80 and a standard deviation of 20. Also
assume that, under the framework of the Miller and Orr’s cash management
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model, the low bound of the best policy is set to 30. This policy clearly be-
comes suboptimal if the standard deviation rises to 40 due to, for example,
a negative market evolution in the last 6 months. In what follows, we first
describe our data-driven procedure to ensure robustness of cash policies. Sec-
ond, we propose the use of a robustness index as a key input to the previous
procedure.

6.2.1 A data-driven procedure to ensure robustness

Within the MOCMP in Salas-Molina, Pla-Santamaria, and Rodriguez-Aguilar
(2016), policies are evaluated through cost and risk indexes θ1 and θ2, described
in Chapter 5. However, these indexes do not provide information about policy
robustness. In order to ensure robustness in cash management, we here rely
on a data-driven procedure. More precisely, we apply the widely used practice
in the field of machine learning consisting of dividing the available data in a
training set and a test set (Mitchell et al., 1997; Hastie et al., 2005; Provost and
Fawcett, 2013). The utility of predictive models is then assessed by estimating
the accuracy of forecasts on a data set (test set) different from the original
data sample (training set). In the context of the MOCMP, we propose to use
a training data set as a business-as-usual situation, and a test set that may
contain changes in the context faced by cash managers. As long as the training
set is statistically different to the test set (but possibly many others), we are
in a position to measure policy robustness as the change in performance over
two different data sets. Thus, we define policy performance as follows:

Definition 4. (Policy performance). The performance Pi of a cash policy
i in a normalized cost-risk space is given by the pair of points Pi = (θ1i, θ2i),
computed using (5.10) and (5.11), over a given cash flow data set.

Recall that we do not assume any cash flow probability distribution but we
are provided with a data set of past observations. Since we are dealing with
cash flow time-series, we may be reasonably interested in evaluating the effect
of recent cash flow data on policy performance. Thus, we perform an empirical
performance test with the most up-to-date data. If any regime change occurred
in recent past, it will be reflected in the performance of policies derived from
solving the MOCMP. A feasible solution to the MOCMP is a policy derived
from a cash management model (e.g., a policy of the Miller and Orr (1966)
model type), that satisfies the cash balance state equation (6.2). Hence, given
a feasible policy derived from a particular cash management model, we assess
its robustness by computing the difference in performance over a training set
(e.g., with the first 80 % of the observations), and over a test set (with the

161



Chapter 6. On the use of distance indexes to find robust policies

remaining 20% of the observations). Summarizing, our data-driven procedure
to ensure robustness in cash management comprises the following steps:

1. Select a cash management model.

2. Generate a set of alternative feasible policies.

3. Divide the cash flow data set in a training set and a test set.

4. Evaluate policy performance in the training set.

5. Evaluate policy performance in the test set.

6. Measure robustness through a new index that considers policy perfor-
mance with respect to the training and test sets.

7. Select the best policies using a robustness index.

Next, we propose a collection of distances to measure policy robustness in a
multiobjective framework in which cost and risk are goals to minimize.

6.2.2 Measuring robustness through distance indexes

In order to derive a robustness index for cash policies, we rely on the concept
of distance. A comprehensive work on distances can be found in Deza and
Deza (2014). We here define distance as a function in a normalized cost-risk
space:

Definition 5. (Distance). In a normalized cost-risk space S = [0, 1]2, a
distance is a function D : S × S → R+, with the following properties:

1. D(P, P ′) ≥ 0 (non-negativity);

2. D(P, P ′) = D(P ′, P ) (symmetry);

3. D(P, P ) = 0 (reflexivity);

4. D(P, P ′′) ≤ D(P, P ′) +D(P ′, P ′′) (triangle inequality);

for all points P, P ′, P ′′ ∈ S.

Hereafter, we propose to test the robustness of policies to cash flow regime
changes by computing distances between performance points derived from poli-
cies in a training set denoted as Pi = (θ1, θ2), and performance points derived
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from policies in a test set denoted as P ′i = (θ′1, θ
′
2). Thus, we propose to use the

following collection of distances to measure robustness of policies that we illus-
trate in Figure 6.1. In the business-as-usual context, policy performance can
be synthetically evaluated in terms of cost and risk by means of the (training)
distance to the ideal performance (0, 0).

Definition 6. (Training distance). The training distance δi of policy i is the
Euclidean distance between performance Pi and the ideal policy performance
(0, 0).

The shorter the training distance the better the policy within a business-
as-usual context. However, regime perturbations may result in performance
changes of alternative policies. Then, we introduce the concept of deviation as
the difference in performance between policies over the training and test sets
in a normalized cost-risk space.

Definition 7. (Deviation). The deviation di of policy i is the Euclidean
distance between performance Pi and performance P ′i , namely:

di =
√

(θ1i − θ′1i)2 + (θ2i − θ′2i)2. (6.3)

According only to the magnitude of deviation, we can initially state that policy
2 in Figure 6.1, with deviation d2, is more robust than policy 3, with deviation
d3, because d2 < d3. However, although d1 and d2 have the same magnitude,
a rational cash manager should select policy 2 instead of 1 because the former
is closer to the ideal point (0, 0) than the latter. This motivates the need for
an additional distance measure.

Definition 8. (Proximity or test distance). The proximity δ′i of policy i
is the Euclidean distance between performance P ′i and the ideal policy perfor-
mance (0, 0).

In addition, a policy that improves its performance after a context change is
preferred to a policy that worsens its performance. For example, policy 2 in
Figure 6.1 is an even better policy than policy 1 because, after the evaluation
over the test set, performance P ′2 moves closer to the ideal point while P ′1 moves
away from the ideal point. Thus, we should also measure movement of policies.

Definition 9. (Movement). The movement of policy i is the difference in
distance to the ideal performance between policy performance P ′i and Pi, com-
puted as δ′i − δi.
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We next summarize how each of the aforementioned distances to measure ro-
bustness rank policies when the rest of factors (distances) are equal:

• Deviation: policy i is better than policy j if di < dj.

• Proximity: policy i is better than policy j if δ′i < δ′j.

• Movement: policy i is better than policy j if δ′i − δi < δ′j − δj.
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Figure 6.1: Distances between cash policies evaluated over two data sets.

The collection of distances mentioned above allows us to introduce different
measures of robustness according to the particular preferences of cash man-
agers. Next, we introduce two alternative distance functions to measure ro-
bustness that we later compare in a numerical example:

D1(Pi, P
′
i ) =

{
2α(δi − δ′i) if δi > δ′i,
2(1− α)(δ′i − δi) if δi ≤ δ′i

(6.4)

as a linear asymmetric loss function, with α ∈ [0, 1], and:

D2(Pi, P
′
i ) = αdi + βδ′i + (1− α− β)(

√
2 + δ′i − δi) (6.5)
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as a synthetic loss function where α, β ∈ [0, 1] are weights to set preferences
objectives, and

√
2 is only added to ensure non-negativity. Notice that (6.4)

considers only movement but (6.5) takes into account deviation, proximity and
movement. Cash managers can also consider their particular preferences by
tuning parameters α and β. In (6.4), parameter α can be tuned to weigh
movement. Alternatively, in (6.5), parameter α is linked to deviation in per-
formance between regimes so that the higher the value of α the higher the
importance of deviation. Parameter β is linked to the proximity of policies to
the ideal point so that the higher the value of β the higher the importance of
proximity. Finally, the values given to α and β determine the importance of
the movement, since it is weighed by 1− α− β.

Next, we apply compromise programming (Ballestero and Romero, 1998) to
find robust policies. Recall that this approach is based on the concept of ideal
point where both the minimum cost and the minimum risk occur simultane-
ously, i.e., (0, 0). This point is usually unfeasible and it is necessary to look for
compromise solutions that can be evaluated by computing the distance to the
ideal point. Thus, once an entire cash flow data set is divided in a training set
and a test set, we first evaluate a given set of feasible policies over the train-
ing set to obtain performance points Pi = (θ1i, θ2i). However, when selecting
a policy from the whole cost-risk space, cash managers may be interested in
testing the robustness to cash flow regime changes. To this end, we propose
the use of a third index θ3, namely, a distance index as a measure of robust-
ness when applied to data not considered in the first selection of policies. As a
result, given a policy Xi, with expected performance Pi = (θ1i, θ2i), obtained
from the training set, and with empirically tested performance P ′i = (θ′1i, θ

′
2i),

obtained from the test set, we use a distance function (e.g., (6.5)), to compute
the following distance index:

θ3(Xi) =
D(Pi, P

′
i )−Dmin

Dmax −Dmin

(6.6)

where Dmax and Dmin are, respectively, the maximum and minimum values
of performance distances D(Pi, P

′
i ) between the training and the test set for

each policy i. At this point, we are in a position to derive an efficient frontier
with the set of policies that are not dominated by any other policy in terms
of cost and robustness. Graphically, the efficient frontier in the normalized
cost-robustness space, is built from a set of two-dimensional points (θ1, θ3), as
shown in Figure 6.2. Note that since we compute robustness using both cost
and risk indexes, we are implicitly considering risk in the selection of policies.
As a result, by following our distance-based procedure, cash managers aiming
to analyze cost and risk of cash management policies in a changing environment
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are able to ensure robustness in real world applications. Next, we illustrate
our procedure and its benefits through a numerical example.

6.3 An illustrative example using the Miller and Orr’s model

In this section, we follow the procedure described in Section 6.2.1 to determine
the best compromise cash policies in terms of cost and risk that are also robust
to cash flow regime changes.

6.3.1 Empirical settings

In what follows, we use the Miller and Orr’s cash management model intro-
duced in Chapter 2 to obtain control limits h, z and l, that determine policies
according to equation (2.8). In our case study, we use a real data set from a
Spanish industrial company composed by 1000 observations of cash flows at
non-bank-holidays for a period of about 4 years. We divide the entire data set
in a training set with the first 80% of the observations, as the expected condi-
tions, and a test set with the remaining 20%, as representative of changes in
current conditions.

For illustrative purposes, we make computations using a cost structure adjusted
to current bank practices in Spain, summarized as follows: daily holding cost,
v = 0.1%; daily shortage cost, u = 30%, to be used in equation (5.4); fixed
transfer cost into account, γ+

0 = 5 e; fixed transfer from account γ−0 = 5 e;
variable transfer cost into account, γ+

1 = 0 e, and variable transfer cost from
account, γ−1 = 0 e, to be used in equation (5.3). It is important to note that
γ−1 < v and γ+

1 < u. Otherwise, no transaction would be made since the
unitary costs of transferring money are higher than those of holding the same
amount of money.

6.3.2 Selecting robust policies

In order to derive the efficient frontier in the cost-robustness space, shown in
Figure 6.2, we develop a complete grid search over different policies derived
from the Miller and Orr’s model. These policies are determined by the control
limits h, z, and l. Since our cost structure presents a high shortage cost, we
expect better policies to be given by high control limits. Consequently, we
iterate over feasible combinations of h, z, and l subject to h ≥ z ≥ l, ranging
in [h− σ, h+ 3σ], [z − σ, z + 3σ], [l − σ, l + 3σ], in steps of 100000 e, where σ
is the standard deviation of cash flows in the training set.
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Figure 6.2: Efficient frontier in the cost-robustness space (θ1, θ3).

In this chapter, we present alternative policies before selection. Therefore, we
evaluate all possible policies in terms of cost and risk. Under the compro-
mise programming framework, the closer to the ideal point (0, 0), the better
the policy. A sample of the best policies of the efficient frontier, in terms of
Euclidean distance to the ideal is shown in Table 6.1. To compute θ3 we use
distance function (6.5) with parameters α = 0.33 and β = 0.33, to equally
weigh deviation, proximity and movement. Then, a cash manager would se-
lect either policy 35, 38, 39 or 40 to minimize the distance to the ideal (0, 0).
However, the particular preferences of cash managers should be considered to
select other policies. A risky cash manager may select one of the policies with
larger distances (e.g., policy number 32), in order to reduce daily cost. On
the other hand, a conservative cash manager may consider accepting a higher
expected cost (e.g., by selecting policy 45), in order to maximize robustness.
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Id High(h) Target(z) Low(l) D2(Pi, P
′
i ) θ1 θ3 Dist

32 6310 4760 1780 0,05 0,18 0,28 0,33
33 6410 4760 1780 0,05 0,18 0,28 0,33
34 6510 4760 1780 0,05 0,18 0,28 0,33
35 6210 4660 1580 0,05 0,18 0,24 0,30
36 6310 4660 1580 0,04 0,19 0,24 0,31
37 6410 4660 1580 0,04 0,19 0,24 0,31
38 6110 4560 1480 0,04 0,22 0,20 0,30
39 6210 4560 1480 0,04 0,23 0,20 0,30
40 6310 4560 1480 0,04 0,23 0,20 0,30
41 6010 4460 1380 0,03 0,27 0,16 0,31
42 6110 4460 1380 0,03 0,27 0,16 0,31
43 6210 4460 1380 0,03 0,27 0,16 0,31
44 6010 4460 1480 0,03 0,31 0,15 0,34
45 6110 4460 1480 0,03 0,32 0,15 0,35

Table 6.1: Central sample of the efficient frontier (Id=policy id; Bounds h, z and l in
thousands of euros; D2(Pi, P

′
i ) = distance function; θ1 = cost index; θ3 = robustness index;

Dist=Euclidean distance to the ideal point (θ1, θ3) = (0, 0)).

6.3.3 Analysis

In this example, we use a robustness index to select the best compromise policy
in terms of cost and robustness to regime changes. However, an additional
evaluation in terms of cost and risk may be useful for comparative purposes.
Such an evaluation over the test set in our illustrative example is shown in Table
6.2. As a baseline, we use the best compromise policy obtained using the entire
data set but without any robustness index as in Salas-Molina, Pla-Santamaria,
and Rodriguez-Aguilar (2016). In addition, we evaluate three different distance
measures: (i) the asymmetric loss function in (6.4) with α = 0.4 to slightly
underweigh the loss of policies that move closer to the ideal point and yield an
improvement in cost; (ii) the synthetic loss function in (6.5) considering both
deviation and proximity leading to a smaller improvement than the asymmetric
function and an increase in risk; (iii) the synthetic loss function in (6.5) but
considering deviation, proximity and movement, resulting in a reduction in
cost but an increase in risk. Summarizing, the use of a robustness index in
our example results in a cost reduction of policies. In addition, considering
deviation, proximity and movement produces the best results in terms of cost.
However, this cost reduction is only possible by accepting a higher level of risk.
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Distance High(h) Target(z) Low(l) α β Cost(%) Risk(%)
Salas-Molina et al. (2016) 6570 4910 3930 - - 100 100
Asymmetric loss D1 in (6.4) 6010 4460 3580 0,4 - 91 99
Synthetic loss D2 in (6.5) 6610 4960 3380 0,5 0,5 94 112
Synthetic loss D2 in (6.5) 6110 4560 1480 0,33 0,33 75 132

Table 6.2: Evaluation of policies using different distance measures. Bounds h, z and l in
thousands of euros.

6.4 Discussion

In this section, we discuss our distance-based procedure in comparison to al-
ternative approaches to obtain robust solutions to optimization problems such
as stochastic programming and robust optimization. In this chapter, we han-
dle uncertainty from an empirical or data-driven approach which considerably
departs from previous approaches. More precisely, the use of a distance in-
dex as a measure of robustness of cash policies allows to include an additional
goal to cost and risk within the framework of multiobjective decision-making.
This additional goal can be designed according to the particular preferences
of decision-makers. Furthermore, since the selection of the best compromise
policies is affected by the uncertainty in cash flows, our approach is specially
designed to deal with input data that can be learned from experience through
a data set of past observations such as cash flows. At the same time, we fol-
low a hold-out validation procedure based on the comparative analysis of a
training data set and a test set that may contain a context change. Finally,
we allow practitioners to transform any cash management model into its ro-
bust counterpart by following our distance-based approach to find robust cash
management policies.

For comparative purposes, let us consider two different approaches to deal with
uncertain optimization problems, namely, stochastic programming and robust
optimization. Under a general stochastic programming approach (Prékopa,
2013), a deterministic counterpart of the program (6.1)-(6.2) can be considered
as follows:

min [w1 · E (θ1(X,T )) + w2 · E (θ2(X,T ))] (6.7)

subject to:
P (b̂t−1 + f̂t + xt ≥ b̂t) ≥ ζ (6.8)

where E is the common expectation operator, P denotes probability and ζ
is a safety threshold determined by a cash manager. A typical value for ζ is
95%, meaning that cash balances are above the expected values at least 95%
of the times, reducing then the possibility of an overdraft. In other words,
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by solving the previous program we are forcing cash balances to be above a
certain level determined by the safety threshold ζ. However, the introduction of
probabilities implies the assumption of a particular distribution for cash flows
resulting in two serious limitations due to: (i) the lack of empirical evidence
on the common assumption of normally distributed cash flows (Emery, 1981;
Pindado and Vico, 1996); (ii) the additional assumption on the stationarity
of cash flow distributions (Constantinides and Richard, 1978; Premachandra,
2004; Baccarin, 2009).

An alternative approach was proposed by Soyster (1973) and, later on, by Ben-
Tal and Nemirovski (1999) and Ben-Tal, El Ghaoui, and Nemirovski (2009),
who tackled uncertainty by proposing a robust counterpart to an optimization
problem when uncertainty is determined either by a system of linear inequality
constraints or by a system of conic quadratic inequalities. For instance, a
robust counterpart of the program (6.1)-(6.2), when uncertainty in cash flows
is determined by f̂ − ε ≤ f ≤ f̂ + ε, being ε the maximum forecasting error, is
given by:

min [w1 · θ1(X,T ) + w2 · θ2(X,T )] (6.9)
subject to:

b̂t−1 + f̂t + xt ≥ b̂t + ε. (6.10)

The assumption of a maximum forecasting error εmay lead either to unrealistic
or ultraconservative problem formulations. For instance, consider a data set of
empirical errors ranging in [−100, 100], in which the maximum negative error
−100 occurred only once out of 1 million times. Setting ε to 100 results in an
ultraconservative strategy. In addition, two important issues remain unsolved:
(i) the stationarity assumption, meaning that estimation errors keep unaltered;
and (ii) the possibility of adapting cash policies to different scenarios according
to the particular preferences of decision-makers. These limitations are solved
by our data-driven distance procedure as described above.

6.5 Summary

In the cash management problem, decision-making can be enhanced by fo-
cusing on optimizing cost, risk and robustness of the available policies rather
than just cost. This is particularly true under the realistic assumption of time-
varying circumstances. Usual approaches to deal with uncertainty within the
framework of optimization problems such as stochastic programming or robust
optimization present limitations such as imposing a theoretical probability dis-
tribution or the stationarity assumption. To overcome these limitations, we
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propose a data-driven procedure to test the robustness of cash policies in a
multicriteria decision-making process. Particularly, we introduce the use of
a distance-based robustness index to select the best compromise set of cash
policies when cash flow regime changes are learned from experience through
the use of a data set of past observations. As a result, we argue that our proce-
dure is able to transform a cash management model into its robust counterpart
when a data set of past cash flow observations is available through:

• the validation of estimated cost-risk results from cash policies when pos-
sible regime changes are contained in a test set;

• the use of distance indexes to measure policy robustness;

• the selection of the best compromise policies in terms of cost and risk that
are also robust to regime changes through compromise programming.

An additional remark must be done in the sense that we claim that a new
procedure is available to optimize cost and robustness by using two different
data sets, a training set and a test set. Our procedure can be replicated as many
times as needed by considering alternative (and possibly very different) test sets
to incorporate a number of future scenarios. Furthermore, our procedure can
be straightforwardly extended to the use of any other cross-validation method.

Summarizing, decision-makers usually have to deal with time-varying financial
circumstances. As a result, cash managers may be interested in identifying
the best compromise policies in terms of cost and risk that are also robust to
cash flow regime changes. In this chapter, we relied on compromise program-
ming to incorporate robustness as an additional goal to cost and risk within a
multiobjective framework. This procedure allowed us to provide an answer to
research question 5.

Question 5. Can we provide a robust counterpart for any cash
management model?

Contribution 5. We proposed a new data-driven multiobjec-
tive method to derive the robust counterpart for any cash man-
agement model by computing distances in a cost-risk space.

A closely related topic to the previous research question is the concept of
operating condition, which we use in this thesis to refer to any factor that may
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influence the performance of a model. In the next chapter, we address the
problem of selecting cash management models under different circumstances
or operating conditions.
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Chapter 7

Selecting cash management
models from a multiobjective

perspective

This chapter addresses the problem of selection of cash management models
under different operating conditions from a multiobjective perspective consid-
ering not only cost but also risk. A number of models have been proposed
to optimize corporate cash management policies. The impact on model per-
formance of different operating conditions becomes an important issue. Here,
we provide a range of visual and quantitative tools imported from Receiver
Operating Characteristic (ROC) analysis. Its utility is shown from a triple
perspective as a tool for: (i) showing model performance; (ii) choosing models;
and (iii) assessing the impact of operating conditions on model performance.
We illustrate the selection of cash management models by means of a numerical
example.
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7.1 Motivation

A Receiver Operating Characteristic (ROC) curve is a useful graphical tool
for classification models that illustrates its performance Metz (1978), Bradley
(1997), Flach (2003), and Fawcett (2006). One of the basic ideas behind ROC
analysis is the study of the impact of operating conditions on model per-
formance. Traditional ROC analysis was initially restricted to classification.
However, a broader perspective was adopted in Drummond and Holte (2000),
Elkan (2001), Drummond and Holte (2006), and Hernández-Orallo, Flach, and
Ferri (2013), by following a cost-sensitive approach to analyze the economic
implications of the operating conditions by means of ROC cost curves. In a
particularly interesting attempt to cross borders, an extension of ROC analysis
to regression models was proposed by Bi and Bennett (2003), Torgo (2005),
and Hernández-Orallo (2013a).

On the other hand, cash flow management focuses on finding the balance be-
tween cash holdings and short-term investments. Cash managers make daily
decisions about the firm optimal cash level for operational and precautionary
purposes (Ross, Westerfield, and Jordan, 2002). In order to deal with this
problem, a number of cash management models have been proposed to control
cash balances based on a set of levels or bounds. A comprehensive review of
models, from the first proposals to the most recent contributions can be found
in Gregory (1976), Srinivasan and Kim (1986), and Costa Moraes, Nagano,
and Sobreiro (2015).

Multiple-criteria decision-making in economics and finance has rapidly evolved
during the last decades (Ballestero and Romero, 1998; Doumpos and Zopouni-
dis, 2007; Steuer, Qi, and Hirschberger, 2007; Garcia-Bernabeu et al., 2016).
Cost and risk are desired but conflicting objectives in cash management as sug-
gested by Salas-Molina, Pla-Santamaria, and Rodriguez-Aguilar (2016). As-
suming that idle balances have an opportunity cost, a decrease in cash balances
results in cost reductions but, at the same time, the risk of an overdraft penalty
is increased. Holding and shortage costs are usually asymmetric, e.g., 0.01%
versus 30%, in daily rate of the final cash balance. Then, without considering
any other costs, having a zero balance would be optimal in terms of cost but
suboptimal in terms of risk, since eventual negative cash balances may produce
unexpected penalty costs.

The tradeoff between cost and risk for different models and operating condi-
tions is at the core of decision support systems for cash managers. However,
little work has been done in the comparison and selection of models from a
multiobjective perspective. In this work, we argue that the evaluation of the
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total loss in a period of time, in terms of cost and risk, for any particular
operating condition is a necessary management tool. Moreover, by adopting
a double perspective, quantitative and graphical, the understanding of cash
management models and their performance is enhanced. To this end, ROC
analysis seems to be a promising tool also for cash management. In this chap-
ter, we rely on ROC analysis to achieve further insight on cash management
through: (i) a graphical tool; (ii) a set of useful metrics; (iii) performance
evaluation; and (iv) for a number of different operating conditions.

