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Foreword

The development of complex knowledge systems has revolved around the
hairy issue of knowledge acquisition. This book proposes a leading
approach to integrate knowledge modeling an Machine Learning (ML),
two of the main research disciplines dealing with the knowledge
acquisition issue, in the process of designing and implementing
knowledge systems, and specially knowledge systems with learning
capabilities.

A main contribution of "A framework for integrated learning and
problem solving" is that of using knowledge modeling to analyze ML
techniques as "methods". This approach allows analyzing at the knowledge
level the learning processes we might be interested in, and then integrate
them into the results of the analysis performed by knowledge modeling
techniques. In this way, the methodological aspects of knowledge
modeling are incorporated to the integration of ML techniques and to the
development of learning systems.

Finally, the new learning methods presented in the book are of
particular interest for the ML community. The ML methods work upon a
representation formalism called feature terms. Feature terms formalize
the object-centered representation of NOOS, the language used to develop
and implement the framework hereby presented. These ML methods,
based on unification of feature terms, show how relational learning can be
achieved using an object-centered representation. This contribution opens
an exciting new space of possibilities for object-centered induction and lazy
learning.

Bellaterra, July 1998

Enric Plaza i Cervera,
IIIA-CSIC

 E-mail: enric@iiia.csic.es



 



xiii

Preface

Fer una tesi no és un treball fàcil, però si la gent del teu entorn és com la
que jo he trobat a l'IIIA, la feina es fa menys feixuga. A tothom sense
excepció li he d'agrair el suport que m'han donat. En particular a Enric
Plaza, director d'aquest treball, que és la persona que ha fet possible aquesta
recerca gràcies a les idees que m'ha ha aportat i a les llargues discussions
que hem mantingut. També vull agrair a Josep Lluís Arcos la seva paciència
i la seva companyonia, ajudant-me sempre que ho he necessitat. A
Francisco Martin i a Adriana Zapico els hi agraeixo la seva disposició a
ajudar-me en qualsevol moment. A Marta Domingo li he d'agrair el seu
paper d'experta en esponges, que m'ha servit per desenvolupar una de les
aplicacions.

A Lluís Bonamusa li he d'agrair moltes coses: la paciència, el
suport, la seva ajuda com expert del domini, com a dibuixant, etc. Conviure
amb una persona que està fent la tesi no és una tasca fàcil i ell l'ha aprovat
amb escreix.

A Conrad Armengol, el meu pare, li vull agrair el seu suport i la
il.lusió que té per tot el que faig. Finalment, vull tenir un record per la
meva mare M. del Pilar Voltas, ella no ha pogut veure acabat aquest treball
però sempre em va donar el suport necessari.

Aquest treball ha estat finançat pels projectes de recerca AMP
(CICYT 801/90C02), ANALOG (CICYT-122/93), SMASH (TIC-1038-C04-01),
per la xarxa europea d'excel.lència ML-NET (ESPRIT 7115) i per una beca
per a la recerca del Ministeri d'Educació i Cultura.

Bellaterra, Juliol 1998

Eva Armengol i Voltas
IIIA-CSIC

E-mail: eva@iiia.csic.es



 



xv

Abstract

The proposal of this thesis is the integration of Knowledge Modelling and
Machine Learning. Commonly, Knowledge Modelling methodologies
have been used to build Knowledge systems (without Machine Learning
capabilities). We propose to use Knowledge Modelling methodologies to
analyse Machine Learning techniques and their integration into problem
solving systems. The result of this proposal is a common framework and
implementation for integrated learning and problem solving.

We achieve this proposal by defining a framework modifying
some assumptions of the Knowledge Modelling methodologies. In this
framework an application domain can be modelled as a task/method
decomposition: a problem solving method decomposes a task into subtasks
and each subtask has associated problem solving methods that solve it. We
propose to use Knowledge Modelling methodologies to analyse Machine
Learning techniques. As a result we consider that Machine Learning
techniques are learning methods and, consequently, they can be modelled
as a task/method decomposition. Learning methods are associated to a
particular kind of tasks, called KA-Tasks, whose goal is the acquisition of
domain knowledge. Thus, our framework integrates problem solving and
learning methods thanks to their uniform representation as a
task/method decomposition.

Elements of our framework can be implemented using NOOS, a
representation language whose main representation formalism are the
feature terms. Feature terms provide a uniform representation of both KM
analysis and learning methods. Also, feature terms allow the
representation of objects belonging to both relational domains (those used
in ILP) and propositional domains. Feature terms form a partial order by
means of the subsumption relationship. From the subsumption we
introduce the anti-unification operation.

Based on the anti-unification concept we introduce three learning
methods (INDIE, DISC and LID) handling feature terms. INDIE is a
heuristic bottom-up inductive learning method that uses the anti-
unification concept and the López de Mántaras distance to generalise
descriptions. DISC is a heuristic top-down inductive learning method that
uses the anti-unification concept as bias to specialise descriptions. LID is a
lazy learning method that uses the Shannon's entropy estimation to
retrieve experiences represented in a structured way.



xvi

The framework and the methods we propose have been used for
developing two applications: CHROMA and SPIN. CHROMA is an
application supporting the search for the appropriate plan to purify a
protein. SPIN is an application for classifying marine sponges that
integrates learning and problem solving.



Chapter 1

Introduction

1. Motivation

Knowledge systems (KS) address problem solving in a specific domain
task by the intensive use of domain specific knowledge. The necessary
knowledge can be acquired in two ways:

1) From a domain expert during a Knowledge Acquisition phase
previous to building the problem solver, or

2) Using Machine Learning techniques such as learning from
examples.

During the Knowledge Acquisition phase a domain expert and a
knowledge engineer work together to determine the knowledge
necessary to solve problems of that domain. The agreement on the
vocabulary used by both experts is not an easy task. Several methodologies
have been developed to support this agreement. Currently, the more used
are the Knowledge Modelling (KM) methodologies, such as KADS
(Wielinga et al., 1992), Generic Tasks (Chandrasekaran, 1986), and
Components of Expertise (Steels, 1990). These methodologies determine
which are the problems to solve (tasks), how can be solved (methods), and
which knowledge is necessary (models). Thus, an application domain is
analysed in terms of these three basic elements, being its main goal to
obtain models for solving problems in a domain.

Knowledge Modelling frameworks analyse the knowledge
necessary to solve problems and how it can be used. The use of KM
methodologies allows the analysis of a domain in a implementation-
independent way, therefore a complementary effort is necessary to
implement the acquired knowledge. The main assumption of the KM
methodologies is that all the knowledge can be obtained before solving
any problem. That is to say, during the Knowledge System (KS) design all
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the necessary knowledge is determined and acquired, so the resulting KS
is ready to solve new problems.

Machine Learning techniques also allow the acquisition of
knowledge, nevertheless their assumption is different. These techniques
consider two kinds of knowledge: background knowledge and learned
knowledge. The background knowledge is usually acquired from the
domain expert without using a specific methodology. The learned
knowledge is acquired by Machine Learning methods that use the
background knowledge and examples (solved problems) to obtain new
domain knowledge.

Any domain has some knowledge that can be easily acquired from
the domain expert and some other knowledge whose acquisition can be
automatically made using Machine Learning techniques. The integration
of Machine Learning and Knowledge Modelling is desirable since it
allows knowledge acquisition from experts during the modelling phase
and also provides an opportunity to learn new knowledge from examples
during problem solving.

Nevertheless, the integration of Knowledge Modelling and
Machine Learning has to solve issues such as how the KM methodologies
have to be modified in order to acquire knowledge during the problem
solving or how ML techniques can use KM methodologies to acquire the
background knowledge. There is also a question making difficult a
practical integration of Knowledge Modelling and Machine Learning:
the representation language used. The KM analysis is represented using
high level specification languages whereas ML methods use
implementation level formalisms.

The proposal of this thesis is to define a framework capable to
integrate Knowledge Modelling and Machine Learning. In this
framework, problem solving methods (PSM) decompose tasks in subtasks
and subtasks have, in turn, associate problem solving methods that solve
them. The integration of Knowledge Modelling and Machine Learning
is achieved using KM to analyse learning methods. So, learning methods
decompose tasks in subtasks and each subtask can be solved using some
problem solving method.

Therefore, in the framework we propose, an application task is
analysed in terms of a task/method decomposition. This decomposition
includes a particular kind of tasks that we call KA-tasks, whose goal is the
acquisition of knowledge necessary for some problem solving activity. A
KA-task is solved using a learning method. In fact, the result of a KA-task
(as any task) is the construction of a model that is necessary to apply some
problem solving method.

The use of KM methodologies to analyse learning methods allows
a seamless integration of problem solving and (symbolic) Machine
Learning. Thus, in the framework we propose, an application domain is
analysed identifying tasks, models and methods. In particular, two kinds
of models can be identified: 1) models that may be acquired from a
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domain expert and, 2) models that may be acquired using a learning
method. The first kind of models plays a role similar to the models in
KM methodologies whereas the second kind of models are associated to
KA-Tasks. During the KM analysis of a specific domain this second kind
of models are identified and, for each one, a KA-Task is defined. For each
KA-Task one has to determine the kind of input and output models, which
learning method can solve it and when this task can be used. In turn, this
KA-Task will be solved during the problem solving using a learning
method.

Related issues are how and when the appropriate method to solve a
task is selected. Some Knowledge Modelling methodologies such as KADS
or Generic Tasks associate one method to solve each task. Nevertheless a
task could be used in several moments using different knowledge and,
therefore, solved using different methods. For this reason, some other
methodologies such as CommonKADS (Wielinga et al., 1993) or
Components of Expertise allow the association of several methods to a task.
However, the selection of the appropriate method to solve a task is made
during the KS design.

Using our framework, several methods can be associated to a task
(or KA-Task) during the KM analysis of the domain. The selection of the
appropriate method, differently than in CommonKADS or Components of
Expertise, can be delayed to the implemented system. We propose that this
selection can be made according to the problem to be solved. We say that
this kind of selection is lazy problem-centred. Thus, the knowledge necessary
to decide which is the appropriate method has to be acquired during the
design phase. Notice that this framework also supports the design of
Multistrategy Learning Systems since during the KM analysis of a
domain, more than one KA-Task can be established. Each KA-Task can
have a specific, and may be different, learning method.

Elements of the framework we present can be implemented using
the reflexive object-centred representation language NOOS (Arcos, 1997).
The NOOS language is based on task/method decomposition and provides
a uniform representation of domain knowledge, problem solving methods
and learning methods. Therefore, the use of NOOS solves the question of
the different representation languages used by KM and ML. NOOS
structures are near to the structures obtained from the KM analysis of a
domain and they also allow the implementation of learning methods.

The representation formalism in which NOOS is based are feature
terms. Feature terms are a generalisation of first-order terms allowing the
representation of object-oriented capabilities into declarative languages.
Feature terms can be partially ordered using the subsumption relationship.
Subsumption is equivalent to the more general than relation commonly used
in Machine Learning. In fact, if a feature term X subsumes another feature
term Y, this means that X is more general than Y. Using the
subsumption, feature terms form a lattice.

Based on subsumption we have defined the anti-unification operation.
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Intuitively, the anti-unification of two feature terms X and Y is a feature
term Z containing all that is common to X and Y. The feature term Z is
the least general generalisation of X and Y.

The introduction of feature terms has required the definition of
new learning methods to deal with them. In ILP, the θ-subsumption is the
basis for two strategies, bottom-up and top-down, exploring the hypothesis
space. In the same way, based on both subsumption and anti-unification, we
have defined two inductive learning methods (INDIE and DISC) and one
lazy learning method (LID).

Given a set of training examples represented as feature terms, the
goal of INDIE and DISC is to build a feature term representing a concept
description. In both methods, induction is viewed as a search (bottom-up in
INDIE and top-down in DISC) in the space of feature terms.

The key issue of CBR is the retrieval of past experiences (cases) to
solve new problems. Cases are organised according to some indexes in
order to retrieve the most useful for each new problem. Commonly, cases
are represented as sets of attribute-value and indexes useful for retrieval are
based on those attributes. The retrieval consists of applying some metrics to
indexes. Using feature terms cases have a structured representation,
therefore we need to define some retrieval mechanism taking this into
account. LID is a lazy learning method that handles cases represented as
feature terms. In this method the retrieval of precedents is based on both
the anti-unification and the Shannon's entropy.

The framework and the learning methods above have been used for
developing two applications: CHROMA and SPIN. CHROMA is an
application supporting the search for the appropriate plan to purify a
protein. CHROMA integrates problem solving and learning in a lazy
problem-centred way. SPIN is an application for classifying marine
sponges that integrates learning and problem solving. INDIE, DISC and
LID have been used in SPIN.

2. Structure of the Thesis

This thesis is divided in three parts. In Part I we examine the current state
of the art and describe the proposed framework for integrated learning
and problem solving. In Part II we present some new learning methods
useful for the formalism of feature terms. Finally in Part III we describe
some prototype of domain applications developed using the framework and
the learning methods respectively described in Parts I and II.

The first part is composed of two chapters:

• Chapter 2 is a state-of-the-art of Knowledge Modelling, Machine
learning and Problem Solving. In this chapter all the concepts
necessary to describe our framework are introduced. Also we explain
the context of our work.
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• In chapter 3 we propose a framework for integrating problem solving
and learning. This framework has been implemented using NOOS,
an object-centred representation language that uses the feature terms
formalism to represent objects. NOOS is concisely described in this
chapter.

In Part II there are three chapters each one describing a ML method that
works using the feature terms formalism.

• In chapter 4 we introduce some concepts on learning in the feature
terms formalism, such as anti-unification, common to the methods
described in the next chapters.

• In chapter 5 the INDIE method is described and evaluated. INDIE is a
heuristic bottom-up inductive learning method that uses the anti-
unification concept and a heuristic based on López de Mántaras
distance to generalise descriptions.

• In chapter 6 we describe a heuristic top-down inductive learning
method called DISC. DISC uses the anti-unification concept as bias to
specialise descriptions.

• In chapter 7 a lazy learning method, called LID, is described. LID
builds, in a lazy problem-centred way, a discriminant description for
a specific problem. The basis of LID are the anti-unification operation
and an entropy-reduction heuristic.

In Part III we describe two prototypes developed using the framework
described in Part I.

• In chapter 8 we describe CHROMA, an application that recommends
a plan purifying a protein. This application shows both the dynamic
integration of learning and problem solving, and the lazy-problem
centred approach for problem solving.

• In chapter 9 we describe SPIN, an application for classifying marine
sponges. This application can use any of the methods presented in
Part II to classify a new sponge in the biological taxonomy.

Finally, in chapter 10 we summarise the final conclusions including the
contributions of our work as well as  the future work.





PART I





Chapter 2

Knowledge Modelling,
Learning and Problem
Solving

1. Introduction

There are two families of techniques to acquire and organise the
knowledge of a Knowledge-based System (KBS): Knowledge Acquisition
and Machine Learning. Goals of Knowledge Acquisition (KA) are
improving and automating the knowledge acquisition from human experts
(knowledge engineering). Conversely, Machine Learning (ML) is focused
in the development of algorithms allowing to acquire knowledge from
data and also the automatic improvement of the knowledge organisation.
The construction of a KBS is composed of three phases (Bareiss et al., 1989):
systematic elicitation of the knowledge from the expert, KB refinement
and KB reformulation. Each one of these phases is achieved in a different
way according to the used (KA or ML) technique. During the knowledge
elicitation phase using a Knowledge Acquisition technique, the expert
provides the basic terminology and the conceptual structure of a domain.
Instead, Machine Learning techniques assume that there is a knowledge
representation and a background knowledge before learning.

The advance in the research has found a complementarity between
both topics, in the sense that the integration of Machine Learning and
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Knowledge Acquisition techniques can make easy the construction of a
KBS. There have been several attempts in this direction: interactive
knowledge-based assistants that obtain new knowledge from the
observation and the analysis of the problem solver, Case-based Reasoning
Systems that integrate knowledge elicitation and case refinement with
inductive generalisation, or Interactive Inductive Logic Programming
Systems that integrate knowledge elicitation from the expert. Advances in
the integration of Knowledge Acquisition and Machine learning can be
found in (Marcus, 1989).

Research in Machine Learning has analysed several learning
methods, such as empirical induction, explanation-based learning (De
Jong and Mooney, 1986; Mitchell et al., 1986) or analogy (Carbonell,
1986). Nevertheless none of these methods can deal alone with complex
real-world problems. Therefore, current research has been focused in
Multistrategic Learning Systems (Michalski and Tecuci, 1991). These
systems have available several learning methods that can be applied under
different situations allowing to acquire a more wide range of knowledge
than using only one method.

Our proposal is to integrate Knowledge Modelling and Machine
Learning moreover to integrate Machine Learning with Problem Solving.
In this chapter we provide a summary of Knowledge Modelling
methodologies and Machine Learning methods in order to detect how
both topics could be integrated. We also analyse some systems integrating
Knowledge Acquisition and Problem Solving and some Multistrategy
Learning Systems. Both kinds of systems are interesting specially when
we want to deal with complex problems. So, in this chapter we revise some
concepts that will be useful to achieve our goal.

In the next sections we review the most common Knowledge
Acquisition techniques specially focusing on knowledge modelling. Then,
in section 3 Machine Learning techniques are explained. In section 4 we
explain how the integration between Knowledge Acquisition and Problem
Solving can be made. Section 5 explains Multistrategy Learning Systems
that combine several basic learning techniques to refine KB. Finally, in
section 6 we explain how our work is included in this context and which
are the goals that we want to achieve.

2. Knowledge Modelling

Knowledge Acquisition is the process of obtaining the necessary
knowledge to develop a KBS. In the KBSs built during the seventies,
knowledge was acquired by means of a knowledge engineering phase.
Knowledge engineering is a hard process in which a domain expert and
a knowledge engineer have to agree on the vocabulary to be used and then
the knowledge engineer has to formalise the knowledge provided by the
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domain expert into a knowledge representation language. Resulting KBSs
are domain-specific in the sense that they do not have reusable parts.
Several techniques to improve the knowledge acquisition process have been
proposed. One of these proposals was to apply the knowledge level
framework (Newell, 1982) to the knowledge acquisition process. The
adoption of a knowledge level framework focuses the analysis of expertise
on issues such as what a task requires and the kind of model that the expert
makes of the domain. Methodologies based on a knowledge level analysis
are called model-driven acquisition or knowledge modelling (KM) methodologies
and they focus on constructing the models of the problem solving
behaviour.

Data

Abstracted data Abstracted solution

Solution

heuristic match

data abstraction solution refinement

Figure 2.1.  Heuristic classification inference structure.

The first step to explicitly structure the knowledge according to the role
played in problem solving was the modelling of the heuristic classification
systems made by Clancey (1985). Figure 2.1. shows a general, domain-
independent analysis of classification systems. Heuristic classification
systems have a known finite set of solutions and the solution space is
formed by hierarchically organised classes. The reasoning scheme is
bottom-up from data to more general knowledge, allowing the inference
of some plausible solution classes. In the solutions, the process is top-down
by generating more specific solutions compatible with the plausible classes
previously inferred.

This model of heuristic classification is not completely satisfactory
mainly due to its generality, i.e. most expert systems can be analysed in
terms of it. McDermott (1988) developed several knowledge acquisition
tools that emphasised the problem solving method as the central key in
understanding and building an application. Using this approach is more
easy to determine the domain knowledge that the expert has to provide,
i.e. the necessary domain models to achieve a goal.

Currently, knowledge engineering is considered as an activity of
modelling or constructing models, for which methodologies as Generic
Tasks (Chandrasekaran, 1986), KADS (Wielinga et al., 1992) and
Components of Expertise (Steels, 1990) have been developed. All these
methodologies use concepts such as goals to achieve, knowledge necessary
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to achieve a goal and different ways to achieve a goal. Moreover, the
knowledge modelling methodologies allow the construction of libraries of
conceptual models that guide the knowledge acquisition process. In the
following sections these methodologies are reviewed. An analysis of how
the knowledge level can be useful in the KBS development can be found in
(Van de Velde, 1993).

2.1. Generic Tasks Framework

The analysis of the expertise in terms of tasks has shown that some tasks
are shared by many KBS, for instance classification or diagnosis tasks.
Chandrasekaran (1986) has called this framework Generic Tasks. Typical
generic tasks are classification, interpretation, diagnosis and construction
(planning and design). A generic task can be decomposed in subtasks
which can be also shared by many KBS.

A main consequence of the generic tasks framework is that they
also use the same kind of both models and inferences independently of the
application domain. Focusing on tasks and task decomposition is important
because, from a theoretical point of view, it provides a way to build a theory
of expertise that makes significant empirical generalisations. This theory
should identify a set of generic tasks and give, for each one, what kind of
problem solving methods and what kind of domain models are expected.
Once this theory has been constructed, strong models for interpreting
knowledge acquisition data are available.

The Generic Tasks framework developed by Chandrasekaran (1986)
is characterised by three main properties: 1) the kind of problem that
solve, 2) how the knowledge has to be represented in order to solve a task,
and 3) the control strategy to be used to solve a task. The language and the
strategy associated to a task characterise the kind of knowledge to acquire,
the decomposition of a problem in sub-problems, and how the system can
be implemented. Thus, a generic task can be viewed as a pattern that solves
general problems in different domains and that can be reused if both the
representation and the inference process are respected. The identification
of generic tasks is a way to start systematically cataloguing domain models
and problem solving methods. The generic tasks have the following
problems: 1) how to decide which tasks are the generic ones and what is
their appropriate granularity, 2) the ambiguity between tasks and problem
solving methods, 3) the rigidity in the task-method association, and 4)
sometimes is not possible to establish a correspondence between a kind of
problem and a kind of control strategy.

2.2. KADS

The origin of the KADS methodology was an European project whose goal
was to develop a methodology for supporting all the phases of the KBS
development. In particular, to support the knowledge acquisition phase,
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KADS (Wielinga et al., 1992) defined the model of expertise composed of four
layers (figure 2.2): domain layer, inference layer, task layer and strategic
layer. The domain layer contains static knowledge (as domain concepts),
relations and complex structures as models of processes or device). The
inference layer contains the description of inferences without specifying how
or when they are applied. Elements at this level are knowledge sources,
metaclasses, and dependencies between them. A knowledge source identifies
a kind of inference, i.e. an operation that applied on an input state
produces a different output state. So, inferences can be viewed as operations
on concepts and knowledge sources can be viewed as abstract operations on
abstract concepts.

LAYER RELATION OBJECTS ORGANIZATION

Domain

Inference

Task

Strategic

describes

applies

controles

Concepts, Relations, Structures

Metaclasses, Knowledge sources

Goals, Tasks

Plans, Metarules, repairs

Axiomatic structure

Inference structure

Structure of the tasks

Structure of the processes

Figure 2.2. Layers of the expertise according the KADS methodology.

Elements used by the task layer are goals and tasks. Tasks are different ways
in which knowledge sources can be combined to obtain a goal, i.e. a task is
a problem solving action representing a fixed domain-independent
strategy to achieve goals. The task definition consists of the task goal, the
input and the output, and the relation between them. In the task body
there is a description of how the goal can be achieved by decomposing the
task in subtasks. A task structure is a fixed strategy controlling the use of the
knowledge sources and the user interactions. Finally, the strategic layer
represents the control capability over the task layer of the problem solving.
The knowledge contained in this layer is often represented as rules
associating to each kind of problem a particular task structure. The more
complete and detailed is the specification of the strategic layer, the more
flexible will be the KBS obtained.

The knowledge acquisition process proposed by the KADS
methodology is composed of three phases: pre-analysis, analysis and
design. The goal of the pre-analysis phase is to define relations and concepts
of the application domain. There are two sub-phases: the identification sub-
phase, that obtains objects and domain concepts and establishes a
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dictionary, and the conceptualisation sub-phase in which individual objects
are grouped in conceptual primitives (classes and relations). The analysis
phase is made in two steps: the epistemological analysis and the logic
analysis. During the epistemological analysis, the structural properties of
each concept are described. During the logic analysis each structure of an
expertise layer is formalised. The result of this phase is a set of partial
specifications describing how to represent the application domain using
the chosen model.