The main point of this chapter is to show that graphical tools derived from
ROC analysis can enhance the understanding and the decision-making process
of cash managers in their purpose of selecting the best cash management model.
Since there is no such a model that is the best for any context, this selection also
implies the answer to the question of under what circumstances or operating
conditions a model is better than another. From that, we focus on the following
goals under a multiobjective viewpoint:

1. Showing models in the cost-risk space.

2. Choosing models according to risk preferences.

3. Deriving loss curves for different operating conditions.

First, recall from Chapter 2, that the model proposed by Stone (1972) intro-
duced the use of forecasts for cash management. The reason to focus on the
Stone model is double: firstly, by accepting forecasts as its main input, the
Stone model performance is affected by an important operating condition such
as the predictive accuracy; secondly, within a framework of selection, alterna-
tive Stone models can be considered by varying a single parameter which is
the forecasting horizon. Then, by considering cash flow forecasts for the next
k days, this procedure aims to minimize cost through reducing unnecessary
transactions and smoothing cash flows. It is assumed that the current cash
balance, b0, before making any transaction decision, is known and that a fore-
cast of the net cash flow, f̂t, that will occur on each day t over the next k days
is available. Note that k is a sub-period within a time horizon of T days, i.e,
k ≤ T . Then, the expected level of cash balances k days from now is the sum
of the current level of cash balances and the sum of k daily net cash flows.
Next, a number of simple rules are proposed to return to a desired target cash
balance, z, based on two sets of control limits. According to these rules, when
a transaction is made, the model returns the expected level of balances to the
target level in k days rather than immediately returning the current balance
to the target. Furthermore, the actual cash balance is the target plus the net
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cumulative forecast error. Stone claimed the utility of his model in comparison
to a no-day look-ahead procedure by computing both the number and the total
volume of transactions. However, it is not clear if this model would be useful
for any value of k or if the predictive accuracy of forecasts would impact the
performance of the procedure. This analysis can be done from a multiobjective
perspective through the representation of models in the cost-risk space.

Second, keep in mind that MOCMP can be viewed as a trade-off between
cost and risk. Cost reductions are achieved by reducing cash balances but, at
the same time, the risk of an overdraft increases. The set of transactions to
be made is determined by the cash management model. Then, the expected
cost of any model m, can be assessed by computing its average daily loss over
a time horizon T , denoted as C(m,T ). From the risk perspective, since cash
managers are usually interested in avoiding costs above a target value, e.g., the
average daily cost, a suitable risk measure is the upside deviation of the cost
function, denoted as R(m,T ). Hence, for any particular model m evaluated in
a time period of T days, we can express the expected cost and risk as:

C(m,T ) = E(C) =
1

T

T∑
t=1

Ct (7.1)

R(m,T ) =
(
E
(
max{Ct − E(C), 0}2

))1/2
. (7.2)

As stated above, the ultimate goal is to find the policy X∗, given by model m,
that minimizes both the expected cost C(m,T ) and risk R(m,T ), over time
horizon T . This multiobjective optimization problem requires the definition of
a general loss function considering C(m,T ) and R(m,T ), which will be given
later.

7.2 Showing models in the cost-risk space

Under the MOCMP framework, cash management models are evaluated in
terms of cost and risk. The tradeoff between cost and risk for different models
and operating conditions is a critical issue in the cash management decision-
making process. In this chapter, we define the cost-risk (CR) space as the
graphical representation of cost in the horizontal axis and risk in the vertical
axis. A point in the CR space shows the combined cost and risk performance
of any particular model when applied to a cash flow data set F = 〈f1, . . . , fN〉
with N ∈ N real observations. The basic idea of the CR space is to show model
asymmetry or bias (if any) towards cost and risk for any particular model.
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Thus, the particular location of a CR point provides useful information about
a model for comparison and selection purposes.

Definition 10. Given a cash management model m and a particular set of
model parameters p, a p-model, denoted by mp, is an instance of model m with
parameters determined by the elements of the vector of parameters p ∈ Rn.

For instance, if we use m to refer to all Stone cash management models and
define p as the tuple (k, z, h1, h0, δ1, δ0) = (3, 20, 27, 13, 2, 2), mp is an instance
model of the Stone type defined by the set of parameters p. In what follows,
we refer to Stone p-models as models unless stated otherwise.

Furthermore, we use the term operating condition to refer to any factor that
may influence the performance of a model such as the cost scenario and the pre-
dictive accuracy of the forecasts used in the Stone model. Following Hernández-
Orallo, Lachiche, and Martınez-Usó (2014) and Hernández-Orallo, Flach, and
Ferri (2013), we refer to the set of all relevant operating conditions as a context
that can be expressed as a set of n parameters α = 〈α1, . . . , αn〉. It is impor-
tant to separate the notion of operating condition from the parameters of the
model. The operating condition is somehow given to the decision-maker either
internally (e.g., risk preferences), or externally, (e.g., cost scenarios). On the
other hand, the parameters of the model, such as the look-ahead period or the
control limits used, are adjustable by the decision-maker and represent the de-
cision variables that need to be appropriately selected. Within this framework,
we define:

Definition 11. A loss function is any function L : Y×Y→ R which compares
elements in some output domain Y.

Typical examples of this output domain Y within the context of cash man-
agement are the cost and the risk of a cash management model computed, for
instance, by means of equations (7.1) and (7.2).

Definition 12. Given a p-model mp, a context α and a cash flow data set F ∈
RN , a p∗α-model is the p-model which minimizes some loss function L(mp, α)
when applied to F in context α.

We are then facing an optimization problem in which the goal of the cash
manager is to find the p∗α-model, i.e., the p-model with best performance for
a given context. To this end, we can compare models by computing cost and
risk over a given planning horizon. Since the ideal model is the one with zero
cost-zero risk, one possible way to determine the best model is computing
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the distance to the ideal point (0, 0). For normalization purposes, we use a
baseline model m0, defined as a no-transaction policy with xt = 0 for all t ∈ T .
Thus, we finally compute the cost and risk for alternative models in the CR
space using equations (7.1) and (7.2), and through the following cost and risk
indexes:

θ1(m,T ) =
C(m,T )

C(m0, T )
(7.3)

θ2(m,T ) =
R(m,T )

R(m0, T )
. (7.4)

By representing points (θ1, θ2) for different models as shown in Figure 7.1, we
can derive three useful insights: (i) we can compare their relative performance
by computing distances to the ideal point (0, 0); (ii) we can determine if the
model is non-trivial by observing if its CR coordinates are within the unit
square; and (iii) we can conclude if the model is biased towards cost or risk
by observing if the model is either over or under the increasing diagonal. For
instance, from Figure 7.1 one can infer that modelm1 is better thanm2 because
is closer to the ideal point. Note also that any model located out of the unit
square performs worse than the baseline in terms of cost, risk or both.
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Figure 7.1: Alternative models in the normalized cost-risk space

Moreover, model m1 is located in the upper left region meaning that it is able
to reduce cost in a higher proportion than risk with respect to the baseline
m0. We say then that model m1 is biased towards risk from the ideal point
perspective since it is more risky than costly, i.e., θ1(m1, T ) < θ2(m1, T ). On
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the other hand, model m2 is located in the lower right region of the CR space
delimited by the increasing diagonal. This particular location shows that,
in comparison to the baseline model m0, model m2 reduces cost in a lower
proportion than risk. We say then that model m2 is biased towards cost from
the ideal point perspective since it is more costly than risky, i.e., θ1(m2, T ) >
θ2(m2, T ). Models located in the increasing diagonal are equally costly than
risky.

An important concept derived from the representation of particular models
in the CR space is the notion of hybrid models (Hernández-Orallo, Flach,
and Ferri, 2013). Given any two models, we can construct a hybrid model as
a linear combination of the control actions derived from both models. This
concept is graphically illustrated in Figure 7.1 by means of the dashed line
passing through m1 and m2. Each point in this line represents the expected
CR performance of a hybrid model constructed as a linear combination of
models with coefficients adding up to one.

In addition, when comparing alternative cash management models in the CR
space, the concepts of Pareto optimality and convexity of the Pareto front
provide further insights (Ballestero and Romero, 1998; Miettinen, 2012).

Definition 13. A solution is called Pareto optimal if there does not exist any
other feasible solution that can achieve the same or better performance for all
the criteria while being strictly better for at least one criterion.

As a result, the set of Pareto optimal solutions within S forms the Pareto front
as depicted in Figure 7.2. The Pareto front provides valuable information about
alternative cash management models. The concept of convexity of the Pareto
front is crucial to ensure that there is a trade-off between criteria in order to
find an optimal solution among feasible alternatives. This trade-off measures
the amount of achievement of one criterion that must be sacrificed in order to
gain a unitary increase in the other criterion.

Furthermore, a family of distances functions Lh to the ideal point (0, 0) can be
computed to determine which model is best in terms of both cost and risk as
proposed by compromise programming (Ballestero and Romero, 1998). Under
this framework, cash managers seek to find the best set of solutions achievable
by a compromise program, namely, the compromise set. More formally, the
concept of compromise set derives from an important result presented by Yu
(1973) for bi-criteria problems.

Definition 14. The compromise set is a subset of the Pareto front between
points L1 and L∞ obtained by varying parameter h ∈ N+ in the following
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family of distance functions:

Lh =
[
θh1 + θh2

]1/h
(7.5)

where θ1 and θ2 are normalized indexes for each of the two criteria.

However, in the search for the best model, cash managers’ preferences for
cost and risk are not equal. A risky cash manager may accept a higher risks to
achieve the same cost reduction than a conservative one. Next section considers
risk preferences in the CR space to enhance the selection process.
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Figure 7.2: Pareto front of alternative models in the normalized cost-risk space

7.3 Choosing models according to risk preferences

We mentioned in Section 7.2 that the normalized CR space allows comparisons
of alternative cash management models in terms of cost and risk. The increas-
ing diagonal divides the CR space into two regions: the upper-left half or risky
region, and the bottom-right half or the conservative region. A neutral cash
manager, i.e., with no bias for cost and risk, would choose models with similar
values of cost and risk indexes or, equivalently, models close to the diagonal,
where θ1 = θ2.

Recall that one model in the CR space dominates another either if it is no
worse in terms of both cost and risk and it is strictly better either in cost or
risk. All models are dominated by the model with the lowest risk from the cost
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7.3 Choosing models according to risk preferences

perspective. Likewise, from the risk perspective, all models are dominated by
the model with the lowest cost. From that, all non-dominated models form the
Pareto front, i.e., the set of feasible alternatives for cash managers to choose
according to their particular preferences.

Once models are presented in the CR space, cash managers have to choose
the best compromise model that minimizes total loss in terms of cost and risk.
Compromise programming (Zeleny, 1982; Yu, 1985; Ballestero and Romero,
1998) can then be used to solve the problem by minimizing the distance to the
ideal point (0, 0), usually unfeasible. Moreover, when considering particular
risk preferences defined by w, the following family of weighted distance func-
tions allows to determine the proximity of any particular point (θ1, θ2) to the
ideal one:

Lh(m,α) =
[
wh · θh1 + (1− w)h · θh2

]1/h
(7.6)

where h ∈ N+ is the parameter defining the family of distance functions and
weight w ∈ [0, 1] denotes the particular risk preferences of the cash manager.
Note that L1 is the Manhattan distance; L2 is the Euclidean distance, and L∞
is the Chebyshev distance. Only these cases are likely to be used in practice for
interpretation and computational reasons (Ballestero, 2007; Ringuest, 1992).
Computations with Manhattan distances are simpler and tend to produce so-
lutions located further from the diagonal. On the other hand, Euclidean dis-
tances tend to produce more balanced solutions but with more computational
burden due to non-linearity (Ballestero, 2007).

The concept of isometric curves in the CR space can be derived from the
distance to the ideal, as combinations of θ1 and θ2, that have equal performance
and, thus, may represent models that cash managers are indifferent among.
Risk preferences are then considered through the use of parameter w. Since
we are dealing with a loss function to be minimized, the higher the value of
w, the riskier the cash manager. From that, two families of CR isometrics can
be considered by varying a parameter d for Manhattan (h = 1) and Euclidean
distances (h = 2). For Manhattan distances, the total loss for a particular
point can be graphically calculated as the sum of the distance to the y-axis
and the distance to the x-axis. An interesting characterization of the solution
for Manhattan distances can be found in Hernández-Orallo, Flach, and Ferri
(2013).

In what follows, we aim to characterize the solution to the problem when
dealing with Euclidean distances. For h = 2, the total loss for a particular
point can be graphically calculated as the sum of the squared distance to the
y-axis, i.e., cost when risk is zero, and the squared distance to the x-axis, i.e.,
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Chapter 7. Selecting cash management models from a multiobjective perspective

risk when cost is zero. Then, a family of isometric curves can be defined by
varying a parameter d so that the following expression holds:

w2 · θ21 + (1− w)2 · θ22 = d2. (7.7)

This equation leads to consider isometric circles and ellipses as a tool to select
among alternative cash management models as shown in Figure 7.3.

Definition 15. Given a loss function L2 and a context α, neutral cash manage-
ment isometrics are represented by circles since w = (1− w), risky isometrics
are represented by ellipses since w > (1 − w) and conservative isometrics are
represented by ellipses since w < (1− w).
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Figure 7.3: (a) Isometrics for neutral cash managers; (b) Isometrics for risky/conservative
cash managers

Neutral cash managers may consider a number of circles with increasing radius
such as L(1) and L(2) in Figure 7.3(a). The model on the circle with minimum
radius is the optimal model. Similarly, risky cash managers may consider a
number of ellipses such as L(3) in Figure 7.3(b) with vertical semiaxis larger
than its horizontal semiaxis due to w > (1 − w). Finally, conservative cash
managers may consider a number of ellipses such as L(4) in Figure 7.3(b) with
vertical semiaxis smaller than its horizontal semiaxis due to w < (1 − w).
Then, the model on the ellipse with minimum horizontal/vertical semiaxis is
the optimal model.
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7.4 Deriving loss curves from operating conditions

7.4 Deriving loss curves from operating conditions

In the previous sections, we showed different cash management models in the
CR space and we also provided a tool to choose among them according to the
particular risk preferences of cash managers. However, chances are that context
changes may impact the performance of models. Therefore, cash managers may
be interested in determining which model is best for a given range of operating
conditions. In this section, we propose a method to derive loss curves that can
be useful to assess the impact of operating conditions in the performance of cash
management models. Here, loss means the combined cost-risk performance
computed using equation (7.6) according to the particular preferences of cash
managers.

Recall from Section 7.2 that the term operating condition refers to any factor
that may influence the performance of a model. A typical example of an
operating condition when deploying models using forecasts as a key input is
the prediction error. Let us assume that cash managers can produce forecasts
with a given forecasting error ε with respect to a trivial forecast f that is
computed for a data set of N forecasts as follows:

ε =

∑N
t=1(f̂t − ft)2∑N
t=1(f − ft)2

(7.8)

where f̂t is the prediction at time t, ft is the real observation at the time t, and
f is the arithmetic mean of the real observations used to obtain predictions f̂t.
Note that the closer ε is to zero, the better the predictive accuracy. On the
contrary, if ε is close to one, the performance is similar to the mean as a naive
forecast. Values greater than one show that the forecaster has no predictive
ability.

Assume now that we want to obtain the best model for a range of prediction
errors of particular interest for a hypothetical cash manager. To this end, we
rely on a number of simulations. More precisely, our experimental design is
based on multiple replicates of random cash balance paths under a Monte Carlo
framework (Glasserman, 2003). These paths are obtained from a known initial
cash balance and T independent draws from a real cash flow probability density
function (pdf), whose cumulative sum determines a particular cash balance
evolution. Whether this pdf is derived from a real data set or selected from
one of the usual pdfs in financial problems, such as the Gaussian distribution,
is at the discretion of the practitioner. Here, since we are provided with a real
cash flow data set, we use an empirical pdf obtained from 1000 real cash flow
observations from a Spanish industrial company.
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Chapter 7. Selecting cash management models from a multiobjective perspective

For the sole purpose of this example, assume that our hypothetical cash man-
ager knows, from the characteristics of the company cash flows, that the
set of control limits that best worked in the past are {h0, δ0, z, δ1, h1} =
{2.5, 0.4, 5.0, 0.4, 7.5}, all figures in millions of euros. In addition, our cash
manager may produce cash flow predictions with an average prediction error
in the range of ε = [0, 1] in terms of normalized squared error from equa-
tion (7.8).

On the other hand, the current cost structure is determined by γ+
0 = 50 e,

γ−0 = 50 e, γ+
1 = 0.1%, and γ−1 = 0.01%, of the transaction volume. Assume

also a holding cost v = 10% per annum, and a daily penalty cost u = 30%.
Hence, in this example we set α = 〈ε, γ+

0 , γ
−
0 , γ

+
1 , v, u〉 as the particular con-

text of interest in which alternative models are going to be analyzed. In this
context, there is only one variable operating condition, namely the predic-
tion error ε. Since this operating condition may present one or more differ-
ent levels, we can express it as a tuple of d levels, αi = 〈li1, . . . , lid〉, e.g.,
ε = 〈0, 0.25, 0.50, 0.75, 1〉, or as a continuous interval, αi = [αmin, αmax], e.g.,
ε = [0.5, 1].

Summarizing, the final goal is to derive a loss curve that shows the impact in
equation (7.6) of the change of any variable operating condition in context α.
For simplicity, we also set h = 1 and consider a neutral cash manager with
w = 0.5, within a planning horizon of T = 30 days. Then, we proceed following
the steps detailed in Algorithm 4.

Algorithm 4: Algorithm to build context loss curves
1 Inputs: Model m; context α; cash flow data set F ; planning horizon T ;
number of replicates r;

2 Output: Context loss curve Lh(m,α) ;
3 Define a baseline model m0;
4 for each possible combination αi in α do
5 for each replicate do
6 Generate a random cash balance path form F ;
7 Compute C(m0, T ) and R(m0, T );
8 Compute C(m,T ) and R(m,T );
9 Compute Lh(m,αi);

10 end
11 Estimate and plot expected values for each Lh(m,αi);
12 end
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7.4 Deriving loss curves from operating conditions

Since the only variable operating condition is the prediction error, by varying
ε in the range [0, 1], we are implicitly comparing different contexts. Then, we
consider eleven possible prediction errors in steps of 0.1 from perfect prediction
(ε = 0) to a naive prediction (ε = 1). For each value of ε, we generated 100
random cash balance paths of 30 days, equivalent to more than twelve working
years and computed both the cost and risk using equation (7.1) and (7.2) for
alternative Stone models and also for a trivial model m0 consisting in taking
no control action. These random experiments lead to an estimation of the
expected loss of alternative Stone models for each possible prediction error.
More precisely, we consider five alternative Stone cash management models for
prediction horizons between k = 0 and k = 4 days. Note that no prediction
is used in the case of k = 0. The comparative loss for models with k = 0 and
k = 1 for the whole range of possible prediction errors is shown in Figure 7.4(a).
The rest of models are not presented due to poorer performance.

Implicitly, by comparing models using predictions (k ≥ 1) to another model
using no prediction (k = 0), we are testing the ability of the Stone model to
produce better results for a range of prediction errors. Our example results
show that the 1-day look-ahead Stone model produced slightly better results
for low predictions errors but rapidly increased the expected loss in comparison
to the no-look ahead model. From that, unless our hypothetical cash manager
is able to consistently produce forecasts with error below 0.2, the deployment
of a 1-day Stone model is not recommended.
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Figure 7.4: (a) Loss curve for two alternative models and different prediction errors; (b)
Expected loss after selecting the best model for each prediction error

Since no model is the best model for the whole possible range of operating
conditions, cash managers can rely on loss curves to select the best models
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for any particular context. Thus, the resulting loss curve depicted in 7.4(b)
shows the minimum loss that can be achieved after selecting the best model
for each prediction error. The first two points belong to the Stone model with
k = 1 and the remaining to the no-look-ahead procedure. Note also that in
the example we only compare Stone models varying the parameter k and for
different predictions errors. In the search for more robust models, our method
can be extended for all available cash management models and a wide range
of operating conditions such as alternative cost scenarios.

7.5 Summary

This chapter demonstrates that ROC analysis can be adapted to enhance the
understanding of the multiobjective cash management problem. More pre-
cisely, we present three procedures for: (i) showing models in the cost-risk
space; (ii) choosing models according to the risk preferences of cash managers;
(iii) deriving loss curves for different operating conditions. These procedures
allow cash managers to answer a number of important questions such as:

1. What is the performance of a model in terms of cost and risk?

2. What model is best according to cash managers risk preferences?

3. Under what circumstances a model is better than another?

All the previous questions are answered through the procedures presented here
from a double perspective: quantitative and graphical. The essence of ROC
analysis is then respected. Although the graphical analysis is limited to one, at
most two operating conditions, the quantitative analysis can be generalized to
any number of operating conditions. The set of graphical tools and numerical
procedures presented in this chapter allow cash managers to analyze the trade-
off between cost and risk for different cash management models and operating
conditions. As a result, a new contribution can be highlighted.

Question 6. Under what circumstances or operating condi-
tions a model is better than another?

Contribution 6. We adapted ROC analysis to the cash man-
agement problem in order to allow cash managers to select cash
management models.
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7.5 Summary

The results presented in this chapter are based on the use of a bound-based
model of the Stone (1972) type. However, one may wonder if a new class
of cash management models can be designed without using bounds to control
cash balances. The next chapter proposes such a new class of cash management
models.
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Chapter 8

Boundless multiobjective
models for cash management

In this chapter, we propose a new class of cash management models. Most
cash management models are usually based on a set of bounds that com-
plicates the selection of the optimal policies due to non-linearity. We here
propose to linearize cash management models to guarantee optimality through
linear-quadratic multiobjective compromise programming models. We illus-
trate our approach through a reformulation of the suboptimal state-of-the-art
Gormley-Meade’s model to achieve optimality. Furthermore, we introduce a
much simpler formulation that we call the Boundless Model that also provides
optimal solutions. Results from a sensitivity analysis using real data sets from
54 different companies show that our Boundless Model is highly robust to cash
flow prediction errors.

8.1 Motivation

Cash management is concerned with the efficient use of a company’s cash and
short-term investments. Decision-making in cash flow management focuses on
keeping the balance between what the company holds in cash and what has
been placed in short-term investments, such as deposit accounts or treasury
bills. In other words, cash managers have to make daily decisions about the
amount of transactions between cash and any other kind of available liquid
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asset, resulting in an increase or decrease of the cash level. From those de-
cisions, relevant implications are derived for companies in terms of cost and
risk. Indeed, the cash management problem deals with the trade-off between
transaction and holding costs, but also with performing operations without
taking unnecessary risks.

The ultimate goal of the cash management problem (CMP) is to find the
best sequence of control actions over a given planning horizon which is called a
policy. The typical framework in the CMP considers two assets, namely, a cash
account and an investment account where idle cash balances are allocated for
a profit. In addition, most cash management models have a common feature:
they are based on setting control limits or bounds. In other words, they can
be considered as Bound-Based Models (BBM). In a BBM, cash balance is
allowed to wander around between some bounds, usually a high bound and a
low bound. When any of these bounds is reached, a control action is made to
restore the balance to some target level. For instance, the BBM in Miller and
Orr (1966) is based on three bounds and Girgis (1968) and Penttinen (1991)
and Gormley and Meade (2007) considered four bounds to account for both
fixed and linear transaction costs. Stone (1972) proposed the use of forecasts
and five bounds, Neave (1970) and later Chen and Simchi-Levi (2009) proposed
optimal policies based on six bounds.

In the aforementioned models, cash managers have to determine the set of
bounds which minimizes the sum of expected transaction and holding costs.
However, non-linearity introduced by bounds complicates the selection of op-
timal policies. For instance, Gormley and Meade (2007) and Costa Moraes
and Nagano (2014) suggested the use of evolutionary algorithms to solve the
CMP. However, this approach does not guarantee the optimality of the cash
management solutions. In order to overcome this limitation, we here propose
a reformulation of the CMP within a multiobjective framework as proposed by
Salas-Molina, Pla-Santamaria, and Rodriguez-Aguilar (2016). More precisely,
we encode the CMP as a linear-quadratic compromise programming model
(Zeleny, 1982; Yu, 1985; Ballestero and Romero, 1998). We illustrate our
approach through a multiobjective reformulation of the Gormley and Meade
(2007) model (MOGM).

Since the ultimate goal of the cash management problem is not to find the best
set of bounds, but the best sequence of control actions, we also introduce a
straightforward formulation that we call the Boundless Model (BM) that does
not impose restrictions on the form of policies. We demonstrate that our BM
is a much simpler CMP formulation that guarantees the optimality of the so-
lutions against approximate solutions of a state-of-the-art BBM. Furthermore,
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we empirically show that our BM outperforms the MOGM in terms of required
run time to solve the CMP.

A critical issue when dealing with cash management models using forecasts
as a key input is the influence of forecasting errors on the performance of the
model. In order to evaluate this impact, we present a sensitivity analysis of
our BM to forecasting errors using 54 real data sets from different companies.
The results show that our BM is highly robust to prediction errors. A further
advantage of this method is that it allows to estimate the reward that can be
obtained by improving predictive accuracy.

Summarizing, the results presented in this chapter imply that cash managers
should consider forecasts and our BM as a way to improve decision-making in
cash management. In addition, we solve important open research questions in
cash management through the following four main contributions:

1. A linear formulation of the CMP to guarantee the optimality of solutions.

2. A linear-quadratic multiobjective reformulation of the Gormley-Meade’s
model that, unlike the original model, guarantees the optimality of solu-
tions.

3. A novel cash management model, namely, the BM, that provides optimal
solutions and generalizes several state-of-the-art models.

4. A sensitivity analysis of the BM to forecasting errors.

In what follows, we first linearize the cash management problem described
in Chapter 5. Next, we use this linearization to reformulate the Gormley
and Meade (2007) model. Finally, we introduce the BM for multiobjective
cash management and we analyze the impact of forecasting errors in the BM’s
performance.

8.2 Linearizing the cash management problem

The ultimate goal of the MOCMP defined in Chapter 5 is to find the policy
X that minimizes the expected cost and risk over the time horizon T . To this
end, the expected cost C(X) is measured by the average daily cost:

C(X) =
1

T

T∑
t=1

c(xt) =
1

T

T∑
t=1

[Γ(xt) +H(bt)] (8.1)
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and the expected risk R(X) is measured by the standard deviation of the daily
cost:

R(X) =

(
1

T

T∑
t=1

(C(X)− c(xt))2
)1/2

. (8.2)

Then, under the framework of compromise programming proposed by Balles-
tero and Romero (1998), the goal is to find policy X that minimizes a loss
function Lα(X) computing weighted distances to an ideal point where both
cost and risk are zero:

min Lα(X) = min

[(
w1

Cmax
· C(X)

)α
+

(
w2

Rmax
·R(X)

)α]1/α
(8.3)

subject to:
X ∈ S (8.4)

where α is a positive integer and S is the set of all possible policies. In what
follows, we consider only Manhattan distances to the ideal point by setting
α = 1 in objective function (8.3) to guarantee linearity. Furthermore, Cmax
and Rmax can be regarded either as budget limitations or as normalization
factors for comparative purposes.

Next, we formulate the CMP as a linear program since we aim to guarantee
the optimality of solutions. In order to linearize the common two-assets set-
ting of the CMP, consider a company with two bank accounts as depicted in
Figure 8.1. Account 1 receives payments from customers (inflows) and it is
also used to send payments to suppliers (outflows). Both inflows and outflows
are summarized through the net cash flow ft.

1

ft

2

x+
t

x−t

Figure 8.1: The common two-assets setting in the cash management problem.

Let xt be the difference between inflows and outflows xt = x+
t − x−t at bank

account 1 with x+
t and x−t being non-negative real numbers. Then, account 2

represents the amount of alternative investments available to be converted into
cash through transaction x+

t when needed. In addition, idle cash balances from
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account 1 can be allocated in account 2 for a profit through transaction x−t .
In this setting, the transfer cost function in equation (5.3) can be expressed as
follows:

Γ(xt) = z+t · γ+
0 + γ+

1 · x+
t + z−t · γ−0 + γ−1 · x−t (8.5)

where z+t , z
−
t ∈ {0, 1} are binary auxiliary variables satisfying:

z+t + z−t ≤ 1 (8.6)

m · z+t ≤ x+
t ≤M · z+t (8.7)

m · z−t ≤ x−t ≤M · z−t (8.8)

whereM(m) is a very large (small) number. Note that although we restrict x+
t

and x−t to be non-negative numbers, the left-hand side of equations (8.7) and
(8.8) are necessary to ensure z+t , z

−
t = 0 ⇔ x+

t , x
−
t = 0. A similar approach

can be followed to linearize the holding/penalty cost function (5.4) through:

H(bt) = zt · h · bt − (1− zt) · u · bt (8.9)

where zt ∈ {0, 1} is another auxiliary binary variable satisfying:

−M(1− zt) ≤ bt ≤M · zt. (8.10)

However, since cash managers usually discard policies with negative balances
due to high penalty costs, in what follows, we assume u =∞ and H(bt) = h·bt,
which results in the following daily cost function equivalent to equation (5.1):

c(xt) = γ+
0 · z+t + γ+

1 · x+
t + z−t · γ−0 + γ−1 · x−t + h · bt. (8.11)

Since control actions are taken in advance to real cash flow, we use predicted
cash flows f̂t and balances b̂t instead of actual values in the state transition
law in equation (5.2) as follows:

b̂t = b̂t−1 + f̂t + x+
t − x−t . (8.12)

Next, we rely on the previous linear functions to derive optimal solutions from
a reformulation of the GM model.
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8.3 Reformulating the Gormley-Meade’s model as a
linear-quadratic program

Recall from Chapter 2 that cash managers can leverage cash flow forecasts
to reduce the uncertainty within a short-term planning horizon (Stone, 1972;
Stone and Miller, 1987; Salas-Molina et al., 2017). To this end, Gormley and
Meade, 2007 proposed a cash management model based on forecasts and four
bounds: a low bound D, a high bound V and two target levels v and d. The
cash balance is allowed to wander around between these bounds as shown in
Figure 8.2.

Day 1 Day 2 Day 3

Dt

dt

vt

Vt

C
a
sh

 b
a
la

n
ce

Figure 8.2: The dynamic simple policy of Gormley-Meade.

When V is reached a withdrawal transfer is made to restore the balance to a
target level v. In the same way, when the cash balance reaches D, a positive
transfer is made to restore the balance to a target d. Forecasts for a given plan-
ning horizon are used as a key input to the model that establishes a dynamic
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simple policy of the form:

xt =

 vt − b̂t−1 − f̂t, if b̂t−1 + f̂t > Vt,
0, otherwise,
dt − b̂t−1 − f̂t, if b̂t−1 + f̂t < Dt

(8.13)

where Dt, dt, vt, Vt, for 1 ≤ t ≤ T are the decision variables satisfying Dt ≤
dt ≤ vt ≤ Vt, and b̂t and f̂t are the predicted cash balance and cash flow at time
t, respectively. This model is dynamic and the decision variables Dt, dt, vt, Vt
must be obtained at each time step t.

The form of the policy described in (8.13) within the GM model, implies facing
a non-linear problem whose solution is by no means straightforward. The au-
thors suggested the use of evolutionary algorithms to obtain the set of bounds
{Dt, dt, vt, Vt} for each time step t, but this method does not guarantee the
optimality of the solutions. Evolutionary algorithms are iterative procedures
based on direct search (Branke et al., 2008). A population of feasible solutions
is randomly generated and better solutions are found by comparing the fitness
of the new population to the current population. As a result, there is no way
to test if a given solution is optimal. In order to solve this limitation, we
next present a linear-quadratic reformulation of the GM model allowing cash
managers to obtain optimal solutions through:

• A linear program by considering only cost as a linear expression.

• A linear-quadratic program by considering a linear cost expression and a
quadratic risk expression.

A third option may be considered by solving a linear program with both cost
and risk linear expressions, e.g., by defining a linear measure of risk. However,
since we are interested in a cost-risk optimization as described in Salas-Molina,
Pla-Santamaria, and Rodriguez-Aguilar (2016), we next formalize the second
option. Then, within the framework of the GM model, positive transactions
x+
t occur when low bound Dt is reached. Thus, z+t = 1 when b̂t−1+f̂t ≤ Dt and

the amount transferred is given by x+
t = dt − b̂t−1 − f̂t. This can be expressed

by the following linear constraints:

b̂t−1 + f̂t −Dt ≤M(1− z+t ) (8.14)

−M(1− z+t ) ≤ x+
t − dt + b̂t−1 + f̂t ≤M(1− z+t ). (8.15)
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Furthermore, negative transactions x−t occur when high bound Vt is reached.
Thus, z−t = 1 when b̂t−1 + f̂t ≥ Vt and the amount transferred is given by
x−t = b̂t−1 + f̂t − vt. This can be expressed by the following linear constraints:

Vt − b̂t−1 − f̂t ≤M(1− z−t ) (8.16)

−M(1− z−t ) ≤ x−t + vt − b̂t−1 − f̂t ≤M(1− z−t ). (8.17)

A third group of conditions must hold when the cash balance is between bounds
Dt and Vt. Thus, when z+t = 0 and z−t = 0 no transaction occurs. This can be
expressed by the following linear constraints:

Dt − b̂t−1 − f̂t ≤M(z+t + z−t ) (8.18)

b̂t−1 + f̂t − Vt ≤M(z+t + z−t ) (8.19)

m · z+t ≤ x+
t ≤M · z+t (8.20)

m · z−t ≤ x−t ≤M · z−t (8.21)

As a result, we can reformulate the multiobjective cash management problem
encoded in equations (8.3) and (8.4) to accommodate policies of the GM type
as the following linear-quadratic multiobjective Gormley-Meade (MOGM) pro-
gram:

min

[
w1

Cmax
C(X) +

w2

Rmax
R(X)

]
(8.22)

subject to:
b̂t = b̂t−1 + f̂t + x+

t − x−t (8.23)

c(xt) = γ+
0 · z+t + γ+

1 · x+
t + γ−0 · z−t + γ−1 · x−t + h · bt (8.24)

M(z+t + z−t ) ≤ b̂t−1 + f̂t −Dt ≤M(1− z+t ) (8.25)

−M(1− z+t ) ≤ x+
t − dt + b̂t−1 + f̂t ≤M(1− z+t ). (8.26)

M(z+t + z−t ) ≤ Vt − b̂t−1 − f̂t ≤M(1− z−t ) (8.27)

−M(1− z−t ) ≤ x−t + vt − b̂t−1 − f̂t ≤M(1− z−t ) (8.28)

Dt ≤ dt ≤ vt ≤ Vt (8.29)

z+t + z−t ≤ 1 (8.30)

m · z+t ≤ x+
t ≤M · z+t (8.31)

m · z−t ≤ x−t ≤M · z−t (8.32)
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8.3 Reformulating the Gormley-Meade’s model as a linear-quadratic program

b̂t ≥ bmin (8.33)

w1 + w2 = 1 (8.34)

1 ≤ t ≤ T, t ∈ N, T ∈ N (8.35)

where the decision variables are the bounds {Dt, dt, vt, Vt} that determine con-
trol action xt ∈ X for each time step t, and C(X) and R(X) are linear-
quadratic cost and risk functions such as the ones defined in equations (8.1)
and (8.2) that depend on policy X. Note that b̂t, x+

t , x
−
t , z

+
t and z−t are also

decision variables determining policy X as we show in the upcoming section.

Normalization factors Cmax and Rmax are used to avoid numerical bias to one
of the goals but also for comparative purposes. In this chapter, we propose to
set Cmax and Rmax to the expected cost and risk of a trivial policy consisting
in taking no control action. This procedure allows us to straightforwardly
compare the performance of policies through the objective function since values
above one indicate a poorer performance than a trivial strategy.

Following the recommendations in Ben-Tal, El Ghaoui, and Nemirovski (2009)
for robust optimization, we set a minimum cash balance proportional to the
uncertainty introduced by forecasting errors. To this end, we assume that the
cumulative forecasting error distribution for planning horizon T is known and
presents standard deviation σe. Then, we set bmin = ξ ·σe, where ξ is a positive
parameter. Assuming Gaussian forecasting errors, typical values for ξ are 2
or 3 leading, respectively, to an unfeasible program in only 95% or 99% of the
realizations of the error distribution.

An important advantage of the the previous linear-quadratic reformulation
in comparison to the original GM model is that it can be implemented and
optimally solved through the modeling framework provided by mathematical
programming solvers such as CPLEX or Gurobi. However, 8 × T decision
variables and 23 × T constraints are involved. Hence, one may wonder if a
simpler formulation is possible. Next, we present a novel formulation of the
CMP, which we call the Boundless Model (BM), which aims to solve this
problem.
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8.4 Boundless multiobjective models for cash management

In this section, we introduce a novel boundless multiobjective model for cash
management. First, we formally describe the model. We next highlight a
crucial property of this model and we finally perform a numerical comparison
exercise between the MOGM and the BM.

8.4.1 Model formulation

In the GM model described in Section 8.3, cash managers have to determine
the set of bounds {Dt, dt, vt, Vt} which minimizes expected transaction and
holding costs for the whole planning horizon T . Indeed, the bounds are previ-
ously obtained to the deployment of the policy according to equation (8.13).
However, we argue that the ultimate goal of the cash management problem is
not to find the best set of bounds, but the best sequence of control actions. As
a result, we here propose to change the focus from bounds to the actual policy
to simplify computations. To this end, we next present a BM for multiobjective
cash management with no bounds:

min

[
w1

Cmax
C(X) +

w2

Rmax
R(X)

]
(8.36)

subject to:
b̂t = b̂t−1 + f̂t + x+

t − x−t (8.37)

c(xt) = γ+
0 · z+t + γ+

1 · x+
t + γ−0 · z−t + γ−1 · x−t + h · bt (8.38)

z+t + z−t ≤ 1 (8.39)

m · z+t ≤ x+
t ≤M · z+t (8.40)

m · z−t ≤ x−t ≤M · z−t (8.41)

b̂t ≥ bmin (8.42)

w1 + w2 = 1 (8.43)

1 ≤ t ≤ T, t ∈ N, T ∈ N (8.44)

Note that the set of constraints from equation (8.37) to (8.44) are only neces-
sary to linearize the CMP as described in Section 8.2 and to achieve a certain
degree of protection against forecasting errors by means of b̂t ≥ bmin.
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8.4 Boundless multiobjective models for cash management

8.4.2 The equivalence theorem

The BM model is clearly a much simpler formulation than that of MOGM since
only 4×T decision variables and 8×T constraints are involved. However, since
both models aim to obtain the optimal policy, both formulations must return
the same optimal results for the same inputs as we next demonstrate.

As a simple numerical example, consider a predicted cash balance b̂t−1 = 10

and a forecast f̂t = 1. Let us assume that the optimal policy is x+
t = 4. Then,

the optimal bound dt is necessarily 15 since dt = x+
t +b̂t−1+f̂t = 4+10+1 = 15

from equation (8.13). Indeed, the next simplified optimization problem:

min
x,d

g(x, d) (8.45)

subject to:
x = d+ a (8.46)

where x and d are the decision variables and a is a constant, is equivalent to:

min
x

g(x, x− a) = min
x

g(x) (8.47)

subject to no constraint. This fact leads us to formulate the following theorem.

Theorem 2. Given a forecast f̂t for 1 ≤ t ≤ T , a minimum balance bmin,
a cost structure β = {γ+

0 , γ
−
0 , γ

+
1 , γ

−
1 , h}, two normalization factors Cmax and

Rmax, and some weights w1 and w2, the BM encoded from equation (8.36)
to (8.44) and the MOGM model encoded from equation (8.22) to (8.35) are
equivalent in the sense that both models return the same optimal solutions for
the same input parameters.

Proof. Optimizing a set of bounds for each time step is equivalent to directly
optimizing the policy since the former determines the latter and vice versa.
Let us assume that b̂t−1 + f̂t ≤ Dt holds. Then, finding dt that minimizes
some objective function subject to x+

t = dt − b̂t−1 − f̂t from equation (8.13) is
equivalent to finding x+

t due to the direct relationship between x+
t and dt. A

similar reasoning leads to the same conclusion when b̂t−1 + f̂t ≥ Vt or when
Dt ≤ b̂t−1 + f̂t ≤ Vt. This fact implies that the set of constraints from (8.25)
to (8.29) are redundant and can be removed from the optimization process
demonstrating that both models are equivalent.

Furthermore, our BM provides a general framework for cash management in
several aspects or dimensions of the problem. First, our BM accepts any type

199
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cash flow process from a deterministic one (Baumol, 1952) to a pure stochastic
one (Miller and Orr, 1966) and also empirical data sets of cash flows (Gorm-
ley and Meade, 2007; Salas-Molina, Pla-Santamaria, and Rodriguez-Aguilar,
2016). Our BM simplifies the Gormley and Meade (2007) cash management
model by removing half of the decision variables and almost two thirds of the
constraints. In addition, when no forecast is used (Penttinen, 1991), forecasts
can be set to zero. Our MOGM model is also a generalization of the Miller
and Orr (1966) model that can be obtained by setting forecasts to zero, and by
forcing that vt = dt and Dt, dt, vt and Vt to be constant for the whole planning
horizon.

8.4.3 Comparing run times for the MOGM and the BM

In Section 8.4.2, we argue that the BM is an equivalent but simpler formulation
to solve the CMP within a multiobjective framework. In what follows, we
perform a comparison exercise to empirically confirm that the necessary run
time to solve the BM is lower than that required to solve the MOGM.

Consider a typical scenario with a cash management system like the one de-
picted in Figure 1.2. Temporary idle cash balances can be invested in short-
term marketable securities and bonds through an investment account 2 with an
average return of 7.2% per annum (h = 0.02% per day). Inflows and outflows
to/from account 1 are charged with fixed costs γ+

0 = γ−0 = 20 e and variable
costs γ+

1 = γ−1 = 0.01% defining a cost structure β = {γ+
0 , γ

−
0 , γ

+
1 , γ

−
1 , h} ac-

cording to current bank practices in Spain. Assume also a Gaussian cash flow
process with mean 0.1 and standard deviation 1, figures in millions of euros.
Assume also that by applying some forecasting technique, a hypothetical cash
manager is able to produce daily forecasts with errors distributed according
to N (0, 0.5). For precautionary purposes, we set a minimum cash balance
bmin = 1.5, equivalent to three standard deviations of the error distribution.

We sample T elements from the cash flow process N (0.1, 1) that are used as a
forecast input to both the GM and BM model. Next, we set an arbitrary initial
cash balance 20% above bmin and we generate 100 different forecast samples
of variable length T . These samples, the initial cash balance, the minimum
cash balance and the cost structure β are enough to obtain the optimal policy
by solving the MOGM model encoded from equation (8.22) to (8.35) and the
BM model encoded from equation (8.36) to (8.44). Then, we implement both
models using the Gurobi modeling framework (Gurobi Optimization, Inc, 2016)
for Python and the run time results of 100 replicates for planning horizons
ranging in [5, 20] in steps of five days are shown in Figure 8.3. Average run
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8.5 Sensitivity analysis to forecasting errors

times for our BM are 38% lower with standard deviations 41% smaller than
the MOGM confirming that a simpler formulation leads to remarkably lower
run times to solve the CMP.
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Figure 8.3: Run time for different planning horizons.

8.5 Sensitivity analysis to forecasting errors

The critical step in the deployment of a BM is the procurement of forecasts.
However, forecasts are characterized by some prediction error that necessarily
impacts the performance of any model using forecasts as a key input. The
main goal of this section is to perform a sensitivity analysis of the goodness of
the solutions provided by our BM to changes in forecasting accuracy. We first
describe our assumptions and our experimental methodology, and we finally
discuss the results obtained.

8.5.1 Assumptions

We experiment on 54 real cash flow data sets of variable length, containing from
170 to 1508 observations. As a statistical summary, minimum and maximum
values, means and standard deviations, and number of cash flow observations
available for each company are shown in Table 8.1. The data set contains
daily cash flows from 54 different small and medium companies in Spain with
annual revenues of up to 10 million euro each, covering a date range of about 8
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years. For illustrative purposes, we consider the following representative cost
structure adjusted to current bank practices in Spain and very similar to those
used in Costa Moraes and Nagano (2014):

β = {γ+
0 = 20e, γ−0 = 20e, γ+

1 = 0.01%, γ−1 = 0.01%, h = 0.02%} (8.48)

We set a minimum balance bmin equivalent to three standard deviations of the
empirical error distribution for a planning horizon of five days to ensure a 99%
of feasibility. Finally, we follow a multiobjective approach in which expected
cost is defined as the average daily cost as in equation (8.1) and expected risk
is defined as the standard deviation of daily cost as in equation (8.2). Then,
under a compromise programming framework, the ultimate goal is to find the
policy that minimizes equation (8.3).

8.5.2 Methodology

In order to evaluate the impact of the forecasting error in actual cost-risk per-
formance, we propose Algorithm 5. From a cash flow data set stored in vector
f we compute its standard deviation σf . Following the method described
in Salas-Molina et al. (2017), we obtain forecasts of controllable accuracy by
assuming error et ∼ N (0, σe) with σe = p · σf and with error proportion
p ∈ [0.1, 1]. Sample draws for different values of p in steps of 0.1 results in
forecasts ranging from perfect prediction (σe ≈ 0) to an always-zero prediction
σe = σf . Then, by computing the actual loss of policy X, namely L1(X), when
the actual cash balances are not b̂t but bt = b̂t+et, we can evaluate the impact
of the forecasting error in the actual cost-risk performance of the model.

As in the comparison example described in Section 8.4.3, we set an initial cash
balance b0 to a value 20% above bmin as a feasible but non-conservative initial
condition. Since we compare our BM to a trivial policy with the same initial
condition, this setting does not interfere in the conclusions derived from the
experiment. Then, given the cost structure described in equation (8.48), we
generated 100 replicates with different forecast samples of length five, equiv-
alent to more than two years of total planning horizon for each of the 54
companies. Since we consider ten error proportions, from an almost perfect
cash flow prediction to an unpredictable cash flow, we cover the whole range
of possible situations. As a result, we perform 54,000 experiments. Note also
that, for comparative purposes, we consider that every policy is fixed, i.e., it
cannot be modified during the planning horizon. In practice, the optimiza-
tion process would be repeated either when new information about actual cash
flows or when some error tolerances are exceeded.
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Company Min Max Mean Std Dev Length
1 -90,66 902,69 0,22 39,71 622
2 -565,06 626,55 3,09 65,35 544
3 -6.631,47 6.710,41 -7,44 414,08 935
4 -2.233,81 727,63 -0,88 170,28 893
5 -182,62 164,20 0,01 18,41 709
6 -689,70 562,69 -0,41 72,83 688
7 -300,09 829,05 0,26 65,52 555
8 -242,06 113,14 -0,14 31,89 789
9 -4.703,91 4.733,65 -3,10 658,57 754
10 -1.115,80 787,24 -1,89 83,55 788
11 -1.915,34 307,44 1,33 107,38 428
12 -615,77 7.713,80 -0,11 338,26 555
13 -1.183,62 2.274,46 -0,39 287,26 549
14 -769,28 927,11 -1,00 142,23 606
15 -551,11 556,13 0,39 114,95 696
16 -220,49 226,11 -0,50 18,25 577
17 -2.253,22 2.501,26 0,63 175,38 991
18 -287,58 263,61 -0,09 26,41 610
19 -161,73 154,82 -3,08 25,47 640
20 -150,00 160,38 -0,37 15,40 632
21 -700,00 531,66 -0,54 65,06 730
22 -2.442,94 1.388,74 -2,15 280,20 509
23 -2.898,68 2.898,68 -2,54 336,42 586
24 -3.025,05 3.178,51 -4,05 247,62 1285
25 -1.969,42 2.011,31 -0,39 174,53 600
26 -107,28 155,63 -0,05 18,64 708
27 -70,99 118,38 2,75 16,87 340
28 -324,81 390,08 -0,79 48,56 901
29 -900,41 558,88 -0,34 65,59 574
30 -188,79 198,15 -0,46 17,59 536
31 -1.344,75 349,45 -2,75 119,68 336
32 -359,16 245,04 2,71 48,77 860
33 -943,25 955,89 -1,18 78,27 670
34 -1.149,40 496,55 -1,39 108,36 1490
35 -410,71 291,91 -0,55 57,86 600
36 -78,72 118,40 4,45 18,64 357
37 -2.288,85 2.184,18 -10,16 180,89 497
38 -619,33 196,64 -11,18 67,60 193
39 -64,71 65,67 -0,11 11,66 829
40 -256,27 369,14 0,24 103,05 291
41 -626,65 643,39 -5,55 96,41 300
42 -370,21 368,46 0,47 23,11 749
43 -658,44 733,95 -0,37 131,40 832
44 -1.187,40 1.203,41 -1,83 115,28 378
45 -1.071,96 1.128,00 0,58 127,81 881
46 -511,63 738,32 10,06 75,56 411
47 -10.374,88 4.782,62 -22,94 723,62 532
48 -2.070,38 2.030,93 -5,58 255,32 581
49 -107,84 127,25 -2,07 19,96 573
50 -2.625,18 2.219,57 -2,45 351,19 374
51 -4.198,83 4.816,62 151,28 970,81 1222
52 -3.254,65 7.006,59 89,72 494,93 1220
53 -1.968,77 384,84 7,76 117,51 738
54 -10.213,56 15.321,00 9,61 1.124,10 589

Table 8.1: Data sets description. Figures in thousands of e.