KADS defines interpretation models for tasks (i.e. diagnosis,
assessment, monitoring, prediction or design) that are generic patterns
guiding the knowledge acquisition process and establishing the
decomposition of tasks in subtasks. Interpretation models are independent
of the application domain but their application range turns out to be small.
That is because the selection of an interpretation model implies the use of
all its subtasks. In other words, if some subtask composing an
interpretation model is not used, the interpretation model is not useful
and another one has to be defined. The knowledge of a KBS can be
described by means of a structure of tasks, i.e. a tree representing the
decomposition of tasks in subtasks.

The KADS methodology has been widely accepted by many
enterprises and research centres mainly due to its available library of
interpretation models. CommonKADS (Wielinga et al., 1993) is an
improvement of the KADS methodology that supports more aspects of the
KBS development, as project management, organisational analysis,
knowledge acquisition, conceptual modelling, user interaction, system
integration and design. CommonKADS itself does not provide
comprehensive support for the whole process of knowledge acquisition and
expertise modelling. Instead, the support focuses on the model-driven
approach. In addition to the library of generic models, there are also
guidelines on how to do the work.

2.3 Components of Expertise

The Components of Expertise (Steels, 1990) is a framework for describing
the expertise at the knowledge level. This framework supports the three
main activities of the KBS construction, such as knowledge analysis,
knowledge acquisition and knowledge coding. The main idea is the
decomposition of the expertise in three perspectives: task perspective, model
perspective and method perspective. The task perspective is described in
terms of components as tasks and task structures. In the model perspective a
characterisation of models and their dependencies is obtained. Finally, in
the method perspective, methods and control diagrams describing operations
of models are identified. Thus, for each perspective a different structure is
introduced, task structure, dependency diagram of models and control
diagram respectively. In the following sections these three perspectives are
analysed.



2. Knowledge Modelling 15

2.3.1. Task perspective

A task is a set of goals that a problem solver has to achieve. Usually, a
domain application can be represented by a task that can be decomposed in
subtasks, which in turn, may be successively decomposed in subtasks until
elemental subtasks are obtained. This decomposition produces a task
structure (see figure 2.3) that may be different according to the problem
solver. The task structure is represented by a tree, where each node is a task
and the children nodes are the subtasks in which this task is decomposed.
This is an and/or  tree because it may not be necessary to solve all the
subtasks. The task structure does not specify the order in which the subtasks
have to be executed, instead the order in which it is explored is provided by
a so called control diagram.

diagnosis

acquire symptoms identify malfunction

Figure 2.3. Decomposition of diagnosis task (adapted from Steels,
1993).

Using this framework several generic tasks have been detected (diagnosis,
description, selection, planning or classification). There have been also
several attempts to construct a taxonomy of generic tasks but a consensus
about the standard terminology has not been achieved.

2.3.2. Model perspective

The problem solving process can be viewed as a modelling activity that
builds a model of several relevant aspects of the reality to find a problem
solution. The model perspective is focused on different models that the
problem solver can use. Three kinds of models can be distinguished: case
models that are models of a concrete situation; domain models containing
domain knowledge that can be useful for the problem solving; and problem
solving process models that are models of the problem solving process itself.
Models and their dependencies are very important, and they are
represented in the model dependency diagram (see figure 2.4). From the
knowledge level point of view, problem solving methods are processes
organising and executing the activities of model construction.
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symptoms

malfunction

acquire 
symptoms

identify 
malfunctions

user

symptoms-to-
malfunctions 

model

Figure 2.4. Model dependency diagram for diagnosis task (adapted
from Steels, 1993).

The analysis of models can be made in two steps: the first one is to identify
the different case models and their dependencies; and the second step is to
identify domain models determining the role that they play in the
construction of case models.

Depending on the user's programming style, a different number of
case models can be identified. Usually, a case model is introduced when a
problem solving activity focuses on it. Some typical case models are the
following: components model, descriptive model, classificatory model,
temporal model, spatial model, causal model or functional model. Each
case model also has a set of primitive elements, for example, the
descriptive model has characteristics, the classificatory model has classes,
and the temporal model has temporal relations. Moreover, elements of a
model can be organised in a hierarchical structure. To identify case
models, the knowledge engineer needs the knowledge provided by a
domain expert. Once the case models have been identified, their
dependencies have to be determined, i.e. the model dependency diagram
has to be constructed.

Domain models are valid models for several cases since they
contain domain-specific knowledge necessary to construct case models. The
dependency diagram is completed by adding domain models. There are
two classes of domain models: expansion models and mapping models.
Expansion models contain relevant knowledge to expand a model (for
example, to add symptoms to a symptom case model). Typical expansion
models are descriptive models, default models, or hierarchies that can be
used to refine facts of a case model. Mapping models are used to construct or
to modify a set of case models according to a mapping of elements
belonging to other case models (for example from symptoms to
malfunctions, or from malfunctions plus symptoms to states of components).
Typical mapping models are description-to-class models, function-to-
component models, or symptom-to-malfunction model.
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2.3.3. Method perspective

A problem solving method (PSM) is a process organising and executing
the steps from which several case models can be constructed. The method
perspective focuses on how and when the knowledge is used. On the one
hand, a method needs a mapping from tasks to models. Methods have to
impose a control structure about the order in which tasks have to be
executed. Both informations are represented by control diagrams. These
diagrams are graphs where nodes are tasks and links between tasks occur
when the goal of a task has been achieved (see figure 2.5). Labels of links
are conditions that have to be fulfilled to activate a new task.

identify 
malfunction

generate 
malfunction

fail identify 
malfunction

start

no malfunctions 
left

test failed

test succeeded

test 
malfunction

succeed identify 
malfunction

new malfunction 
generated

Figure 2.5. Control diagram for diagnosis (adapted from Steels, 1993).

Methods can belong to three main classes: task decomposition methods,
task execution methods and search methods. Task decomposition methods
neither add information to case models nor consult domain models.
Typical task decomposition methods are the divide-and-conquer method,
the progressive-refinement method and the propose-and-revise method.
Task decomposition methods can be divided in turn in two kinds of
methods: mapping methods and expansion methods. Mapping methods
use one or more case models to build or modify a set of case models.
Expansion models focus on the development of a case model by adding new
knowledge to them.

Task execution methods split up a task into subtasks whose execution
results in problem solving activities that build case models. A typical
example of task execution method is linear classification. Search methods
are necessary when there is not enough information to decide how a case
model has to be expanded. This situation arises either when the mapping
model is incomplete, or when the expansion model is incomplete. In this
situation the problem solver has to explore different alternatives to select
the most appropriate of them.
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2.4. PSM libraries

The need to increase modularity has been addressed by the construction of
libraries of components. These libraries are formed by generic components
which may be used in a domain-independent way. The construction of
these libraries has been specially useful because of task decomposition
methods. KADS already proposed the construction of libraries of
interpretation models, but they are not flexible enough since all tasks
composing a method must be used. Some problems derived of the lack of
flexibility of the KADS library have been analysed by Cañamero (1995)
and Orsvärn (1996). Generic Tasks and Components of Expertise allow a
higher reusability and modularity of problem solving methods (PSM). In
these methodologies, the knowledge acquisition is a top-down activity
selecting methods in a task/subtask decomposition.

Task decomposition methods have a small granularity; therefore
they have a high possibility of reuse, i.e. they are more generic.
Nevertheless, the identification of generic task decomposition methods is
not easy since an analysis of requirements is necessary in order to assure a
real possibility of reuse. The analysis of requirements defines the
applicability problem, i.e. to define under which conditions a PSM can be
applied to solve a task. Applicability conditions are determined in the
knowledge engineering phase and may be used to dynamically decide the
PSM that can be used. Benjamins and Pierret-Golbreich (1996) have called
assumptions the applicability conditions of methods. They have organised
assumptions in two forms: horizontally  according to a specialisation
hierarchy; and vertically allowing determine the completeness, consistency
and redundancy of assumptions. Thus, it is necessary to known the
assumptions associated to a PSM to be able to reuse it.

Once problem solving methods and their corresponding
assumptions have been defined, two problems appear (Studer et al., 1996):
the indexing problem and the configuration problem. The indexing problem
consists in the location of an appropriate PSM into the library. The
configuration problem consists of how a PSM can be adapted to solve the
current task. The tool PROTÉGÉ-II (Puerta et al., 1992) is specially
addressed to the configuration problem. The configuration problem is also
described in (Albert and Rouveirol, 1994) although the description of
assumptions of the different methods used in this work was rather
informal.

2.4.1. Selection of PSM

Knowledge modelling methodologies allow constructing KBS in two
independent phases: the design phase and the implementation phase. The
design phase has the following goals: 1) to acquire all the necessary
knowledge, 2) to determine which tasks have to be solved, and 3) to select a
method to solve each task. The selection of an appropriate method to solve a
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task is an issue that influences the flexibility of a KBS. In other words, the
KBS strategy remains fixed once a PSM is chosen for each task. The main
problem that can appear is that the chosen PSM uses some non available
knowledge, therefore the task cannot be solved. A solution to this problem
could be to solve the task using a different PSM, i.e. make a flexible
selection of the PSM.

Several authors have addressed their research to build more
flexible KBS. Most of them (Chandrasekaran, 1990; Wanwelkenhuysen
and Rademakers, 1990; Van Marcke, 1990) use knowledge modelling
methodologies, representing the problem solving in terms of models,
tasks and methods. A task can be solved using several methods, which have
applicability conditions that are evaluated during runtime. Benjamins and
Pierret-Golbreich (1996) make a classification of the applicability
conditions of methods (that they call assumptions) and propose a metalevel
to estimate the utility of each method and select the most appropriate.

Chandrasekaran (1990) provides a theoretical framework of how a
flexible selection in run-time could be made. Wanwelkenhuysen and
Rademakers (1990) propose a computational framework (implemented on
top of the KRS language (Van Marcke, 1988)) which attempts to closely
connect entities at the knowledge level with objects at the implementation
level. An appropriate method to solve a task is dynamically made among
those methods whose applicability conditions are satisfied. Van Marcke
(1990) defines a Generic Tutoring Environment (GTE) in which teaching
expertise is represented in terms of instructional tasks, instructional
methods, and instructional primitives. Tasks in GTE can be solved using
several methods, each representing an alternative way to perform the task.
Applicability conditions of the methods in GTE are numbers. The method
having the highest applicability number is selected as the most appropriate
to solve a task. The applicability number of a method is computed according
to a function involving the current context and state and the different
sources that the current method has used.

In chapter 3 we describe a framework integrating KM and ML in
the development of KBS applications. In this framework we propose:

1) to acquire knowledge using both KM and ML,

2) to integrate learning methods and PSM, and

3) to allow a lazy selection of a PSM for a task.

In this framework, the integration of Machine Learning and Problem
Solving Methods is based on Knowledge Modelling. Thus, from the
Knowledge Modelling of a domain we determine the set of tasks that have
to be solved. When a task requires some knowledge, it may be acquired
during the design phase or delayed until execution time. In our approach,
tasks that acquire knowledge, during the design phase or at execution
time, can use ML methods.
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In our approach, the selection of a PSM for a task can be delayed
until runtime. To achieve the dynamic selection of one PSM for a task, we
propose a lazy problem-centred approach. This approach consists of delaying
some decisions until they are needed (i.e. at execution time) in order to
use the concrete information available about a particular problem. Using
the lazy problem-centred approach we can select the appropriate PSM for a
task according to the specific problem to solve. Thus, during the design
phase, more than one PSM can be associated to a task in the application
domain using different knowledge resources. The KM process has to
establish the conditions under which each PSM can be applied and/or the
preferences in the application of each PSM if more than one is applicable.
The selection of the appropriate PSM for each task is delayed until a specific
problem has to be solved. In that moment the KBS application can take
into account both the applicability conditions and the preferences with
respect to the particular problem or situation being addressed.

3. Machine Learning

Learning is the ability exhibited by humans to adapt and modify its
behaviour according to experience. Machine Learning has as goal to
analyse and model learning processes in all its multiple manifestations.

Machine Learning research has been focused in three main topics
(Carbonell et al., 1983): the development and analysis of learning systems
improving the performance of a predetermined set of tasks, the research
and simulation of human learning processes and the theoretic research of
methods and algorithms applicable in a domain-independent way.

Early learning programs (non-symbolic) were applied to adaptive
control systems. Symbolic learning appears when learning results need to
be understood by human users. The symbolic paradigm uses logic or
graphic structures to represent the knowledge and learn symbolic
descriptions representing high-level knowledge.

Learning may be used as a way to acquire knowledge or associated
to a concret problem solving system. Inductive learning methods (analysed in
next section) are typically used to acquire general knowledge from
examples. Lazy methods are those in which the experience is accessed,
selected and used in a problem-centred way. In section 3.2. lazy methods
such as instance-based and case-based reasoning are analysed.

3.1. Inductive Learning

Inductive methods can be applied in two ways: as interactive tools acquiring
knowledge from examples or as a part of learning systems. When
inductive methods are used to acquire knowledge, the user provides
examples and strongly controls the use of the method. Used as part of
learning systems, inductive methods are activated when another system
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component has the necessity to learn from positive and/or negative
examples that constitute the feedback from which the system can achieve
the current task. Example of systems having inductive learning integrated
with problem solving are LEX (Utgoff, 1986).

Induction is based on specific facts (examples) instead of general
axioms as in deduction. The goal of the induction is to formulate plausible
general assertions that both explain the given facts and are capable to
predict unseen facts. In other words, the inductive inference tries to obtain
a complete and correct description of a given phenomenon from specific
(maybe partial) observations of it. The description inductively obtained is
true at least for the already seen examples but nothing can be assured for
unseen examples.

The most frequent application of inductive learning is concept
learning. The goal of concept learning is to find symbolic descriptions
expressed in high-level terms that are understandable by people. Concept
learning can be defined as follows:

Given:   A set of (positive and negative) examples of a concept and
eventually some background knowledge

Find: A general description (hypothesis) of the concept describing all
the positive examples and none of the negative examples.

Background knowledge defines assumptions and constraints imposed on
examples and generated descriptions, and any relevant domain
knowledge. Background knowledge can be in different forms (Michalski,
1983), e.g. in declarative form or in procedural form, as sequences of
instructions for executing specific tasks (control knowledge).

Concept learning can be viewed as the task of searching through a
large space of hypotheses implicitly defined by the hypothesis
representation language (Mitchell, 1992). The goal of this search is to find
the hypothesis (description) that best explains the examples. The language
used is very important since it defines the hypothesis space, i.e. what
knowledge can be expressed, and therefore what knowledge can be
learned. The language has to be chosen with care in order to easily
express all the desired knowledge. Most commonly used languages are
constrained forms of predicate calculus, like decision trees, production
rules, semantic nets and frames.

The background knowledge includes a preference criterion
allowing the reduction of the set of hypotheses to a smaller one containing
the most preferable hypotheses. Typically, the preference criterion
characterises the desired properties of the searched inductive hypothesis.
This criterion is necessary when the description language is complete, i.e.
all possible hypotheses can be expressed. An alternative way to constraint
the hypothesis space is using a biased description language in which not
all the possible hypotheses can be expressed (i.e. the language is
incomplete).
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Utgoff and Mitchell (1982) defined bias as anything influencing
the way in which the induction is made. Thus, the notion of bias includes
any input besides examples, and any parameter or strategy that may be
modified by the user of a learning system. The declarative bias, i.e. a bias
explicitly given by the user, has as advantage the possibility to be used in
several systems and allows meta-level reasoning about it. This second
advantage is important since if a current bias is considered insufficient, it
may be changed (Utgoff, 1986). In (Nedellec et al., 1996) a complete
analysis of declarative bias can be found.

Inductive concept learning methods can be classified according to
the following perspectives:

- Supervised/unsupervised. Supervised methods need an oracle that
provides the classes (concepts) to which the examples belong and classifies
the examples. Unsupervised methods have to discover the concepts to which
the examples belong. In our work have focused on supervised methods, i.e.
we will suppose that the oracle has provided the concepts and has classified
the examples.

- Single/multiple concept learning. This classification is according to the
number of concepts that have to be learned. Single concept learning can be
achieved in two situations: 1) inputs are only positive examples, 2) inputs
are positive and negative examples. Multiple concept learning also
distinguishes two cases: 1) when the descriptions of the different classes
(concepts) are mutually disjoint, 2) when the descriptions of concepts
overlap, i.e. an example can satisfy the descriptions of several classes.
Multiple concept learning has been implemented in AQVAL/1 and AQ11
(Michalski and Larson, 1978). Learning multiple concepts raises the
problem of learning dependent predicates (including the case of mutually
dependent predicates. In (De Raedt et al., 1993) and (Bergadano and
Gunetti, 1993) can be found an analysis of these problems.

- Propositional/relational learners. Methods using  a formalism
equivalent to propositional calculus are called attribute-value learners o r
propositional learners. These methods use objects described as a fixed
collection of attributes, each of them taking a value from a corresponding
pre-specified set of values. Methods that learn first-order relational
descriptions are called relational learners. They induce descriptions of
relations and use objects described in terms of their components and
relations among components. The background knowledge is formed by
relations which, as the language of examples and concept descriptions, are
typically subsets of first order logic. In particular, learners that induce
hypotheses in the form of logic programs (Horn clauses) are called
inductive logic programming systems.

An important application of inductive learning is the automatic
construction of KB for Expert Systems, being an alternative to classic
knowledge acquisition methods. Inductive techniques can also be used for
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the refinement of existing KB since they allow the detection of
inconsistencies, redundancies, and lack of knowledge, and also allow the
simplification of the rules provided by the domain expert. Application
domains such as biology, psychology, medicine and genetics take benefit
from the capability of inductive methods to detect patterns present in the
input examples. In the following sections both propositional and relational
learners are explained in more detail.

3.1.1. Propositional Learners

Propositional learners use examples described in terms of a fixed set of
attributes, each one having its own set of values. Examples are classified,
i.e. the class to which they belong is known. The abstraction level of
attributes affects the induced description, since high-level attributes produce
more understandable descriptions, i.e. more compact descriptions. Thus,
the selection of attributes describing the examples determines the scope of
the descriptions that can be learned (representational bias). Propositional
learners assume that all the examples are described using the same set of
attributes, otherwise they need mechanisms for handling imperfect data.
The learning task of propositional learners can be described as follows:

Given: a set of correctly classified training examples

Find: a rule predicting the class to which seen or unseen examples
belong.

Representative propositional learners are the family of AQ algorithms
(Michalski, 1983) and the ID3 algorithm (Quinlan, 1986). AQ algorithms
induce description rules (having an if-then form) for each class. A class is
described by a disjunctive logic expression, i.e. the disjunction of several
clauses. The description of each class (hypothesis) is searched taking as
negative examples the training examples belonging to other classes and
applying the set covering algorithm explained in section 3.1.2.1.

Is-smiling

Holding

Unfriendly

sword balloon
flag

Friendly

Unfriendly

Friendly

yes no

Figure 2.6. An example of decision tree belonging to robots domain
(Lavrac and Dzeroski, 1994). The set of values for the is -smiling
attribute is {yes, no}, and the set of values for the attribute holding is
{sword, flag, balloon}.
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The ID3 algorithm expresses the learned knowledge using decision trees.
Each internal node of a decision tree is labelled by an attribute and links
from a node are labelled by the possible values of the attribute (see figure
2.6). The tree construction process is based on the selection of the most
informative attribute, trying to minimise the number of tests (i.e. the
length of paths from root to leaves). The algorithm used by ID3 to build a
decision tree is the following (from Lavrac and Dzeroski, 1994):

Let E the set of examples and C1 … Cp the set of classes in which the examples
can be classified

Initialise Ecurr:= E; T:= nil

function DT(T,Ecurr)
  if all examples in Ecurr belong to the same class Cs
   then generate a leaf labelled Cs
   else {generation of a new node}
        select the most informative attribute A with values {v1 … vn} for the

root of the tree
 Split Ecurr into subsets E1 … En according to the values v1 … vn
 for i = 1 to n do
     DT(Ti,Ei)          ;; recursively build a subtree Ti for Ei
 end-for

  end-if

output: Decision tree T with the root A and subtrees T1 … Tn 

If all the input examples in Ecurr  belong to the same class C (represent the
same concept), the decision tree contains only a leaf corresponding to C.
Otherwise, input examples belong to several classes C1 … Cn. In that
situation, the algorithm selects an attribute and divides E in disjoint sets
E1 … En. Each set Ei of the partition contains examples having the same
value in the selected attribute. The algorithm is applied to each partition
set Ei until the obtained sets contain elements belonging to a unique class.
Tree leaves are classes C1 … Cn in which the examples can be classified.

An unseen example is classified starting from the root, testing
attributes of internal nodes, to a leaf. The assumption made in the decision
tree is that examples belonging to different classes have different values at
least one of their attributes.

The selection of the attribute that divides the set of examples is a
crucial decision. There are many possible measures to make this selection,
in particular the entropy measures and the Gini's index are the most
commonly used. The main idea is to select an attribute producing a
maximum information gain. ID3 uses the following expression to compute
the gain obtained in selecting the attribute Ak

Gain (Ak, X) = I(X) - E (Ak, X)

where 
  
I(X) = − Pj log2 Pj

j=1

m
∑   with  P j =

X ∩ F j

X 
 and 

  
E(Ak ,X) =

Xi

Xi=1

n
∑  I(Xi )  being m
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the number of possible classes, n the number of possible values of the
attribute Ak, |X| the number of examples in the node and |Xi | the number
of examples in X having the value vi  in the attribute Ak. I(X) measures the
randomness of the distribution of the examples in X over m possible
classes. Pj  is the probability of occurrence of each class Fj  in the set of
examples, defined as the proportion of examples in X belonging to the
class Fj .

The gain is computed for all the attributes describing the examples,
and the attribute having maximum gain is selected. This measure
preferentially selects attributes with a large set of values, for this reason
Quinlan (1986) introduced a correction defining the Gain Ratio as follows:

  
GR (Ak ,X) = I(X) − E(Ak ,X)

IV(Ak )
  where  IV(Ak ) = -

Xi

Xi=1

n
∑ log2

Xi

X

This nrmalisation has, however a rather ad-hoc justification. An
alternative to the Gain Ratio is the distance-based measure introduced in
(López de Mántaras, 1991). This measure is based on defining a distance
between partitions of the data. Each attribute is evaluated based on the
distance between the data partition it creates, and the correct partition (i.e.
the partition that perfectly classifies the training data). The attribute whose
partition is closest to the correct one is chosen. It is formally proved (see
López de Mántaras, 1991) that such distance measure is not biased towards
attributes with a large number of values. Furthermore it avoids the
practical difficulties associated with the Gain Ratio and produces
statistically significant smaller trees.

In (Kononenko, 1995) an analysis of the behaviour showed by
measures commonly used to divide the training set can be found.

Problems exhibited by decision trees can be classified in two
categories: algorithmic problems and problems inherent to the
representation. The cost of top-down decision tree induction algorithms
can be reduced by implementing a greedy approach searching for a small
tree. Then, selection measures can be used to estimate which attribute
provides the maximum information gain if it is included in the decision
tree. Several algorithms have been developed to improve the decision tree
when domain concepts are hard (concepts represented by many relevant
attributes with high interaction among them). For example, FRINGE
(Pagallo and Haussler, 1990) uses the decision tree produced by a greedy
splitter to construct new features improving the tree quality. The Lookahead
Feature Construction algorithm (LFC) (Ragavan and Rendell, 1994) is a
global search algorithm that caches search information as newly
constructed features.

Two problems inherent to the decision tree representation are
replication and fragmentation (Pagallo and Haussler, 1990). The replication
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problem produces the duplication of sub-trees in disjunctive concepts.
Replication degrades accuracy, consistency and comprehensibility. The
fragmentation  problem causes the partition of examples in small sets.
Replication always implies fragmentation, but fragmentation can occur
without replication if many attributes are tested (long paths). Another
problem inherent to the representation is the handling of unknown
values. When an attribute of an internal node has an unknown value in
the current example, it is not possible to decide how the remaining sub-
tree has to be explored. Usually, algorithms have special (and expensive)
mechanisms to deal with unknown values.

The main limitations of propositional learners are the limited
expressiveness of the representational formalism and their limited
capability of taking into account the available background knowledge. The
predictivity of propositional learners is highly dependent on the form in
which the training set is divided by the heuristics used.

Some systems expressing the learned knowledge as decision trees
are CART (Breiman et al., 1984) and ASSISTANT (Cestnik et al., 1987).
ASSISTANT extends the ID3 algorithm allowing the manipulation of
incompletely specified examples, the binarisation of continuos attributes,
the construction of binary trees, the pruning of the tree and the plausible
classification based on the naive Bayesian principle.