203



Chapter 8. Boundless multiobjective models for cash management

Algorithm 5: Empirical evaluation algorithm
1 Input: Cash flow data set f with standard deviation σf ; cost structure β;
minimum balance bmin; planning horizon T ; error proportion p; number of
replicates r;

2 Output: Actual L1(X) loss of optimal policy X;
3 for each replicate r do
4 Set an initial balance b0;
5 Draw a sample of length T from f as a forecast vector f̂ ;
6 Obtain policy X that solves the BM model (8.36)-(8.44) for f̂ ;
7 Set σe = p · σf and draw an error sample e of length T from N (0, σe);
8 Set actual balances to bt = b̂t + et;
9 Compute actual loss L1(X) of policy X, actual balances bt and β;

10 end

8.5.3 Results and discussion

The results from the evaluation for all 54 companies grouped by error propor-
tion (p) are shown in Figure 8.4. We use median values instead of averages
as a way to reduce the impact of extreme values on averages. The results
show that actual cost-risk losses derived from the BM policy in comparison
to a trivial policy are minimum when near-to-perfect predictions are possible
(error proportion is 0.1). However, remarkable savings can be achieved for
higher but reasonable error proportions. In practice, one can consider that er-
ror proportions below 0.5 are achievable since a high percentage of cash flows
are usually known with certainty in the short-term due to payment agreements
with customers, suppliers, banks and employees.

It is also worth noting that efforts in improving forecasting accuracy are highly
rewarded using the BM. For example, consider a cash manager that is able to
achieve forecasting errors of, at most, 40% of the standard deviation of past
cash flows (p = 0.4), which can be considered a reasonable target. By using
predictions and our BM, we observe in Figure 8.4 that more than 20% of
the total loss can be saved. Going one step further, if the cost of obtaining
predictions is less than that 20%, our hypothetical cash manager should deploy
a BM. Summarizing, our BM proves to be significantly robust to forecasting
errors since remarkable cost-risk savings with respect to a trivial policy can be
obtained even for almost purely random cash flows. This fact must encourage
cash managers to produce better cash flow forecasts since improvements in
accuracy are highly rewarded.
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Figure 8.4: Median cost-risk loss of the BM for different forecasting errors.

8.6 Summary

In this chapter, we solve one serious limitation of cash management models
based on bounds: its difficulty to obtain optimal solutions. We here propose
to linearize the cash management problem in an attempt to provide a sound
mathematical programming framework that returns optimal policies. Once the
cash management problem is formulated as a linear program with both con-
tinuous and auxiliary binary variables, the bounds that determines the policy
of a BBM can be expressed as a set of additional constraints. We illustrate
this approach by providing a multiobjective reformulation of the Gormley and
Meade (2007) model within a compromise programming framework where cost
and risk (but possibly other) are goals to optimize.

Furthermore, we propose a new BM for multiobjective cash management which
departs from the state-of-the-art bound-based approach in the fact that is not
constrained by any particular form of policy. Since the ultimate goal of the
cash management problem is to find the best policy instead of a set of bounds
that determines the policy, we show that the constraints imposed by BBMs
are redundant and can be removed from the optimization problem.

Since forecasts are characterized by some prediction error, we also analyze
the impact of predictive accuracy in cost-risk performance of policies derived
from our BM showing that it is highly robust to forecasting errors. Note
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also that the methodology used to analyze the impact of forecasting errors
also supports decision-making by estimating the reward that can be obtained
through the use of better forecasts. Deployment costs can then be compared
to estimated savings to decide if further effort in improving predictive accuracy
is worthwhile.

In this chapter, we showed that the constraints imposed by these bounds are
not necessary. From the experiments performed, we found that significant
benefits can be achieved for reasonably low forecasting errors. This fact must
encourage cash managers to produce better cash flow forecasts since improve-
ments in accuracy can be converted into important savings as we showed in
Chapter 3. As an answer to Question 7, a new class of cash management
models is available to cash managers.

Question 7. Are control bounds really necessary in cash man-
agement?

Contribution 7. We proposed a new Boundless Model that
provides optimal policies using forecasts as a key input without
using bounds.

Recall that the solution to the cash management problem is a policy. How-
ever, the process to obtain the best policy is not straightforward. Within a
compromise programming framework, we next further elaborate on solving the
multiobjective cash management problem.
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Chapter 9

Compromise programming
models for cash management

In this chapter, we address the cash management problem from a multiob-
jective perspective by considering not only the cost but also the risk of cash
policies. We pay attention to the pros and cons of alternatives risk measures
and its implications for solving the cash management problem. To this end,
we rely on compromise programming as a method to minimize the sum of
weighted distances to an ideal point where both cost and risk are minimum.
Furthermore, we illustrate three different solvers for compromise programming
models.

9.1 Motivation

Recall that the multiobjective cash management problem (MOCMP) can be
defined as a decision making problem in which, given a set of past cash flow
observations determining an initial cash balance, the goal is to find the best se-
quence of control actions, which is called a policy, in terms of cost and risk. We
here rely on compromise programming (CP) (Zeleny, 1982; Yu, 2013; Ballestero
and Romero, 1998; Ballestero and Pla-Santamaria, 2004) as a suitable tech-
nique to derive the best policies by minimizing weighted distances to an ideal
point, where both cost and risk independently take minimum values subject to
the restrictions of the problem. Under the CP framework, these weights reflect
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the particular preferences of cash managers. An important advantage of CP
in practical applications is the possibility to specify these preferences in a de-
ployment phase. Then, we follow a two-step decision-making process in which
we present alternatives before selection. In the context of cash management, a
set of alternative policies is obtained in a learning phase and presented to cash
managers. Later, a policy is selected according to their particular preferences
in a deployment phase.

From the general formulation of the MOCMP introduced in Chapter 5, we
consider a cash balance that starting at an initial value fluctuates according to
a particular cash flow process in absence of control actions. At any time, cash
managers can take a control action by increasing/decreasing the cash balance
but paying a transaction cost. The resulting cash balance at the end of a
particular time period is finally determined by the control action and the net
cash flow occurred and it is charged with some holding cost. Since risk analysis
is incorporated in the MOCMP, we pay particular attention to the pros and
cons of different risk measures, such as the variance or the semivariance of
daily costs. Moreover, we focus on the problem of estimating large losses as
an issue of special concern for cash managers by defining novel risk measures
that are able to capture the effect of large losses.

Once cash managers have defined the set of decision criteria, usually cost and
risk but may be others, and the particular objective functions that best fit
their requirements, they are in a position to use CP to find and select the
best policies that solve the MOCMP. To this end, we consider three different
solvers to cover a wide range of possible situations: (i) Monte Carlo methods;
(ii) linear programming (LP); and (iii) quadratic programming (QP). Monte
Carlo methods allow for a simulation strategy presenting policies before se-
lection according to the particular risk preferences of cash managers. On the
other hand, the linear and quadratic programming counterparts of compromise
programming models result in an more automated decision-making technique
when preferences and the extreme values of both cost and risk objectives can
be reasonably estimated by cash managers.

Consider again the formulation of the MOCMP described in Chapter 5. Given
an initial cash balance b0, the solution to the CMP, namely, the policy X, that
minimizes the sum of transaction and holding costs, up to time step n, can be
obtained by solving the following optimization problem:

minC(X) = min
n∑
t=1

(
Γ(xt) +H(b̂t)

)
(9.1)
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subject to:
b̂t = b̂t−1 + f̂t + xt (9.2)

b̂t ≥ 0 (9.3)

xt ∈ S (9.4)

t = 1, 2, . . . , n. (9.5)

Since cash managers usually discard policies including overdrafts, we restrict
the feasibility space to non-negative cash balances which is equivalent to set
u = ∞ in equation (5.4). Set S contains all possible transactions determined
by the cash management model, e.g., the cash management model proposed by
Miller and Orr (1966), which is based on two bounds and a target level. Nev-
ertheless, not only cost but also risk deserves the attention of cash managers.
Cost reductions are achieved by reducing cash balances but, at the same time,
the risk of an overdraft increases. As a result, given a cost structure and an
initial cash balance, we aim to solve the MOCMP by finding the best policy
X, that delivers the best combination in terms of cost and risk over a planning
horizon of n time steps:

min
X

[C(X), R(X)] (9.6)

subject to X ∈ S, where C(X) and R(X) denote general cost and risk func-
tions, respectively. In order to include risk in the analysis of cash policies, we
next consider alternative measures of risk.

9.2 Risk analysis in cash management

In this section, we aim to answer the question: how can we measure risk in
cash management? To this end, we first provide a basic framework for risk
analysis in cash management. Next, we define a number of risk measures, and
we finally summarize the pros and cons for each of the suggested risk measures.

9.2.1 Measuring risk in cash management

One may hypothesize that risk is incorporated in the decision-making process of
cash management by considering high penalty costs on negative cash balances.
This view implies that high cost policies are also high risk policies. However,
within the range of low cost policies, decision makers may prefer, for instance,
policies with the lowest variability in cost due to the less uncertainty involved.
In this section, we aim to answer the question: how can we measure risk
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in cash management? Intuitively, risk is associated to uncertainty, danger,
chance of loss or damage. It is not the damage itself but the chance of it,
the possibility of occurrence. A general definition of risk in a financial context
can be found in McNeil, Frey, and Embrechts (2005), who consider risk as any
event or action that may adversely affect an organization’s ability to achieve
its objectives and execute its strategies. To some extent, managers can choose
the risks that a business takes (Brealey and Myers, 2003). Quantitatively,
risk is also linked to unexpected losses. For example, risk management is an
important task in investment because different assets offer different degrees of
risk. In the well-known mean-variance model for portfolio selection proposed
by Markowitz (1952), profitability is measured by the mean of returns, and
risk by the variance of returns over a given period of time in the past.

The notion of risk is closely related to the concept of randomness. In cash
management, randomness is introduced by the particular variability of future
cash flows. For example, suppose that two different cash managers operate
under the same cost scenario given by current bank conditions. Suppose also
that, at the end of the year, total cash management costs are exactly the
same for both of them. Who did better? Apparently, the answer is that both
performed equally well. However, if we are told that one of the cash managers
deals with very stable and foreseeable cash flows and the other one faces highly
variable and unpredictable cash flows, the answer will be different. In practice,
there are different approaches to measure risk in a financial context (McNeil,
Frey, and Embrechts, 2005):

1. Notional-amount approach. For instance, the risk of a portfolio of assets
is defined as the sum of the notional values of the individual assets of a
portfolio. In this case, the higher the values the higher the risk.

2. Factor-sensitivity measures. These measures provide the change in value
associated to a given change in one of the underlying risk factors. For
instance, the greeks in portfolios of derivatives.

3. Scenario-based measures. In this approach, a number of future scenarios
are considered, e.g., a 10% increase in the USD/EUR exchange rate. Risk
is then measured by the the maximum loss produced under all scenarios
considered.

4. Risk measures based on loss distributions. These measures are based on
statistical quantities that describe the distribution of a random variable
over a given period of time. Examples include the Value-at-Risk, the
Conditional Value-at-Risk and the variance, which we here accommodate
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to a cash management context. All of them summarize in a single value
the risk contained in a distribution modeling loss.

9.2.2 Alternative measures of risk

Since most modern risk measures are based on loss distributions (McNeil, Frey,
and Embrechts, 2005; Glasserman, 2003), we next consider risk measures for
cash management based on loss distributions. To model risk from a probabilis-
tic approach, let c be a cost random variable on the probability space defined
by (Ω, C, P ). An element c in Ω is a realization of an experiment, C is the set
of all possible events and P is the probability of an event. Consider that c(xt)
is a general cost function c : X×T → R, that associates a cost to each control
action xt in policy X deployed at time t ∈ T . The probability that random
variable c(xt) is below some value c0 is given by the cumulative distribution
function:

Fc(c0) = P (c(xt) ≤ c0). (9.7)

Thus, we first propose to measure the risk of policy X as the probability that
c(xt) is above c0, given by:

P (c(xt) ≥ c0) = 1− Fc(c0). (9.8)

Similarly to the definition of Value-at-Risk (McNeil, Frey, and Embrechts,
2005), we here suggest to synthetically describe this cumulative distribution
function by its moments such as the mean and variance, or by a quantile such
as the Cost-at-Risk.

Definition 16. The Cost-at-Risk (CaR) of a cash policy X at a confidence
level α ∈ [0, 1] is given by the smallest number c0 such that the probability
that the cost c(xt) exceeds c0 is no larger than 1− α, formally:

CaR(X, c, α) = inf{c0 ∈ R|P (c(xt) ≥ c0) ≤ 1− α}, ∀xt ∈ X (9.9)

or alternatively:

CaR(X, c, α) = inf{c0 ∈ R|Fc(c0) ≥ α}, ∀xt ∈ X. (9.10)

Notice that the CaR of policy X depends on the definition of cost function c
and threshold α. Typical values for α are 0.95 or 0.99. Figure 9.1 illustrates the
notion of CaR. Say that from a number of experiments, the empirical average
daily cost is distributed as shown in the figure. As an example, assume also
that a Weibull distribution (Weibull et al., 1951) is the function that best fits
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the empirical data. If α is 0.95, we can then expect that the cost exceeds 2200
with probability 0.05.

Probably the major drawback of CaR is that it does not provide informa-
tion about the severity of losses beyond c0. In the usual case of heavy-tailed
distributions, the estimation of large losses is an important question to be
considered. In the example of Figure 9.1, the last two bars could be located
at points 5000 an 5500 and the CaR would remain unaltered. Significant
advantages over CaR are provided by the Conditional Cost-at-Risk (CCaR)
measure, which we define as the conditional excess expectation, similarly to
the definition of Conditional Value-at-Risk in Rockafellar and Uryasev (2002).

Definition 17. We define the Conditional Cost-at-Risk (CCaR) value of a
cash policy X at a confidence level α ∈ [0, 1] as:

CCaR(X, c, α) = E[c(xt)|c(xt) > c0], ∀xt ∈ X. (9.11)

where c0 is the cost such that the probability that c(xt) exceeds c0 is no larger
than 1− α.

An additional advantage of CCaR is that it is a coherent measure of risk in
the sense of Artzner et al. (1999). In practice, when r out of n realizations
{c(x1), . . . , c(xr)} of a given policy X are above c0, the CCaR value can be
obtained as:

CCaR(X, c, α) = E ({c(x1), . . . , c(xr)}) = c0+
1

r

n∑
t=1

max(c(xt)−c0, 0) (9.12)

Alternatively, the problem of large losses is also taken into account by using
variance as a risk measure. Variance has been extensively used in financial con-
texts due to the mean-variance portfolio selection model by Markowitz (1952).
Moreover, its simplicity and ease of computation in experimental environments
makes variance a good risk measure. Common criticism to the use of variance
points out that it makes no distinction between positive and negative devi-
ations. However, this drawback can be easily solved by using semivariance
or upside/downside deviation as in Ballestero (2005) and Pla-Santamaria and
Bravo (2013). In the context of cash management, we propose to calculate the
risk of a policy X by computing the variance of daily costs as follows:

Definition 18. The variance (V ) of a cash policy X deployed over n time
steps is obtained as:

V (X, c) =
1

n

n∑
t=1

(c(xt)− E (c))2, ∀xt ∈ X. (9.13)
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Figure 9.1: Probability density function fitted to the empirical histogram of a cost random
variable and its CaRα quantile.

where E (c) is the expected cost of policy X over n.

The underlying assumption on the use of variance is that the more disperse
the costs within a policy around the expected cost, the higher the risk of the
policy. However, since cash managers are probably more interested in upside
deviations of cost rather than downside deviations, an upper partial moment
such as the semivariance may be considered as an alternative measure of risk.
Following McNeil, Frey, and Embrechts (2005), given an exponent k and a
reference point c0, we here propose an additional measure of risk for a policy
X as follows:

Definition 19. The k-Upper Partial Moment (UPM) with respect to c0 of a
cash policy X is obtained as:

UPM(X, c, k, c0) =

∫ ∞
c0

(c− c0)kdFc (9.14)

where Fc is the cumulative distribution of the density function of cost c.

Note that if k = 0, then UPM(X, c, 0, c0) = P (c ≥ c0), is the probability that
the cost exceeds the reference c0. Additionally, if k = 1, then UPM(X, c, 1, c0)
is the expected upper deviation of cost from the reference c0. Finally, when
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k = 2 and c0 is set to the expected cost, then UPM(X, c, 2, E (c)) is the upper
semivariance of cost. However, since common planning and control practices
in most organizations are typically performed in discrete intervals indexed by
time step t, the UPM(X, c, k, c0) can be computed in discrete time as:

UPM(X, c, k, c0) = E
(
(max{c(xt)− c0, 0})k

)
(9.15)

9.2.3 Summary of risk measures

As a summary, the pros and cons for the aforementioned risk measures are
presented in Table 9.1. When dealing with risk, cash managers are usually
concerned not only with average variation but also with abnormal or extreme
values (McNeil, Frey, and Embrechts, 2005; Glasserman, 2003). The risk of
large losses must then be considered and, although CaR considers heavy tails,
it does not provide information about the severity of large losses. Thus CCaR,
variance or UPM can be used instead. The use of standard deviation is pre-
ferred to variance because it presents the same units as cost, i.e., money units,
and numerical comparisons are then possible. However, a drawback must be
pointed out against variance or standard deviation since there is no distinction
between positive and negative deviations. This problem is easily solved by
considering UPM , such as the upper semivariance. Non-linearity is another
important aspect to be considered, specially when using this measure as part
of an objective function to be minimized. Linear objective functions and linear
constrains are usually preferred in mathematical programming. In this sense,
the CCaR value should be considered as a good risk measure since it can be
easily expressed as a linear function in an optimization problem.

Measure Advantages Disadvantages

Cost-at-Risk Considers heavy tails No large losses
Conditional Cost-at-Risk Large losses and linear Selection of cost c0
Variance Large losses Symmetric, quadratic
Upper partial moments Large losses Non-linear for k ≥ 2

Table 9.1: Advantages and disadvantages of alternative risk measures.

In what follows, we focus on risk measures that allow to formulate the MOCMP
as a linear program such as the CCaR, or as quadratic program such as vari-
ance or standard deviation. Notice that by using an empirical statistic, no
assumption on the underlying probability distribution is required.
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9.3 Compromise models to solve the MOCMP

Recall that we aim to derive cash policies that minimize a weighted loss func-
tion in which both cost an risk are desired objectives. To this end, we rely on
compromise programming models and three different solvers: (i) Monte Carlo
methods; (ii) linear programming; and (iii) quadratic programming. While
Monte Carlo methods provide approximate solutions, both linear and quadratic
programming guarantee the optimality of solutions.

Compromise programming is based on the concept of ideal point and the Ze-
leny’s axiom of choice (Zeleny, 1974), which states that alternatives that are
closer to the ideal are better than those that are further. The concept of ideal
point is at the core of compromise programming. When less is better, the
minimum values for each objective subject to the constraints of the problem
determine the ideal point. In the context of the MOCMP, the ideal point in
a bidimensional cost-risk space is the point with zero cost and zero risk that
simultaneously minimizes C(X) and R(X) in objective function (9.6). Since
this ideal point is usually unfeasible, it is necessary to look for compromise
solutions by minimizing the distance to this ideal point. A general distance
function between two bidimensional points P1 = (x1, y1) and P2 = (x2, y2) is
the Minkowski distance of order h, defined as:(

|x1 − x2|h + |y1 − y2|h
)1/h

. (9.16)

By computing the distance between the ideal point (0, 0) and any particular
point, we are in a position to determine whether a given solution is better than
another one. However, when the scale used to measure goals is different, in
order to avoid a meaningless comparison, each goal has to be normalized. In
the MOCMP, we can define a cost index (θ1) and a risk index (θ2) as follows:

θ1(X) =
C(X)− Cmin
Cmax − Cmin

(9.17)

θ2(X) =
R(X)−Rmin
Rmax −Rmin

(9.18)

where Cmax (Rmax) and Cmin (Rmin) are, respectively, the maximum and min-
imum values of cost function C (risk function R) subject to the constraints
of the problem. Note that due to normalization θ1, θ2 ∈ [0, 1]. Consequently,
the closer to the ideal point (0, 0), the better the solution. Moreover, when
considering particular goal preferences, weighted distances must be computed
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instead. From that, CP proposes a family of normalized distance functions
including weights that determine the decision-maker’s risk preferences as:

Lh =
[
wh1 · θh1 + wh2 · θh2

]1/h
. (9.19)

Note that L1 is the Manhattan distance; L2 is the Euclidean distance, and L∞
is the Chebyshev distance. They are the most used distances in practice for
interpretation and computational reasons (Ringuest, 1992; Ballestero, 2007).
On the other hand, weights w1 and w2 in equation (9.19) reflect the particular
preferences of cash managers. As a result, considering Manhattan distances to
avoid non-linearity, we can formulate the MOCMP as the following CP model:

min [w1 · θ1(X) + w2 · θ2(X)] (9.20)

X ∈ S. (9.21)

Next, we consider three alternative methods to solve the MOCMP: (i) Monte
Carlo methods; (ii) linear programming; and (iii) quadratic programming. We
prefer Monte Carlo methods when exploring alternatives within a bounded set,
when the specific cost/risk preferences are not known in the learning phase,
or when there are reasonable doubts about the minimum/maximum values
in (9.17) and (9.18). However, if we can express the objectives and the con-
straints in (9.20)-(9.21) as linear functions, and we know both weights w1 and
w2, and the extreme values in (9.17) and (9.18), we can automate the cash
management decision-making process by solving the MOCMP without cash
managers’ intervention using linear programming. In addition, if any of the
objective functions is quadratic (e.g., when using variance as a measure of risk),
we can use quadratic programming. As a result, we can solve both linear and
quadratic programs using state-of-the-art solvers such as CPLEX or Gurobi.

9.3.1 Solving the MOCMP by Monte Carlo methods

Monte Carlo methods allow for a simulation strategy presenting policies be-
fore selection according to the particular risk preferences of cash managers.
In Chapter 5, we followed a very similar procedure that we retrieve now for
comparative purposes. Recall that we aim to solve the multiobjective problem
described in (9.20)-(9.21). Assume also that we want to deploy a policy of the
Miller and Orr (1966) type based on three control bounds: a lower bound l1,
a target level l2 and an upper bound l3. Cash balances are allowed to wander
around between bounds l1 and l3, and when any of these bounds is reached,
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a control action is taken to restore the cash balance to the target level as
described in the following expression:

xt =


l2 − b̂t−1, if b̂t−1 > l3
0, if l1 ≤ b̂t−1 ≤ l3
l2 − b̂t−1, if b̂t−1 < l1

(9.22)

where b̂t−1 is the cash balance previous to control action xt.

As a result, under the framework of compromise programming for L1 in equa-
tion (9.19), solving the MOCMP for a given planning horizon of n time steps
is equivalent to finding the set {l1, l2, l3}, which minimizes the weighted Man-
hattan distance to the ideal point (0, 0):

min

[
w1 ·

C(X)− Cmin
Cmax − Cmin

+ w2 ·
R(X)−Rmin
Rmax −Rmin

]
(9.23)

subject to:
b̂t = b̂t−1 + f̂t + xt (9.24)

where X = {xt : t = 1, 2, . . . , n} with xt according to equation (9.22) and
bounds satisfying 0 ≥ l1 ≥ l2 ≥ l3. We here measure cost by the average daily
cost and risk by the standard deviation of daily cost as follows:

C(X) = E(C) =
1

n

n∑
t=1

c(xt) (9.25)

R(X) =

(
1

n

n∑
t=1

(c(xt)− E(C))
2

)1/2

. (9.26)

An advantage of CP in practical applications is the possibility to specify these
preferences in a deployment phase. Then, we follow a two-step decision-
making process in which alternatives are presented before selection. Thus,
since weights w1 and w2 are unknown at this point, we aim to obtain a Pareto
efficient set of solutions (Yu, 2013). In other words, we want to derive an
efficient frontier with the set of daily policies X, which are not dominated by
any other policy in terms of cost and risk. Indeed, in this context, all policies
are dominated by the policy with the lowest risk from the cost perspective.
Likewise, from the risk perspective, all policies are dominated by the policy
with the lowest cost. A suitable and simple method to obtain this efficient
set is Monte Carlo simulation (Glasserman, 2003). Monte Carlo methods are
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based on performing a high number of random experiments that are later eval-
uated in some outcome domain. The law of large numbers ensures that the
estimations derived from this analysis converge to real values as the number of
experiments increases. An example of a Monte Carlo method is summarized
in the steps detailed in Algorithm 6.

Algorithm 6: Montecarlo method to solve the multiobjective cash manage-
ment problem

1 Inputs: Model m; set of goals indexes θi; cost context β; cash flow data set
F ; time period n; replicates r;

2 Output: Estimation of the context efficient set of solutions;
3 for each replicate do
4 Generate a random solution X;
5 for each goal do
6 Compute gi(X);
7 end
8 end
9 for each goal do

10 Compute θi ;
11 end
12 Compute the efficient set;

As an illustrative example, consider a cost context β defined by the following
cost scenario: γ+

0 = γ−0 = 200 e, γ+
1 = 0.1%, γ−1 = 0, v = 0.1%, u = 30%.

Assume also the following sequence of expected cash flows (F̂ ) starting at an
initial cash balance of 20, all figures in millions of euros:

F̂ = [1, 1, 6,−1,−3,−3,−9, 6, 4, 6, 3, 4, 1,−1,−2, 2] . (9.27)

After applying Algorithm 6 with 10,000 replicates to our example, we obtain
the efficient set summarized in Table 9.2. A visual representation of the efficient
frontier derived from the (θ1, θ2) values in Table 9.2 is shown in Figure 9.2.
As expected, there is a cost-risk tradeoff and lower costs can only be achieved
by accepting higher risks. Thus, we can obtain a compromise solution by
minimizing, for example, the Manhattan distance to the ideal point (0, 0). In
the next step, cash managers have to choose a policy from the efficient frontier
according to their risk/cost preferences. In the case of unbiased preference
for cost or risk, i.e., w1 = w2, the best solution to our example is policy 2
with control bounds 1, 11 and 20. However, a conservative cash manager may
choose policy 4 in order to reduce risk but accepting a higher cost.
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Id l3 l2 l1 Cost Risk θ1(cost) θ2(risk) θ1 + θ2
1 20 10 1 12963 5687 0,00 1,00 1,00
2 20 11 1 14275 4626 0,14 0,33 0,47
3 20 12 0 15213 4541 0,25 0,27 0,52
4 20 13 4 16150 4467 0,35 0,23 0,58
5 28 13 13 21400 4162 0,93 0,03 0,96
6 28 14 13 22025 4108 1,00 0,00 1,00

Table 9.2: Example efficient set for a Miller-Orr model with three levels.

The closer to the ideal point (0, 0), the better the policy. However, not all poli-
cies are relevant to the decision-maker according to their risk preferences. As
suggested in Ballestero (1998), we can express risk preferences as a parameter
r0 ∈ R+, equivalent to the number of marginal units of risk (θ2) that the cash
manager is willing to accept in order to achieve a decrease of one marginal unit
of cost (θ1). Linking r0 and (w1, w2), if r0 = 0.5, a conservative cash manager
is willing to accept only 0.5 units of risk for each unit of decreased cost, then
w1 = 0.33 and w2 = 0.67.
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Figure 9.2: Example of efficient set.

Moreover, it is proven that the utility optimum for a decision-maker lies on
the normalized efficient frontier between points L and L∞. On the one hand,
bound L is the point minimizing the linear loss function r0θ1 + θ2 on the
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normalized efficient frontier. On the other hand, bound L∞ is the intersection
of θ1 = θ2 with the efficient frontier. For instance, consider a conservative cash
manager with r0 = 0.5. From Table 9.2, bound L, with minimum r0θ1 + θ2, is
policy 3, and bound L∞, when cost index θ1 approximately equals risk index
θ2, coincides with policy 3. However, when the specific risk preferences of
cash managers are known (or known to lie in a given interval), and there is
no reasonable estimation doubt about the minimum/maximum values for both
cost and risk, a more straightforward procedure can be followed by relying on
linear or quadratic programming.

9.3.2 Solving the MOCMP by linear programming

From the set of alternative risk measures considered in Section 9.2.2, consider
now CCaR as a measure of risk. Recall that CCaR is defined as the expected
cost above a given reference c0. Thus, minimizing CCaR is equivalent to
minimizing the sum of positive cost deviations from cost reference c0, which
can be cast as a Goal Programming (GP) model (Abdelaziz, Aouni, and El
Fayedh, 2007; Aouni, Colapinto, and La Torre, 2014). GP aggregates multiple
objectives to obtain the solution that minimizes the sum of deviations between
achievement and the aspiration levels of the goals. Then, we proceed as follows:

1. We define the goals that are relevant for the cash manager, e.g., cost and
risk.

2. We set the aspiration level or target (τi), for each goal gi, with 1 ≤ i ≤ q.

3. We introduce both positive (δ+i ) and negative (δ−i ) deviation auxiliary
variables to connect individual goal achievement and targets.

In the GP setting, the particular risk preferences of cash managers can be
incorporated to determine the relative importance of each goal by means of
a set of positive (w+

i ) and negative weights (w−i ). Then, a general Weighted
Goal Programming (WGP) model is expressed as follows:

min
q∑
i=1

(w+
i δ

+
i + w−i δ

−
i ) (9.28)

subject to:
gi + δ−i − δ+i = τi (9.29)

δ−i , δ
+
i ≥ 0, i = 1, 2, . . . , q. (9.30)
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It is important to highlight the close link between CP and GP models. Indeed,
a CP minimization problem for Manhattan distances (h = 1) is analytically
equivalent to a GP problem when both target values (τi) and negative devia-
tions (δ−i ) are set to zero, and positive deviations are set to:

δ+i = θi =
gi − gmin,i

gmax,i − gmin,i
. (9.31)

Let us consider again our MOCMP with two goals, namely, cost and risk,
aggregated through the CP model in (9.20)-(9.21). As described in Chapter 8,
note that cost function c(xt) in equation (8.1) can be linearized by rewriting
control action xt as the difference of two non-negative variables:

xt = x+
t − x−t . (9.32)

subject to the following constraints:

m · z+t ≤ x+
t ≤M · z+t (9.33)

m · z−t ≤ x−t ≤M · z−t (9.34)
where M(m) is a very large (small) number in order to ensure that z+t = 1
when x+

t occurs and that z−t = 1 when x−t occurs. Furthermore, we impose
z+t + z−t ≤ 1 to avoid the simultaneous occurrence of x+

t and x−t . As a result,
we can rewrite c(xt) as follows:

c(xt) = γ+
0 · z+t + γ+

1 · x+
t + γ−0 · z−t + γ−1 · x−t + v · b̂t. (9.35)

Then, after reasonably setting Cmin and Rmin to zero, due to the fact that zero
cost and zero risk can be independently achieved, we define the following cost
and risk indexes for policy X:

θ1(X) =
1

Cmax

n∑
t=1

c(xt) =
1

Cmax

n∑
t=1

(
Γ(xt) +H(b̂t)

)
(9.36)

θ2(X) =
1

Rmax

n∑
t=1

δ+t , (9.37)

where δ+t is the positive deviation from a given cost reference c0, equivalent to
CCaR. Thus, we formulate the following LP model using the total cost as a
measure of cost, and CCaR as a measure of risk:

min

[
w1

Cmax

n∑
t=1

c(xt) +
w2

Rmax

n∑
t=1

δ+t

]
(9.38)
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subject to:
b̂t = b̂t−1 + f̂t + xt (9.39)

xt = x+
t − x−t (9.40)

c(xt) = γ+
0 · z+t + γ+

1 · x+
t + γ−0 · z−t + γ−1 · x−t + v · b̂t (9.41)

z+t + z−t ≤ 1 (9.42)

m · z+t ≤ x+
t ≤M · z+t (9.43)

m · z−t ≤ x−t ≤M · z−t (9.44)

c(xt)− δ+t ≤ c0 (9.45)

b̂t ≥ bmin (9.46)

w1 + w2 = 1 (9.47)
n∑
t=1

c(xt) ≤ Cmax (9.48)

n∑
t=1

δ+t ≤ Rmax (9.49)

z+t , z
−
t ∈ {0, 1} (9.50)

x+
t , x

−
t , b̂t, δ

+
t ≥ 0 (9.51)

where the main decision variables are control actions x+
t and x−t . In practice,

Cmax and Rmax can be regarded as budget limitations for both cost and risk,
leading to unfeasible policies when these constraints are not satisfied.

Since we use forecasts, cash managers may be interested to protect themselves
against forecasting errors. This protection can be achieved through a min-
imum cash balance bmin. For instance, by setting a minimum cash balance
equivalent to the maximum forecasting error, we transform an optimization
problem affected by uncertainty into its robust counterpart as proposed by
Soyster (1973) and Ben-Tal, El Ghaoui, and Nemirovski (2009). It is also im-
portant to highlight that we do not impose any additional constraint on the
form of the policy xt ∈ X, apart from non-negativity. We refer to that kind
of policies as being produced by a boundless cash management model. When
using alternative cash management models, a number of additional constraints
must be considered to define the set of feasible policies (S).

As a numerical example, consider again the cost context β, and the set of
expected cash flows (F̂ ) for the next n = 16 days detailed in Section 9.3.1.
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Using total cost as a measure of cost and CCaR as a measure of risk, we can
solve the MOCMP by minimizing (9.38), with 96 decision variables detailed as
follows:

• 16 ordering transactions x+
t ;

• 16 returning transactions x−t ;

• 16 auxiliary binary variables z+t for fixed costs of ordering transactions;

• 16 auxiliary binary variables z−t for fixed costs of returning transactions;

• 16 expected cash balance variables b̂t;

• 16 positive deviation variables δ+.

Assume that a cash manager is biased for cost such that w1 = 0.67 and
w2 = 0.33. For precautionary purposes, she sets a minimum cash balance of
two standard deviations of the expected cash flow (bmin = 7). The solution of
this MOCMP results in the optimal cash policy and balance shown in Figure
9.2. This policy produces a total cost of 133,600 e, equivalent to an average
daily cost of 8,350 e, and a total risk of of 10,800 e, in terms of CCaR with re-
spect to cost reference c0 = 8, 000 e, representing a combined 62% of the total
maximum budget constraints determined by Cmax = 0.15 and Rmax = 0.15,
both figures in millions of euros.
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Figure 9.3: Policy and balance for the example using LP.
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9.3.3 Solving the MOCMP by quadratic programming

Consider now daily cost variance as a measure of risk. We denote c as an n×1
vector of daily costs, and d as a n × 1 vector of cost deviations around the
average which can be computed as:

d = c− 1 · 1T · c
n

(9.52)

where 1 is an n × 1 vector of ones. Cash managers aiming to minimize only
cost variance, or tantamount standard deviation, can derive optimal policies
through the following quadratic objective function:

min
dT · d
n

(9.53)

Similarly to Section 9.3.2, let us consider an n×1 vector of positive (negative)
transactions x+(x−) and an n× 1 vector of expected balances b̂. We can then
rewrite the state transition law in equation (9.39) in matrix notation as follows:

b̂ = b̂0 + L ·
(
f̂ + x+ − x−

)
(9.54)

where b̂0 is an n × 1 vector with all entries set to the initial cash balance,
and L is an n × n lower triangular matrix with elements lij = 1 for all i ≥ j.
Furthermore, vector c can be computed by means of the following expression:

c = γ+
0 · z+ + γ+

1 · x+ + γ+
0 · z− + γ−1 · x− + v · b̂ (9.55)

where z+, z− ∈ Bn are, respectively, n × 1 vectors of positive and negative
binary variables, and Bn is an n-dimensional binary space. As a result, we
can aggregate average cost and variance as a measure of risk to formulate the
MOCMP as the following quadratic program:

min

[
w1

Cmax

1T · c
n

+
w2

Rmax

dT · d
n

]
(9.56)

subject to:
b̂ = b̂0 + L ·

(
f̂ + x+ − x−

)
(9.57)

c = γ+
0 · z+ + γ+

1 · x+ + γ+
0 · z− + γ−1 · x− + v · b̂ (9.58)

d = c− 1 · 1T · c
n

(9.59)
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9.3 Compromise models to solve the MOCMP

z+ + z− ≤ 1 (9.60)

m · z+ ≤ x+ ≤M · z+ (9.61)

m · z− ≤ x− ≤M · z− (9.62)

b̂ ≥ bmin (9.63)

1T · c
n
≤ Cmax (9.64)

dT · d
n
≤ Rmax (9.65)

x+,x−, b̂ ∈ Rn+ (9.66)

z+, z+ ∈ Bn (9.67)

w1 + w2 = 1 (9.68)

where vectors x+(x−) are the main decision variables; bmin is an n× 1 vector
with all elements set to a given minimum balance.

Following with our running example with w1 = 0.67 and w2 = 0.33 and bmin =
7, if we set Cmax = 0.15 and Rmax = 10 millions of euros, we obtain the optimal
cash policy and balance shown in Figure 9.4. This policy produces a total cost
of 140,150 e, equivalent to an average daily cost of 8,787 e, and a total risk in
terms of variance of 3,970,029, equivalent to a standard deviation of 1,992 e.
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Figure 9.4: Policy and resulting cash balance for the example using QP.

As a summary of the MOCMP solvers, some additional comments must be done
on the pros and cons of the previous techniques. First, the selection of Rmax
could be tricky in the LP and QP approaches due to the difference in scale of
concepts such as CCaR or variance. When using variance as a measure of risk,
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Chapter 9. Compromise programming models for cash management

standard deviation is a more known concept that can be used as a proxy to
set the maximum accepted risk in terms of variance by squaring the maximum
standard deviation value. In addition, when cash managers require to analyze
either quantitatively or graphically the impact of h in equation (9.19) as well
as of risk preferences, the Monte Carlo approach is a more suitable alternative.
Otherwise, a more automated decision-making procedure can be followed by
solving the MOCMP using linear or quadratic programming.

9.4 Summary

Within a dynamic context characterized by increasing uncertainty, cash man-
agers can be empowered by following an integrated approach in which not only
cost but also risk are optimized. To this end, we propose alternative measures
to incorporate risk analysis into a multiobjective formulation of the cash man-
agement problem. We pay particular attention to the problem of estimating
large losses as an issue of special concern for cash managers. As a result, apart
from usual measures of risk such as variance or standard deviation, we intro-
duce CaR, CCaR, and UPM as suitable measures to capture the effect of
large losses.

To solve the MOCMP, we rely on a general compromise programming frame-
work to find policies that minimize weighted distances to an ideal (but usually
unfeasible) point of zero cost and zero risk. Once the cost and risk objective
functions are defined, we propose three different solvers within the framework
of compromise programming: (i) Monte Carlo methods; (ii) linear program-
ming; and (iii) quadratic programming. We also make publicly-available the
Python code for the three solvers used in the numerical examples 1. This
represents a starting point for practitioners interested in either designing cash
management decision support systems or performing their own experiments in
multiobjective cash management.

An important feature of the different techniques used to solve the cash man-
agement problem is the optimality of solutions. On the one hand, two-stage
Monte Carlo methods require intervention of cash managers to choose policies
and do not guarantee the optimality of solutions. On the other hand, the linear
and quadratic programming counterparts of compromise programming models
provide optimal solutions when risk preferences and both cost and risk max-
imum budgets can be reasonably estimated by cash managers. These results
allowed us to answer a new open research question.

1https://github.com/PacoSalas/Empowering-cash-managers-CP
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9.4 Summary

Question 8. Can we obtain optimal solutions for the multi-
objective cash management problem?

Contribution 8. Under the framework of compromise pro-
gramming, we provided linear and quadratic models and solvers
of the cash management problem obtaining optimal solutions.

Within the second part of this thesis, we have considered optimization tech-
niques for the common two-assets setting in which idle balances from a single
cash account are allocated in an single investment asset. In the following two
chapters of this thesis, we extend the analysis to cash management systems
with multiple bank accounts.
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Managing multiple bank accounts





Chapter 10

Robust cash management with
multiple bank accounts

In this chapter, we approach the cash management problem from a multidi-
mensional perspective. We first provide a formal specification of the cash man-
agement problem with multiple bank accounts along with theoretical results
characterizing cash management systems. We also adapt our initial formula-
tion to provide two alternative robust counterparts of the problem in order
to deal with the uncertainty introduced by cash flow forecasts. In addition,
we propose a third and novel two-stage cost-sensitive robust optimization for-
mulation that considers asymmetric estimation costs. We finally illustrate its
utility through a case study using real data from an industrial company.

10.1 Motivation

Cash managers usually deal with multiple banks to receive payments from
customers and to send payments to suppliers, employees and other creditors.
Operating such a cash management system implies a number of transactions
between accounts to maintain the system in a state of equilibrium, meaning
that there exists enough cash balance to face payments and avoid an overdraft.
Hence, a cash management system can be viewed as a set of bank accounts and
their relationships. Multidimensional schemes such as cash management sys-
tems have received little attention from the research community. Only Baccarin
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Chapter 10. Robust cash management with multiple bank accounts

(2009) proposed an impulse control approach for multiple bank accounts but
restricted to continuous fluctuations of cash balances given by homogeneous
diffusion processes. However, the assumption of a continuous time diffusion
cash flow process and the difficulty to extend the analysis to more complex
and realistic cash management systems are serious limitations.

On the other hand, the use of forecasts in the cash management problem was
introduced by Stone (1972) and, more recently, Gormley and Meade (2007)
and Salas-Molina et al. (2017) showed the utility of cash flow forecasts in the
cash management problem. From these results, one may conclude that cash
flow forecasts represent a key input in cash management. As a result, we here
consider cash flow forecasts to both formalize and solve the cash management
problem with multiple bank accounts. To the best of our knowledge, there is
a lack of a formal specification for cash management systems with multiple
bank accounts including short-term cash flow forecasts as a key input. Hence,
we here propose a tool to define, analyze and solve the multiple bank accounts
cash management problem (MBACMP).

Since we use cash flow forecasts in the formulation of the problem, we assume
that cash managers are able to produce predictions with known accuracy re-
sulting in a certain degree of uncertainty about the near future. The classical
approach to deal with uncertainty is stochastic programming (Birge and Lou-
veaux, 2011; Prékopa, 2013), but even in this approach constraints may be
violated leading to a soft constrained problem as pointed out by Ben-Tal and
Nemirovski (1999). In this chapter, we follow a robust optimization approach,
which is a recent methodology to deal with optimization problems in which
the data are uncertain and is only known to belong to some uncertainty set
(Ben-Tal and Nemirovski, 2002). Instead of seeking a probabilistic solution,
the decision-maker derives a solution that is feasible for any realization of a
given uncertainty set (Bertsimas, Brown, and Caramanis, 2011).

More precisely, we use the concept of robust counterpart of an uncertain op-
timization problem (Ben-Tal and Nemirovski, 1999; Ben-Tal and Nemirovski,
2000; Ben-Tal, El Ghaoui, and Nemirovski, 2009) to encode the MBACMP as
a linear program with hard constraints, namely, those which must be satisfied
whatever the realization of the uncertainty introduced by cash flow forecasting
errors. Since we use linear programming to solve the MBACMP, a further
advantage of this approach is its computational tractability.

To this end, we first adapt the robust formulations of Soyster (1973) and
Ben-Tal and Nemirovski (1999) to the MBACMP. However, the excessive con-
servatism of the former and the need for parameter tuning along with the
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10.2 Formulation of the MBACMP

assumption of Gaussian forecasting errors of the latter lead us to propose a
novel robust formulation. Consider the usual case of (much) higher penalty
costs for negative cash balances than holding costs for positive cash balances.
Since the MBACMP is a cost minimization problem, it seems reasonable to
derive a robust cash policy based on actual penalty/holding costs. As a result,
we here propose a novel two-stage cost-sensitive robust optimization (CSRO)
encoded as two linear programs that can be efficiently solved using state-of-
the-art solvers such as CPLEX or Gurobi. We illustrate and compare our
CSRO approach to the formulations of Soyster and Ben-Tal by means of an
empirical case study using real data from an industrial company in Spain. Our
case-study results show that the CSRO approach represents a more efficient
strategy in terms of cost by assuming reasonable risks.

Summarizing, we here address the MBACMP from a cost-sensitive perspective
to provide robust solutions by means of linear programming. As a result, four
major contributions derive from our work:

1. A formal specification of the MBACMP which is able to handle cash flow
forecasts.

2. Theoretical results that generalize to a multiple bank accounts framework
the basic condition for non-trivial cash policies.

3. Two robust formulations of the MBACMP based on state-of-the-art ro-
bust optimization techniques.

4. A novel cost-sensitive robust formulation of the MBACMP that achieves
significant cost reductions over alternative approaches.

10.2 Formulation of the MBACMP

The purpose of this section is to provide a mathematical formulation of the
MBACMP. Within a single bank account framework, consider a cash balance
bt at time t that starts with value b0 and fluctuates according to a particular
cash flow process F in absence of control actions xt ∈ R. At any time t ≥ 0,
a cash manager can take a control action xt by increasing/decreasing the cash
balance from bt to bt + xt, paying a cost defined by some transaction cost
function Γ(xt). The resulting cash balance, given by bt = bt−1 + ft + xt, where
ft is the net cash flow that occurred at time t, is charged with holding costs
according to some function H(bt). Any procedure that determines the action
xt at each time step t is called a cash management model.
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Chapter 10. Robust cash management with multiple bank accounts

In practice, cash management systems with multiple bank accounts are the
rule rather than the exception. As an example, consider the cash management
system depicted in Figure 10.1, where circles stand for bank accounts and
directed arrows between circles stand for transactions. This cash management
system consists of three bank accounts, including external net cash flows ft and
four possible transactions xt at each time step t. For instance, f1,t represents
the external net cash flow that occurred in account 1, and x1,t represents the
amount of the transaction from account 2 to account 1, both at time t. Note
that transactions are allowed between accounts 1 and 2, and also between 1
and 3, but not between 2 and 3.

12 x2,t

x1,t

3x4,t

x3,t

f1,tf2,t f3,t

Figure 10.1: A cash management system with three bank accounts.

The state transition of any cash management system with m different bank
accounts and n transactions taken at time t, can be represented through the
following system of linear equations:

bt−1 + f t +A · xt = bt (10.1)

where bt−1 and bt are m × 1 vectors with previous and current balances for
each account, respectively; f t is an m× 1 vector with external net cash flows
for each account; A is an m × n incidence matrix with element aij set to: 1
if transaction j adds cash to account i, −1 if transaction j removes cash from
account i, and 0 when no transaction is allowed between accounts; and finally,
xt is an n× 1 vector with the set of transactions (control actions) occurred at
time t. This setting accepts any form of the process F that generates real cash
flows f such as a probability density function, an empirical data set, or any
other cash flow process. However, since the set of control decision of a policy
are made in advance to real cash flow, predicted cash flows f̂ are used instead.