3.1.2. Relational Learners

Relational learners are able to deal with structured objects, i.e. objects
described structurally in terms of their components and relations among
components. Learned knowledge are descriptions of relations (i.e.
definitions of predicates). In relational learners the languages used to
represent examples, background knowledge and concept descriptions are
usually subsets of first-order logic.

In the next section we describe FOIL, a system that learns Horn
clauses from data expressed as relations. FOIL is based on ideas that have
proved to be effective in propositional learners, and extends them to a first-
order formalism. In section 3.1.2.2 we introduce a group of relational
learners, called inductive logic programming systems, that uses knowledge
represented as Horn clauses. Many authors consider FOIL as one of the
early systems that can be included in the Inductive Logic Programming
framework.

3.1.2.1. FOIL

FOIL (Quinlan, 1990) is a system incorporating ideas of both propositional
and relational learners. Objects are described using relations from which
FOIL generates classification rules expressed in a restricted form of first-
order logic. In particular, FOIL uses the set covering approach as in AQ
(Michalski, 1983), a heuristic information-based search taken from ID3
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(Quinlan, 1986) and the idea of the top-down searching of refinement
graphs taken from MIS (Shapiro, 1983).

FOIL follows three main steps: 1) pre-processing of the training
set, 2) construction of hypotheses, and 3) post-processing of hypotheses.
During pre-processing, negative examples are generated using the closed-
world assumption. Post-processing is a pruning process in order to reduce
the complexity of the constructed hypothesis. Basically, pruning consists of
removing irrelevant literals from a clause and removing irrelevant clauses
from the hypothesis (see Lavrac and Dzeroski, 1994).

Hypothesis construction is made using the set covering algorithm. Let
us suppose that we want to find the description of N classes C1 …CN. This
problem can be transformed in N problems each one finding the
description of one class Ci . In this transformation, examples belonging to
the class Ci  form the set of positive examples and examples belonging to
other classes are considered negative examples of the class Ci . The set
covering algorithm to construct a hypothesis has the following three steps:

-1- Search for a conjunction of conditions satisfying some examples of
the class Ci  and none of other classes (clause construction step).

-2- Add the obtained conjunction as a disjunction of the hypothesis that
is searching for (hypothesis construction step).

-3- Delete from the training set the examples satisfying the obtained
conjunction. If the obtained set is not empty the whole process is
repeated until all positive examples are covered.

Clauses are constructed using a beam search algorithm. This algorithm
begins with a clause c containing all the attributes that describe the
examples and each attribute has as value the disjunction of all the possible
values. The clause c is successively specialised until no negative examples
are covered. The specialisation consists of removing values from attributes
(there are many possible values to remove). The obtained specialisations
are evaluated using a quality criterion. When at each step there are several
rules to choose, they are ordered according to several criteria. First, the
algorithm prefers those clauses covering as many examples as possible;
then it prefers those clauses having a smaller number of attributes; and
finally it prefers those clauses having the least total number of values in
the internal disjunctions.

From this set covering algorithm several improvements have been
developed. For example AQ15 (Michalski et al., 1986) and NEWGEM (in
(Lavrac and Dzeroski, 1994) a brief description of this system can be found)
that incorporate incrementality and initial hypothesis provided by the
user; AQ17 (Wnek and Michalski, 1991) that incorporates constructive
induction; CN2 (Clark and Niblett, 1989) combines the ID3 algorithm to
handle imperfect data using the same flexible strategy used by AQ.

Imperfect data are handled in FOIL using a stopping criterion
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based on the encoding length restriction. Thus the construction of a clause
stops when no negative examples are covered or when no more bits are
available to add more literals to the body hypothesis. The search for more
clauses stops when all the positive examples are covered or when no more
clauses may be constructed under the encoding length constraint. In
(Quinlan, 1990) the application of FOIL to several domains can be found.

3.1.2.2 ILP

Inductive Logic Programming (ILP) has been defined as the intersection
of inductive learning and computational logic (Lloyd, 1990) since it uses
techniques of both fields. ILP inherits two goals from the inductive
learning: 1) to develop tools and techniques to induce hypotheses from
observations (or examples), and 2) to synthesise new knowledge from
experience (background knowledge). ILP uses computational logic as the
representation mechanism of both hypotheses and observations, avoiding
the two main limitations of the classic Machine Learning techniques: 1)
use of a limited knowledge representation formalism (usually
propositional logic), and 2) problems in using background knowledge.
Thus, from computational logic, ILP inherits the representational
formalism, its semantics and several well-stablished techniques. For an
overview of ILP see (Muggleton and De Raedt, 1994).

The main concerns of ILP are inference rule properties, algorithm
convergence and computational complexity of the procedures. ILP extends
theory and practice of computational logic using induction as basic
inference rule. Plotkin's work on inductive generalisation (Plotkin, 1969),
the work on model inference by Shapiro (1983), and the work of Sammut
and Banerji (1986) inspired the efforts made by Lapointe and Matwin
(1992), and Idestam-Almquist (1993) in studying the implication operator.
These authors studied inductive rules regarding them as inverse of
deduction rules. This inversion is made by introducing a partial order: the
θ-subsumption. Nevertheless, θ-subsumption is not enough to handle
recursive clauses since it is incomplete with respect to implication.

ILP research has commonly focused on concept learning, where
the examples are implications and the goal is to induce a hypothesis able
to classify correctly the examples. Concept learning uses positive and
negative examples to induce a discriminant description for a concept. In
Data Mining and in Knowledge Discovering in Databases, there is a
large amount of data available and the main goal is to find the properties
or regularities that they present instead of discriminant descriptions
(since all examples are considered positive). Flach (1992) formalised these
two types of induction as explanatory and confirmatory induction
respectively.

The use of a relational formalisms allows the application of
induction over domains in which an attribute-value representation is not
sufficient. Thus, ILP is being successfully applied in areas as knowledge
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acquisition, knowledge discovery in databases, scientific knowledge
discovery, logic program synthesis and inductive engineering. Classical
ILP applications are protein secondary-structure prediction (Muggleton et
al., 1992), finite element mesh design (Dolsak and Muggleton, 1992) and
automatic construction of qualitative models (Bratko et al., 1991). An
important application is also the construction of programming assistants,
that is, tools supporting software design and implementation (Shapiro,
1983; Quinlan, 1990; Kirschenbaum and Sterling, 1991; De Raedt, 1992;
Bergadano and Gunetti, 1996).

In the following sections we will describe the basic concepts and
techniques of ILP, how the systems using ILP can be classified, and some
representative ILP systems.

Basic Concepts

Lavrac and Dzeroski (1994) give the following description of the Inductive
Logic Programming (ILP) problem:

Given: Background knowledge BK, and a set of training examples E =
E- ∪  E+, where E-   are negative examples and E+  positive examples

Find: a hypothesis H expressed in some concept description language L,
such that H is complete and consistent with respect to BK and E.

Given background knowledge BK, a hypothesis H, and a set of examples E,
we say that:

•  A hypothesis H covers an example e ∈  E if BK ∪  H ª e.

According to this definition, completeness  means that all the positive
training examples are covered by H (BK ∪  H ª ei  ∀ ei  ∈  E+) and consistency
means that no negative example is covered by the hypothesis H (BK ∪  H Ω
ei  ∀ ei  ∈  E-).

ILP can be viewed as a search problem (Muggleton and De Raedt,
1994) since there is a candidate solution space and an acceptance criterion
characterising the solutions. This is a similar vision of that provided by
Mitchell (1982) for concept learning in ML in general. The hypothesis
space contains descriptions of concepts and the goal is to find one or more
states satisfying some given quality criteria. The space of possible
hypotheses is very wide, thus pruning and heuristic techniques are needed
to find an appropriate hypothesis. As in concept learning, the hypothesis
space in ILP is structured according to the notions of specialisation and
generalisation.

•  An hypothesis G is more general than an hypothesis S if and only if G ª
S (we can also say that S is more specific than G).

Generalisation corresponds to induction and specialisation corresponds to
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deduction. Therefore, some authors propose that induction can be viewed as
the inverse of deduction. From this assertion both the specialisation and
the generalisation rules can be defined as follows (Muggleton and De
Raedt, 1994):

•  A deductive inference rule is a specialisation rule when it maps a
conjunction of clauses G into a conjunction of clauses S such that G ª S.

• An inductive inference rule is a generalisation rule when it maps a
conjunction of clauses S into a conjunction of clauses G such that G ª S.

The generalisation and specialisation allow pruning the hypothesis space
since:

1) if BK ∧  H Ω e+  no specialisation of H will satisfy e+

2) if BK ∧  H ∧  e-  ª P, any generalisation of H will be consistent with B
∧  e- .

The hypothesis space can also be constrained using a bias. The definition of
bias used in ILP is the same that Mitchell (1991) introduced. ILP has
focused on the analysis of the declarative bias, i.e. the bias explicitly
provided by the user and that may be a modifiable parameter of the system.

Nedellec et al. (1996) propose three kinds of declarative bias:
language bias, search bias and validation bias. The language bias defines the
language that determines the space of possible descriptions of concepts. The
search bias determines which part of the hypothesis space is explored and
how it is done. Finally, the validation bias determines an acceptance
criterion, i.e. when the system considers that the searched hypothesis has
been found. In (Nedellec et al., 1996) a further analysis of these three
kinds of bias can be found.

Declarative bias influences learning in the sense that a strongly
biased (less expressive) language produces smaller search space and, thus a
more efficient learning (see Vapnik and Chervonenkis, 1981). Strongly
biased languages have a shortcoming: sometimes the solution cannot be
expressed in this language and therefore, it cannot be found. On the other
hand, an expressive language allows more possible hypothesis, therefore
the method has to perform more search in order to find the appropriate
hypothesis.

Once the hypothesis space has been defined, a systematic procedure
to explore it has to be defined. The usual way is to introduce a partial order
between clauses. This partial order can be based on the θ-subsumption
defined by Plotkin (1969).

• A clause c θ-subsumes a clause c' if there exists a substitution θ such that
cθ ⊆ c'.

• Two clauses c and c' are θ-subsumption equivalent if c θ-subsumes c' and c'
θ-subsumes c.
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• A clause is reduced if it is not θ-subsumption equivalent to any proper
subset of itself.

According to this definition a clause c is at least as general as a clause c',
written c ≤ c', if c θ-subsumes c'. A clause c is more general than c' if c ≤ c' but
not c' ≤ c.

In (Muggleton and De Raedt, 1994) several properties of the θ-
subsumption can be found. We want to emphasise two of these properties:

1) if c θ-subsumes c' then c ª c'(the inverse is not true, Flach, 1992)

2) θ-subsumption defines a lattice over the set of reduced clauses. This
means that there is a unique least upper bound (lub) and a unique
greatest lower bound (glb).

θ-subsumption between clauses is decidible and easy to compute but
sometimes does not exist. Nevertheless, using Horn clauses with a common
predicate symbol and having the same sign the lgg under θ-subsumption
can always be found. Thanks to the lattice formed under the θ-subsumption
the least general generalisation can be defined as follows (Lavrac and
Dzeroski, 1994):

• The least general generalisation (lgg) of two reduced clauses c and c',
lgg(c, c') is the least upper bound of c and c' in the θ-subsumption
lattice.

The length of the lgg of two clauses C1  and C2  is at most |C1 |×|C1 |. A set of
literals has a unique lgg, but several lgg can exist for a set of clauses.

Summarising, θ -subsumption is important because allows to
structure the hypothesis space and prune its exploration. Also, θ -
subsumption serves as basis for two strategies exploring the hypothesis
space: bottom-up (or specific to general) strategy and top-down (or general
to specific) strategy. Both strategies will be analysed in the following
section.

Bottom-up strategy

Bottom-up methods are based on the generalisation of a set of positive
examples. The bottom-up strategy proposed by Plotkin consists of building
the least general generalisation of the training examples (without using
the negative examples). There are three basic generalisation techniques
used to generate hypotheses: relative least general generalisation, inverse
resolution and inverse implication.

Relative least general generalisation (Plotkin, 1969). The least general
generalisation (lgg) generalises the positive examples without using
background knowledge. Relative least general generalisation (rlgg) is
introduced to take into account the background knowledge. Thus, rlgg is
defined from the lgg as follow:
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• The relative least general generalisation (rlgg) of two clauses c and c' is
their least general generalisation lgg (c, c') relative to background
knowledge BK.

Plotkin showed that the rlgg of a set of clauses sometimes does not exist, or
if exists, the rlgg can have infinite length or it may be hard to compute.
Using the ij-determinacy as language bias (Muggleton and Feng, 1990),
the construction of a unique and finite rlgg is assured. Buntine (1988)
defined a special case of relative subsumption, called generalised subsumption,
only applicable to definite clauses.

• A clause c is more general than a clause c' with respect to a background
knowledge BK, if any example e that can be explained using c' and
BK (BK ∪  c' ª e) can also be explained using c (BK ∪  c ª e).

Generalised subsumption degenerates into Plotkin's θ-subsumption in
absence of background knowledge. Thus, θ-subsumption can be considered
as a special case of generalised subsumption. On the other hand,
generalised subsumption is a special case of rlgg. Generalised subsumption
produces a hypothesis space smaller than the one obtained by the θ-
subsumption, but it is harder to compute. In order to make easy the
computation of generalised subsumption, Buntine introduced the most
specific generalisation notion. Nevertheless, generalised subsumption has
remained only as a theoretic result.

Inverse resolution. Inverse resolution was introduced in first order logic by
Muggleton and Buntine (1988). These authors introduced inverse resolution
in ILP as a generalisation technique inverting Robinson's resolution rule.
The idea is that because the resolution rule is complete for deduction,
inverse resolution could be complete for the induction. Muggleton (1987)
proposed four inverse resolution rules: absorption, identification, intra-
construction and inter-construction. The absorption and the identification
rules invert a single resolution step and they are called V-operators. The
intra-construction and the inter-construction rules are called W-operators.
In (Bergadano and Gunetti, 1996) more information about these operators
can be found. W-operators are used in predicate invention (Stahl, 1996), a
field (like constructive induction1  in Machine Learning) with the goal of
automatically extending the vocabulary used by the system whenever the
vocabulary is insufficient to learn the desired concept. In (Ling, 1991) there
is an analysis of the conditions under which predicate invention is
necessary.

1 Constructive induction (Michalski, 1983) is a research field of Machine Learning studying the
problems that appear when the desired goal cannot be learned due to the bias at the
vocabulary level. Induction is constructive when it generates descriptors different from those
used to describe input facts. Some main issues are to determine when a new descriptor is
necessary, when the new descriptors can be applied and how to evaluate their quality.
INDUCE-I (Larson and Michalski, 1977) is one of the early systems using constructive
induction.
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Inverse implication. Since implication is undecidible (Schmidt-Schauss,
1988), implication inversion may be very expensive. Nevertheless, the
implication inversion can be made using restrictions that limit the kind
of clauses than can be learned. Implication inversion is interesting to
induce self-recursive clauses. There are three approaches to invert
implication: searching structural regularities of terms, finding structural
regularities of literals and finding internal and external connections.
These approaches are explained in depth in (Bergadano and Gunetti,
1996).

Some systems using a bottom-up strategy are the following: ITOU
(Rouveirol, 1992), CLINT (De Raedt, 1992), MARVIN (Sammut and
Banerji, 1986), and GOLEM (Dolsak and Muggleton, 1992).

Top-down strategy

Top-down strategy is achieved by means of specialisation techniques.
Specialisation techniques search in the hypothesis space from general to
specific using specialisation operators, also called refinement operators
(Shapiro, 1983), based on θ-subsumption. A refinement operator can be
defined as follows (from Lavrac and Dzeroski, 1994):

• Given a language bias L, a refinement operator ρ maps a clause c to a set of
clauses ρ (c) = {c' | c' ∈  L, c < c'} which are specialisations
(refinements) of c.

A refinement operator performs two operations: 1) applies a substitution θ
to a clause, and 2) adds a literal (or a set of literals) to a clause. The
properties of the refinement operators (i.e. global completeness, local
completeness and optimality) can be found in (Muggleton and De Raedt,
1994). These properties are desirable to assure both that all the possible
hypotheses are considered (global and local completeness) and that each
clause is considered only once (optimality). A generic top-down algorithm
is the following (from Lavrac and Dzeroski, 1994):

Let E be the set of examples and H the hypothesis under construction
Initialise Ecurr := E; H := Ø

repeat {covering}
  Initialise c := T ← .
  repeat {specialisation}
    Find the best refinement cbest ∈  ρ(c)
    Assign c := cbest
  until Necessity stopping criterion is satisfied
  H' := H ∪   {c}    ;; Add the clause c to H to get new hypothesis
  E'curr:= Ecurr-covers(B,H',E

+
curr) ;; Remove positive examples covered 

  ;; by c from Ecurr
  Let Ecurr := E'curr and H := H'

until sufficiency stopping criterion is satisfied

The top-down algorithm needs the whole training set (containing positive
and negative examples). The construction of a hypothesis starts from the
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most general clause (the empty clause) and repeatedly refines (specialises)
it until no negative examples are covered. The refinement of a clause is
made by adding a new literal to the existing clause. A hill-climbing
strategy can be used to obtain the best refinement, which is then taken as
the new clause to refine. This process is repeated until a clause satisfying
the stopping criteria is found. The necessity criterion decides when it is
not necessary to add more literals to a clause. The sufficiency criterion
decides when is not necessary to add more clauses to an hypothesis. Several
stopping criteria can be used to decide whether the domain data are perfect
or not. If data is perfect, i.e, without errors, necessity and sufficiency
stopping criteria are, respectively consistence (no negative examples are
covered) and sufficiency (all the positive examples are covered). Data is
imperfect when some kind of (random or systematic) error is present.
Most usual errors are the following (Lavrac i Dzeroski, 1994):

- noise, random errors in the examples and/or in the background
knowledge

- the problem space is insufficiently covered, i.e. the known examples
are not a good sample of the problem space

- inaccuracy, the description language is not sufficient or is
inappropriate to express the exact description of the concept to learn

- unknown values in the examples

Noise, inadequate samples and inaccuracy are usually solved by relaxing
the completeness and consistency criteria, allowing the obtained concept
description to cover a few negative examples and not covering a few positive
examples. The usual solution to the unknown values problem is to suppose
that the unknown value is the most frequent value appearing in the
examples of the same class to which the current example belongs (Lavrac
and Dzeroski, 1994).

Some existing systems using a top-down strategy are the following:
CLAUDIEN (De Raedt and Bruynooghe, 1993), MIS (Shapiro, 1983),
MOBAL (Kietz and Wrobel, 1992), GRENDEL (Cohen, 1994) and ML-
SMART (Bergadano et al., 1988).

Classification of ILP systems

ILP systems can be classified according to four dimensions: incremental/
non-incremental, interactive/non-interactive, single/multiple predicate
learning, and theory revision.

- incremental/non-incremental. This classification is based on the way
in which the examples are obtained. Thus, a system is non-incremental if
all the examples are given before learning is performed. A system is
incremental if the examples are provided to the system one by one while
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learning. Non-incremental systems may be top-down or bottom-up
whereas incremental systems use a mixture of both strategies. Some
incremental systems are MIS (Shapiro, 1983), CLINT (De Raedt, 1992),
MOBAL (Kietz and Wrobel, 1992), and CIGOL (Muggleton and Buntine,
1988). Some non-incremental systems are GOLEM (Dolsak and
Muggleton, 1992), FOCL (Pazzani and Kibler, 1992), GRENDEL (Cohen,
1994), CLAUDIEN (De Raedt and Bruynooghe, 1993), and LINUS (Lavrac et
al., 1991).

- interactive/non-interactive. This classification is depending on the
external support that a system has. Thus, during the process of learning,
interactive ILP systems generate their own examples and ask the user
(oracle) about their label (i.e. if the generated examples are positive or
negative). They may also ask the user about the validity of the
generalisations constructed. Interactivity allows pruning the search space
and implies incrementality. Most systems are non-interactive, and the best
known interactive systems are CIGOL (Muggleton and Buntine, 1988), MIS
(Shapiro, 1983) and CLINT (De Raedt, 1992).

- single/multiple predicate learning. In single predicate learning a
single predicate is learned from the examples whereas in multiple
predicate learning the goal is to learn a set of predicate definitions.
Examples of multiple predicate learning systems are MARVIN (Sammut
and Banerji, 1986), MIS (Shapiro, 1983), BLIP-MOBAL (Wrobel, 1988),
ML-SMART (Bergadano et al., 1988), CIGOL (Muggleton and Buntine,
1988) and CLINT (De Raedt, 1992).

- theory revision. The theory revision problem consists of modifying
the hypothesis according to new evidence. Theory revision is a usual form
of incremental multiple predicate learning. A theory may be inconsistent
due to several predicates, for this reason multiple predicate learning is
necessary. In Wrobel (1996) an in-depth analysis of the theory revision
problem in ILP can be found. Classic theory revisers are the systems
MARVIN (Sammut and Banerji, 1986), MIS (Shapiro, 1983), BLIP-MOBAL
(Wrobel, 1988), ML-SMART (Bergadano et al., 1988), CIGOL (Muggleton
and Buntine, 1988) and CLINT (De Raedt, 1992). The current research tries
to build theory revisers without an oracle (as ML-SMART and BLIP-
MOBAL).

Existing ILP systems

According to (Muggleton and De Raedt, 1994), there are six systems that
have strongly contributed to ILP development: MIS (Shapiro, 1983),
MOBAL-BLIP (Kietz and Wrobel, 1992), CIGOL (Muggleton and Buntine,
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1988), GOLEM (Dolsak and Muggleton, 1992), FOIL2  (Quinlan, 1990) and
CLAUDIEN (De Raedt and Bruynooghe, 1993). Each one of them has
allowed an advance in a special ILP issue and they have been the basis for
the construction of other ILP systems.

The Model Inference System (MIS) was the first top-down system
that used ILP, introducing techniques as graph refinement, location of
incorrect clauses, and manipulation of multiple predicates. Given a
language L containing definite clauses and background knowledge BK,
MIS uses the following algorithm (from Lavrac and Dzeroski, 1994) to
build a hypothesis H:

Initialise the hypothesis H to a (possibly empty) set of clauses in L
repeat
   Read the next (positive or negative) example
   repeat

if there exists a covered negative example e then
    Delete incorrect clauses from H
if there exists a positive example e not covered by H then  

with breadth-first search of the refinement graph develop a 
clause c which covers e and add it to H

   until H is complete and consistent

   output: hypothesis H
forever

MIS interactively accepts new training examples. Clause construction is
made searching for a new clause that covers a positive example not covered
by the current hypothesis. Search begins by the most general clause and
continues by searching clause refinements in a top-down manner
obtaining at each step all minimal refinements of the current hypothesis.
From the set of minimal refinements those that do not cover the current
positive example are rejected. The process finishes when an acceptable
consistent hypothesis is found. Some systems based on MIS are CLINT (De
Raedt, 1992) and MARKUS (Grobelnik, 1992).

MOBAL (Morik, 1991) is an integrated knowledge acquisition
environment consisting of several tools: a model acquisition tool to design
rule models that constraints search in the hypothesis space; a sort
taxonomy tool that clusters constant terms occurring as arguments in
training examples; and a predicate structuring tool that abstracts rule sets
to a topology hierarchy. Using these tools MOBAL can constraint the
search space.

MARVIN (Sammut and Banerji, 1986) was the first system
implementing inverse resolution but without a solid theoretical basis. The
CIGOL (Muggleton and Buntine, 1988) system was the first system that
formalised the theory of inverse resolution when definite clauses are used.
The LOPSTER (Lapointe and Matwin, 1992) system formalises the
inversion of the implication.

GOLEM is based on the notion of relative least general
generalisation defined by Plotkin. The training examples and the

2 Muggleton and De Raedt consider FOIL as an ILP system. As we explained before, FOIL's
author does not follow this classification, and calls FOIL a relational learning system.
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background knowledge are ground facts and function symbols in the terms
are allowed. To generate a clause GOLEM randomly takes several pairs of
positive examples and their rlgg. The rlgg covering more positive
examples is selected and then a new generalisation is attempted. This
generalisation is made by taking a new positive example and computing
the rlgg of this clause (also a rlgg) and the new positive example. The
process finishes when no new positive examples are covered. In post-
processing, irrelevant literals are eliminated. To generate more than one
clause, GOLEM uses the set covering approach, i.e. builds a clause covering
a subset of positive examples, deleting the covered examples from the
training set and searching for new clauses that may cover the remaining
positive examples.