In the usual case of linear transaction costs between accounts with a fixed part
γ0, and a variable part γ1, the transaction cost function Γ(xt) at time t is
defined as:

Γ(xt) = γT0 · zt + γT1 · xt (10.2)
where zt is an n×1 binary vector with element zi set to one if the i-th element
of xt is not null, and zero otherwise; γ0 is a n × 1 vector of non-negative
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10.2 Formulation of the MBACMP

fixed transaction costs for each transaction; and γ1 is a n × 1 vector of non-
negative variable transaction costs. On the other hand, the expected holding
cost function at time t is usually expressed as:

H(b̂t) = vT · b̂t (10.3)

where v is an m × 1 column vector with the j-th element set to the holding
cost per money unit for account j, and b̂t is the expected cash balance at time
step t.

Consider now a cash planning horizon of τ time steps, e.g., the next 5 working
days. Given an initial cash distribution b0, the solution to the MBACMP,
namely, the policy X = 〈x1,x2, . . . ,xτ 〉 that minimizes the sum of transaction
and holding costs, up to time step τ , can be obtained by solving the following
linear program:

min
τ∑
t=1

(
Γ(xt) + vT · b̂t

)
(10.4)

subject to:
b̂t−1 + f̂ t +A · xt = b̂t (10.5)

b̂t ∈ Rm≥0 (10.6)

xt ∈ Rn≥0 (10.7)

t = 1, 2, . . . , τ (10.8)

The previous linear program is a general model, which we call the Multidi-
mensional Boundless Model (MBM), due to the fact that, apart from non-
negativity, no constraint is placed on the minimum/maximum account bal-
ances, contrary to what is usually proposed in the literature for a single bank
account. In practice, τ × n additional binary variables zt, to account for the
fixed costs of transactions, and τ ×m balance auxiliary variables b̂t, for each
account at any time, are also necessary. Furthermore, additional constraints of
the type b̂t ≥ bmin, and b̂t ≤ bmax, can be included to keep cash balances be-
tween certain levels. Summarizing, the MBACMP can be encoded as a mixed
integer linear program that is computationally tractable through the use of
state-of-the-art commercial solvers even for a large number of bank accounts
and transactions.

235



Chapter 10. Robust cash management with multiple bank accounts

10.3 Theoretical results

In this section, we characterize the particular structure of the MBACMP that
produces non-trivial solutions. To this end, let us first introduce the concept
of trivial policy under the context of cash management.

Definition 20. A policy XN = 〈x1,x2, . . . ,xτ 〉 is said to be trivial when some
naive method N is used to obtain each of its elements.

The notion of trivial policy is similar to that of naive forecasts within the
context of fitting predictive models to existing data (see e.g. Makridakis,
Wheelwright, and Hyndman (2008)). In order to assess the goodness of fit
of a given model to a dataset, it is customary to compare the accuracy of the
model to that obtained by using a naive method, for instance, by predicting
always the mean of the data used to fit the model. Similarly, an example of a
trivial policy in cash management is taking no control action.

We here aim to characterize non-trivial policies that are able to outperform a
given trivial policy. Within the cash management problem for a single bank
account, Constantinides and Richard (1978) pointed out the conditions for non-
triviality. Next, we generalize these conditions for cash management systems
with multiple bank accounts. To this end, let us consider a linear cost scenario
determined by vectors γ0, γ1 and v, in which the following theorem holds:

Theorem 3. Within a cash management system defined by an incidence ma-
trix A, if the linear program of the MBACMP is feasible, then the necessary
condition for non-triviality in a linear cost scenario is given by:

γ1
T + vTA < 0 (10.9)

Proof. Let us consider a general policy X = 〈x1,x2, . . . ,xτ 〉 and a particular
trivial policy X0 = 〈0,0, . . . ,0〉, where 0 is an n×1 vector of zeros, equivalent
to taking no control action. A policy X is non-trivial with respect to X0 if
the sum of transaction and holding costs derived from X are smaller than the
holding costs derived from the trivial policy X0:

γT0

τ∑
t=1

zt + γT1

τ∑
t=1

xt +
τ∑
t=1

vT · b̂t(X) <
τ∑
t=1

vT · b̂t(X0) (10.10)

γT0

τ∑
t=1

zt + γT1

τ∑
t=1

xt <
τ∑
t=1

vT · b̂t(X0)−
τ∑
t=1

vT · b̂t(X) (10.11)
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γT0

τ∑
t=1

zt + γT1

τ∑
t=1

xt < v
T

(
b0 +

τ∑
t=1

f̂ t − b0 −
τ∑
t=1

f̂ t −A
τ∑
t=1

xt

)
(10.12)

γT0

τ∑
t=1

zt + γT1

τ∑
t=1

xt < −vTA
τ∑
t=1

xt. (10.13)

Then, since zt 6= 0, when xt 6= 0, it is never optimal to transfer money through
xt, unless γ1

T + vTA < 0.

In other words, the cost of transferring one money unit through any transaction
must be smaller than the difference (vl−vj) in holding costs between the source
account (l) and the target account (j) with vl > vj.

Next, we discuss an important result that stems from theorem 3. Before that,
we introduce an important concept regarding the structure of a cash manage-
ment system.

Definition 21. Given a cash management system with incidence matrix A,
we say that there is a loop between accounts j and l iff there is a pair of
transactions (xi, xk) such that aji = 1, ali = −1, ajk = −1 and alk = 1.

The definition above tells us that there is a transaction xi from l to j, and
another transaction xk from j to l. An example of such a loop is depicted in
Figure 10.2. Notice that a loop between accounts j and l indicates that trans-
actions can eventually occur in both directions, namely from j to l and from l
to j. In other words, loops may eventually involve bidirectional transactions.
Nonetheless, the following theorem characterizes the conditions under which
such bidirectional transactions cannot occur. Furthermore, it does indicate
which transaction is actually preferred.

lj
xi

xk

Figure 10.2: An example of a loop between accounts.

Theorem 4. Given a cash management system with incidence matrix A that
satisfies the necessary condition for non-triviality from Theorem 3, bidirectional
transactions within loops cannot occur. The preferred transaction is either xi
when γ1,i < vl − vj or xk when γ1,k < vj − vl.
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Proof. Given a cash management system defined by incidence matrix A, with
elements aij, for any pair of transactions (xi, xk) bidirectionally connecting
accounts (j, l) such that aji = 1, ali = −1, ajk = −1 and alk = 1, the condition
in equation (10.9) is equivalent to the next double element-wise comparison:

γ1,i + vj − vl < 0 (10.14)

γ1,k + vl − vj < 0 (10.15)
which can only hold either when vl > vj in (10.14), or when vl < vj in (10.15),
but never simultaneously in (10.14) and (10.15), provided that γ1,i, γ1,k <
|vl − vj|, for any γ1,i, γ1,k ≥ 0.

10.4 Robust formulations of the MBACMP

Recall from Section 10.2 that we use cash flow forecasts with a certain accu-
racy as a key input to the MBACMP. In order to deal with the uncertainty
introduced by forecasting errors, we here consider two alternative robust formu-
lations of the MBACMP that can be ultimately encoded as linear programs.
More precisely, we adapt the seminal formulation of Soyster (1973) and the
more recent formulation of Ben-Tal and Nemirovski (1999) and Ben-Tal and
Nemirovski (2000) and Ben-Tal, El Ghaoui, and Nemirovski (2009). By choos-
ing these two formulations, we aim to confirm (or discard) within the context
of cash management the claim of Ben-Tal of excessive conservatism of the
Soyster’s approach.

In an attempt to connect (big) data with optimization, we represent uncer-
tainty introduced by cash flow forecasts by means of a data set containing
(not-necessarily Gaussian) forecasting errors for each bank account. To this
end, we assume that a data set of length N with past cash flow forecasting
errors ej = f̂ j−f j, for each account j is available. Note that ej can be equiv-
alently defined as ej = b̂j − bj, because the only difference between cash flows
and cash balances for any bank account is its initial balance. Furthermore,
since we are dealing with policies deployed over a planning horizon of τ time
steps, we require to define cumulative errors of dimension τ as follows.

Definition 22. Given a vector of forecasting errors ej of length N , its τ -
cumulative forecasting error vector ej(τ) of length N − τ + 1 contains at each
element the rolling sum of τ consecutive errors in ej.

Next, we propose a method to compute cumulative errors. To this end, we
rely on the concept of time delay embedding (Serra et al., 2012) to compute
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empirical τ -cumulative errors for each account j. From each vector ej of length
N , we can sample τ consecutive elements to construct a τ × 1 error vector:

ej,i(τ) = [ei−τ+1, . . . , ei−1, ei]
T (10.16)

where subscript i denotes the i-th element of the original sampled vector ej.
For instance, ej,N(τ) contains the last τ elements of ej. Through vector con-
catenation, we next construct an (N − τ + 1)× τ error matrix Ej(τ) for each
account j, as follows:

Ej(τ) = [ej,τ , . . . , ej,N−1, ej,N ]
T
. (10.17)

Finally, we obtain an (N − τ + 1) × 1 vector ej(τ) of τ -cumulative errors for
each account j by summing row-wise elements Ei,k of matrix Ej(τ):

ej(τ) =

[
τ∑
k=1

E1,k,
τ∑
k=1

E2,k, . . . ,
τ∑
k=1

EN−τ+1,k

]T
(10.18)

In what follows, we adapt the formulation of Soyster and Ben-Tal to the
MBACMP. Later, we compare these formulations to our novel cost-sensitive
robust approach.

10.4.1 Adapting the robust formulation of Soyster

Since we introduce forecasts in the formulation of the MBACMP, we are dealing
with a linear program with uncertain data. Soyster (1973) provided a general
robust formulation for linear optimization problems that we here apply to
propose the robust formulation of Soyster to the MBACMP as follows:

min
τ∑
t=1

(
Γ(xt) + vT · b̂t

)
(10.19)

subject to (10.5)-(10.7)-(10.8) and:

b̂t ≥ ε (10.20)

where ε ∈ Rm is an m× 1 vector with each j-th element set to:

εj = |min(ej(τ))|. (10.21)

The operator min computes the minimum value among the elements of a given
vector. The Soyster’s method provides the highest protection against fore-
casting errors due to the fact that the maximum forecasting error is used to
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introduce a minimum balance constraint for each bank account. This method
is considered extremely conservative by Ben-Tal and Nemirovski (1999) and
Bertsimas and Sim (2004). However, we aim to test if this claim is correct also
within the context of the MBACMP.

10.4.2 Adapting the robust formulation of Ben-Tal

Ben-Tal and Nemirovski (1999) and Ben-Tal and Nemirovski (2000) and Ben-
Tal, El Ghaoui, and Nemirovski (2009) suggested the use of ellipsoidal uncer-
tainty sets to overcome the conservatism of the Soyster’s method and hence
better capture the particular risk preferences of decision-makers. Within the
particular framework of the MBACMP, the robust formulation of Ben-Tal is
equivalent to solving the following program:

min
τ∑
t=1

(
Γ(xt) + vT · b̂t

)
(10.22)

subject to (10.5)-(10.7)-(10.8) and:

b̂t ≥ ε (10.23)

where ε ∈ Rm is an m× 1 vector with each j-th element set to:

εj = ξ · std(ej(τ)). (10.24)

The operator std computes the standard deviation of the elements of a given
vector, and parameter ξ ∈ R+ is a subjective value chosen by the cash manager
to reflect her attitude towards risk. The larger the value of ξ, the more averse to
risk she is. For instance, if we assume normally distributed forecasting errors,
setting ξ = 2 would be approximately equivalent to ensure a positive cash
balance with probability 0.95. However, the selection of ξ may be problematic
when dealing with non-Gaussian forecasting errors, for instance, when non-
linear techniques are used to obtain forecasts (Salas-Molina et al., 2017).

In addition, cash managers may be much more concerned about negative fore-
casting errors than positive ones due to the fact that penalty costs on negative
cash balances are usually higher than holding costs on positive balances. In a
first attempt to incorporate the preferences of cost-sensitive cash managers in
the optimization process, we suggest to replace the operator standard devia-
tion in equation (10.24) with the lower semideviation considering only negative
errors. Next, we go one step further by providing a new cost-sensitive robust
formulation to account for cost asymmetry in forecasting errors.
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10.5 A new two-stage cost-sensitive robust formulation of
the MBACMP

In this section, we approach robust optimization of the MBACMP from a
cost-sensitive perspective. More precisely, we assume that cash flow forecast-
ing errors have a different cost for a positive deviation (overestimation) than
for a negative one (underestimation). We here import the definitions for to-
tal overestimation, underestimation and optimal forecasting bias presented in
Hernández-Orallo (2013b). Next, we derive our cost-sensitive robust counter-
part of the MBACMP by: (i) determining the optimal shift or bias to minimize
an asymmetric loss function; and (ii) using this shift as a key input to allow a
cost-sensitive robust optimization (CSRO).

In order to illustrate our approach, consider again the MBACMP formulation
in (10.4)-(10.8) detailed in Section 10.2. Consider the common situation in
which penalty costs on negative cash balances are much higher than holding
costs on positive cash balances. With perfect cash balance predictions, the op-
timal cash balance would be zero for the whole planning horizon. However, this
situation is far from being possible in real-world applications. Instead, assume
that we are provided with a data set of N past cash flow observations (fi),
and forecasts (f̂i), resulting in forecasting errors ei = f̂i − fi, computed for
each instance i ∈ [1, N ] in the data set. Let us further consider the following
asymmetric absolute error function:

Definition 23. The asymmetric absolute error is a function ` : F × F → R
which compares elements in the forecasting domain and it is defined as follows:

`α(f̂i, fi) =

{
2α(fi − f̂i) if (f̂i < fi),

2(1− α)(f̂i − fi) if (f̂i ≥ fi),
(10.25)

where α ∈ [0, 1] is the cost asymmetry.

For instance, by setting α = 0.66 we consider underestimation twice as harm-
ful as overestimation. As a result, given a prediction vector f̂ , and actual
observations vector f for any bank account, we can determine the N × 1 error
vector e = f̂ − f , and the total overestimation (O) and underestimation (U)
function values as follows:

O(f̂ ,f) ≡
∑
i

ei | ei ≥ 0 (10.26)

U(f̂ ,f) ≡
∑
i

ei | ei < 0 (10.27)
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By incorporating both overestimation and underestimation in the asymmetric
absolute error function (10.25), we are able to compute the total loss as:

L(f̂ ,f) =
∑
i

`α(f̂i, fi) = 2(1− α)O − 2αU. (10.28)

Since forecasting cash flows f̂ t is equivalent to forecasting cash balances b̂t,
given a predicted cash balance vector b̂ for any bank account, we can compute
a shifted prediction vector b̂(s) by adding the same shift s ∈ R to each element
within the vector:

b̂j(s)← b̂j + sj. (10.29)

Different shifts lead to different values of overestimation Os and underestima-
tion Us. Consequently, the optimal shift can be obtained by minimizing the
total loss:

min
s

L(b̂, b) = min
s

∑
i

`α(b̂j, bj) = min
s

(2(1− α)Os − 2αUs) (10.30)

Non-linearity in the optimization problem represented by equation (10.30) is
an important limitation. Next, we use goal programming (Aouni, Colapinto,
and La Torre, 2014) as a method to derive an equivalent linear program. Goal
programming aggregates multiple objectives to obtain the solution that mini-
mizes the sum of deviations between achievement and the aspiration levels of
the goals. Since overestimation in (10.26) and underestimation in (10.27) are
defined as a sum of deviations (errors), we here rely on goal programming to
reformulate the problem (10.30) as a linear program by means of the follow-
ing multiple criteria weighted goal programming model to be solved for each
account j:

min

[
2(1− α)

N∑
i=1

δ+ij + 2α
N∑
i=1

δ−ij

]
(10.31)

subject to:
eij + sj + δ−ij − δ+ij = 0 (10.32)

δ+ij , δ
−
ij ∈ R+ (10.33)

i = 1, . . . , N − τ + 1 (10.34)

where sj ∈ R is the only decision variable, eij is the i-th element of τ -cumulative
error vector ej(τ), and δ+ij(δ

−
ij) is the overestimation (underestimation) for each
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instance i in vector ej(τ) for account j. By transforming the non-linear pro-
gram in (10.30) into the linear program (10.31)-(10.34) we are able to use
commercial linear programming solvers such as CPLEX or Gurobi to obtain
the optimal shift s∗j (τ), which ultimately depends on the planning horizon τ
since we consider cumulative forecasting errors.

This shift avoids the problem of: (i) selecting a conservative precautionary
cash balance based on the maximum forecasting error, as it was the case in
the Soyster’s robust formulation described in Section 10.4.1; and (ii) selecting
a conservatism parameter ξ, as in the robust formulation of Ben-Tal from
Section 10.4.2. Instead, the selection is performed through the asymmetry of
underestimation and overestimation costs, allowing a cost-sensitive selection
based, for example, on the current holding and penalty costs charged by banks
to cash managers.

Summarizing, we propose a two-stage cost-sensitive robust optimization of the
MBACMP that comprises the following steps:

1. Given an asymmetry error factor α derived from the current penalty/hold-
ing costs and a data set with forecasting errors for each bank account j,
determine the optimal shift s∗j (τ) by minimizing an asymmetric loss func-
tion.

2. Set a minimum cash balance constraint b̂t ≥ s∗(τ), where each j-th ele-
ment of s∗(τ) is set to s∗j (τ), and solve the following linear program:

min
τ∑
t=1

(
Γ(xt) + vT · b̂t

)
(10.35)

subject to:
b̂t−1 + f̂ t +A · xt = b̂t (10.36)

b̂t ≥ s∗(τ) (10.37)

xt ∈ Rn≥0 (10.38)

t = 1, 2, . . . , τ. (10.39)
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10.5.1 An illustrative example

Consider a simple instance of the single objective program (10.4)-(10.8), for a
system of two bank accounts such as the one shown in Figure 10.3. Collections
from customers and payments to suppliers are managed only through account 1
(f̂2,t = 0) and there is no transaction cost between accounts (Γ(xt) = 0).
Assume also that the holding cost for the second bank account is zero. The
resulting optimization problem determines the best cash balance in account 1
by minimizing:

min
τ∑
t=1

v1 · b̂1,t (10.40)

subject to:
b̂1,t−1 + f̂1,t + x1,t − x2,t = b̂1,t (10.41)

b̂2,t−1 − x1,t + x2,t = b̂2,t (10.42)

b̂1,t ≥ 0 (10.43)
t = 1, 2, . . . , τ. (10.44)

If we had perfect cash balance predictions, the optimal solution to the previous
program with holding cost v1 > 0 would be b̂1,t = 0 for all t. However, perfect
predictions are not available in real world applications. Assume also that
the current cost structure charges much higher penalty costs on negative cash
balances than holding costs on positive cash balances, e.g., 10% versus 2%.
Thus, we set α = 10/(10 + 2) as an asymmetric error factor for equation
(10.25).

1 2x2,t

x1,t

f̂1,t

Figure 10.3: A cash management system with two bank accounts.

Assume now that we are provided with a data set of past cash balance predic-
tions as shown in Table 10.1, with maximum absolute error of 1 and error’s
standard deviation of 0.5. Both Soyster’s and Ben-Tal’s formulation with ξ = 2
lead to replace constraint (10.43) with:

b̂1,t ≥ 1 (10.45)
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leading to an optimal cash balance solution of b̂1,t = 1 million euros, for
all t. Alternatively, by incorporating our cost-sensitive robust optimization
approach, we first obtain an optimal shift to produce biased forecasts as fol-
lows:

b̂1,t(s)← b̂1,t + s (10.46)

by solving the linear program represented by equations (10.31) to (10.34).
In our example, the optimal shift s∗ is 0.5, as shown in Figure 10.4. Thus,
the cost-sensitive robust counterpart of the program represented by equations
(10.40) to (10.44) is obtained by replacing constraint (10.43) with:

b̂t ≥ 0.5 (10.47)

leading to a less conservative and more efficient solution in terms of cost by
keeping a constant cash balance of 0.5 million euros.

Time 1 2 3 4 5 6 7 8 9 10

Forecast (b̂t) 6 3,5 7 6 8 9,6 5,5 7,2 4 6,8
Actual (bt) 7 4 6,5 6,2 7,8 8,8 6 7 3,8 6,5
Error (ε) -1 -0,5 0,5 -0,2 0,2 0,8 -0,5 0,2 0,2 0,3
Overestimation (Ot) 0 0 0,5 0 0,2 0,8 0 0,2 0,2 0,3
Underestimation (Ut) -1,0 -0,5 0,0 -0,2 0,0 0,0 -0,5 0,0 0,0 0,0

Table 10.1: Example error data set in millions of e.

10.6 Empirical case study

In this section, by means of an empirical case study using real data from an
industrial company in Spain, we show that our cost-sensitive robust formula-
tion of the MBACMP can robustly deal with cash management systems with
multiple bank accounts. More precisely, we compare the robust formulations
of Soyster described in Section 10.4.1 and Ben-Tal described in Section 10.4.2
to our two-stage cost-sensitive approach from Section 10.5.

10.6.1 Assumptions

Consider a cash management system with two bank accounts and an invest-
ment account like the one in Figure 10.5. A hypothetical cash manager receives
payments from customers and manages payments to suppliers through bank
accounts 1 and 2. Daily net cash flows are summarized in variables f1,t and
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Figure 10.4: Total loss due to estimation errors.

f2,t. Temporary idle cash balances can be invested in short-term marketable
securities and bonds through an investment account 3 with an average return
of 3.6% per annum, equivalent to 0.01% per day. This is equivalent to set a
holding cost 0.01% per day for both accounts 1 and 2. Transactions are allowed
between all three accounts and charged with fixed (γ0) and variable (γ1) costs
determining the cost structure (β) detailed in Table 10.2.

In this case study, we are provided with a data set of both past cash flow
observations for two different bank accounts, with 1249 daily observations for
account 1 and 1468 observations for account 2. In order to extract (if any) non-
linear linear patterns from time-series (Kantz and Schreiber, 2004; Clements,
Franses, and Swanson, 2004), we here use random forests to obtain forecasts.
By selecting a non-linear forecasting technique, we also relax the assumption
of Gaussian forecasting errors. Random forests (Ho, 1995; Ho, 1998; Breiman,
2001) have been recently used to forecast finance and economic time-series
(Conejo et al., 2005), including cash flow data (Salas-Molina et al., 2017).
Since we are not provided with any other explanatory variable, we use date-
related variables such as day-of-week and day-of-month to account for time
dependent patterns. From the set of forecasts obtained for each account, we
first compute forecasting error vectors e1 and e2. We also assume that our
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Figure 10.5: A cash management system with two bank accounts and an investment
account.

cash manager is interested determining robust optimal policies fore a planning
horizon τ = 5 days. As a result, following the time delay embedding procedure
described in Section 10.4.1, we obtain two 5-cumulative empirical error vectors
e1 and e2.

Transaction γ0 (e) γ1 (%) Account v (%)
1 50 0 1 0.01
2 50 0 2 0.01
3 100 0.01 3 0
4 50 0.001
5 100 0.01
6 50 0.001

Table 10.2: Cost structure data (β) for our case study.

Next, from the alternative robust formulations of Soyster (Section 10.4.1),
Ben-Tal (Section 10.4.2), and our cost-sensitive robust optimization approach
(Section 10.5), we derive the set of minimum cash balance constraints shown
in Table 10.3. No parameter selection is required using the formulation of
Soyster. On the other hand, we use a typical value ξ = 2 to approximately
cover a 95% of the empirical error variability. Finally, we set α = 0.95 to
account for the likely situation of much higher penalty costs (on negative cash
balances) than holding costs (on non-negative cash balances).

In the cash management literature for a single bank account, the common two-
assets setting (cash and alternative investment) is extensively used (Miller and
Orr, 1966; Gormley and Meade, 2007). It is also assumed that the alterna-
tive investment account acts as an infinite source of funds. Although such an

247



Chapter 10. Robust cash management with multiple bank accounts

Formulation Soyster Ben-Tal (ξ = 2) CSRO (α = 0.95)

εj |min(ej(τ))| ξ · std(ej(τ)) s∗(ej(τ))
bmin,1 606,376 357,921 247,705
bmin,2 784,101 318,318 281,874
bmin,3 0 0 0

Table 10.3: Minimum balances in euros used the case study.

assumption may seem quite strong at first glance, it is actually realistic since
cash managers can obtain, at least in theory, unlimited funds in financial mar-
kets at a given transaction cost (see Table 10.2). Thus, we set the initial cash
balance for investment account 3 to a large value with respect to the rest of
accounts. Furthermore, we set an initial state for accounts 1 and 2 to a small
percentage (20%) above minimum values from Table 10.3. Note that this ar-
bitrary initial state selection has no influence in the comparative experiments
since the optimal policy immediately adjusts balances to the optimal values.

10.6.2 Empirical comparison

In order to compare the three robust formulations, we propose Algorithm 7.
From a cash management system defined by incidence matrix A and given a
cost structure β, we compute the total expected and actual cost for the optimal
policy obtained by solving each of the three robust formulations.

The total expected cost is the value of the objective function (10.4) when
deploying the optimal policy of the formulation using forecasts. The actual
cost is the the value of the objective function (10.4) when deploying the optimal
policy of the robust formulation but evaluated over a set of the corresponding
actual values of cash flows instead of forecasts. For comparative purposes, we
consider that the policy is fixed, i.e., it cannot be modified during the planning
horizon. As a result, by comparing expected and actual costs we aim to assess
the impact of forecasting accuracy on costs. If any of the policies evaluated
using actual values leads to negative balances due to forecasting errors, we
consider this policy infeasible and it is not included in overall computations.

In order to evaluate the three robust formulations, we generate 1000 replicates
of the MBACMP for a planning horizon of τ = 5 working days, equivalent to
approximately 20 years. We consider five performance indicators: (i) expected
average cost; (ii) actual average cost; (iii) standard deviation of expected cost;
(iv) standard deviation of actual cost; and (v) number of infeasible policies with
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Algorithm 7: Empirical comparison algorithm
1 Input: Cash management system A; cost structure β; vector of minimum
balances bmin; vector of N forecasts f̂ ; planning horizon τ ; vector of N
actual values f ; number of replicates r;

2 Output: Total expected and actual cost of optimal policy X;
3 for each replicate r do
4 Set a initial balance b0;
5 Draw a sample f̂(τ) of length τ from f̂ ;
6 Set f(τ) to the corresponding actual values of f̂(τ);
7 Obtain policy X that minimizes equation (10.4) s.t. f̂ , A, bmin and β;
8 Compute expected cost of policy X for f̂(τ) and β;
9 Compute actual cost of policy X for f(τ) and β;

10 end
11 Return expected and actual cost of optimal policy X;

infinite cost due to forecasting errors. The results of this empirical comparison
are summarized in Table 10.4.

Formulation Soyster Ben-Tal (ξ = 2) CSRO (α = 0.95)

Expected average cost 839 470 391
Actual average cost 844 483 408
Std. dev. expected cost 23 34 39
Std. dev. actual cost 84 86 87
Infeasible policies 0.1% 4.5% 7.6%

Table 10.4: Results of the empirical case study. Cost figures in euros.

10.6.3 Analysis

The results presented in Table 10.4 are consistent with the common criticism
of ultraconservatism of the Sosyter formulation. The higher the minimum
balances the less risky the policy in terms of expected standard deviation of
expected cost and number of infeasible policies. However, a more efficient strat-
egy in terms of cost can be followed by assuming reasonable risks. In this sense,
Ben-Tal’s formulation allows a considerable reduction of expected and actual
cost of around 43%. Moroever, our novel CSRO approach produces an even
higher cost reduction of around 52%. However, these cost reductions are only
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possible by assuming a higher level of risk. We here consider three measures of
risk, the standard deviation for both expected and actual cost and the number
of infeasible policies. The expected deviation in cost notably increases in the
Ben-Tal and CSRO formulations with respect to Soyster. However, the actual
deviation in cost remains almost unaltered. In terms of percentage of infeasible
policies, only 1 out of 1000 replicates resulted in negative cash balances using
the Soyster formulation. In the case of Ben-Tal, the 4.5% result is close to the
expected value of 5% derived from the setting ξ = 2 when assuming normally
distributed forecasting errors. Finally, a higher risk is taken in the case of the
CSRO. However, it is important to highlight that in our experiments we im-
pose a fixed policy over the planning horizon. In practice, this assumption can
be relaxed by monitoring errors on a daily basis and reformulating the policy
by solving a new MBACMP if a given threshold is reached.

10.7 Summary

Most cash management models in the literature try to solve the cash manage-
ment problem for a single bank account. In this chapter, we present a formal
specification for cash management systems with multiple bank accounts that
is also able to handle short-term cash flow forecasts. Our formulation pro-
vides a flexible framework to define cash management systems with variable
complexity according to the particular needs of cash managers. We provide
further insight by means of Theorem 3, which shows the necessary conditions
to avoid trivial solutions to the problem, and Theorem 4, which shows that
loops cannot occur within cash management systems in absence of a stronger
constraint.

We consider cash flow forecasts as a factor of central importance in cash man-
agement. Therefore, forecasts become a key input to the MBACMP and their
inherent uncertainty has to be appropriately handled to provide robust solu-
tions. In this sense, we consider three alternative robust formulations of the
MBACMP. First, we adapt the formulations of Soyster and Ben-Tal through
the use of cumulative forecasting errors as a data-driven approach to obtain
robust policies. Furthermore, we provide a novel cost-sensitive robust formu-
lation of the MBACMP that allows to: (i) consider less conservative solutions;
(ii) avoid the problem of selecting a conservatism parameter; and (iii) select
minimum cash balance constraints through a cost-sensitive linear optimization
problem. The results from the empirical case study comparing the three ro-
bust formulations (Soyster, Ben-Tal and CSRO) suggest that important cost
reductions can be achieved through a less conservative strategy.
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10.7 Summary

Summarizing, the optimization framework described in this chapter contributes
to: (i) providing a general mathematical programming framework that allows
to deal with cash management systems with multiple accounts; (ii) handling the
inherent uncertainty of cash flow forecasts in a cost-sensitive manner such that
cash managers can derive a robust counterpart of their particular optimization
problem according to their risk preferences. Cash management systems with
multiple bank accounts are the rule rather than the exception. As a result, an
important contribution of this thesis is connected to the next research question.

Question 9. Can we derive optimal policies for cash manage-
ment systems with multiple bank accounts?

Contribution 9. After formalizing the multiple bank accounts
cash management problem, we provided useful theoretical re-
sults on cash management systems and we also proposed a novel
data-driven procedure to derive optimal policies.

Selecting the best policy in cash management systems with multiple bank
accounts can be facilitated with the help of specific software tools. In the
next chapter, we provide a software library containing a tool to derive optimal
policies for multidimensional cash management systems.
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Chapter 11

PyCaMa: Python for cash
management

Selecting the best policy to keep the balance between what a company holds
in cash and what is placed in alternative investments in cash management
systems with multiple bank accounts is by no means straightforward. We here
introduce PyCaMa, a Python module for multiobjective cash management
based on linear programming that allows to derive optimal policies for cash
management with multiple bank accounts in terms of both cost and risk of
policies.

11.1 Motivation

Cash managers usually deal with multiple banks to receive payments from
customers and to send payments to suppliers. Operating such a cash man-
agement system implies a number of transactions between accounts, what is
called a policy, to maintain the system in a safe state, meaning that there ex-
ists enough cash balance to face payments and avoid an overdraft. In addition,
optimal policies allow to keep the sum of both transaction and holding costs
at a minimum. However, cash managers may be interested not only in cost
but also in the risk of policies. Hence, risk analysis can also be incorporated as
an additional goal to be minimized in cash management. As a result, deriving
optimal policies in terms of both cost and risk within systems with multiple

253



Chapter 11. PyCaMa: Python for cash management

bank accounts is not an easy task. To this end, we here introduce PyCaMa, a
software tool to provide such optimal policies.

Despite the recent advances in cash management (Costa Moraes, Nagano, and
Sobreiro, 2015), there is a lack of supporting software to aid the transition from
theory to practice. In order to fill this gap, we provide a cash management
module in Python for practitioners interested in building decision support sys-
tems for cash management. In addition, this software allows to tackle open
research questions such as: (i) managing multiple bank accounts (Baccarin,
2009); (ii) the impact of cash flow forecasting accuracy in the cost of poli-
cies (Gormley and Meade, 2007; Salas-Molina et al., 2017); (iii) the utility
of different risk measures in cash management (Salas-Molina, Pla-Santamaria,
and Rodriguez-Aguilar, 2016); and (iv) robust optimization (Soyster, 1973;
Ben-Tal and Nemirovski, 2002).

In practice, cash management systems can be represented as a set of bank
accounts and a set of transactions between them. These systems can be intro-
duced in PyCaMa by means of an incidence matrix establishing the relationship
between allowed transactions and bank accounts. Once a cash management
system is defined, cash managers should describe the current cost structure in-
cluding fixed and variable costs for each transaction, and holding costs for each
bank account. If available, PyCaMa also accepts cash flow forecasts to reduce
the uncertainty about the future (Stone, 1972; Gormley and Meade, 2007). In
addition, minimum balances for each account can be set for precautionary pur-
poses. Finally, PyCaMa provides optimal policies for a given planning horizon
by solving a linear program using a state-of-the-art mathematical programming
solver such as Gurobi (Gurobi Optimization, Inc, 2016).

Summarizing, PyCaMa is a Python-Gurobi tool aimed to automate multiob-
jective decision-making in cash management. To the best of our knowledge,
PyCaMa is the first software tool to solve the multiobjective cash manage-
ment problem with multiple bank accounts. PyCaMa contributes to support
cash management decision-making: (i) by empowering cash managers to derive
optimal cash policies within a real-world context in which cash management
systems with multiple bank accounts are the rule rather than the exception;
and (ii) by providing a computational finance framework that can be used ei-
ther as a tool for empirical research or as a benchmarking for further research in
cash management. Next, we describe the optimization problem that PyCaMa
solves.
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11.2 Problem formulation

In order to formulate the problem, we first define a cash management system
as a set of bank accounts and their relationship such as the one depicted
in Figure 11.1. Any cash management system with m bank accounts and
n allowed transactions can be represented by an m × n incidence matrix A,
with element aij = 1 if transaction j adds cash to account i, aij = −1 if
transaction j removes cash from account i, and aij = 0 when no transaction
is allowed between accounts. In the usual case of linear transaction costs
between accounts with a fixed part γ0, and a variable part γ1, the transaction
cost function Γ(xt) at time t is defined as:

Γ(xt) = γT0 · zt + γT1 · xt (11.1)

where zt is an n×1 binary vector with element zi set to one if the i-th element
of xt is not null, and zero otherwise; γ0 is a n × 1 vector of fixed transaction
costs for each transaction; and γ1 is a n × 1 vector of variable transaction
costs. On the other hand, the expected holding cost function at time t is
usually expressed as:

H(b̂t) = vT · b̂t (11.2)

where v is an m × 1 column vector with the i-th element set to the holding
cost per money unit for account i.
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Figure 11.1: A cash management system with three accounts.
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11.2.1 Single objective optimization: cost

Consider now a cash planning horizon of τ time steps, e.g., the next 5 work-
ing days. Within a single cost objective, given an initial cash balance b0, the
solution to the problem, namely, the policy X = 〈x1,x2, . . . ,xτ 〉 that mini-
mizes the sum of transaction and holding costs, up to the time step τ , can be
obtained by solving the following linear program:

min
τ∑
t=1

c(xt) =
τ∑
t=1

(
Γ(xt) + vT · b̂t

)
(11.3)

subject to:
b̂t−1 + f̂ t +A · xt = b̂t (11.4)

b̂t ≥ b̂min (11.5)

xt ∈ Rn≥0 (11.6)

t = 1, 2, . . . , τ (11.7)

where b̂t−1 and b̂t are m × 1 vectors with previous and current balances for
each account, respectively; f̂ t is an m× 1 vector with expected net cash flows
for each account; and finally, xt is an n× 1 vector with the set of transactions
(control actions) occurred at time t; and b̂min is a m × 1 vector of minimum
cash balances.

11.2.2 Multiobjective optimization: cost and risk

However, cash managers may also be interested in the risk of cash manage-
ment policies (Salas-Molina, Pla-Santamaria, and Rodriguez-Aguilar, 2016).
Similarly to the definition of Conditional Value-at-Risk in (Rockafellar and
Uryasev, 2002), we consider the Conditional Cost-at-Risk (CCaR) measure
of policy X, which we define as the conditional excess expectation above a
particular cost reference c0 as follows:

CCaR(X, c) = E[c(xt)|c(xt) > c0], ∀xt ∈ X. (11.8)

An additional advantage of CCaR is that it is a coherent measure of risk in the
sense of Artzner et al. (1999). Minimizing CCaR is equivalent to minimize the
sum of the positive deviation of cost above reference c0. As a result, we next
incorporate CCaR as an additional goal to be optimized through the following
multiobjective linear program in which cost-risk preferences are expressed by
means of weights w1 and w2:
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min

[
w1

Cmax

n∑
t=1

c(xt) +
w2

Rmax

n∑
t=1

δ+t

]
(11.9)

subject to:
b̂t−1 + f̂ t +A · xt = b̂t (11.10)

b̂t ≥ b̂min (11.11)

c(xt)− δ+t ≤ c0 (11.12)
n∑
t=1

c(xt) ≤ Cmax (11.13)

n∑
t=1

δ+t ≤ Rmax (11.14)

xt ∈ Rn≥0 (11.15)

w1 + w2 = 1 (11.16)

t = 1, 2, . . . , τ (11.17)

where δ+t is an auxiliary variable used to measure deviations from a cost ref-
erence as in goal programming (Aouni, Colapinto, and La Torre, 2014). Cmax
and Rmax can be regarded as budget limitations for both cost and risk, leading
to unfeasible policies when these constraints are no satisfied.

11.3 Software description

Since the cash management problem is an optimization problem, PyCaMa is
based on linear programming to provide optimal policies. However, it is im-
portant to highlight that the linear programs described in Section 11.2.1 (only
for cost) and in Section 11.2.2 (for both cost and risk) should be considered as
baseline models that can be used for benchmarking purposes.

A cash management system, a cost structure and a set of minimum balances
are sufficient to create an instance of the multibank class. It is assumed that
cash managers are able to produce cash flow forecasts for each bank account
as an additional input to the problem. Otherwise, forecasts must be set to
zero. Next, given an initial condition and a set of cash flow forecasts for the
immediate future, cash managers can derive optimal policies either in terms of
only cost or in terms of both cost an risk.
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11.3.1 Software architecture

PyCaMa is organized around the multibank class. An instance of this class
is initialized by means of different data structures in Python such as: (i) a
list of m banks; (ii) a list of n transactions; (iii) an m × n incidence matrix
A, establishing the cash management system; (iv) two dictionaries linking
transactions and both fixed (γ0) and variable (γ1) transaction costs; (v) a
dictionary linking each bank account to holding costs in vector v; (vi) a list
with m minimum cash balances in b̂min; as follows:

1 myproblem = multibank ( banks , trans , A, g0 , g1 , v , b_min)

Once a multibank object is created, a number of methods are implemented to
provide cash managers with useful functionalities that we next describe.

11.3.2 Software functionalities

Cash managers can retrieve the main characteristics of the cash management
system they are dealing with by using function describe. All the input data
is then shown for descriptive purposes. The main functionality of PyCaMa is
function solvecost, which provides a solution (if any) for the linear program
encoded by equations (11.3)-(11.7). Given a list of length m with an initial
condition b0, and a τ×m matrix F of forecasts (with elements set to zero if not
available) obtained by concatenating vectors f̂ t with t ranging in 1, 2, . . . , τ ,
the optimal policy is obtained by executing:

1 so lut ion_1 = myproblem . s o l v e c o s t (b0 , F)

If the linear program has a feasible solution, function solvecost returns its
optimal policy for each transaction and time step. Otherwise, solvecost warns
the user that it was unable to find a solution. In addition, a τ ×n matrix with
the optimal policy, and a τ ×m matrix with optimal balances derived from the
last optimization can be retrieved by means of functions policy and balance,
respectively, and the last objective value by calling the attribute objval of the
multibank object.

Furthermore, cash managers interested in minimizing not only cost but also
the risk of policies measured by the CCaR, can call the function solverisk,
which provides a solution (if any) for the linear program encoded by equations
(11.9)-(11.17), given b0 and F , a cost reference c0, Cmax and Rmax budget
limitations, and weights w1 and w2, by executing:

1 so lut ion_2 = myproblem . s o l v e r i s k (b0 , F , c0 , Cmax, Rmax, w1 , w2)
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Summarizing, the Python input and outputs of PyCaMa are shown in Ta-
ble 11.1.

Inputs Outputs Function or
attribute

List of banks Description of the system describe
List of transactions Cost optimal policy list solvecost
Incidence matrix Cost-Risk optimal policy list solverisk
Dictionary of transaction costs Last optimal policy matrix policy
Dictionary of holding costs Last optimal balance matrix balance
List of minimum balances Last objective value objval
Matrix of forecasts Cost budget costmax
List of initial cash balances Risk budget riskmax
Cost reference Cost reference costref
Cost and risk maximum budgets Cost weight costweight
Cost and risk weights Risk weight riskweight

Table 11.1: Python inputs and outputs of PyCaMa

11.4 An illustrative example

Consider again the cash management system of Figure 11.1 with two current
bank accounts 1 and 2, and an investment account 3. Temporary idle cash
balances can be invested in short-term marketable securities and bonds through
an investment account 3 with an average return of 3.6% per annum, equivalent
to 0.01% per day. This is equivalent to set a holding cost 0.01% per day for
both accounts 1 and 2. Transactions are allowed between all three accounts and
charged with fixed (γ0) and variable (γ1) costs determining the cost structure
detailed in Table 11.2.

Transaction γ0 (e) γ1 (%) Account v (%)
1 50 0 1 0.01
2 50 0 2 0.01
3 100 0.01 3 0
4 50 0.001
5 100 0.01
6 50 0.001

Table 11.2: Cost structure data for the example.
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Assume also that a hypothetical cash manager can obtain forecasts with a
maximum cumulative error of 2 million euros for a planning horizon of five
days. As a result, she sets a minimum cash balance of 2 million for accounts 1
and 2. Given a initial cash balance b0 = [5, 8, 12], for accounts 1, 2 and 3, she
aims to derive the optimal policy for the next five days. To this end, let us
assume that she obtains the next matrix of forecasts (with figures in millions
of euros) by applying some predictive method as in Salas-Molina et al. (2017).

F =


1 −3 0
1 −9 0
6 6 0
−1 4 0
−3 6 0

 . (11.18)

An instance of the multibank class is created by introducing all the required
input data as follows:

1 from PyCaMa import ∗ # Import module
2 banks = [ 1 , 2 , 3 ] # Bank accounts
3 t rans = [ 1 , 2 , 3 , 4 , 5 , 6 ] # Transact ions
4 g0 = {1 :50 , 2 : 50 , 3 : 100 , 4 : 50 , 5 : 100 , 6 :50} # Fixed co s t s
5 g1 = {1 :0 , 2 : 0 , 3 : 100 , 4 : 10 , 5 : 100 , 6 :10} # Var iab le c o s t s
6 bmin = [ 2 , 2 , 0 ] # Minimum balances
7 v = {1 :100 , 2 : 100 , 3 :0} # Holding c o s t s
8 A = np . array ( [ [ 1 , −1, 0 , 0 , 1 , −1] ,
9 [−1 , 1 , 1 , −1, 0 , 0 ] ,

10 [ 0 , 0 , −1, 1 , −1, 1 ] ] ) # Inc idence matrix
11 myproblem = multibank ( banks , trans , A, g0 , g1 , v , bmin )

Then, cash managers can derive the optimal policy by executing function
solvecost(b0, F ):

1 b0 = [ 5 , 8 , 12 ] # I n i t i a l ba lance
2 F = np . array ( [ [ 1 , −3, 0 ] , # Forecast matrix
3 [ 1 , −9, 0 ] ,
4 [ 6 , 6 , 0 ] ,
5 [−1 , −4, 0 ] ,
6 [−1 , 6 , 0 ] ] )
7 so lut ion_1 = myproblem . s o l v e c o s t (b0 , F) # So lu t i on

A more compact representation of the optimal policy and balances can be
obtained by calling functions policy and balance, which is ready to be visualized
through common plotting commands in Python as shown in Figure 11.2. The
same instance of the multibank class problem can now be solved in terms of
cost and risk by setting a cost reference c0 = 3, 000 e, budget limits Cmax =
5, 000 e, Rmax = 5, 000 e, and weights w1 = w2 = 0.5, and by executing
solverisk(b0, F, c0, Cmax, Rmax, w1, w2), resulting in a slightly different policy.
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Figure 11.2: Optimal balances for the cost minimization example.

11.5 Impact

PyCaMa is a cash management tool that can be used either to automate
decision-making in cash management or to support scientific discovery in the
context of computational finance. More precisely, PyCaMa is a promising tool
to tackle the following set of open research questions:

• The cash management problem with multiple bank accounts. There is a
lack of research about multidimensional cash management systems with
the exception of Baccarin (2009), who followed a rigorous theoretical ap-
proach. PyCaMa offers a suitable way to follow a more practical approach
by providing support for research on actual-world scenarios.

• The impact of cash flow forecasting accuracy. Although the utility of
forecasts in cash management was initially demonstrated by Gormley
and Meade (2007) and confirmed by Salas-Molina et al. (2017), both ap-
proaches were restricted to a single bank account. PyCaMa allows to
extend this analysis to cash management systems with multiple bank ac-
counts. As a result, PyCaMa represents a tool to find the best forecasting
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models and their potential benefits derived from improving predictive ac-
curacy.

• The utility of different risk measures. A multiobjective approach to the
cash management problem has been recently proposed in Salas-Molina,
Pla-Santamaria, and Rodriguez-Aguilar (2016) in which the risk of alter-
native policies is measured by the standard deviation of daily costs. The
utility of alternative risk measures can be evaluated by easily extending
PyCaMa to consider different risk measures.

• Robust optimization. Two robust approaches to optimization problems
were proposed by Soyster (1973) and Ben-Tal and Nemirovski (2002) to
deal with uncertainty. PyCaMa can be used to help researchers compare
existing and new robust approaches to the cash management problem in
terms of both cost and risk.

Moreover, under the realistic assumption of time-varying circumstances, cash
managers and researchers are allowed to modify the cost structure to analyze
to what extent a change in any of the parameters of the cost structure leads
to different optimal policies and, ultimately, to a variation in the cost (and
risk) of managing cash. It is also important to highlight that, since Miller
and Orr (1966) different optimization models have been proposed based on a
set of bounds. Determining such bounds may be problematic in practice due
to the strong assumptions made on the probability distribution of cash flows.
PyCaMa do not assume any particular form of the cash flow generating process
allowing a boundless optimization procedure in the sense that no restriction is
placed neither on the form of the policy nor on the distribution of cash flows.
As a result, we expect that PyCaMa will be progressively adopted by cash
managers and researchers as a more efficient tool to automate decision-making
in cash management.

11.6 Summary

In this chapter, we have introduced PyCaMa, a Python module for cost and risk
multiobjective optimization within a context of cash management systems with
multiple bank accounts. PyCaMa solves the cash management problem when it
is formulated as a linear program that aims to minimize either only cost or both
cost and risk of cash policies. PyCaMa is implemented through the Gurobi
Python modeling environment as a powerful and flexible way to allow an easy
integration of its functionality in a more general application. Through an
illustrative example, we have shown the key features of PyCaMa, and we have

262



11.6 Summary

demonstrated how PyCaMa allows users to model complex cash management
systems in an intuitive manner transforming a graphical representation in an
optimization model ready to find a solution and to further experimentation.
We firmly believe that PyCaMa can be a helpful tool for academic research
and financial decision-support software development in the field of short-term
financial planning. Natural extensions of PyCaMa include the implementation
of different forecasting techniques and additional measures of risk to be added
to the current functionality.

Selecting the best policy in cash management systems with multiple bank
accounts is by no means straightforward. As a result, a software tool that
supports cash managers’ decision-making is also a helpful contribution.