Since rlgg can contain infinitely many literals or at least grow
exponentially with the number of examples, GOLEM uses some restrictions
to avoid the growth of rlgg. One of these constraints is the use of
determinate clauses3  in the rlgg body. Negative examples also allow the
reduction of the rlgg size. Therefore, if the elimination of a literal does
not result in the covering of negative examples, then it is redundant and
can be eliminated. This process is repeated until all the redundant literals
are eliminated.

The main contribution of FOIL (Quinlan, 1990) is to recognise the
expressivity the logic programming as a representation language for
inductive learning. This system applies a combination of already known
Machine Learning techniques but using a more expressive language.
Following the same idea of using classic Machine Learning techniques,
LINUS (Lavrac and Dzeroski, 1994) transforms some ILP problems to an
attribute representation form, uses a propositional learner and finally
translates the results to Horn clauses.

CLAUDIEN (De Raedt and Bruynooghe, 1993) combines data
mining principles with ILP. It can be considered the first system that
discovers clausal regularities from unclassified data. CLAUDIEN is based
on a top-down iterative depth search using refinement under θ -
subsumption.

3.2. Lazy Learning

Some authors have defined lazy learning methods as those methods that
use extensional descriptions of concepts without generating intensional
descriptions. In fact, this is the main difference between inductive and lazy
learning methods. Inductive methods produce intensional descriptions of
concepts from descriptions of examples (instances).

In lazy learning methods, both the learning process and the
process of using the learned knowledge for solving new problems cannot

3 A clause is determinate  if each of its literals is determinate. A literal is determinate  if each of
its variables that do not appear in preceding literals has only one possible binding given the
bindings of its variables that appear in preceding literals (Lavrac and Dzeroski, 1994).
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be considered separately. When solving a new problem P using a lazy
learning method, the solution for an old problem (perhaps transformed)
is transferred to P. There is an implicit generalisation between the old
problem and the new problem P. Thus, lazy learning methods use
extensional descriptions of concepts (the instances) and the generalisation
step is delayed to the problem solving phase. We will define the lazy
learning methods as those that are problem-centred, in the sense that the
generalisation step is made on-demand, when a new problem has to be
solved.

The basis of many lazy learning algorithms is the k-nearest
neighbour classifier4, k-NN, (Dasarathy, 1991) that stores the training set
and postpones all effort towards classification decision until problem
solving. Given a new example to classify, the k-NN algorithm retrieves the
k most similar instances and predicts the class to which the new example
can belong. The quality of the k-NN depends on which instances are
considered as more similar. The similarity is estimated using the
following distance function:

  
d(x,e) = ( ω(f ) ⋅ δ(xf ,ef )2

f ∈ F
∑ )

1
2

where e = (e1 , …, en ) is the new example to classify, x = (x1 , …, xn ) is a
training example, ω(f) defines a weighting function and the function δ()
defines how the values of a given feature differ. In particular, δ() can be
defined as follows:

  

δ(xf ,ef ) =
     

1        f is discrete and x f ≠ ef  
0        f is discrete and x f = ef

| xf − ef |   f is continuous








Notice that d(x,e) is computed for each precedent x, thus precedents can be
ordered according their similitude with the new example e. One
consequence is that several precedents can be at the same distance of e,
therefore a new example can have several solutions.

The result produced by the k-NN is the most plausible class for e, in
other words, e is classified as belonging to a class such that

  
k − NN(e) = max

cj ∈ J
 p(c j | e) , where

 p(c j|e) =
X∈ K e

1(xc = c j) ⋅ K(d(x,e))∑
X∈ K e

K(d(x,e))∑

where 1(x) is a function that yields 1 iff the argument x is true and K is a
kernel function defined as the inverse of the distance above.

4 k-Nearest Neighbour algorithm is a noise-tolerant extension of nearest neighbour
algorithms (Breiman et al., 1984).
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The main shortcoming of k-NN algorithms is its sensitivity to the
distance function being used. Nevertheless several variations of the
algorithm have been proposed in order to reduce this sensitivity. In
(Wettschereck et al., 1997) an in-depth-study of some of these variations
and the improvements that they produce can be found.

Lazy learning approaches have been typically associated to
analogical reasoning (Carbonell, 1986). Some well known lazy learning
methods are derivational analogy, instance-based learning methods and
Case-based Reasoning (CBR). Nevertheless, they can also be combined
with "pure" inductive methods as decision trees. In particular, LazyDT
method (Friedman et al., 1996) builds decision trees in a problem-centred
way, constructing the best decision tree for each test instance. In fact, the
LazyDT method only needs constructing one path, the one classifying the
current instance.

In the next sections two lazy methods such as instance-based and
CBR  are analysed.

3.2.1. Instance-based Learning

Instance-based learning (IBL) algorithms are derived from the k-NN
classifier (Dasarathy, 1991) since they assume that similar instances have
similar classifications. IBL algorithms are inspired by the exemplar-based
models of categorisation (Smith and Medin, 1981). An exemplar model
represents each concept as a set of exemplars, where each exemplar may be
either a concept abstraction or an individual instance of the concept. The
main characteristics of exemplar models are: 1) concepts are not
represented as a set of necessary and sufficient conditions abstracted from
exemplars, 2) descriptions are disjuncts, and 3) properties of a concept are a
function or a combination of the properties of exemplars. Smith and
Medin proposed two basic exemplar models, the proximity model and the best
examples model. The proximity model stores all the training instances without
performing any abstraction over them. Thus, a new instance is classified
by computing its similarity with each one of the existing instances. The
new instance is classified as belonging to the concept of the more similar
instance. A variation of this model is the best examples model in which only
the most typical instances (prototypes) of each concept are stored.

One of the early works on IBL was made by Kibler and Aha (1987).
At that time, there was much research about how to generalise concepts
from examples but there was not much research about directly using the
stored examples. The primary output of IBL algorithms is a concept
description, in the form of a function that maps instances to concepts. An
instance-based concept description includes a set of stored instances and,
possibly, some information concerning their past performance during
classification (e.g., their number of correct and incorrect classification
predictions). This set of instances can change after each training set
instance is processed. Concept descriptions are determined by how the
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similarity and classification functions use the training instances. The
following algorithm, called IB1, is the simplest IBL algorithm (from Aha
et al., 1991):

concept-description := ∅
for each x ∈  concept-description do
      for each y ∈  concept-description do
            Sim[y] := Similarity (x, y)
      end-for
      ymax:= some y ∈  concept-description with maximal Sim[y]
      if class (x) = class (ymax)
           then classification := correct
           else classification := incorrect
      end if
      concept-description := concept-description ∪  {x}
end-for

Where  Similarity (x, y) = f(xi , y i )
i =1

n

∑   is the similarity function assuming

that instances are described by n attributes. The function f is defined as
follows:

  

f(xi , y i ) =

(xi − y i )
2   for numeric - valued attributes

     1        if xi ≠ yi for boolean and symbolic - valued attributes

     0        if xi = yi for boolean and symbolic - valued attributes

     1        if both xi  and  y i  are missing attributes













IB1 is identical to the nearest neighbour algorithm except that it
normalises the ranges of attributes, processes instances incrementally, and
has a simple policy for tolerating missing values.

The model presented by Kibler and Aha (1987) does not store all
the instances and also avoids the prototype construction process. Their
proposal was the Grow (additive) algorithm and the Shrink (subtractive)
a lgo r i thm . The growth algorithm (also called IB2) is like the IB1
algorithm but only stores instances that have not been correctly classified.
The Grow algorithm reduces storage space but its main shortcoming is that
the classification accuracy decreases, especially when domains are noisy or
have many exceptional instances.

The Shrink algorithm (also called IB3) tries to classify each
instance from the others. If it does, the instance is not to be stored. The
idea behind this algorithm is that the system accuracy is not necessarily
better if all the instances are stored. In fact, the system accuracy may
decrease if the stored instances are not typical. The Shrink algorithm is
highly sensitive to the number of irrelevant attributes used to describe the
instances. In (Aha et al., 1991) an in depth analysis of the behaviour of the
three algorithms (IB1, Grow and Shrink) can be found.

The main advantages of IBL algorithms are its simplicity, its
support to relatively robust learning algorithms (allowing noise and
irrelevant attributes), and its relatively low updating costs.
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Emde and Wettschereck (1996) have proposed the adaptation of
instance-based methods to ILP representation. They have developed the
Relational Instance-Based Learner (RIBL) algorithm that has been
implemented as an external tool of MOBAL. RIBL first generates cases
from the examples. Each case (represented as a conjunction of literals)
contains an object, its description and its relations with other objects. The
similarity between cases is estimated using a modified version of Bisson's
algorithm (1992). Finally, a generalised form of k-NN algorithm that
handles relational representation is applied.

Instance-based learning methods, like inductive methods, can
improve their behaviour by means of an accurate selection of attributes
describing the instances. Instance-based learning methods can also be
improved by introducing constructive induction in order to adequate the
instance language and the language required to represent concept
descriptions. An instance-based method introducing constructive induction
of features is IB3-CI (Aha, 1991).

3.2.2. Case-based Reasoning

The experience in solving problems is a human quality that is necessary to
capture in order to create a model of intelligent behaviour. Research in
Case-based Reasoning (Kolodner, 1983) began at the 80's as an attempt to
provide a problem solving model that was closer to psychological models
than ruled-based systems. The cognitive model behind Case-based
Reasoning (CBR) was inspired by scripts (Schank and Abelson, 1977) and
by dynamic memory  models of cognition (Schank, 1982).

CBR is associated to problem solving experiences and it is based on
the human capability to solve new situations according to the similarity
among the new situation and past situations already solved. Thus, when a
new situation is similar to one or several old situations, the decisions
taken and the knowledge contained in old situations provide a starting
point to interpret or solve the new situation. In this way a new situation is
solved taking advantage of inferences and decisions already made in past
situations. Usually, each experience is considered a case. Experienced
situations are past cases which may be reused to solve new problems and a
new case is the description of a new problem to be solved.

CBR assumes that cases, give operational knowledge, i.e. instances
show how the knowledge can be used and applied. General knowledge has
advantages such as the ability to use a domain model capable to deal with
most of situations. Nevertheless, sometimes general knowledge is too
abstract to be applied to a particular situation and sometimes not all the
needed knowledge is available. Another shortcoming of general
knowledge is the difficulty to deal with exceptional situations. CBR can
handle specific knowledge that is difficult to obtain using a general
domain model and, in addition, general domain knowledge (rules or
domain models) can be also used. On the other hand, systems using only
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general knowledge do not learn from experience, whereas in CBR each
new solved case may be used to solve future problems.

CBR represents an integrated approach for learning and
reasoning. A case-based reasoner learns from each problem solving
session by storing the relevant information about the solved problem, and
converting it in an available experience to solve future problems. Learning
becomes a process of extracting relevant information from past problem
solving experiences. Each new problem (case) has to be indexed in the
system's knowledge structure in a way that can be easily retrieved when a
similar problem is encountered later. Thus, from a new case a case-based
reasoner can learn several thinks: the solution, the adaptation method
used, relations with other cases, possible failures, etc.

The quality of CBR depends on several issues: 1) the experiences
(cases) available, 2) the ability to understand new situations in terms of
past situations, 3) the ability to adapt old solutions, 4) the ability to evaluate
and fix old solutions, and 5) the capability to integrate new experiences.

CBR offers some advantages with regard to rule-based reasoning.
The first one is that a library of cases seems more similar to the human
expertise than a set of rules. A second advantage is that in real-world
problems, cases and their solutions are easily acquired whereas it may be
extremely difficult to specify all the necessary rules. On the other hand,
CBR can be considered as a methodology complementary to model-based
reasoning (MBR). MBR is used in domains where the causality can be
well represented whereas CBR does not need a complete domain
knowledge to produce correct results. Another difference is that MBR uses
general knowledge whereas CBR uses specific knowledge. There are
several systems, such as CASEY (Koton, 1988) and KRITIK (Goel, 1991;
Goel and Chandrasekaran, 1989) integrating MBR and CBR.

The main advantages of CBR with respect to rule-based and model-
based reasoning are the following: 1) it is applicable in domains with
incomplete knowledge; 2) it obtains solutions efficiently; 3) it may solve
problems when not algorithmic methods are available; 4) it avoids possible
problems that have already appeared; and 5) it focuses on the most
important parts of a new case.

A main disadvantage of CBR is that generally it does not
completely explore the whole space of solutions. As a consequence, locally
optimal solutions may be found that are not the global optimal solution.
Other disadvantages of the CBR are related to the bias introduced by the
cases in the library, the set of retrieved cases and the blind use of old cases
(i.e. the validity of an old case for the new case is not evaluated).

Case-based Reasoning is useful in a wide variety of problem solving
tasks, such as planning, design and diagnosis. Planning is the process of
obtaining a sequence of steps (i.e. a plan) or a schedule to achieve some
goals. A planner has to assure that preconditions of each step are preserved
before performing a new step. CBR handles these problems reusing old
plans (Alterman, 1986; Hammond, 1989; Goodman, 1989; Haigh and
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Veloso, 1995; Aarts and Rousu, 1996; Muñoz-Avila and Hüllen, 1996). The
proposed plan has to be adapted to the new goals.

Design problems are commonly defined as a set of constraints over
a collection of possible components. The solution of design problems is a
composite object satisfying all the problem constraints. Problem
constraints can underspecify the problem and thus several solutions are
possible. Sometimes problem constraints overspecify the problem and no
solution is possible without relaxing some constraints. CBR suggests new
designs from old designs created under similar constraints. These past
cases can be adapted to obtain a new design satisfying all the desired
constraints (Sycara, 1988; Navichandra, 1988; Hinrichs and Kolodner,
1991; Smyth and Keane, 1995; Bartsch-Spörl, 1995; Hurtley, 1995; Surma
and Braunschweig, 1996; Zdrahal and Motta, 1996).

Diagnosis is a particular explanation problem where a problem
solver has to explain a set of symptoms. A case-based diagnostician can use
cases to suggest explanations for symptoms and to prevent inappropriate
explanations (Leake, 1992; Bareiss et al., 1989; Netten and Vingerhoeds,
1995; Portinale and Torasso, 1995; Lenz et al., 1996).

In the next sections we explain the main CBR concepts and main
CBR tasks following the CBR cycle defined in (Aamodt and Plaza, 1994):
retrieval, that obtains precedents similar to the current problem and
chooses the best precedent; reuse, that decides if the solution of the best
precedent may be applied to the current problem or how it has to be
adapted; revision that assesses the goodness of the adapted solution; and
retain that decides which parts of the new case may be useful for solving
new problems.

Library of Cases

Kolodner (1993) provides the following definition for cases:

"A case is a contextualised piece of knowledge representing an
experience that teaches a lesson fundamental to achieving the goals of
the reasoner"

A case contains the description of a problem according to the goals to be
achieved, restrictions about these goals, characteristics of the problem and
relations between parts of the problem. Cases have been represented using
different notations. Thus, CASEY (Koton, 1988) and PROTOS (Bareiss,
1989) use an attribute-value representation. MEDIATOR (Simpson, 1985)
uses structured representations as frames. CHEF (Hammond, 1989) uses a
hybrid representation: cases are organised as frames but slot fillers of the
frame are represented using first-order predicate calculus.

The library  (or memory) of cases contains the expertise of a case-based
reasoner. The structure, content and organisation of solved cases are
essential for reuse. This organisation has to be dynamic since the
incorporation of a new case can influence the organisation of already



44 Chapter 2. Knowledge Modelling, Learning and Problem Solving

existing cases. There are two possible organisations of the library of cases:
flat and hierarchical. In flat organisation, cases are sequentially stored
using a list or a file. In hierarchic  organisation cases are organised
according to their characteristics. Each node of the hierarchy corresponds
to a characteristic shared by a set of cases. This organisation is appropriate
when the library has a big size.

Cases are organised in the library using indexes. The determination
of useful indexes is one of the main issues of the CBR. Some properties that
indexes have to satisfy are predictivity, utility, abstraction and concretion.
Thus, indexation has to allow reuse of appropriate cases supporting the
achievement of the task goals (predictivity and utility). On the other hand,
indexes have to be both abstract enough to make a case useful in a variety of
future situations, and concrete enough to be easily recognisable in future
situations. Using indexes, a case-base reasoner can retrieve a subset of cases
that are potentially useful to solve the new situation.

Retrieval Task

The main problem of a case-based reasoner is to determine past situations
relevant (similar) to solve a new situation. Past situations have to be
labelled and organised in the library of cases in order to be retrieved
using the features of the new situation. The retrieval task has as input a
(partial) problem description and provides a past case or a ranking of past
cases having the best matching with the new problem. An important issue
of the retrieval task is to determine useful indexes to retrieve past cases.
Indexes may be the input features of the new case. Nevertheless, for
knowledge-intensive methods (using general domain knowledge) more
elaborated indexes can be determined.

The organisation of the library influences the retrieval of old cases.
In flat organisation cases are retrieved using a matching function that is
sequentially applied to each case. The main advantage of this scheme is
that all the library is explored and the retrieval quality depends on the
matching function. The main disadvantage is that the retrieval time
increases drastically when the number of cases clearly increase. When the
library of cases has a large size, the hierarchic organisation is
recommended. The main advantage of this scheme is the efficiency in the
retrieval process. The main disadvantages are the difficulty in adding new
cases and the memory space that is used.

The similarity between cases may be evaluated in two ways:
syntactically and semantically. The syntactic similarity uses as indexes the
problem descriptors. This approach is appropriate for domains having not
much general knowledge available. An example of system using syntactic
similarity is CYRUS (Kolodner, 1983). The semantic similarity (also called
knowledge intensive) uses more elaborated indexes obtained by applying
general domain knowledge to case descriptors. This approach is used in
PROTOS (Bareiss, 1989), CASEY (Koton, 1988) and CREEK (Aamodt, 1991).
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Similarity assessment may be knowledge-intensive, using the
process of understanding the new case as guide for the matching. Another
option is to weight the problem features according to their importance for
characterising the problem during the learning phase. The similarity
assessment task can obtain a set of cases as best match. In this situation, an
explanation justifying non-identical features for each past case of this set
may be generated. When a strong enough explanation is found, the
corresponding past case is selected as the best match.

Reuse Task

The reuse of a past case solution in the context of the new case focuses on
two aspects: the differences among the past cases and the new case, and
which part of the retrieved case can be transferred to the new case. In
classification systems, the solution of the retrieved case is directly the
solution of the new case. However, other systems need a transformation
process (adaptation) of the solution. Adaptation processes modify an old
solution to provide a new one. The kind of adaptation varies according the
differences between the new case and the retrieved one.

There are two kinds of reuse (Aamodt and Plaza, 1994):
transformational and derivational. In transformational reuse the past case
solution is not directly a solution for the new case but there exists some
knowledge in the form of transformational operators such that applied to
the old solution they transform it into a solution for the new case.
Transformational reuse focuses on the equivalence of solutions, and this
requires a strong domain-dependent model containing transformational
operators and how they can be applied.

Another approach is when the retrieved case holds information
about the method used for solving it (including a justification of the
operators used, subgoals considered, alternatives generated, failed search
paths, etc). From this information derivational reuse reinstantiates the
retrieved method to the new case and executes it into the new context.

Revision Task

During the revision task the solution generated by the reuse task is
evaluated. This evaluation is made by asking a teacher or by a real world
simulation (as the CHEF system (Hammond, 1989)). If the evaluation result
determines that the proposed solution is correct, the new case may be
retained. Otherwise, an opportunity to learn from failure appears since the
solution case has to be repaired. Case repair involves detecting the errors of
the current solution and retrieving or generating explanations for them.
Errors are repaired using general causal knowledge and domain
knowledge about how to avoid or compensate errors in the domain. If the
revision task assures the correctness of the repaired solution, this can be
retained. Otherwise the repaired plan has to be in turn evaluated and
repaired (Hammond, 1989).
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Retain Task

The retain task determines which information about the new case can be
useful for solving new cases and incorporates it to the existing knowledge.
Relevant problem descriptors and problem solutions are useful information
but explanations of why a solution is successful or not may also be useful to
store.

A main issue in retaining new cases is the indexing problem, i.e. to
decide what type of indexes to use for future retrieval and how to structure
the search space of indexes. The approach used by syntax-based methods is
using all input features as indices. Other approaches, as the used in CASEY
(Koton, 1988) also use as indices the observed features.

The integration of a new case in the library of cases implies a
modification of the existing indices. The first consideration about a
successful case is to consider if its incorporation to the library of cases may
be useful. Notice that the systematic incorporation of all the new cases can
increase the system's inefficiency. Commonly, the future utility of the
successful case is estimated before deciding whether it has to be
incorporated in the library. If a successful case is similar to an existing
case the construction of a prototype or scheme generalising both cases can
be considered. From a failed case, the system can learn from failure by
modifying the corresponding indexes in order to prevent the retrieval of
the same case in a similar situation.

Usually, failed cases produce the adjustment of the index strengths
for a particular case or solution.

4. Knowledge Modell ing,  Learning a n d
Problem Solving Integration

Some authors consider that KBS development can be divided in two phases:
Knowledge Aquisition phase and Problem Solving phase. During the
Knowledge Acquisition phase all the necessary knowledge to solve
problems in a domain is acquired. As we have seen (section 2), this
knowledge may be acquired using Knowledge Modelling methodologies.
During the Problem Solving phase the acquired knowledge is used to solve
new problems. Nevertheless, to accurately solve problems in a domain is
also necessary a maintenance of the acquired knowledge (Aamodt, 1991).
In other words, the problem solver could acquire new knowledge from the
experience in solving new problems. This new knowledge is usually
acquired using learning methods.

In fact, there are different kinds of knowledge (general domain
knowledge, cases, strategic knowledge, etc) that can be used to solve
problems in a domain and each kind of knowledge can be acquired in a
different way. For instance, cases can easily be acquired from a domain
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expert using a knowledge acquisition methodology. Instead general
domain knowledge or strategic knowledge may be more difficult to
acquire from the experts during the Knowledge Acquisition phase. So, this
kind of knowledge can be easily acquired using a learning method that
learns from experience.

Currently, some systems integrating Knowledge Acquisition,
Learning and Problem Solving have been developed. These integrated
systems are usually based on a system architecture that allows the explicit
expression of various types of knowledge relevant to a particular application.
Such architectures also contain problem solving and learning components
which are able to effectively utilise a continually improving body of
knowledge. In the next sections two of such architectures are analysed. The
first one, CREEK, has a reasoning process based on a combination of three
reasoning types: model-based reasoning, CBR and rule-based reasoning.
The second architecture, MUSKRAT, integrates different knowledge
acquisition methods (such as learning, knowledge elicitation and
knowledge base refinement tools), with several problem solving methods.
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Figure 2.7. The CREEK model of integrated learning, problem
solving and reasoning (from Aamodt, 1991).
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4.1. CREEK

CREEK (Aamodt, 1991) is a knowledge intensive approach to problem
solving and learning, based on an intensive use of the domain knowledge
in both problem solving and learning methods. The basis for the structure
and functionality of CREEK is the framework shown in figure 2.7. The
framework specifies a set of general requirements concerning knowledge
modelling, problem solving and sustained learning5 .

The problem solving model of CREEK has three phases: 1)
Understanding the problem, 2) Generating plausible solutions, and 3) Selecting a
good solution. Problem understanding consists of interpreting the input
description in terms of the conceptual model. Then the system tries to
integrate this input into the existing knowledge. At the second phase, the
system obtains a set of possible solutions that have been justified (in the
sense that they achieve the goal without contradicting important
constraints). The last phase is an evaluation of plausible solutions in order
to select a good solution to the problem.

Reasoning in CREEK is viewed as a subprocess of problem solving.
Given some findings and a goal, a reasoning process may be described by
three sub-processes: 1) Activating knowledge structures, 2) Explaining
candidate facts, 3) Focusing on a conclusion. Thus, the reasoning process is
viewed as a process of activating a certain part of the existing knowledge
(including triggering of hypotheses and goals), explaining to what extent
activated parts form a coherent knowledge structure, and focusing within
the explained structure in order to finally return an explicit answer. This
reasoning model can also describe multi-paradigm reasoning since the
three phases model may be applied to each reasoning method separately.

The learning model integrates a case-based learning approach and
an explanation-based learning method with a learning apprentice
approach. Thus, learning and problem solving are thighly integrated. The
learning process may be described by the following steps: 1) Extracting
learning sources, 2) Constructing new knowledge structures, 3) Storing and
indexing. The extracting learning sources is active throughout problem
solving, and its task is to keep track of information and knowledge that
will later be used as sources learning. The step of constructing new
knowledge structures is based on methods for constructing cases, for
constructing general rules from a set of cases (using EBL), and for
modifying knowledge structures by integrating new knowledge that has
been inferred or accepted from the external environment. The storing and
indexing steps make available the new knowledge for future problems.

5 Aamodt defines sustained learning as the ability to learn from problem solving experience,
continually improving the knowledge by updating the knowledge base after each problem
solving session.
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Figure 2.8. Functional architecture of CREEK (from Aamodt, 1991).
RBR stands for Rule-based Reasoning; MBR stands for Model-based
Reasoning; CBR stands for Case-based Reasoning; EBL stands for
Explanation-based Learning; and CBL stands for Case-based
Learning.

Based on the above model, the functional architecture of CREEK (figure
2.8) contains three building blocks: an object level KB, a problem solver,
and a learner. The KB contains a conceptual knowledge model, a
collection of past cases, and a set of heuristic rules. Problem solving can use
a combination of model-based, case-based and rule-based reasoning.
Finally, the learner combines case-based learning and explanation-based
learning methods to improve the problem solving behaviour.

4.2. MUSKRAT

MUSKRAT (Sleeman and White, 1996) is a open architecture which
supports the integration of problem solvers and knowledge acquisition tools
(knowledge elicitation, machine learning and KB refinement tools), and
assists the user to select the most suitable knowledge acquisition tool.
MUSKRAT takes the idea of user's assistance from the Consultant tool.
Consultant (Craw et al., 1992) is an advice-giver system that asks the user
about the task he wants to solve, the data and background knowledge he
can provide, etc, and recommends one or more suitable learning tools.
The main shortcoming of Consultant is that the user must first decide
what knowledge is required to solve his problem and then Consultant can
help him with the choice of a suitable tool. In other words, Consultant is
told what the user wants, not what he wants to do. MUSKRAT is specially
focused on knowledge acquisition, supporting the user in the selection of
an appropriate tool to acquire the necessary knowledge. The selection of
one or several KA techniques proceeds as follows:
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1. Identify an application task, i.e. a problem to be solved in a particular
domain

2. Select a suitable problem solver to solve this task. If no single problem
solver is found the task is decomposed in subtasks where each subtask
can be solved by a specific problem solver (PS)

3. Determine the required KB for each problem solver

4. For each KB compare requirements of the problem solvers with
available knowledge sources and define one or more KA tasks

5. Select the appropriate KA tools to solve the KA tasks

6. Apply the selected KA tool.

MUSKRAT supports steps from 3 to 6. The architecture (see figure 2.9) is
organised around a set of KB's, that is the interface between the KA tools
and the problem solvers. A KB is defined as a body of knowledge required
by a problem solver.

Problem 
Description

PS selector

PS1 PS2 PS3

KB1 KB2 KB3 KB4
Available 
knowledge

Available data

Expert
KA Selector

KBR MLKE

Figure 2.9. The MUSKRAT Architecture. PS stands for Problem
Solving; KBR stands for Knowledge Base Refinement tool; KE stands
for Knowledge Elicitation tool and ML stands for Machine Learning
tool.

This architecture can be used at two different stages of the problem solving
cycle: 1) the selection stage of suitable tools, and 2) the use of tools to acquire
knowledge and solve the problem. Tool selection process uses the PS
selector to choose a suitable problem solver. Once a problem solver has been
chosen MUSKRAT knows which KB are required. The next step is to



4. Knowledge Modelling, Learning and Problem Solving Integration 51

identify available knowledge resources which can belong to three
categories: available knowledge sources, available data and human experts.
Available knowledge sources refers to knowledge that is already in the
form required for a KB (for example as a set of rules). Available data refers
to data relevant to the problem and from which useful information could
be extracted, although it is not in the form required by the KB. Typically
this may consist of past cases or useful system models to perform diagnosis.
An expert is a person who can provide various forms of knowledge, possibly
with the help of a KE tool and/or a knowledge engineering.

The KA selector is the central component of MUSKRAT. It
compares the requirements of the selected problem solver with the
characteristics of available knowledge sources and recommends the use of
one or more KA tools. For that purpose it has a knowledge level
description of each available KA tool and performs a means-ends analysis
to decide which one is most capable of reducing differences.

In MUSKRAT all the KB are expressed in CKRL, an information
interchange language (Morik et al., 1991). This language, that is not
directly executable, consists of declarations that can be translated into the
internal representation of different tools. The use of a uniform knowledge
representation facilitates knowledge sharing and reuse since a KB can be
used by several problem solvers. It also allows the integration of new
problem solvers and KA tools into MUSKRAT at the cost of implementing
a single interface to or from CKRL.

When no KA tool is available to produce the required KB, the KA
selector describes the requirements to an expert and assumes that he will
be able to provide this knowledge. MUSKRAT does not support the use of
individual tools: its role is limited to the communication of knowledge
between different tools. The user has the responsibility to evaluate the
solution obtained by the problem solver and, if necessary, to start a new KA
cycle.

5. Multistrategy Learning Systems

Machine Learning (ML) research has shown that there is no single
method that could be considered as the best for all domains. Developed ML
algorithms use different representation formalisms and search algorithms
that provide different results for different application domains. Thus,
empirical induction requires many input examples and small amount of
background knowledge; EBL requires one input example and a complete
background knowledge; learning by analogy and case-based learning
require background knowledge allowing new inferences about case
properties; and learning by abduction requires causal background
knowledge related to the input. This suggests that real-world learning
problems could be solved by systems that can apply different strategies in
an integrated way.
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Multistrategy learning systems (Michalski and Tecuci, 1991) are
learning systems containing several learning methods. Some
multistrategy learning systems combine several learning methods in
order to obtain the best descriptions. Examples of these systems are:
UNIMEM (Lebowitz, 1986), that uses EBL to focus similarity-based
learning; AQ17-MCI (Wnek and Michalski, 1991), based on the Inferential
Theory of Learning proposed by Michalski (1991), that combines two strategies
of inferential learning (empirical induction and deduction) and two
computational methods (data-driven and hypothesis-driven); and EITHER
(Mooney and Ourston, 1991), that uses analytical methods (deduction and
abduction) to identify incorrect parts of the theory and empirical methods
(induction) to determine the corrections required by the theory.

Other multistrategy learning systems integrate several
independent methods, selecting the most appropriate of them according to
the learning goal. An example is the Meta-AQUA architecture (Cox and
Ram, 1994) that takes the learning problem as a planning problem. Each
planning goal is a learning goal achieved using a method capable of
producing changes in the background knowledge. Learning goals specify
the structure, knowledge contents, and organisation of the knowledge in
memory. Some learning goals considered by Meta-AQUA are knowledge
refinement goals, knowledge expansion goals, knowledge differentiation
goals, knowledge reconciliation goals, and knowledge organisation goals.

There are multistrategy learning systems that are toolkits of
techniques where the user can choose the appropriate methods according to
the application domain. An example is LINUS (Lavrac and Dzeroski, 1994)
that integrates various attribute-value inductive learners (a decision tree
induction system and two rule induction systems) within a common ILP
framework which allows relational learning in presence of background
knowledge. Finally, a different technique is meta-learning (Chan and
Stolfo, 1993), that uses several techniques (including parallelism) and
combines the results obtained from each one of them. The advantage of the
meta-learning is that is able to manage large sets of data.

The above mentioned multistrategy learning systems have a
predefined order in which the methods integrating the system are
applied. A more dynamic approach is the Multistrategy Task-adaptive
Learning proposed by Tecuci (1991). The goal of this system is to build a
justification tree proving that the input is a plausible consequence from the
KB. Each level of the justification tree can be constructed using different
types of inference: deduction, analogy, abduction or inductive
generalisation. Therefore, the generalisation of the justification tree
provides a different strategy according the current problem.

In the following sections we explain in more detail EITHER,
LINUS and MTL.
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Figure 2.10. The EITHER architecture (from Mooney and Ourston,
1991).

5.1. EITHER

EITHER (Mooney and Ourston, 1991) is a multistrategy learning system
that uses independent modules for deductive, abductive and inductive
reasoning to revise an incorrect domain theory. EITHER can be viewed as
a system integrating analytical methods (deduction and abduction) and
empirical methods (induction). The analytical part of the system is used to
identify failing parts of the theory and to constraint the examples used for
induction. The empirical part determines specific corrections of failing
rules in order to make them consistent with the training examples.
Figure 2.10 shows the EITHER architecture. The purpose of EITHER is the
following:

Given an imperfect domain theory from a set of concepts (categories)
and a set of classified examples each described by a set of observable
features

Find a minimally revised version of the domain theory that correctly
classifies all the examples.

The formalism used by EITHER is Horn clause logic with the closed world
assumption. In EITHER Horn theories can be defined by a directed acyclic
graph. The criterion used by EITHER to assure a minimal revision of the
theory is based on syntactic measures such as the total number of symbols
added or deleted.

The deductive component of EITHER is a standard backward
chaining, Horn-clause theorem prover similar to Prolog. Deduction is the
first step in theory revision. The system tries to prove whether each
example belongs to some known concept. Failing positives (examples that
the system cannot prove that they belong to the correct concept) indicate
overly-specific aspects of the theory and are passed on the abductive
component. Failing negatives (examples proved as belonging to an
incorrect concept) indicate overly-general aspects of the theory and are
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passed on to the specialisation procedure. The deductive component is also
used to classify unseen examples.

The abductive component is used to solve the problem of the failing
positives, i.e. those positive examples that have not been proved due to the
specificity of the theory. The abductive component uses exhaustive search to
find all the partial proofs of each failing positive example. This search is
useful to detect which antecedents prevent the example to be proved. In a
complex problem, there are many partial proofs for each failing positive.
EITHER tries to find the minimum number of antecedents to be retracted
to fix all the failing positives, in order to assure a minimal change in the
theory.

The inductive component of EITHER is used to learn new rules or
new antecedents when retracting an antecedent element causes new
failing negatives or when the retraction of a rule element causes new
failing positives. If the antecedent retraction produces an over-
generalisation, the inductive component is used to learn a new set of rules
for the corresponding concept. If the rule retraction produces an over-
specialisation, the inductive component is used to learn additional
antecedents to add to the rule instead of retracting it. EITHER uses the ID3
algorithm as inductive component and later translates the decision tree
into a set of rules. Inverse resolution operators (Muggleton, 1987;
Muggleton and Buntine, 1988) are also used to introduce new intermediate
concepts and produce a multi-layer theory from a translated decision tree.

In (Mooney and Ourston, 1991) the results of EITHER over two real
expert-provided rule bases, one in molecular biology and another in the
Soybean domain, can be found.

5.2. LINUS

LINUS (Lavrac and Dzeroski, 1994) is an ILP toolkit of learning
algorithms (see figure 2.11) that induces hypotheses in form of constrained
deductive hierarchical database (DHDB) clauses. LINUS transforms the task
of relational learning for finite domains into a propositional learning
task. Propositional learners included in LINUS are ASSISTANT (Cestnik et
al., 1987), NEWGEM (see in Lavrac and Dzeroski, 1994)) and CN2 (Clark
and Niblett, 1989). An interface transforms training examples from the
DHDB form to attribute-value tuples form in such a way that the
propositional learners in LINUS can be applied. The result of propositional
learners are if-then rules that will be transformed back into DHDB
clauses. The translation of the relational learning into propositional
learning takes advantage of some advances made in propositional
learning, for instance in handling imperfect data. The LINUS learning
algorithm has the following steps:

1. Pre-process the training set to establish the sets E+ and E- of positive
and negative examples
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2. Use of background knowledge to transform examples in E+ and E-

from the DHDB form to attribute-value tuples

3. Induce if-then rules from the tuples using an attribute-value learner

4. Transform the obtained if-then rules into DHDB clauses

5. Post-process the obtained clauses to generate a hypothesis

Training examples in LINUS  are ground facts. Background knowledge is
composed of deductive database clauses (possibly recursive). The hypothesis
language is restricted to constrained DHDB clauses with typed variables
and without recursive predicates. The pre-process includes the generation
of negative examples and the handling of missing values. In noisy and
inexact domains the negative examples have to be explicitly given.

NEWGEM ASSISTANTCN2

if-then rules

post-processing

transcription into rule form

DHDB clauses

(transformation to DHDB form)

VL1 rules if-then rules decision tree

Training examples

Figure 2.11. The LINUS architecture (from Lavrac and Dzeroski, 1994).

DINUS is the algorithm translating the relational form to the
propositional form. This algorithm constructs two lists, one containing
determinate literals that introduce new variables (namely L), and the
other (F) containing all the literals using predicates from the background
knowledge. The difference list F-L contains the list of attributes that can be
used for propositional learning (see details and algorithm in Lavrac and
Dzeroski, 1994).

Once DHDB clauses have been translated into attribute-value tuples,
the propositional learner chosen by the user is executed. Later a post-process
eliminating irrelevant literals and translating the obtained hypotheses to
DHDB clauses is applied. The elimination of irrelevant literals from
clauses constituting a hypothesis makes the induced hypothesis more
compact and more accurate when classifying new cases. In noisy-free
domains, a literal L in a clause c is irrelevant if the clause c', obtained by
eliminating L from c, does not cover negative examples. In noisy domains,
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L is irrelevant if it can be removed from the body of the clause without
decreasing the classification accuracy of the clause on the training set.

In order to compare the LINUS behaviour with FOIL, it was tested
in four relational domains, such as learning family relationships
(Hinton, 1989), learning the arch concept (Winston, 1975), the Eleusis
game (Dietterich and Michalski, 1986) and learning illegal chess
endgame positions (Muggleton et al., 1989). Otherwise, LINUS has also
been applied to real-world domains such as diagnosis of rheumatic
diseases (in (Lavrac and Dzeroski, 1994) a brief description of this domain
can be found), mesh design (Dolsak and Muggleton, 1992) and learning
qualitative models of dynamic systems, such as the U-tube. In (Lavrac and
Dzeroski, 1994) a detailed comparison of LINUS results against results
produced by other ILP systems (i.e. GOLEM, FOIL, mFOIL) over the same
domains can be found.

5.3. Mutistrategy Task-adaptive Learning

The main idea of the Multistategy Task-adaptive Learning (MTL) approach
(Tecuci, 1991) is to define an architecture for a learning system at a level of
abstraction that would allow a common view on the single-strategy
learning methods, and would therefore facilitate their dynamic
integration. The goal of MTL is to identify basic inference mechanisms
(deduction, abduction, analogy, determination, etc) and define a new
multistrategy system combining all those reasoning and learning
capabilities. This new method (considered as a combination or integration
of methods) has to dynamically integrate all the elemental reasoning
mechanisms according to the new problem to solve.

The MTL system has two main steps: understanding the input and
generalising that understanding. Input understanding consists of
building a plausible justification tree proving that the input is a plausible
consequence of the KB. First, the system tries to justify a given predicate by
deduction. If this attempt succeeds, then the justification of the given
predicate is reduced to the justification of other predicates. However, if this
attempt fails, the system tries to justify the given predicate by using as
many plausible reasoning methods as possible. Methods are tried
according to the following order: justified analogy, abduction and
inductive generalisation. If one of them produces a plausible inference step,
then the system tries to use the remaining ones in order to confirm or
contradict it. If no contradiction is found, the inference step is accepted. All
the knowledge related to the tree construction is added to the KB. When
the system cannot build a justification tree proving the input, this input is
stored in the KB.

The generalisation of the justification tree is made by analysing
individual inference steps and determining if they could be locally
generalised within the constraints of the KB used to make these steps.
After a local generalisation of the inference steps, the system unifies them
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globally, and builds a generalised justification tree. The idea is to replace
each inference step S with the generalisation of all similar inference steps
that could be derived from the knowledge produced by S. Thus, deductive steps
are replaced by the deductive rules generated by them; analogy steps are
generalised by considering the knowledge used to derive them; and the
generalisation of inductive steps depends on the type of induction performed.
In general, when an inference step is a result of different types of inference,
all the involved knowledge is used to generalise this inference step.

When MTL learns from several examples the justification tree has
to be generalised and/or specialised in order to make it consistent with
positive and negative examples. A negative example explained by a justification
tree means that the tree has to be specialised since it contains some
incorrect inferences. The specific incorrect inferences are detected in MTL
using the credit assignment problem with some restrictions. For example,
by assuming that 1) only one step is incorrect, or 2) the inference is incorrect
due to an incorrect left hand rule. MTL also has several criteria to select
which is the inference step that should be modified when more than one
are detected as incorrect. The order of these selection criteria is the
following: 1) abduction, analogy and deduction; 2) selection of those inference
steps producing the minimal coverage changes in previous examples; 3)
selection of the inference steps producing a minimum increase of complexity;
and 4) arbitrary selection of one of the remaining inference steps.

One of the major advantages of the MTL is that it enables the
system to learn in situations in which single-strategy learning methods,
or some of the previous combinations of methods that have been found were
insufficient. Therefore, the proposed approach has a great potential to make
machine learning programs applicable to a wider range of problems.
Another important aspect of the method is that it behaves as a single-
strategy method, whenever the applicability conditions for such a method
are satisfied. In this respect, the proposed MTL method may be regarded as
a generalisation of the single-strategy methods.

6. Context of our Work

Solving problems in complex and real-world domains needs several kinds
of knowledge and several methods to acquire this knowledge. Moreover,
the acquired knowledge has to be updated according to the experience in
order to accurately solve new problems. Our goal is to define a framework
supporting the integration of Problem Solving and Machine Learning. To
achieve this goal we need a representation in which both problem solving
and learning methods may be integrated. Our proposal is to use
Knowledge Modelling methodologies as a tool for such integration.

Knowledge Modelling methodologies allow the analysis of
problem solving methods (PSM) in a domain. Each PSM is represented by
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a series of tasks, models and methods (some Knowledge Modelling
methodologies have several methods associated to solve a specific kind of
task, but when a method is assigned to a task it cannot be changed). In our
framework, a task can be solved by means of several alternative methods.
During problem solving the appropriate method is selected in a lazy
problem-centred way. In other words, each method has some applicability
conditions that are evaluated during problem solving taking into account
the new problem to solve. Thus, for each task (or subtask) a different
method can be selected in a problem-centred way.

The goal of a task may be the acquisition of new knowledge. This
kind of task may be solved either by knowledge elicitation from an expert
or by means of a learning method. Some integrated systems have several
Knowledge Acquisition tools and are capable of detecting which of these
tools is the most appropriate to acquire the knowledge that the problem
solving needs. We propose a different approach that considers problem
solving methods and learning methods on the same ground. This
proposal is achieved using a Knowledge Modelling methodology to
analyse learning methods. Thus, as the PSM, learning methods may be
decomposed into tasks and the methods that solve these tasks. Any task has
at least one method that solves it. When a task has as goal the knowledge
acquisition, its associated method may be a learning method. Since
learning methods have a decomposition in task/methods similar to PSM
and can be interleaved freely, problem solving and learning may be
integrated in a seamless way.

In section 5 we have analysed some Multistrategy Learning
systems. These systems have available several learning methods being
useful to deal with complex domains. Some of the Multistrategy Learning
Systems are toolkits of learning methods and the user chooses which
method has to be used to acquire the necessary knowledge. MTL is a more
flexible system that can build new learning methods formed by the
combination of some elemental methods. Nevertheless, MTL has a pre-
defined order in which the elemental methods are used. Thus, the main
shortcoming shown by these systems is the lack of flexibility in choosing
the learning method to use. Our proposal is a framework that allows the
integration of multiple learning methods without a pre-defined strategy.
The multistrategy is a consequence of the KM analysis of a specific
application domain since several tasks having as goal the knowledge
acquisition can be determined. These tasks can be solved using a learning
method. Moreover, since any task can be solved using several methods,
knowledge acquisition tasks can also be solved using several learning
methods. The flexibility in selecting one of the available learning methods
is achieved by means of the lazy problem-centred view already used for
selecting PSM.

The next chapter presents our framework for integrating learning
and problem solving.



Chapter 3

Framework for Integrated
Learning and Problem
Solving

1. Introduction

Two phases can be distinguished in the construction of a knowledge
system: the Design phase (also called Knowledge Engineering phase) and
the Problem Solving phase. During the Design phase all the necessary
knowledge is acquired, while during the Problem Solving phase the
acquired knowledge is used to solve new problems.

In turn, the design of knowledge systems is usually made in two
phases: the knowledge acquisition phase and the implementation phase. Many
approaches assume that all the knowledge necessary to solve problems in a
domain is acquired during the knowledge acquisition phase. The
knowledge modelling (KM) methodologies have been developed to
systematise and support this acquisition phase.

Knowledge modelling methodologies present two very different
assumptions. On the one hand, most of the KM methodologies produce an
analysis of a domain that is implementation-independent. Thus, a new
effort is required to operationalise the knowledge into a working
representation language during the Implementation phase. On the other
hand, they have the assumption that all the knowledge may be acquired
before the problem solving phase. This is not necessarily true, due to at
least three reasons:

• Some knowledge may be too expensive to acquire from the expert,
while this knowledge would be much less expensive to acquire from
the experience of actual problem solving in the working task
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environment. This means that knowledge useful to solve problems
would to be acquired in different ways and moments.

• Some knowledge may not be present in the Design phase,
nevertheless it may be available in changing the circumstances of the
working environment. This means that the acquisition of some
knowledge could (and may be should) be delayed until the Problem
Solving phase.

• Some KM methodologies associate a single method for each task
during the Design phase. Nevertheless, this task-method associations
can be difficult to specify during the Design phase. Moreover, a same
task can be solved using different methods depending on the problem
to solve and the knowledge available. This means that it could be
useful to associate several alternative methods to solve a task and delay
the selection of a particular one to the Problem Solving phase.

Incremental machine learning (ML) systems are built without these
assumptions since they use learning methods to acquire knowledge while
solving new problems. ML systems need domain knowledge (usually
called background knowledge) that is to be acquired somehow. It would be
desirable to do so using Knowledge Modelling methodologies, but this is
seldom done.

Summarising, a knowledge system dealing with complex domains
could benefit from both Machine Learning and Knowledge Acquisition
techniques. However, this desideratum has proven to be quite difficult to
realise. A main reason for this, in our opinion, is that they use very
different representations, i.e. result of Knowledge Acquisition techniques
are formulated in high level specification languages (sometimes not
implemented, or only partially implemented) and Machine Learning
techniques use implementation language structures (like Horn clauses or
decision trees).

In this chapter we propose a framework to integrate KM and
symbolic Machine Learning. In order to do so the KM methodologies
have to be modified to avoid the three assumptions explained above. In
more concrete terms, our aim is to provide a framework that fulfils the
following goals:

1) To methodologically integrate both Knowledge Acquisition and
Machine Learning. This integration will allow the knowledge
acquisition in different ways and in different moments (i.e. Design
phase or Problem Solving phase).

2) To integrate both learning and problem solving processes. This
integration will be made using KM methodologies to analyse and
implement learning processes.

3) To select in a lazy problem-centred way the PSM to be used in solving
a problem solving task. Each task, during the Design phase, can be
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associated with more than one method that can solve it. We propose
that the more appropriate method is to be selected during the
Problem Solving phase taking into account available information of
that specific situation.

4) To integrate several Machine Learning methods into a domain-
specific multistrategy learning system. The KM analysis allows the
determination of the different learning methods useful to acquire
the necessary models.

In the next section we explain the framework we propose and how the four
issues above are achieved. Then, in section 3, we describe NOOS, the
language used to implement the proposed framework. Finally, in section 4
we illustrate the framework with a short example.

Revision Learning 
from 

Experience

Episodes

Problem 
Solving 
process

Problem Solving and Learning

Knowledge Acquisition

Knowledge 
Modelling 

Analysis

Design and 
Implementation

Mental 
Model

Computer Internal Model 
(NOOS)

Knowledge 
Model

Figure 3.1. Scheme of the relationship among Knowledge Acquisition
Learning from Experience and Problem Solving (adapted from
Aamodt, 1991).