Question 10. Can we automate decision-making in cash man-
agement through the use of specific software?

Contribution 10. We provided a Python module for multiob-
jective cash management with multiple bank accounts.
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Chapter 12

Conclusions and future work

This chapter summarizes the contributions, discusses the challenges and high-
lights the benefits of the data-driven approach to multiobjective optimization
proposed in this thesis. We followed two mayor directions to address the cash
management problem: (i) a data-driven approach based on forecasting cash
flows; and (ii) a multiobjective approach to the cash management problem
considering not only cost but also the risk of alternative policies. The main
available resource for decision-making is data. As a result, we have established
a link between machine learning and multiobjective decision-making within
the context of cash management.

12.1 Summary of challenges and contributions

In what follows, we first summarize the challenges addressed in this thesis that
we ultimately map to the contributions of this thesis. In the first part of this
thesis, we focused on cash flow data analysis. Decision-making in cash flow
management has been supported by different models assuming different cash
flow data generating process such as a deterministic cash flows (Baumol, 1952),
a Bernouilli process (Miller and Orr, 1966), a Wiener process (Baccarin, 2009;
Constantinides and Richard, 1978; Premachandra, 2004), a double exponen-
tial distribution (Penttinen, 1991), or empirical distributions obtained from
real data sets (Gormley and Meade, 2007). The assumption of any particular
distribution modelling a cash flow process implies the additional assumption
of its predictability. Stochastic processes such as the Bernouilli or the Wiener
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process consider cash flows totally unpredictable. In practice, however, several
useful features from cash flow can be used to predict cash flows resulting in cost
savings in cash management. Gormley and Meade (2007) hypothesized that
the more accurate the cash flow forecasting accuracy, the larger the expected
cost savings. In Chapter 3, we empirically confirmed such hypothesis for the
first time in the cash management literature. Furthermore, we analyzed the
impact of predictive accuracy on average daily cost savings when considering
a variety of cost structures.

Question 1. Can cash flow predictive accuracy achieve cost
savings in the cash management problem?

Contribution 1. We empirically confirmed the savings hy-
pothesis showing that predictive accuracy is strongly correlated
with cost savings.

The lack of empirical evidence of the statistical properties of cash flows in
the literature (with the exception of Mullins and Homonoff (1976), Emery
(1981), and Pindado and Vico (1996)) led us to test the common assumptions
of normality, absence of correlation, stationarity and linearity of cash flows. In
Chapter 4, we performed a comprehensive comparative study based on 54 real-
world daily cash flow data sets showing that the usual assumption of normality,
absence of correlation and stationarity hardly appear. We also proposed a new
cross-validated test for time series non-linearity that we later used to derive
further insight on the implications for forecasting showing that non-linearity
is often relevant.

Question 2. Are common statistical assumptions of daily cash
flow supported by recent empirical data?

Contribution 2. We demonstrated that normality, absence
of correlation and stationarity hardly appear in real-world cash
flow data sets. Non-linearity is often relevant and it can be
assessed through a new cross-validated test described in this
thesis.

Since data transformation is usually considered as a necessary step by time-
series analysis techniques to achieve normality and linearity, we also address
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the question of data transformations in Chapter 4. Using the same 54 real-
world daily cash flow data sets, we empirically show that data transformations
such as Box-Cox (Box and Cox, 1964) or outlier treatment have little impact
on linearity and normality.

Question 3. Is it always possible to achieve a Gaussian, noise-
free and linear time-series through data transformations?

Contribution 3. We showed that data transformations can-
not always achieve a Gaussian, noise-free and linear cash-flow
time-series suggesting the utility of non-linear forecasting mod-
els.

It is easy to understand that most decision-making problems have to take into
account multiple objectives. Thus, in the second part of this thesis, we followed
a multiobjective strategy to solve the CMP. In order to allow cash managers to
control the amount of risk that their company take, in Chapter 5, we proposed
a new multiobjective approach to the cash management problem based on
compromise programming that differs from previous models by considering
risk and cash managers’ risk preferences. Along this direction, we proposed a
multiobjective model to minimize cost and risk in cash management that can
employ alternative measures of risk. We further elaborated on the utility of
cash management models by formalizing the cash management utility problem
from a multiobjective perspective in which we compare the loss derived from
a given policy to the loss derived from a trivial policy. Cash managers have
now new management tools to control the amount of risk they take in their
decision-making processes.

Question 4. Can we incorporate risk analysis to the cash
management problem?

Contribution 4. We formulated the cash management prob-
lem from a multiobjective perspective considering both cost and
risk.

Decision-makers usually have to deal with time-varying financial circumstances.
As a result, cash managers may be interested in identifying the best compro-
mise policies in terms of cost and risk, that are also robust to cash flow regime
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changes. Nevertheless, choosing the best policies under a changing context is
by no means straightforward. In Chapter 6, we relied on compromise program-
ming to incorporate robustness as an additional goal to cost and risk within a
multiobjective framework. More precisely, we proposed to calculate robustness
as a multiple criteria distance index that is able to identify the best compro-
mise policies in terms of cost and risk that are also robust to cash flow regime
changes.

Question 5. Can we provide a robust counterpart for any cash
management model?

Contribution 5. We proposed a new data-driven multiobjec-
tive method to derive the robust counterpart for any cash man-
agement model by computing distances in a cost-risk space.

A closely related topic to the previous research question is the concept of oper-
ating condition. Chapter 7 demonstrated that ROC analysis can be adapted to
enhance the understanding of the multiobjective cash management problem.
More precisely, we presented three procedures for: (i) graphically representing
models in the cost-risk space; (ii) choosing models according to the risk pref-
erences of cash managers; (iii) deriving cost-risk curves for different operating
conditions. These procedures allow cash managers to graphically analyze the
tradeoff between cost and risk for different models and operating conditions.

Question 6. Under what circumstances or operating condi-
tions a model is better than another?

Contribution 6. We adapted ROC analysis to the cash man-
agement problem in order to allow cash managers to select cash
management models.

From the seminal work by Baumol (1952), all cash management models were
based on a set of control bounds. Thus, we call them Bound-Based Mod-
els in which cash balance is allowed to wander around between some bounds.
Since the ultimate goal of the cash management problem is not to find the
best set of bounds but the best sequence of control actions, in Chapter 8, we
showed that the constraints imposed by these bounds are not necessary. We
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proposed a linear formulation of the CMP that guarantees optimal solutions.
We also experimented on 54 real data sets from different companies in Spain
and found significant benefits for reasonably low forecasting errors. This fact
must encourage cash managers to produce better cash flow forecasts since im-
provements in accuracy can be converted into important savings as we pointed
out in Chapter 3 by means of the savings hypothesis.

Question 7. Are control bounds really necessary in cash man-
agement?

Contribution 7. We proposed a new Boundless Model that
provides optimal policies using forecasts as a key input without
using bounds.

We know that the solution to the cash management problem is a policy. How-
ever, the process to obtain the best policy is not straightforward. Different
approaches considering a single objective have been provided in the literature
including mathematical programming and other heuristics. Within a multi-
objective framework in which both cost and risk are desired but conflicting
objectives, we proposed in Chapter 9 to derive the best policies by means of
solvers such as linear programming and quadratic programming within the
framework of compromise programming. We also made publicly-available the
Python code for the the solvers as a starting point for practitioners interested
in either designing cash management decision support systems or performing
their own experiments in multiobjective cash management.

Question 8. Can we obtain optimal solutions for the multi-
objective cash management problem?

Contribution 8. Under the framework of compromise pro-
gramming, we provided linear and quadratic models and solvers
of the cash management problem obtaining optimal solutions.

In the third part of this thesis, we followed a novel strategy that departs from
existing approaches in the cash management literature. Cash management
systems with multiple bank accounts are the rule rather than the exception.
Thus, we provided a formal specification of the cash management problem
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with multiple bank accounts along with theoretical results characterizing cash
management systems. We also adapted our initial formulation to provide two
alternative robust counterparts of the problem in order to deal with the uncer-
tainty introduced by cash flow forecasts. Finally, we proposed a novel two-stage
cost-sensitive robust optimization formulation that considers asymmetric esti-
mation costs that overcomes existing limitations in previous approaches.

Question 9. Can we derive optimal policies for cash manage-
ment systems with multiple bank accounts?

Contribution 9. After formalizing the multiple bank accounts
cash management problem, we provided useful theoretical re-
sults on cash management systems and we also proposed a novel
data-driven procedure to derive optimal policies.

Selecting the best policy in cash management systems with multiple bank
accounts is by no means straightforward. Thus, a software tool that supports
cash managers’ decision-making is also a helpful contribution. As a result, we
provide the software foundations to develop commercial software products for
cash managers.

Question 10. Can we automate decision-making in cash man-
agement through the use of specific software?

Contribution 10. We provided a Python module for multiob-
jective cash management with multiple bank accounts.

Summarizing, we have contributed to improve decision-making within the con-
text of cash management. We have empirically demonstrated that predictive
accuracy in cash flow forecasting leads to cost savings. We have empirically
analyzed the main statistical properties of real-world cash flows. We have
covered the most important dimensions of the cash management problem ex-
tending the state-of-the-art single objective analysis present in the literature
to a multiobjective approach in which both cost and risk are desired objec-
tives. We have designed new tools to account for time-varying circumstances
and operating conditions. We have proposed a new class of cash management
boundless models using forecasts as a key input. We have provided new in-
teresting theoretical results and we have implemented new solvers ready to be
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embedded in decision support systems for cash management. We have formal-
ized the cash management problem for multiple bank accounts and we have
proposed a new method to deal with cash flow uncertainty. Finally, we have
provided a Python module for multiobjective cash management based on linear
programming that allows to derive optimal policies for cash management with
multiple bank accounts in terms of both cost and risk of policies. In all the
aforementioned contributions, we have followed a data-driven decision-making
strategy, which we further dissect next, combining useful knowledge derived
from data and advanced optimization techniques as the main result of this
thesis.

12.2 Data-driven multiobjective decision-making

There is no doubt that the main available resource for decision-making is data.
Data contains information and useful information is out there for those who
need it, for those who want to use it to make better decisions. Disregarding
this information would be equivalent to leaving the tap on wasting water. We
firmly believe that data must be incorporated in cash management decision-
making as a key input to increase both the understanding and the solutions to
business and finance problems. A number of examples of the utility of data in
the context of cash management have been described in this thesis. As a result,
we have established a strong link between machine learning and multiobjective
decision-making that is ready to be used for profit by cash managers.

We mentioned in the introduction that the size of business data bases may con-
tinue to increase on a daily basis as a result of transaction recording. Big data
is a recent term used to describe the exponential growth in volume, availabil-
ity and use of information (Doumpos and Grigoroudis, 2013). In this sense, a
data-driven approach in which decision-making is based on the analysis of data,
rather than purely on intuition should result in better decisions in cash man-
agement. This thesis has followed an integrated approach in which machine
learning best practices (Chapter 3) have been used in combination to multi-
ple criteria decision-making to solve the cash management problem (Chapter
5). Within this context, we payed special attention to time-series forecasting
techniques as a way to reduce cash flow uncertainty.

In cash management research, little attention has been placed on the utility
of cash flow forecasts with the exception of Stone (1972) and Gormley and
Meade (2007). Both works showed the utility of forecasting in cash manage-
ment, but none of them researched the importance of the predictive accuracy
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and neglected the notion of risk. The underlying value of machine learning in
cash management is reflected in two important lessons learned from this thesis:
(i) the confirmation of the savings hypothesis (Chapter 3); and (ii) the per-
formance improvements achieved by our Boundless Models for low forecasting
errors (Chapter 8). Both lessons must encourage cash managers to produce
better cash flow forecasts since improvements in accuracy can be converted
into important benefits in terms of cost and risk. In addition, choosing the
best cash policies under a changing context is by no means straightforward. In
Chapter 6, we also propose a data-driven approach to test robustness in cash
management when possible regime changes are contained in a test data set.
As a result, we incorporated robustness as an additional goal to cost and risk
within a multiobjective framework.

Cash flow forecasting is also crucial to managing multiple bank accounts. De-
spite the recent advances in cash management, there is a surprising lack of
research to aid cash managers to deal with multiple bank accounts. In order
to fill this gap, we have provided a multidimensional framework to cover the
transition from a single bank account to a more realistic environment in which
cash management systems include several bank accounts (Chapter 10). Our
definition of cash management system is critical to understand both benefits
and opportunities for enhancing decision-making in the sense that any possible
configuration can be formulated and solved using state-of-the-art mathemat-
ical programming solvers such as CPLEX or Gurobi. Furthermore, we rely
again on a data-driven procedure to determine the minimum cash balances
required to derive robust cash management policies.

Summarizing, machine learning represents a sound framework to integrate data
in the cash management problem through cash flow forecasting to achieve in-
telligent decision support systems in the sense of Doumpos and Grigoroudis
(2013). In addition, multiobjective optimization have been incorporated to
field of cash management as a way to improve decision-making through con-
sidering additional goals to cost such as risk that may be interesting for cash
managers. In this thesis, we offered an integrated approach of machine learn-
ing and multiple criteria decision-making which departs from existing cash
management research on the following aspects: (i) it can be adapted to cash
management models accepting forecasts as a key input; (ii) it estimates the
utility of forecasts; (iii) it incorporates risk in decision-making; (iv) it is based
on time series cross-validation to suggest the use of either linear or non-linear
forecasting models; and (v) it can be extended to consider multiple bank ac-
counts.
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12.3 Future work

This thesis has integrated a data-driven procedure such as forecasting in the
multiobjective cash management problem in which cost and risk are objectives
to optimize by means of state-of-the-art algorithms. We have shown that fore-
casting accuracy has an important impact on cost savings. Thus, we consider
that further research on better forecasting techniques is worthy. On the other
hand, alternative measures of risk have been proposed to account for the risk
of cash policies within a multiobjective optimization framework. New mea-
sures of risk may lead to non-linear problems requiring the need for alternative
optimization algorithms different to linear or quadratic programming. Finally,
although we have proposed a software tool as a first step towards the con-
struction of decision support systems, there is an evident lack of supporting
technology to aid both cash managers in daily decision-making and researchers
in the pursuit of new research questions. Next, we further elaborate on these
three interesting lines of future work.

12.3.1 Forecasting techniques

Different forecasting techniques have been explored in Chapter 3 to be used
as a key input to cash management optimization models and we have shown
that forecasting accuracy has an important impact on cost savings. This anal-
ysis of the relationship between predictive accuracy and cost savings confirmed
the importance of better forecasting models when predictions are used as the
main input to cash management models. It is worth mentioning again the spe-
cific works on cash flow forecasting by Stone (1972), Stone and Wood (1977),
Miller and Stone (1985), and Stone and Miller (1987). Some additional in-
tuition have been added in this thesis through the introduction of linear and
non-linear forecasting techniques such as regression, random forests or radial
basis functions. Non-linearity seems to be an important factor when consider-
ing alternative forecasting techniques for cash flow forecasting such as neural
networks, support vector machines or even deep learning.

On the other hand, cash flows are usually recorded and stored in the form
of time-series. However, since cash flows come from (or go to) known agents
within the set of relationships of a firm, alternative approaches to cash flow
forecasting can be studied by considering a number of key features for each of
these agents. As a result, future work is in place to search for a more informa-
tive set of features in the cash management problem by incorporating useful
data from customers, suppliers, employees, tax offices and other stakeholders.
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In this sense, feature engineering is meant to play a key role to help improve
decision-making in cash management.

To end up, it its important to highlight that whenever it is possible to re-
duce uncertainty about the future, better decisions can be made. The task of
building forecasting models is an interesting research discipline in itself, but
chances are that cash management optimization models using forecasts as the
main input may benefit both from uncertainty reduction and better optimiza-
tion algorithms.

12.3.2 Evaluating alternative measures of risk

In Chapter 9, we discussed on alternative measures of risk from a theoretical
point of view. Advantages and disadvantages of different measures were con-
sidered as a first step to select between them. However, an interesting line of
future work would be the development of an empirical study comparing alter-
native measures of risk in terms of a given performance indicator. Note that
the selection of this indicator is not a trivial task. Since we aim to compare
risk measures, we should evaluate risk as a performance indicator. However,
this implies the selection of a measure of risk returning us to the starting point.

Apart from evaluating available measures of risk, this future line of work may
produce additional benefits by encouraging researchers to design new measures
that are more appropriate for possibly different cash management contexts.

12.3.3 Non-linear multiobjective optimization

As in the case of forecasting techniques, multiobjective optimization is a vast
and interesting research field in itself. Here, we do not pursue covering all
relevant future challenges of multiobjective optimization but concentrate on
how recent research can contribute to improve multiobjective decision-making
in cash management.

In Chapter 9, we introduced a number of alternative measures to incorporate
risk analysis in cash management. However, defining and measuring risk is not
an easy task (Szegö, 2002; McNeil, Frey, and Embrechts, 2005). As a result,
a number of alternative measures of risk can be considered according to the
particular preferences of cash managers. Apart from coherence in the sense
of Artzner et al. (1999), a desired property of any particular risk measure
is linearity to be minimized in a linear program. Even quadratic measures
of risk such as the variance can be considered to be solved by state-of-the-
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art solvers such as CPLEX or Gurobi. However, chances are that new non-
linear risk measures require the need for non-linear multiobjective optimization
algorithms to solve the cash management problem.

Interactive and non-intercative non-linear multiobjective approaches (Mietti-
nen, 2012), or evolutionary multiobjective optimization (EMO) (Branke et al.,
2008), represent a good starting point to incorporate non-linear risk measures
in cash management. However, recall that approximate heuristics such as EMO
do not guarantee optimality. Thus, the trade-off between optimality and the
utility of a non-linear risk measure must be carefully analyzed.

Besides cost and risk, the consideration of additional goals such as stability and
robustness constitutes a promising line of work since it may enhance the multi-
objective decision-making process. Furthermore, recent results by Qi, Steuer,
and Wimmer (2017) suggest an analytic derivation of the efficient surface in
portfolio selection with three criteria. The study of the applicability of these
results to the field of multiobjective cash management is also a worth tackling
question.

12.3.4 Software

Despite the recent advances in cash management, there is a lack of supporting
technology to aid the transition from theory to practice. Both cash managers
and researchers can benefit from available cash management software for either
designing decision-support systems or performing new experiments.

On the one hand, cash managers usually deal with multiple bank accounts to
receive payments from customers and to send payments to suppliers. Multiple
bank accounts and probably thousands of customers and suppliers makes cash
management systems a complex network of financial relationships. Operat-
ing such a cash management system is by no means straightforward. Hence,
cash managers require decision-support systems to make better decisions in a
timely manner within an ever changing context. Software development should
necessarily help cash managers to face their daily challenges.

On the other hand, cash management software also contributes to the process
of scientific discovery by allowing further, better and faster experiments. In
this thesis, we experimented on the utility of forecasts, on the statistical prop-
erties of cash flows, on the introduction of risk analysis in cash management,
on the robustness of cash management models, on the performance of new
cash management models, and on the management of systems with multiple
bank accounts. All this experimentation would not have been possible without
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the development of specific software. New researchers can benefit from this
software but there is a long way ahead to improve our software proposals and
to suggest new ones.

Finally, in Chapter 7, we suggested the use of graphical tools to enhance both
the understanding and the selection of alternative cash management models.
Along the lines of this proposal, we firmly believe that new software devel-
opments should include not only numerical optimization algorithms but also
graphical tools allowing practitioners to easily visualize the results of alterna-
tive strategies.
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Appendix A

Terminology and acronyms

In this appendix, we provide useful terminology and acronyms used in this the-
sis. Cash management deals with receipts and collections received from cus-
tomers or any other creditor of the company, and payments issued to suppliers
or any other debtor of the company. Consequently, cash managers handle the
balance between what the company keeps in cash and what has been placed in
short-term investments. Thus, the first term we are interested in is cash which
can be defined as money, usually in the form of coins or banknotes. However,
specially in business practice, coins and banknotes are hardly used and we
should better refer to cash as the money in the form of a bank account. Next
we itemize useful terminology about cash management and some other related
concepts:

• Cash: money in the form of coins, banknotes or bank account.

• Cash balance: readily available amount of cash at any moment in time.

• Cash flow: movement of money into and out of any bank account.

• Inflow, receipt, collection: incoming cash flow, from any other agent into
the company.

• Outflow, disbursement, payment: outgoing cash flow, from the company
to any other agent.

• Net cash flow: sum of inflows minus sum of outflows.
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• Transfer, transaction: all flow of cash into and out of a bank account,
usually for control purposes.

• Liquid or short-term asset: any investment which can be easily converted
in cash such as deposit accounts, treasury bills and marketable securities.

• Borrowing, loans: funds obtained by paying an interest rate on them.

• Policy: sequence of control actions, or transactions, over a time period.

• Holding cost: cost per money unit of a positive cash balance at the end
of the day. Equivalent to the opportunity cost of maintaining a certain
amount of idle cash.

• Opportunity cost: the interest that could have been earned in an alter-
native use of cash.

• Shortage cost: cost per money unit of a negative cash balance at the end
oh the day.

• Transfer cost: cost of transferring funds from one account to another. It
can be either linear, with a fixed and variable part, or non-linear, defined
by a more complex cost function.

• Cost function: is a relation between a set of inputs such as a policy or a
cash balance and a cost output.

• Cash flow process: a system that generates cash flows, such as a proba-
bility density function or any data set with real past cash flows.

• Model: a general function that accepts an initial cash balance condition
and a cash flow process and outputs a policy.

• Solver: under the framework of cash management, an algorithm used to
find a sufficiently good policy.

• Objective: goal or required attribute, usually expressed as a value func-
tion, to be fulfilled by a policy such as reduced cost.

• Maturity: period of time for which a financial instrument remains out-
standing at the end of which the financial instrument will cease to exist.

• Cash concentration, cash pooling: the practice of moving cash from mul-
tiple bank accounts into a main account.
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• Saving: cost reduction from a given reference.

• Time series: a set of observations chronologically ordered.

• Random variable: quantity subject to changes due to chance.

• Probability distribution: a theoretical or empirical function that assigns
a probability to each value of a random variable.

• Drift: trend of a time series usually measured by the average change
within a given time range.

• Variability, volatility: dispersion of observations usually measured by the
standard deviation.

• Heterokesdasticity: it is said of a data set with subsets that have different
variabilities.

• Normality: it is said of data set following Gaussian distribution with
observations symmetrically centered around the mean, and with finite
variance.

• Correlation: it is said of a data set with ordered observations when the
occurrence of past observations affects the probability of occurrence of
the next ones.

• Stationarity: it is said of a data set whose probability distribution does
not change over time and, consequently, its statistical properties such as
the mean and variance remain stable.

• Linearity: proportionality either to another (external) explanatory vari-
able or to a combination of (external) explanatory variables.

In Table A.1, we provide a list of the acronyms and abbreviations used in this
thesis for quick referencing:
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Table A.1: Acronyms and abbreviations

Acronym Meaning

AR Autoregression
ARIMA Autoregression Integrated Moving Average
BM Boundless Model
BBM Bound-Based Model
CaR Cost-at-Risk
CCaR Conditional Cost-at-Risk
CMP Cash Management Problem
CMUP Cash Management Utility Problem
CP Compromise Programming
CR Cost-Risk
CSRO Cost-Sensitive Robust Optimization
DP Dynamic Programming
DSP Dynamic Simple Policy
DT Data Transformation
GA Genetic Algorithm
GM Gormley-Meade
GP Goal Programming
LP Linear Programming
MBACMP Multiple Bank Accounts Cash Management Problem
MCDM Multiple Criteria Decision-Making
MOCMP Multiobjective Cash Management Problem
MOGM Multiobjective Gormley-Meade
NSE Normalized Squared Error
OT Outlier Treatment
p.a. Per annum
PSO Particle Swarm Optimization
QP Quadratic Programming
RBF Radial Basis Function
RF Random Forest
ROC Receiver Operating Characteristic
SI Seasonal Indicator
SLR Sharpe-Like Ratio
SP Stochastic Programming
UPM Upper Partial Moment
WGP Weighted Goal Programming
WSLR Weighted Sharpe-Like Ratio
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