2. Description of the Framework

In this section we describe a framework for integrated learning and
problem solving (see figure 3.1) based on the idea that a knowledge
modelling analysis permits to make explicit the relation of learning with
problem solving. We take a unified approach for inference in learning
and problem solving. Also, we propose that a knowledge modelling
analysis may be a useful tool for understanding learning, problem solving
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and their relationship in architectures that integrate both learning and
problem solving. Using a knowledge modelling framework for describing
both learning and problem solving is useful conceptually but may be very
fruitful also at the practical level of building knowledge systems.

In the next sections we first describe the basic elements of the
framework. Then we discuss current assumptions of Knowledge Modelling
methodologies. Finally, we present how these assumptions are modified
in our framework. In (Armengol and Plaza, 1994) and in (Armengol and
Plaza, 1995) an analysis of, respectively, CBR and EBL using the proposed
framework can be found.

2.1. Basic Elements of the Framework

In section 2 of chapter 2 we have described some KM methodologies such
as Generic tasks (Chandrasekaran, 1986), KADS (Wielinga et al., 1992) and
Components of Expertise (Steels, 1990). These methodologies agree in
determining 1) one (or several) goals to achieve, 2) which is the
knowledge necessary to achieve the goal, and 3) how the goal can be
achieved. Typically, the necessary knowledge is contained in models, and
the goals are specified in tasks. These methodologies, in addition to goals,
also specify how tasks are decomposed in subtasks and which control
strategy can be followed. In other words, each task partially specify how
can be solved (which subtasks are required). This produces some confusion
since some methodologies, such as Generic Tasks, also introduce the
concept of method as the element that specifies how a task can be solved.
Methods are also present in Components of Expertise but with a different
meaning: a method is a way in which a model can be acquired.

In our framework, we use the notions of tasks, models and
methods. The definition of these elements is the following:

• A task is the set of goals to achieve
• A model is some knowledge necessary to achieve a task
• A method is an inference process that may be used to achieve a task.

The central notion in our framework is that an application domain can be
analysed as a task/method decomposition. Each task has associated one or
more methods. Each method decomposes a task into subtasks and uses the
models to achieve the goal of the task. Notice that the necessary models
may be different according to the method used to solve a task. In the next
sections each element is explained in detail.

2.1.1. Models

Models contain knowledge to be used to achieve tasks. There are two kinds of
models: problem description models and background knowledge models. Problem
description models contain knowledge about a problem to be solved.
Background knowledge models contain knowledge that can be used to solve
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problems. There are four kinds of background knowledge models: Domain
Knowledge, Solved Episodes, Applicability Conditions, and Preferences.
General Domain Knowledge models contain specific-domain knowledge that
is used by some problem solving method and is obtained by knowledge
modelling or by some learning method. Solved Episode models contain
descriptions of example problems (cases) that either have been solved by the
system or have been solved by an external source. In fact, the process of solving
a problem can be seen as the construction of a Solved Episode model from
the problem description model and the background knowledge models.

Applicability Conditions models specify, as determined in the
Design phase, when each problem solving method (PSM) is to be useful.
Applicability Conditions models are similar to the problem solving
assumptions proposed by Benjamins and Pierret-Golbreich (1996), i.e. these
models contain a specification of the conditions that have to be satisfied for
a method to be useful. Since in our framework a task can be solved using
several methods, it is also possible that the applicability conditions of
several methods are satisfied, i.e. several methods can be applicable. In
such situation the Preference models are used.

Finally, Preference  models, also acquired in the Design phase,
define an order of preference upon several PSM if more than one is
applicable. Preferences can be static (fixed) or dynamic (inferred from the
information available in the specific problem situation).

2.1.2. Methods

Problem solving methods (PSM) embody inference processes that use the
knowledge contained in models to achieve some task. In fact, methods in
our framework are seen as the process of construction of models from some
other models. For instance, a lazy problem solving method is interpreted
as the construction of a new solved episode model for the current problem
from a past solved episode model (see section 2 in chapter 4).

There are elementary  methods and task decomposition methods.
Elementary methods directly provide a result whereas task decomposition
methods decompose a task in subtasks (see figure 3.2). In fact, the result
produced by a task decomposition method M associated to a task T can be
seen as the combination of the results produced for each subtask in which
M decomposes T.

Each method uses some specific models. Moreover, a method has
some applicability conditions (contained in the Applicability Conditions
model), that have to be satisfied for the method to be (possibly) successful.
Thus, each method is useful to achieve a specific task while its applicability
depends on the available knowledge.
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Figure 3.2. Schema of a task decomposition method.

Learning methods are also included in our framework since they are
handled as the PSM. There is an special kind of task, the KA-Tasks (see
section 2.2) that can be solved using learning methods. A learning
method decomposes a KA-Task in subtasks. Learning methods embody an
inference process that constructs a specific kind of model from other
knowledge sources.

2.1.3. Tasks

Tasks are the elements of our framework that establish the goals (and
subgoals) that have to be achieved. Frequently, these goals specify the
properties of a model to be constructed. Typically, solving a problem involves
constructing the solved episode model for that problem (see section 2.1.1).

Each task can be solved using several alternative methods (problem
solving methods or learning methods). The appropriate method to solve a
task may be selected in a lazy problem-centred way. In other words, the
method that can be most useful or efficient to solve a problem task may be
selected during the Problem Solving phase according to the knowledge
currently available.

This means that some mechanism is necessary to perform this
selection. We propose to define tasks at the meta-level (called ML-Tasks) for
each task T having associated more than one method Mi . Each ML-Task is
solved by a meta-level method (called ML-method). A ML-Method takes into
account the new problem to solve, the PSM applicability conditions and
their preferences to select an appropriate method Mi  to solve T (see figure
3.3).
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Selected method: Mi
ML-Task

ML-Method

M1 MnMi ……

Task T
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Task T

associated 
methods
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Figure 3.3. A task T having associated several methods needs a ML -
Task at the meta-level. This ML-Task uses a ML-method allowing the
selection of an appropriate method to solve T.

Thus if, during the Problem Solving phase, a task T can be solved using
several methods, their associated ML-Task has to be achieved. This ML-
Task is solved by a ML-Method that evaluates the corresponding
Applicability Conditions models of each method Mi. According to the
selected method Mi  the task T will be decomposed in different subtasks and
can use different models. If several Mi  are applicable then the ML-Method
also uses the Preferences method to select one of them.

2.2. Integration of Knowledge Acquisition and
Machine Learning

There are several kinds of knowledge required to solve problems in
complex domains (i.e. general domain knowledge, cases, strategies, etc)
and each one may be used and acquired in different ways. So, in principle,
problem solving in complex domains could use both Knowledge
Acquisition and Machine Learning techniques. In fact, both techniques are
complementary since they can be applied in different moments:

• Knowledge Modelling: All the knowledge is acquired before the Problem
Solving phase using knowledge modelling methodologies. However:
1) some knowledge may be more difficult to acquire before the Problem
Solving phase, and 2) the results may not have a direct implementation.
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• Machine Learning: Some knowledge may be acquired during problem
solving by a learning method. However: it may be necessary to
previously acquire background knowledge. This previous process
should be (but usually is not) considered as part of the methodology of
Machine Learning. As a consequence, KM methodologies, that could
in principle be used, are not used in practice.

Nevertheless, Knowledge Modelling and Machine Learning techniques
have a difference that makes difficult their integration: the differences in
representation. Knowledge Modelling techniques analyse an application
domain and provide a specification of the knowledge in a high level
formalism (sometimes not implemented or only partially implemented).
Instead, Machine Learning techniques acquire and use representations
that are directly used to effectively solve new problems.

Our goal is to provide a framework in which the integration of
Knowledge Acquisition and Machine Learning is achieved by a uniform
representation. We propose to make this integration by analysing the
learning methods using ideas of KM methodologies. Thus, in our
framework a learning method can be expressed as a set of tasks, models
and methods. In this way, learning methods may be seen (as problem
solving methods are seen), in a task/method decomposition perspective (as
in figure 3.2).

Thus, learning methods can be viewed as methods associated to
tasks whose goal is the acquisition of some specific knowledge. We define
a knowledge acquisition task, KA-Task, as a task with the goal of acquiring
some knowledge that is needed for problem solving but is not directly
present or not directly usable. A KA-Task needs to be achieved only when
in solving a specific problem another task needs the (non available)
knowledge that can be acquired using that KA-Task. Thus, a KA-Task will
require to have associated a learning method able to construct the necessary
knowledge. This learning method will require, in turn, some input
models (that may contain examples and background knowledge) to achieve
the KA-Task. Figure 3.4 shows that a task needs a model M1 that has to be
acquired by means of a KA-Task. In turn, this KA-Task requires some input
models that, using a learning method, produce the model M1.

Task

PSM

Model 1

Model m

Output 
model…

KA-Task

Learning 
method

input 
models

Figure 3.4. Machine Learning and Knowledge Acquisition
Integration. The Model1 can be acquired during the Problem Solving
phase using a KA-Task that is solved using a learning method.
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Our methodological proposal is the following: during the Design phase,
by means of a KM analysis, the following steps have to be made:

1. To determine which tasks (and KA-Tasks) have to be solved

2. To determine which models are to be acquired during the Problem
Solving phase using KA-Tasks.

3. For each task (and KA-Task) determine which PSM (or learning
method) can solve it

4. For each problem solving method (and learning method) determine
both the knowledge necessary for the method and the conditions
under which the method is applicable.

Thus, for each model that has to be acquired during the Problem Solving
phase, the KM analysis will have to define a corresponding KA-Task and
determine the learning method that can solve this KA-Task. Also, the KM
analysis has to determine 1) the knowledge requirements (models) of
each learning method, and 2) under which conditions this knowledge
can be acquired. Notice that we are introducing the notion of delayed
knowledge acquisition, in the sense that some knowledge will be acquired
when needed during the Problem Solving phase. We further develop this
idea in section 2.3.

Model 1
KA-Task

T1 T2

PSM1 PSM2

input models
Learning 

method

Figure 3.5. Representation of learning and problem solving
integration. A learning method decomposes a KA-Task in subtasks.
Each subtask can be solved using a PSM.

2.3. Machine Learning and Problem Solving
Integration

Knowledge Modelling methodologies assume that all the knowledge is
acquired during the Design phase. Our desire is to introduce the
possibility to acquire some knowledge during the Problem Solving phase.
For this reason, Knowledge Modelling methodologies have to be modified
in order to model learning from experience. In other words, in our
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framework, the acquisition of some knowledge may be delayed until the
Problem Solving phase. This notion of delayed knowledge acquisition is
the basis for Machine Learning and Problem Solving integration.

During the Design phase, we have to define the tasks, models and
methods necessary to solve a problem. In our framework, some of these
tasks may be KA-Tasks with associated learning methods. KM
methodologies provide a task/method decomposition for each problem
solving method (PSM). In the same way, in our framework, a KA-Task can
be solved by means of a learning method which can also will be described
by a task/method decomposition (see figure 3.5). In turn, each subtask of
the learning method may be solved using some PSM.

Summarising, each task in our framework either achieves some
goal or acquires some knowledge. Each task can be solved using one o
more methods. Each method requires models containing the necessary
knowledge to achieve that goal. In particular, models for KA-Tasks may
contain examples and background knowledge from which new knowledge
can be constructed. In the same way, KA-Tasks have learning methods
which can be decomposed into subtasks and each subtask can be solved, in
turn, using one or several alternative PSM. Both PSM and learning
methods have applicability conditions models (such as number of
available examples, domain-specific conditions of the problem to solve, etc)
that determine which particular method can be applied to solve a specific
problem. Thus, the selection of the appropriate method for a task is made
in a problem-centred way. In the next section we will explain how to
select one method for a task when more than one are available.

Let us suppose that the result of a KM analysis has produced a
scheme (as in figure 3.4) in which a task T has associated a PSM. The goal
of T is achieved using the models M1 … Mi. These models, except M1, have
been acquired during the KA phase. Instead, for M1 only how it can be
acquired has been specified. In other words, during the KA phase we have
defined a KA-Task having an associated learning method. This learning
method (that can in turn be decomposed in subtasks as in figure 3.5) uses
some input models and produces as result the model M1 necessary to solve
the task T using the associated PSM.

2.4. Problem-centred Selection of Methods

Notions commonly used by KM methodologies are tasks, models and
methods. In methodologies as Generic Tasks (Chandrasekaran, 1986) and
KADS (Wielinga et al., 1992), each task has associated a unique method.
Methodologies as CommonKADS (Wielinga et al., 1993) or Components
of Expertise (Steels, 1990) allow the definition of several methods to solve a
task. These methodologies assume that during the Design phase there is
enough knowledge acquired allowing the engineering team to uniquely
specify the appropriate method for each task and subtask. This assumption
implies serious limitations whenever a task can be used in different



2. Description of the Framework 69

situations where different kinds of knowledge are available or are more
efficient. As a consequence, it might be desirable that the method to solve a
task can also be changed according to the actual resources.

In our framework, during the Design phase more than one
method can be associated to a task. As a consequence, the methodology of
Knowledge Modelling has to be changed, removing the single
method/task assumption. This new proposal has two implications:

1. The KM analysis may delay the selection of a single method for a
task to the Problem Solving phase,

2. During the Design phase the KM analysis has to acquire the
knowledge needed in order to select, in a dynamic way, the
adequate method for a task taking into account the situation in the
task environment.

Let us assume that a task may be solved using several alternative PSM. In
order to select one of them we need to acquire, during the Design phase, 1)
when each method can be useful (applicability conditions model), and 2)
how to select only one method if several methods are applicable
(preference model).

During the Design phase may not be possible to know which of
these conditions are satisfied, therefore this evaluation is delayed to the
Problem Solving phase. During the Problem Solving phase the
applicability conditions of each method are evaluated. Only those PSM
whose conditions are satisfied can be applied to solve a task.

The applicability conditions of a method are necessary but not
sufficient conditions. This means that a selected method can fail in
achieving the pursued goal. This failure can be due to two reasons: 1) the
applicability conditions are not accurate enough, 2) the requirements of
some (sub)task of the selected method are not satisfied. In both situations
another method whose applicability conditions are satisfied has to be
selected (using the preference model explained in section 2.1.1).

Since the appropriate method to solve each task is selected during
the Problem Solving phase according to the available knowledge and the
current problem to solve, we say that in our framework method selection is
made in a lazy problem-centred way.

In Part III of this work, we describe CHROMA an application that
uses lazy problem-centred selection of problem solving methods.

2.5. Multistrategy Learning

Our framework supports the design and implementation of knowledge
systems with multistrategy learning. In these knowledge systems learning
methods are combined and used in a way that is adapted to each problem
solving process as result of the KM analysis of the application domain.
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During the Design phase of a knowledge system, several KA-Tasks
can be modelled. Each of these KA-Tasks are to be solved by a specific
learning method. Thus the resulting knowledge system may include
several learning methods following the KM analysis requirements.

Multistrategy learning systems follow two alternative strategies to
select the appropriate learning method. One of these strategies is to ask
the user for the appropriate learning method to apply. A second strategy is
to have a fixed order in which the methods are applied. In our framework
the appropriate learning method is dynamically selected in a problem-
centred way. Thus, when a task has to be solved, the appropriate PSM is
selected according to the new problem to solve. If the selected PSM needs a
model that is not available, then this model is acquired using the
corresponding KA-Task. This KA-Task has associated a learning method
allowing the acquisition of the necessary knowledge. Consequently, the
learning performed is adapted to both the domain task and the current
task environment since 1) the KM analysis provides the set of tasks,
models and methods representing a domain task and, 2) the problem-
centred approach that allows the selection of the appropriate tasks, models
and methods in the current task environment.

In our framework each KA-Task (as any task) may have associated
several learning methods. Each learning method, as any PSM, has (or
may have) some applicability conditions. Thus, learning methods can also
be selected during the Problem Solving phase in a lazy problem-centred
way (as any other PSM). As we have explained in the previous section, the
applicability conditions are not sufficient conditions for the applicability of
a method (since a method selected according to them can fail). In particular,
the applicability conditions of a learning method can be satisfied but may
fail to acquire the required model. In such situation a new learning
method whose applicability conditions are satisfied has to be selected.

In Part III we describe SPIN, a multistrategy learning system in
the domain of marine sponge identification.

3. The NOOS Language

Problem solving in Artificial Intelligence is characterised by a intensive
use of specific knowledge about the problems to solve. The goal of the
knowledge modelling frameworks is to describe, indepently of the
implementation, which knowledge will be used and how it will be used
in solving a particular problem. Different knowledge modelling
frameworks have proposed different categories of knowledge and different
abstractions to describe them.

The NOOS language (Arcos, 1997) proposes a model based in three
categories of knowledge: domain knowledge, problem solving knowledge
and meta-level knowledge. Moreover, NOOS offers a correspondence from
this model to a representation language, based on feature terms, providing
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a real computational framework for the construction of problem solving
systems. Due to its reflective capabilities, NOOS allows a uniform
representation of domain knowledge, problem solving methods and
learning methods (modelled by means of concepts, relations, tasks,
methods and meta-levels).

In the next sections both the model, the feature terms and the
NOOS language are briefly described. In (Arcos, 1997) a detailed
description of NOOS and its formalisation can be found.

3.1. The NOOS Model

NOOS is based on both the task/method decomposition and the analysis of
knowledge requirements for methods. The knowledge modelling in
NOOS is related to approaches such as KADS (Akkermans et al., 1993;
Wielinga et al., 1993) and Components of Expertise (Steels, 1990). A main
difference is that NOOS links subtasks to methods and the methods
decompose the tasks, whereas in KADS and in Components the tasks
decompose in subtasks and the methods describe how a task can be
achieved.

NOOS proposes a model based in three knowledge categories:
domain knowledge, problem solving knowledge and meta-level
knowledge.

• The domain knowledge specifies the set of concepts and the set of
relations between relevant concepts of a concrete application.

• The problem solving knowledge is modelled by both tasks and methods.
Tasks  represent domain problems that could be solved. Methods
models the way of how problems can be solved.

• The meta-level knowledge (or reflective knowledge) is knowledge about
the domain knowledge and the problem solving knowledge. In
other words, the meta-level knowledge describes models about
concepts, relations, tasks and methods.

There are two kinds of methods: elementary methods and task decomposition
methods . A method is elementary when it solves directly a task. A task
decomposition method decomposes a task in subtasks. Subtasks are also
solved using methods. To achieve a specific task several alternative methods
could be used. This recursive decomposition of tasks in subtasks by means of
methods is called task/method decomposition (see figure 3.6). Methods can
also model relations intensionally described.
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Figure 3.6. Task/method decomposition in NOOS. Mij are PSM
solving the task T i.  Si is a meta-level method that orders the
alternative PSM of the task Ti.

Concepts, relations, tasks and methods from domain and problem solving
knowledge are described at the meta-level knowledge by means of meta-
level concepts, meta-level relations, meta-level tasks and meta-level
methods respectively. In addition, the meta-level knowledge also includes
preferences to model the decisions to take about a set of alternatives in both
the domain knowledge and the problem solving knowledge. Thus, the
meta-level knowledge may be used to model the preference criteria
between alternative methods that solve a task. An example of meta-level
task is to select a method for a specific task, and another example of meta-
level method is to search in memory for methods that can solve a task,
select and order some of them according to a set of preferences.

The problem solving process in NOOS is considered as the
construction of an episodic model. This point of view, the problem solving as
modelling, is equivalent to the construction of an episodic model from the
input data and from the problem solving knowledge. Thus, the episodic
model is composed of the knowledge elements used in solving a concrete
problem. Once a problem has been solved, NOOS automatically memorises
(stores and indexes) the episodic model of that problem. The episodic
memory of NOOS is formed by the collection of episodic models of solved
problems. The uniform representation of meta-level knowledge components
using concepts, relations, tasks and methods, and the memorisation of
episodic models constitutes the basis for the learning integration. The
episodic memory is the basic component to integrate learning in NOOS.
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This model has been formalised using feature terms, so before
describing the NOOS language we will introduce feature terms and
several concepts related with them. The feature terms formalism is
relevant also for the inductive learning methods we have developed (see
Part II).

3.2. Feature Terms in NOOS

Feature terms (also called feature structures or ψ-terms) are a generalisation
of first-order terms that have been introduced in theoretical computer
science in order to formalise object-oriented capabilities of declarative
languages. Feature term formalisms have a family resemblance with, but
are different from, unification grammars and description logics (KL-One-
like languages) (Aït-Kaci and Podelski, 1993; Carpenter, 1992). The
difference between feature terms and first order terms is the following: a
first order term, e. g. f(x, g(x,y), z), can be formally described as a tree and
a fixed tree traversal order. In other words, parameters are identified by
position.  The intuition behind a feature term is that it can be described as
a labelled graph, i.e. parameters are identified by name (regardless of
their order or position).

Given a signature ∑ = <S, F, ≤> (where S is a set of sort symbols that
includes ® and ©; F is a set of feature symbols; and ≤ is a decidable partial
order on S such that ® is the least element and © is the greatest element)
and a set ϑ  of variables, we formally define feature terms as an expression of
the form:

ψ ::= X : s [f1  ˜ Ψ1 .… fn  ˜ Ψn ] (1)

where X is a variable in ϑ , s is a sort in S, f1 .…fn are features in F, n ≥ 0,
and each Ψ i is either a feature term or a set of feature terms. We also
identify a feature term with the singleton set of that feature term. Note that
when n=0 we are defining only a sorted variable (X : s).

We call the variable X in the above feature term (1) the root of ψ,
and say that X is sorted by the sort s (noted Sort(ψ)) and has features f1 .… fn .
A particular example of feature term is the following:

ψ1 = X :  person 

last − name =̇ Smith

son =̇ Y  :  person 

wife =̇ Z :  person

father =̇ X

brother =̇ T 

















          T :  person 
father =̇ X

brother =̇ Y  
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Feature terms provide a way to construct terms embodying partial
information about an entity. For instance, the feature term ψ1  is a partial
description of a person. The meaning of the feature term ψ1  is those
individuals that satisfy that partial description; i.e. ψ1  denotes the subset of
individuals such that:

• their last-name is Smith

• they have two sons that are persons such that

- one son has a wife
- both persons are brothers of each other
- the father of both persons is the person in the root of the feature

term.

A main difference between NOOS and the formalisms presented by Aït-
Kaci and Carpenter is that NOOS allows the value of a feature to be a set of
values.

The semantic interpretation of feature terms brings an ordering
relation among feature terms.  We call this ordering relation subsumption.
The intuitive meaning of subsumption is that of informational ordering among
partial descriptions. Subsumption in feature terms has the following
definition:

•  Given two feature terms ψ and ψ', we say that ψ subsumes ψ', noted as ψ
≤ ψ', if there is a total mapping function υ : ϑψ → ϑψ'   such that:
1. υ(Root(ψ)) =  Root(ψ')
and ∀ x ∈  ϑψ
2. Sort(x) ≤ Sort(υ(x))
3. for every fi ∈  F such that x.fi  ˜ Φi  is defined, then υ(x).fi  ˜ Φ i

' is  also
defined and
(a) ∀ψ k ∈  Φi , ∃  ∀ψ '

k ∈  Φi ' such that υ(Root(ψk)) =  Root(ψ'
k) and

(b) ∀ψ k , ψ'
k ∈  Φi  ( ψk ≠ ψk' ⇒  υ(Root(ψk)) ≠ υ(Root(ψ'

k))))

Intuitively, a feature term ψ subsumes another feature term ψ' (ψ ≤  ψ')
when all information in ψ is also contained in ψ'. For instance, consider
the previous presented example of a feature term (ψ1 ) and the following
one (ψ2) denoting persons that have married sons:

  
ψ2 = X :  person son «= Y :  person wife «= Z :  person[ ][ ]

Clearly ψ2  ≤ ψ1 , i.e. term ψ2  subsumes the previous one. Notice that in ψ2
the father feature of person Y is not explicitly given and that X has only
one son. Moreover if a term ψ3  defined as



3. The NOOS Language 75

 

ψ3 = X :  person 

daughter =̇  W :  person

son =̇ Y  :  person 
father =̇  X

wife =̇ Z :  person



























it is easy to see that ψ3  satisfies that ψ2  ≤ ψ3  but ψ3 ¬ ψ1 .
Feature terms form a partial order by means of the subsumption

relationship. From subsumption (equivalent to the more general than relation
in ML) it is natural to define the operations of unification and anti-
unification (AU). In particular, to introduce the anti-unification operation
we need to introduce the notion of equivalence among feature terms as
follows:

  •  Given two feature terms ψ  and ψ ' we say that they are syntactic
variants if and only if ψ ≤ ψ' and ψ' ≤ ψ.

In other words, two feature terms being syntactic variants are equivalent
since they contain the same information. As we will see in the next
chapter, we define the anti-unification operation based on the subsumption
relationship.

3.2.1. A Brief Description of the NOOS Language

NOOS (Arcos, 1997) is a representation language based on feature terms.
Feature terms can be intuitively viewed as data structures similar to
records, that contain a set of attributes (features). Feature terms allows the
representation of incomplete knowledge (Aït-Kaci and Podelski, 1993).
Incomplete knowledge arises two problems: the so-called problem of
unknown values in Machine Learning and the problem of irrelevant attributes
that is specially important in attribute-value representation.

Concepts are represented in NOOS as feature terms, and relations
are represented as features. In particular, a feature term representing a
concept contains the set of features of that concept. The syntax to build
feature terms is based on lists beginning by the token define. For instance,
the following feature term is the definition of the concept typical-person
described by two features: last-name and age.

(define TYPICAL-PERSON
   (LAST-NAME Smith)
   (AGE 30))

The notion of refinement is introduced in the NOOS language as a
mechanism to construct feature terms from other feature terms.
Refinement has two different aspects: the reusability of the code and the
sort/subsort hierarchies.

The reusability of the code is made using refinements. In fact, a
new feature term is always constructed as a refinement of a existing feature
term. In other words, if a new term N is defined as a ref inement  of a
existing term E, N will include all the features defined in E that have not
been redefined in N. For example, the definition
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(define (typical-Person TYPICAL-FEMALE)
   (LAST-NAME Taylor)
   (HAIR blonde))

represents a new feature term called typical-female that is a refinement of
the feature term called typical-person. This means that typical-female shares
with the typical-person feature term the features age and last-name. Because
the age feature does not appear in typical-female it is reused so the value of
age in this feature term is 30 as in typical-person. Instead, the last-name
feature is redefined in typical-female and so it has a different value than in
typical-person. Moreover, the typical-female feature term has a new feature
called hair with value blonde.

Refinement is also used to define the sort/subsort hierarchy. In the
previous example we can consider that typical-female is a subsort of the sort
typical-person.

When the name of the refinement feature term is not specified,
the feature term is called anonymous. Anonymous feature terms are also
defined as feature values but without defining a new sort. For example, the
following feature term called typical-male is a refinement of the typical-
person term:

(define (typical-person TYPICAL-MALE)
   (WIFE (define (typical-female)
            (DAUGHTER (define (typical-female)

(TALL 1,80))))))

The feature term typical-male reuses the features age and last-name of typical-
person (with values 30 and Smith respectively). The feature wife defined in
the typical-male feature term has as value an anonymous feature term of the
sort typical-female. In turn, this anonymous feature term reuses the features
age and last-name of typical-female and has an additional feature called
daughter. The value of the daughter feature is also an anonymous feature
term of the sort typical-female. This means that the daughter of the wife of a
typical-male is blonde and her last-name  is Taylor. Moreover, this typical-
female is 1,80 m tall.

In our example, the sort/subsort hierarchy defined by the
refinements defines two relations among sorts: typical-person ≤ typical-male
and typical-person ≤ typical-female. In turn, typical-male and typical-female can
also be used in a new refinement to define new subsorts.

NOOS provides an initial set of sorts with an order relation among
them. The feature term called any represents the minimum information
from which all other feature terms are defined by refinement, i.e. all the
feature terms are refinements of any . A feature term defined as a
refinement of any may be defined as follow:

(define PERSON)

that is equivalent to ( define (any PERSON)). For instance, the definition of
typical-person above is also a refinement of any.
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Thus, the refinement notion is a crucial mechanism in NOOS for
constructing feature terms. This mechanism involves two aspects: 1) the
construction of feature terms by reusing other feature terms, and 2) the
definition of a sort hierarchy.

NOOS provides two kinds of references: name references and path
references. A name reference is when the value of a feature is the name of a
feature term. For example, the value blonde of the feature hair  in the
definition of typical- female  above. Path references are used to refer
anonymous feature terms (which have no name). There are two kinds of
path references: absolute and relative. An absolute path reference is a list that
starts with the token '>>' followed by a sequence of feature names, then the
'of' token, and finally the name of a named feature term. For example, the
path reference to the feature tall of the feature term typical-male above is the
following:

(>> wife daughter tall of typical-male)

Relative path references are as path references that elide the name of the
feature term, i.e. they only specify a sequence of feature names. A relative
path reference is bound to a specific description by the rules of scope and
refinement. The scope of NOOS is lexical, since a relative reference is
determined by the text in which it appears. Specifically, a relative path
reference is bound to the root of the description in which it textually
appears (the outmost 'define' in the text where it occurs).

Both kinds of path references, absolute and relative, represent path
equality in feature terms. For example in the following definition of the
Mary feature term:

(define (typical-female MARY)
   (HUSBAND James)
   (HAIR black)
   (SON (define (typical-male)
            (FATHER (>> husband)))))

the relative path reference (>> husband) in the feature father of the son of
Mary refers to the husband feature of Mary (the root). This means that the
value James can be found following two paths: (>> husband of Mary) and (>>
father son of Mary). That is to say, a path reference establishes an equality
between two paths: the path reference (>> husband of Mary) and the path
between the root and the point where that path reference occurs, namely
(>> father son of Mary). In figure 3.6 a graphical representation of this
path equality is shown.

husband

son
James

Mary male
father

hair black

Figure 3.7. Representation of a feature term using a labelled graph.
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In addition to the define construct to build feature terms, feature terms in
NOOS can be described by labelled graphs. Nodes of these graphs are
labelled with sorts and edges are labelled with named parameters (called
features). Figure 3.7 shows the representation of the example Mary  as a
labelled graph. Notice that the path equality is represented as node
sharing. NOOS provides a graphical user interface (browser) to represent
labelled graphs. In figure 3.8 there is the browser of the Mary  feature
term. We will use indistinctly the three feature terms representation:
record-like representation (as expression (1) in section 3.2), textual
descriptions using define, and graphical displays using browsers.

Figure 3.8. Browser of the feature term Mary . Nodes in grey (like
James) represent path equality.

Methods in NOOS are represented as evaluable feature terms. The features
of a method are subtasks and/or models. Thus, the collection of features
defined in the description of a method are interpreted 1) as the
decomposition of the method into subtasks, or 2) as the models that are
necessary by the method. This task decomposition allows the definition of
(sub)methods for each subtask. The value returned by a method can be any
feature term, including a method. The NOOS language provides a set of
basic methods, called built-in methods, from which new methods can be
constructed by refinement and/or combination of them. Examples of
NOOS built-in methods are arithmetic operations, set operations, logic
operations, operations for comparing feature terms and other basic
constructs such as conditional or sequencing. For example we can define
the method red-element as a refinement of the built-in conditional-method
as follows:

(define (conditional-method RED-ELEMENT)
   (ELEMENT )
   ((CONDITION (DEFINE (identity?)

(ITEM1 red)
   (ITEM2 (>> colour element)))))
   (RESULT true)
   (OTHERWISE false))

Let us suppose that we want to classify some objects as belonging to a class.
Elements of this class have the colour red. Thus, the method above, given
an element, tests if it has the colour red. If the element is red the method
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returns true, otherwise returns false. The value of the condition feature is
inferred using a closed method. Closed methods are represented by a double
parenthesis (as shown in the feature condition of the red-element feature
term). By means of a closed method the value of a feature is described by an
inference instead of a fixed value.

We say that a feature F of a feature term ψ  is reduced when the
closed method or the path reference of F has been evaluated yielding a
value for F. Also, we say that a feature term ψ is in normal form when all
their features are reduced.

Inference in NOOS is on-demand. Inference starts when a user
asks to solve a specific task by means of a query expression that engages a
particular task. Path references can be used as query expressions, for
instance (>> age of Mary). Since methods are decomposed into subtasks,
when a method is evaluated its subtasks are also engaged and their
respective methods are also evaluated. Therefore, the inference process in
NOOS can be viewed as a chaining process along the task/method
decomposition tree. This recursive chaining finishes when a method
directly uses factual knowledge. A task is achieved when its corresponding
method is successful and a method is successful when all its tasks are
achieved.

Reflection in NOOS is impasse-driven. When a task has to be
solved, two types of impasses can occur: (1) there is no method specified for
solve the task, and (2) there are several alternative methods able to solve
the task. If there is no method associated to the task, the control of the
inference is passed to the corresponding task at the meta-level. A meta-
level task can also have associated a method to achieve it. Typically, such a
meta-level method infers a partially ordered set of alternative methods for
the current task. Thus, the result is equivalent to impasse (2). In this
situation of multiple method impasse one method is reflected down at the
base level using preferences among methods. These preferences will be
introduced in section 3.2.3.

3.2.2. Episodic Memory

NOOS automatically stores decisions taken during the inference process.
The set of these decisions constitutes the episodic memory of the system. In
our framework the episodic memory corresponds to the solved episodes

models described in section 2.1.1. The episodic model of a problem is the
instantiation of the task/method decomposition used in solving that
problem. In other words, the episodic model of a problem is the new solved
episode model constructed from the problem description model by the
PSM used.

NOOS also supports an introspection capability to incorporate
learning mechanisms. In other words, NOOS provides a way to reuse the
experience acquired in solving problems in order to solve new problems.
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Introspection is able to examine the contents of the episodic memory, and
NOOS provides two introspection forms: access by path and access by
contents. Access by path is performed by combining reflective operations
and path references. This kind of access provides a way to access specific
portions of the episodic memory. Access by contents is performed by retrieval
methods that allow to retrieve previous similar episodes from the episodic
memory using similarity (relevance) criteria. Retrieval methods are
necessary for knowledge systems that need to retrieve episodes in which a
concrete task has been achieved using facts and features similar to the
current problem. CBR methods can be analysed and implemented in this
way (see chapter 4).

Retrieval methods are a subset of the built-in methods provided by
NOOS. Moreover, we can design for specific applications new retrieval
methods by refinement and combination of the existing ones. Using
retrieval methods, previous similar episodes can be accessed, analysed, and
finally reused. Similitude criteria are determined by specific knowledge
about the relevance of several features or about the requirements of the
problem solving methods. It is also possible to learn relevances (or
similarities) of features (see chapter 7).

3.2.3. Preferences

The reasoning based on preferences is used in NOOS to model the
decisions taken about a set of alternatives present in both the domain
knowledge and the problem solving knowledge. Preferences in NOOS are
represented as partially ordered set, which are defined as pairs <A, '>
where A is a set of alternatives and '  is a binary relation that is reflexive
and transitive on A. Thus, preference-based reasoning allows the
construction of partial orderings of these alternatives.

Knowledge about preferences is described in NOOS by means of
preference methods. There are two kinds of preference methods: methods for
constructing preferences and methods for combining preferences.
Preference construction methods are useful to create partial orderings of
sets using some domain specific criterion. Preference combination
methods are useful to create new orderings from two partially ordered sets
already obtained from the application of either a construction method or
another combination method.



C1 C2

obj1 obj2

obj3 obj4

obj5 obj6

obj7

obj8 obj9

Figure 3.9.  A domain example.

4. An Example

In this section we illustrate with a very simple example how problem
solving can be modelled using our framework and how this modelling
can be implemented using the NOOS language.

Let us suppose the domain of the objects in figure 3.9. In this
domain, each solved episode model contains an object represented by a
feature term of the object sort having two features: description  and
identification. The value of description is an object belonging to the
features-object sort that is described by three features: shape , size , and
colour. The identification feature contains the solution class to which the
described object belongs. In particular, objects can be classified as
belonging to two classes: C1 and C2. Thus, for instance, objects Obj1 and
Obj5 in figure 3.9 are shown in the following browser:

C2

Let us suppose that our goal is the identification of new objects as belonging
to one of the two classes. This problem can be modelled in the following
way:
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domain knowledge
new object

IDENTIFICATION
class of the 
new object

method
Let us assume that the KM analysis of this domain specifies two ways
(methods) in which the identification task can be solved:

A) The only available domain knowledge are the classified objects in
figure 3.9. A new object may be classified according to its similitude
with some of these classified objects.

B) The description of each class is available. In this situation the new
object can be classified as belonging to the class whose description
satisfies.

We will also assume that we do not know which are the descriptions of
the classes C1 and C2 shown in figure 3.9. During the KM analysis we can
decide that these description will be acquired during the Problem Solving
phase using a learning method. If so, during the KA phase we have to
define a KA-Task having as goal to acquire the descriptions of these classes.
This KA-Task can be solved using an inductive learning method that
constructs the class descriptions from the classified examples, as we will
show later in this section.

In the rest of this section we use the framework to model this
simple task and the NOOS language is used to illustrate the
implementation. We will suppose that the new object ObjN that has to be
identified is the following:

(define (object ObjN)
   (DESCRIPTION (define (features-object)

    (SHAPE circular)
       (SIZE small)
       (COLOUR stripped))))

4.1. CBR Methods

In this section we develop the modelling of the identification task solved
using the method A above that is, in fact, a CBR method. The CBR method
needs to search the memory of cases for some object similar to the new
one. In our domain, we search for some object in figure 3.9 similar to
ObjN. Let us suppose that in this domain size is the most important feature
in order to compare two objects. If the size feature is not discriminant
enough, the next feature that is important is the shape . Now we can
proceed to define a CBR method that solves the proposed problem1.

1 We may not have the knowledge of which features are more important. This more complex
situation is addressed by the LID method (explained in chapter 7) where learning involves
determining which are the most important features.
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Figure 3.10. Browser of the CBR-method associated to identification task.

A CBR method can be decomposed in three tasks: retrieve, select and
result . NOOS allows the representation of CBR as a method with the
three tasks represented as features (as shown in figure 3.10). Because the
problem above is a classification problem, the result task consists simply of
taking for the current problem the same class as that of the best precedent.
From the solution provided by result  task and the description of the
current problem a new solved episode model is constructed. This new
solved episode model may be used to solve further problems.

Current-object is a problem description model containing the
description of the object to identify (in our example, ObjN). The retrieve
task uses the NOOS built-in method called retrieve-by-pattern. This
method has a feature (called pattern) whose value is a feature term (object,
in our example, that will be explained below). The feature term in the
pattern  feature represents the minimum information that a training
example has to contain in order to be retrieved. In other words, retrieve-
by-pattern method returns as result the set X of training examples such
that pattern ≤ X. In our example, the retrieve task is implemented as
follows:

(define (retrieve-by-pattern RETRIEVE)
   (CURRENT-OBJECT object)
   (PATTERN (define (object)
         (DESCRIPTION (define (features-object)

    (SIZE (>> size description current-object)))))))

That is to say, retrieve-by-pattern will retrieve all the objects having the
same size that the object to identify (current-object). Notice that the
pattern depends on the object to identify since the value of the size feature
changes according to each current object. In our example, the current-
object is ObjN, so we can define

(define (retrieve RETRIEVE-ObjN)
   (CURRENT-OBJECT ObjN))

Since retrieve-ObjN is a refinement of retrieve, the pattern feature is a
feature term belonging to the sort object. The description feature of this
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object has the size feature with the value of the ObjN size feature. The
ObjN size is small, therefore retrieve-ObjN retrieves all the objects having
small size, i.e. C = {obj1, obj5, obj6}.

Next, the select task has the goal of extract only one element of C
using a method, called obtain-most-similar, that decomposes in two tasks
(see figure 3.10): ordered-set and most-similar. The goal of ordered-set
task is to order C according to some criteria. A possible ordering criterion
is to prefer those objects having the same shape as ObjN. Then, most-
similar task selects the element of C most preferred according to the last
task. In our example, the object finally retrieved and selected is Obj1, since
it is the only object having the same size and the same shape that ObjN.

Finally, the result  task inspects the solved episode model
containing the selected object and retrieves the class to which it belongs.
In our example, Obj1 belongs to C1 , thus ObjN will be identified as
belonging to C1. So, the value for the identification feature of the ObjN is
C1. Therefore, the new solved episode will contain the following object:

(define (object ObjN)
   (DESCRIPTION (define (features-object)

    (SHAPE circular)
       (SIZE small)
       (COLOUR stripped)))
   (IDENTIFICATION C1))

4.2. Classification Method

In this section we develop the modelling of the identification task solved
using the B method (see introduction of section 4), that we call now
classification-method. Input models of classification-method are
current-object and description-classes (see figure 3.11). During the KA
phase the descriptions of the classes C1 and C2 are not available but we can
define a KA-Task that computes them during the Problem Solving phase.
This KA-Task has associated a learning method, called induction. We
will explain this KA-Task in next section. Now we assume that the
descriptions of C1 and C2 are the following:

  

C1 =  X:  object shape =̇  circular[ ]
          ∨

           Y :  object shape =̇  oval[ ]

C2 =  Z ;  object shape =̇  triangle[ ]
          ∨

           V :  object shape =̇  rectangle[ ]
          ∨

           W :  object shape =̇  square[ ]

(A)
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Thus, the classification-method has only one task (see figure 3.11):
identify-object task. The goal of identify-object task is to determine in
which class the current object (ObjN) may be classified. The identify-
object task has associated a method based on subsumption, called identify-
by-subsumption. This method searches for all the classes such that their
description subsumes the description of the current object. In our example
only the description X of C1 subsumes the description of ObjN, therefore
ObjN is classified as belonging to the class C1. So, a new solved episode

model is constructed containing the object ObjN which identification
feature has value C1.

Figure 3.11. A browser of the classification-method.

4.3. Induction method

In the previous section we have described the identification task having
associated a method (classification-method) that needs two models:
current-object and description-classes. The description-classes model
is not available, therefore it can be viewed as a KA-Task that has as goal to
induce a description for each solution class from the training examples.

Let E = {Obj1 ... Obj9} be the set of solved episode models (those in
figure 3.9), and {C1, C2} the solution classes to which the described objects
can belong. Figure 3.12 shows the task/method decomposition of the KA-
Task description-classes. Given the set E and a solution class Ci  the goal
of this KA-Task is to obtain a description for Ci . This KA-Task can be solved
using a learning method that decomposes in three subtasks: positive-
examples, negative-examples and build-description.

The positive-examples task has as input models the set of solved
episode models E and the class Ci  of which the description has to be
obtained. The output model of this task is the set E+ of solved episode

models describing objects that belong to Ci . The negative-examples task
builds a model E- containing the solved episode models that have not
been included in E+.



86 Chapter 3. Framework for Integrated Learning and Problem Solving

Description-classes

Figure 3.12. Task/Method decomposition of the KA-Task that obtains
the description for a solution class.

For instance, the solved episode model containing the description of Obj6
in figure 3.9 is the following:

(define (object Obj6)
   (DESCRIPTION (define (features-object)

 (SHAPE triangular)
 (SIZE small)
 (COLOUR white)))

   (IDENTIFICATION C2))

Feature description contains the problem description of an object and the
identification feature contains the solution class to which it belongs.
Thus, both positive-examples task and negative-examples task define an
extensional model of Ci  (i.e. the set of positive examples E+ and the set of
negative examples E-). The method used to solve the positive-examples task
is the NOOS built-in called retrieve-by-pattern. For instance, the positive
examples of the class C1 , namely E+, are those examples having in the
feature identification the value C1. The remaining training examples,
i.e. E- = E - E+, are considered as negative examples of C1.

Then the built-description task uses both models E+ and E- , and
an inductive learning method to build a model with the description Di  for
the class Ci . In our example the result of this task are the descriptions
labelled as (A) in section 4.2. In Part II we explain some of the inductive
learning methods based on feature term anti-unification that can be used
to compute the class descriptions.

4.4. Lazy Selection of Methods

During the KM analysis we have associated two methods to solve the
identification task: CBR-method or classification-method. Now,
knowledge modelling has also to define both the applicability conditions
of the methods and the preferences between them. In other words, during
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the KM analysis, the knowledge for selecting one method has to be
acquired. In order to select one method for the identification task, we
will have a task (that we call ML-identification) that will be at the meta-
level. This ML-identification task has associated a meta-level method (that
we call ML-Selection method) that selects the appropriate method for
identification task in a lazy problem-centred way.

Let us assume that the KM analysis has determined that the
application of the classification-method is more efficient than applying
the CBR-method. Therefore, we define a sequential strategy consisting of
first applying the classification method and, if it fails, the solution is
obtained using CBR-method. This sequential strategy can be represented in
NOOS as follows:

(define OBJECT
   (DESCRIPTION (define (features-object)))
   ((IDENTIFICATION (define (classification-method)

(CURRENT-OBJECT (>> description))
(EXAMPLES training-set))

     (define (CBR-method)
(CURRENT-OBJECT (>> description))))))

Using this definition, when an object has no value in the identification
feature, the classification method will be used to obtain a value. If this
method fails then the CBR-method will be used.

Let us suppose now that the following object has to be identified:

(define (object ObjM)
   (DESCRIPTION (define (features-object)

    (SHAPE trapezoid)
       (SIZE medium)
       (COLOUR stripped))))

Using the sequential strategy described above, none of the class
descriptions subsume ObjM, thus classification-method fails. After this
failure, the CBR-method is selected and applied. The CBR-method retrieves
precedents according to its size, therefore two objects are retrieved (Obj8
and Obj9) since both have medium size as ObjM. The selection task of the
CBR-method selects the object having the same shape that ObjM, although in
this example none of the retrieved precedents have trapezoid shape (the
ObjM shape). As consequence both precedents Obj8 and Obj9 are selected.
Nevertheless, because both, Obj8 and Obj9, belong to the class C2, ObjM is
also classified as belonging to the class C2.

A more sophisticated strategy for selecting the appropriate method
could be elaborated during the KM analysis. For instance, when the shape
of the new example has not appeared in any example, the classification
method will always fail. Consequently, the identification task can only be
solved using the CBR-Method. Thus, the selection of the appropriate method
could be made dynamically. This dynamic strategy may be implemented
solving the ML-identification task at the meta-level of identification task
using the ML-selection method show in figure 3.13. The ML-selection
method has been implemented using the NOOS bui l t - in  called
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conditional-method. The condition of ML-selection method checks if the
shape of ObjM is already present in some solved episode model. If this is
the case, then classification-method is selected by the selection task at the
meta-level. As before, if the classification-method eventually fails, then
the CBR-method  is selected as second option. On the other hand, when the
shape of the new object (ObjM) is not present in any solved episode

model, ML-selection method chooses the CBR-method only. This example
we have presented is intentionally simple but it shows how introspective
capabilities allow a dynamic adaptation of multistrategy learning systems
to the knowledge modelling analysis of the domain. Chapter 8 shows a
similar dynamic strategy that has been used in the much more complex
real world CHROMA application.

Figure 3.13. Task/method decomposition of the ML-selection method
used at the identification task meta-level.

5. Conclusions

KM methodologies assume that all the knowledge can be acquired during
the Knowledge Acquisition phase. Instead, Machine Learning methods
assume that most of knowledge can be automatically acquired from some
background knowledge during the Problem Solving phase. Commonly,
this background knowledge is acquired without using a concrete
methodology. We think that the integration of both Knowledge
Acquisition methodology and Machine Learning techniques may be useful.
Nevertheless, the integration of Machine Learning and Knowledge
Acquisition has two main issues:

1) KM methodologies have to be extended in order to acquire
knowledge during the Problem Solving phase.

2) Both Machine Learning and Knowledge Acquisition use different
kinds of representations.

In this chapter we have introduced a framework addressing both issues. In
this framework the integration of both Knowledge Acquisition and
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Machine Learning is based on a knowledge modelling approach to
knowledge acquisition and learning. In other words, we propose to
analyse learning as on inference process by means of KM.

To address the first issue above, we propose a new kind of tasks,
called KA-Tasks, whose goal is the (delayed) acquisition of some
knowledge required for a PSM. KA-Tasks have associated learning
methods to achieve its goal. In this way, we can delay the acquisition of
some knowledge to the Problem Solving phase.

The issue of difference in representations is addressed by using the
NOOS representation language and the underlying formalism of the
feature terms. This formalism provides some of the essential characteristics
of the NOOS language, such as

1) The Knowledge Modelling analysis of the domain can be easily
represented in the proposed framework. Elements of our framework
are all them represented using feature terms.

2)  Learning is viewed in NOOS as a search in the feature terms space.
Machine Learning can be implemented in our framework using
some NOOS capabilities such as retrieval and introspection.

Using our framework, a knowledge system is modelled by a task/method
decomposition. In this decomposition, each task can be solved using several
alternative methods. Each method is applicable under some conditions
(defined in applicability conditions models) and some preferences may
have been established for selecting among alternative PSMs.

This same analysis can be made for the KA-Tasks, i.e. a KA-Task is
solved using a learning method that can be decomposed into subtasks. In
turn, each subtask can be solved using some problem solving method. As a
consequence, both problem solving and learning can be integrated in a
natural way during the knowledge system performance.

An advantage of the proposed framework is that it allows a
seamless integration of learning and problem solving. During the KM
analysis we can determine which are the models required by each PSM
and which learning methods can be used to acquire some of these models.
A second advantage is that the selection of a PSM for a task can be delayed
until a problem has to be solved. This selection is made according to
situation-specific criteria for the problem, applicability conditions of PSM
and preferences in using a PSM.

Commonly, learning methods handle either attribute-value or
relational formalisms. The use of a new formalism such as feature terms
has bound us to define new learning methods capable to deal with them.
These new methods are introduced in Part II.





PART II





MOTIVATION

In the previous chapter we have introduced a framework that, among
several capabilities, allows the integration of learning and problem
solving. Into this framework we have defined the KA-Tasks that are tasks
whose goal is the acquisition of knowledge needed by a problem solving
activity and that are solved using learning methods.

The proposed framework is representable using the NOOS
language, the basic formalism of which are feature terms. The feature
terms formalism allows the integration of Knowledge Modelling and
Machine Learning techniques. Thus, if is necessary the design of learning
methods capable to deal with feature terms.

In Part II we provide, in chapter 4, a brief introduction of some
concepts necessary to define new learning methods that handle feature
terms. Then, in chapter 5 we describe INDIE a bottom-up inductive
learning method. Chapter 6 describes DISC a top-down inductive learning
method. Chapter 7 describes a lazy learning method, LID, that estimates
similitude among feature terms.





Chapter 4

Learning Methods using
Feature Terms

The use of feature terms as representation formalism requires to define
new learning methods capable to deal with them. In this chapter we
explain how both inductive learning and lazy learning techniques can be
used into the space of feature terms. In our framework (and in NOOS),
learning techniques will be considered as methods. In chapters 5 and 6 we
will describe two inductive learning methods and in chapter 7 we will
describe a lazy learning method for feature terms.

1. Inductive  Learning  Methods using
Feature Terms

Inductive learning methods can be defined as those methods that
systematically produce intensional concept descriptions from extensional
concept descriptions. In other words, from the specific knowledge provided
by domain examples, an inductive learning method is capable to obtain
general domain knowledge.

In our framework, the goal of an inductive learning method is to
generate the knowledge needed by a problem solving method (PSM).
Thus, we consider induction as a method (see figure 4.1) that, using as
input models both the solved episodes models and the background
knowledge models, is capable to generate a new model (domain theory
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model) useful for a PSM to solve a specific kind of problems. The
application of a PSM is viewed as the process of construction of a model
(called new solved episode model) that contains information relative to
the problem solving process of a new problem.

Solved problem 
episodes models

INDUCTION Domain 
theory

Problem 
solving

problem description

New solved 
problem 

episode model

Background 
knowledge

Figure 4.1.  Scheme representing an inductive learning method.

A typical use of an inductive method is the generation of a class description
for a category or concept from a set of examples. The acquired knowledge
will be used by a method (problem solving in the figure above) to decide
whether or not new examples pertain to a certain category.

There are two families of inductive learning methods. One of
them, the family of propositional learners, includes algorithms such as
ID3 (Quinlan, 1986) or C4.5 (Quinlan, 1993), requires that domain objects
are represented as attribute-value pairs. The other family are the relational
techniques, including FOIL (Quinlan, 1990) and the Inductive Logic
Programming (ILP) systems that handle examples and domain
knowledge represented as Horn clauses. For some tasks, the representation
of the domain objects using a structured representation is more natural.
Structured representation means that an object is represented by a set of
attributes which values may be, in turn, objects with a set of attributes.
Feature terms is a formal view for the structured representation of objects.

Inductive methods can be characterised as search methods over a
hypothesis space (Mitchell, 1982). The search techniques usually comply to
certain biases: constraints upon the hypothesis space effectively searched
and strategies for searching certain subspaces before others. These biases of
learning methods are similar to assumptions for problem solving methods
(Benjamins and Pierret-Golbreich, 1996). For instance, a learning
inductive method can be exhaustive (or complete if it assures it will find a
generalisation if it exists) or not exhaustive. In section 3.1.2 of chapter 2 we
have seen that relational learners structure the hypothesis space according
to the notions of generalisation and specialisation. To constraint this
hypothesis space relational learners introduce a partial order between
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hypotheses (e.g. in Horn clauses it is called θ-subsumption). Then, this
ordered space is searched according to the bias of each inductive method.
In our framework, feature terms offer a representation formalism that is a
subset of first order logic where subsumption provides a well defined and
natural way for defining generalisation relationships: a feature term ψ is
more general than (or equal to) another feature term ψ' if and only if ψ
subsumes ψ' (ψ ≤ ψ').

wine

grape

riesling

color

white

wine

grape

riesling

color

red

wine

grape

riesling

wine

grape

riesling

color

white1990

year

alsace

origin

wine

grape

riesling

color

white

T1

T2 T3

T4
T5

Figure 4.2. Example of lattice formed using the subsumption among
feature terms.

Summarising, the inductive learning methods that we have developed use
the same representation language to represent both examples and
generalisations. That is to say, examples and generalisations are
uniformly represented using feature terms, so both are considered partial
descriptions and have a structured representation. The more-general-than
relation commonly used in ML is here the subsumption relation among
feature terms. When we say that a description D subsumes an example ei
(or a description dj), this is equivalent to say that D is more general than ei
(or dj). The feature term T1 in figure 4.2 subsumes all other terms, i.e. it is
more general than others (T2, T3, T4 and T5). Also, the feature term T2
subsumes T4 and T5, whereas T3 does not subsumes any term.
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The anti-unification of two examples e1  and e2  is a description that
is also a term in the formalism, and is a most specific generalisation
subsuming the examples e1  and e2 . In our example of figure 4.2, T2 is the
anti-unification of the feature terms T4 and T5 (see next section).

Induction from a set of examples means to obtain a description
generalising those examples. If the examples have a structured
representation (feature terms), induction means to search for a term
subsuming the examples represented as terms. Thus, if T3, T4, and T5 are
considered examples, the feature term T1 can be viewed as the
generalisation of them.

Inductive learning methods can work either on positive examples
only or on positive and negative examples. Working on positive examples
only requires anti-unification and it allows solving the characterisation task
(also called discovery or description problem), useful in KDD and Data-
Mining. Working on positive and negative examples allows to perform
the discrimination task (also called prediction problem or concept learning)
that is the usual in most ML applications.

In the next sections we define some concepts common to the
inductive learning methods we define in following chapters, i.e. the anti-
unification operation, the definition of both discrimination and
characterisation task, and how domain knowledge (usually called
background knowledge in ILP) can be represented in the NOOS feature
term formalism.

1.1. The Anti-unification Operation

Intuitively, the anti-unification of two feature terms gives what is common
to both feature terms (yielding the notion of generalisation) and all that is
common to both (the most specific generalisation). The anti-unification is
applied over feature terms in normal form i.e. the features of the feature
terms have to be a value which can be obtained by evaluating either a
closed method or a path reference (see section 3.2.1 in chapter 3).

Let person1 and person2 be the objects represented as the following
NOOS feature terms

person1 = person

name name

first

last

John

Smith

address NYCity

lives-at

city
father person

name
name last
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person2 = person

name name last
Taylor

father person
name

name last

wife person
name first

Maryname

the anti-unification of both, is the following feature term:

person

name
name

last
family-name

father person
name

name last

i.e. the anti-unification feature term belongs to the sort person and has as
features the common features to both person1 and person2 (name and father),
The last feature of the name feature term appears in person with the value
family-name that is the greatest lower bound in the sort hierarchy according
to the ≤ sort relation, i.e. the most specific sort common to both Taylor and
Smith sorts. Conversely, the features wife and lives-at only appear in one
of the objects, so they do not appear in the anti-unification feature term.
Formally, when a feature does not appear in a feature term is equivalent to
consider that this feature has value any, the more general sort according to
the ≤ sort relation. In such situation, the anti-unification of any with other
value produces as result any, thus the feature will not appear in the anti-
unified feature term. Notice that the path equality person.name.last =

person.father.name.last of feature terms person1 and person2 also appears
in the anti-unification feature term person. In general, a feature term
obtained by the anti-unification of a set of feature terms will contain a path
equality only if all the anti-unified feature terms contain the same path
equality.
 Formally, the anti-unification of a set of feature terms yields a
greatest lower bound with respect to subsumption ordering. Thus, the anti-
unification (AU) in feature terms is defined in the classical way (as the least
common subsumer or most specific generalisation) over the subsumption lattice as
follows:

•  The anti-unification of two feature terms in normal form ψ » ψ' is an
greatest lower bound with respect to the subsumption (≤) ordering.

The anti-unification concept was introduced in the NOOS language as
result of our work in inductive methods using the feature terms formalism
(Armengol and Plaza, 1997).
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Let D be a term with Sort (D) = Sort(E1)» Sort(E2)
Function AU2 (E1, E2, D)
   A =  {Ai | common attributes to E1 and E2}
   for each Ai ∈  A do
      Vi = (vi1, vi2) where vi1 = E1.Ai and vi2 = E2.Ai
      if vi1 = vi2
        then add-feature(D, Ai, vi1)
        else if there is a path p = (Vj, dj) ∈  *paths* such that Vi= Vj

     then add-feature(D, Ai, dj)

     else Let di be a new term with sort Sort(di)=Sort(vi1)» Sort(vi2)
 add (Vi, di) to *paths*
 add-feature(D, Ai, AU2(vi1, vi2, di))

    endif
      end -if
   end-for
   return D
end function

Figure 4.3. Anti-unification operation that constructs the most specific
generalisation covering a given set of positive examples. The function
Add-feature(d, a, v)  adds the feature a with value v  to the description d.

In our framework, examples useful for induction are contained in the
solved episodes models. Each model contains a feature term that is the
description of an already solved problem and the solution obtained for it.
In particular, the anti-unification operation uses a set of solved episodes

models containing positive examples (we call E+ to this set) to construct the
most specific generalisation D subsuming all the examples in E+. As we
will see later, when feature terms have sets of values in some feature, anti-
unification may be not unique. Figure 4.3 shows the algorithm AU2 used to
obtain a most specific generalisation of two examples E1  and E2 .

The anti-unification, AU2 (E1 , E2, D), is applied to two examples E1
and E2  (represented as feature terms in normal form) and produces a
feature term D containing the features that are common to both E1  and E2 .
The values of the features in D have to satisfy the following conditions:

1) If a feature f has the same value v in both examples E1  and E2 , the
value of f in D is v.

2) If a feature f has value of sort s1 in E1  and value of sort s2 in E2 , the
value of f in D is the most specific sort common to s1 and s2, i.e. the
greatest lower bound of s1 and s2 in the ≤ sort order.

3) Otherwise, the examples E1  and E2  cannot be anti-unified.

Feature terms can also contain path equality, i.e. two features of a feature
term having the same value. If two feature terms to be anti-unified have
path equality between the same features, then the feature term resulting
from the anti-unification also contains the same path equality (see previous
example). Otherwise, path equality does not hold for the anti-unification
feature term. For exposition convenience, we first explain AU2 assuming
that the features have only one value. Later we will explain the case when
feature terms have sets of values as value of some features.
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Let us suppose that we want to anti-unify the feature terms E1  and E2 .
For each common feature Ai  of E1 and E2 , let us consider the pair Vi = (vi1,
vi2), where vi1 = E1 .Ai  (the value or sort taken by the Ai  feature in the
example E1) and vi2 = Ei2.Ai . The first step in the anti-unification of the pair
V i = (vi1, vi2) is to search for path equality. Path equality means that the
same pair of values has already appeared in another feature. In the
implementation, we use the variable called *paths* (see algorithm in
figure 4.3) that contains all the pairs (Vj , dj ) already processed and where
di  in AU2(vj1, vj2, di ) is the feature term generated by anti-unifying the
values of the pair Vj  = (vj1, vj2). Therefore, given the pair Vi  the algorithm
searches in *paths* for a pair (Vj , dj) such that Vj  = Vi . If this pair is found
it means that there is path equality because the pair Vi  has already been
encountered by the AU2 algorithm. In order to also have the path equality
in the anti-unified term, the value for Ai  has to be exactly dj . When there
is no pair Vj  in *paths* such that Vj   = Vi  the anti-unification of the values
vi1 and vi2 has to be computed according to the three conditions above.

Feature terms in NOOS, as we saw, are set-valued. Let us suppose
that S1  = E1 .Ai  and S2  = E2 .Ai  are sets of values. Intuitively, the anti-
unification of S1  and S2   has to produce as result a set S. Each element in S
is the anti-unification of a value of S1  and a value of S2 . There are
N=Card(S1) ×  Card(S2) possible combinations of pairs of values from S1  and
S2. However, the set S will contain min {Card(S1 ),Card(S2)} more specific
combinations.

Specifically, the anti-unification of S1  and S2  finds a set of values S
such that:

1) Card (S) = min {Card(S1 ), Card(S2)}

2) each si ∈  S is obtained from the anti-unification of two values vj  ∈  S1
and vk ∈  S2 . The AU2 algorithm is applied to each possible pair (vj , vk)
where vj ∈  S1  and vk ∈  S2 , obtaining a set {gp} containing Card(S1 )
×Card(S2) descriptions.

From the set {gp}, a most specific combination1  of Card(S) elements has to
be taken as the value set S of the feature Ai . Two remarks can be made
when the set S is constructed:

1. ∀  gi  from AU2(vi  , v'i , gi )  such that gi ∈ S and ∀  gj   from AU2(vj , v'j ,gj)
such that gj  ∈  S,  where  vi  ,vj   ∈  S1   and  v'i , v'j  ∈  S2 it is satisfied that vi
≠ vj  and v'i  ≠ v'j .

2. Several incomparable combinations that are maximally specific can
exist. AU2 randomly chooses one of them.

As an example, let us suppose that objects OBJ1 and OBJ2 have the
following definitions:

1 A combination is most specific if it is not subsumed by any other combination.
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(define (object OBJ1) (define (object OBJ2)
   (COLOURS yellow brown))     (COLOURS grey black))

where the values yellow, brown, grey and black belong to the following sort
hierarchy:

colour

dark light

blackbrown yellow grey

The result of the anti-unification of OBJ1 and OBJ2 is an object with a
colours feature has two values. These two values are obtained from the anti-
unification of the values that OBJ1 and OBJ2 have in the colours feature.
The table 4.1 shows the different pairs (c1 … c4) composed of one value of
OBJ1 and one value of OBJ2. The column labeled as glb contains the
greatest lower bound of the sorts of the two values of the associated pair. For
instance, with respect to the sort hierarchy above, the greatest lower bound
of yellow and grey is ligth since this is the most specific sort common to both
values, while the greatest lower bound of yellow and black is colour.

OBJ1 OBJ2 glb
c1 yellow grey ligth
c2 yellow black colour
c3 brown grey colour
c4 brown black dark

Table 4.1. Combinations of values from the colours feature in objects
OBJ1 and OBJ2 and their respective greatest lower bound (lub).

So the object from the anti-unification of OBJ1 and OBJ2 could contain in
its colours feature any of the following pairs: (c1, c2), (c1, c3), (c1, c4), (c2,
c3), (c2, c4), (c3, c4).

We say that a pair of combinations are compatible when they have a
different set of values. For instance, the pair (c1, c2) is not compatible since
c1 has as elements yellow and grey (see table above) and c2 has as elements
yellow and black. This situation also occurs in the pairs (c1, c3), (c2, c4), (c3,
c4). In other words, the compatible pairs are (c1, c4) and (c2, c3). As a
consequence, the following two expressions are candidates to be the anti-
unification of OBJ1 and OBJ2:

(define (object OBJ3) (define (object OBJ4)
   (COLOURS ligth dark))       (COLOURS colour colour))
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OBJ3 is obtained taking the lub values from c1 and c4 of the table above and
OBJ4 is obtained taking the lub values from c2 and c3. Notice that OBJ4
subsumes OBJ3, i.e. OBJ3 is most specific than OBJ4. Because the anti-
unification is defined as the least general generalization of two objects, the
anti-unification of OBJ1 and OBJ2 is the object OBJ3.

1.2. Background Knowledge

Background knowledge is usually represented in ILP systems as rules
representing relations among several concepts. Using NOOS feature terms,
the background knowledge can be expressed by means of sorts, feature path
references, and methods.

An example of domain where the background knowledge is
necessary is the Traffic Law dataset used by the MOBAL system (Morik et
al., 1993), where background knowledge is modelled as Prolog-like rules.
Some inferential relations are the following:

sidewalk (X) →  no-parking (X)
bus-lane (X) →  no-parking (X)

involved-vehicle (X,Y) ∧  major-corrosion (Y) → unsafe-vehicle-violation(X)
involved-vehicle (X,Y) ∧  faulty-brakes (Y) → unsafe-vehicle-violation(X)
involved-vehicle (X,Y) ∧  worn-tires (Y) → unsafe-vehicle-violation(X)

Some background knowledge using feature terms is expressed using sorts
while other inferential relations are expressed as paths referencing the
value of a feature. Thus, the relations above are expressed as feature terms as
follows:

(define place)
(define (place no-parking-place)

(no-parking true))
(define (no-parking-place Sidewalk))
(define (no-parking-place Bus-lane))
(define (place parking-place)

(no-parking false))
(define (parking-place road-edge))

(define event
   (involved-vehicle )
   (parking-violation (>> no-parking car-parked involved-vehicle))
   ((unsafe-vehicle-violation (reify (>> major-corrosion involved-vehicle))
                   (reify (>> faulty-brakes involved-vehicle))
                       (reify (>> worn-tires involved-vehicle)))))

In other words, we have defined a sort called place and a refinement
(subsort) of it called no-parking-place. Objects belonging to the no-parking-place
sort have a feature called no-parking with value true. Sidewalk and bus-lane
are subsorts of no-parking-place, consequently they also have the feature no-
parking with value true.

Notice that in the definition above of the event concept the parking-
violation feature has the following path reference to compute its value:
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(>> no-parking car-parked involved-vehicle)

This reference is evaluated before the application of learning methods,
since feature terms are used in normal form.

The three rules used in MOBAL to obtain a value for unsafe-
vehicle-violation are represented by the three paths in the unsafe-
vehicle-violation feature in the definition of event. Thus, the value of the
unsafe-vehicle-violation feature can be computed using one of the three
following  path references: 1) the value of the major-corrosion feature of
the involved vehicle, 2) the value of the faulty-brakes feature, and 3) the
value of the worn-tires feature. If any of these path references returns true
as result, the value of the unsafe-vehicle-violation feature will be also true,
otherwise its value is fail.

No closed methods appear in this example i.e. the possibility of
describing a feature value by means of a method (see section 3.2.1 in
chapter 3).
 In chapters 5 and 6 there are the results of the two inductive
learning methods INDIE and DISC over the Traffic Law dataset.

1.3. The Discrimination Task

The process of induction over feature terms with the goal of finding a
discrimination description can be specified as follows:

Given:   a set of positive E+ and negative E-  examples, a notion of
subsumption and background knowledge in the form of domain
methods

Find a feature term (description) ψ such that ∀  e ∈  E+ : ψ ≤ e and ∀  e' ∈
E- : ψ ¬ e'

In other words, a discriminant description ψ  subsumes all the positive
examples and does not subsume negative examples. A discriminant
description ψ represents the description of a concept in the context of other
classes (or at least a negative class). This description is useful to predict if
an unseen example belongs to the described concept in front of other
classes (or at least a negative class).

1.4. The Characterisation Task

We define the process of induction over feature terms with the goal of
finding a characteristic description as follows:

Given:   a set of positive examples E+, a notion of subsumption and
background knowledge in the form of domain methods

Find a feature term (description) ψ such that ∀  e ∈  E+ : ψ ≤ e.
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In other words, the characterisation task searches for a description ψ
subsuming all the positive examples (without taking into account negative
examples). The characteristic description ψ can be obtained by the anti-
unification of the positive examples and represents all the regularities
common to all of them. Thus, ψ, (namely the least general generalisation
of E+) subsumes all positive examples (but it may also subsume some
negative example if they existed).

2. Lazy Learning Methods using Feature
Terms

As we have explained in section 3 of chapter 2, learning methods can be
classified as eager and lazy methods. In section 1 of current chapter we
already defined inductive methods, that are the most typical eager
methods. As we said, inductive learning methods build general
knowledge from specific knowledge.

Instead, lazy learning methods can be characterised as directly
using past experience (typically a specific past example is used) to solve a
current problem. The problem solving process for lazy learning can be
viewed in our framework as a process of construction of a new solved

episode model of the current problem from one (or more) solved episode
model(s) of past example(s). In fact, the process of learning and the
associated process of using the learned knowledge for solving new
problems are now linked and cannot be analysed separately, as we could
in purely inductive methods. We can also characterise lazy learning
methods as those that learn only the extensional concept descriptions and
do not generate (permanent) intensional descriptions. Thus, in lazy
learning methods, past experience is used2 in a problem-centred way to
directly construct the new solved episode model of the current problem to
solve.

Background 
knowledge

Solved episodes 
models

LAZY LEARNING 
METHOD

New solved 
episode model

problem 
description

Figure 4.4. Representation of a lazy learning method.

Typical lazy methods are case-based reasoning methods that retrieve past

2 Essentially, using past experience to affect future outcomes is the hallmark of learning.
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experiences, considered as relevant, and from them solve a current
problem. In lazy learning methods, generalisation is produced on-
demand and thus it is not included in a separate learning phase but it is
incorporated inside the problem solving process (see figure 4.4). For
instance, in CBR methods when trying to solve a new problem, the
solution of an old problem (i.e. the solved episode model) is transferred
(and possibly transformed) to the current problem (i.e. a new solved
episode model). The solved episode model constructed during the
problem solving process can be later used by the lazy learning method as
experience amenable to be useful in solving future problems.

Another important issue in lazy learning methods is the use of
similar precedents to solve a new problem. Approaches using estimations of
similarity usually deal with attribute-value representations of cases. In
these approaches similarity among cases is estimated using metrics.
Structured representations of cases are more powerful but establishing
similarity among them is still an open research issue (Börner, 1993;
Bunke and Messmer, 1994). The proposed approaches use the notion of
structural similarity in different ways having a common basic intuition:
the similarity between two structured cases to be captured is about the
structural relations that are common to both cases.

Plaza (1995) proposes a symbolic approach to estimate the similitude
among cases. Given a new problem to solve p  and a base of correctly
classified precedents E = {ei }, the main idea of this approach is to build a
feature term Spei (obtained by anti-unifying p with a precedent ei ) called
similitude term, containing the commonalties among p and a precedent ei .
There is a similitude term relating the new problem p  with each
precedent ei  ∈  E. This similitude terms can be partially ordered taking
benefit of the subsumption relation among feature terms. So, if Spei ≤  Spej
this means that ej  is more similar to p than ej  (that is p and ej  have more
features in common).

In (Plaza et al., 1996) we have completed this approach by
designing the Case Retrieval and Assessment using Symbolic Similitudes
(CRASS) method. CRASS follows the idea of Plaza in building the
similitude terms. The improvement with respect to the previous approach
is that similitude terms are ordered according to an entropy measure.

In chapter 7 we propose a lazy learning method, LID, based on
these ideas (similitude terms and subsumption) and also on a heuristic of
entropy reduction. LID improves the discrimination power of previous
approaches since it uses domain knowledge, such as the partition of the
precedents in classes.

In the next chapters we describe two inductive learning methods,
INDIE and DISC, and in chapter 7 we describe a lazy learning method,
LID. INDIE is a heuristic bottom-up inductive learning method that uses
the anti-unification operation and the subsumption relation to build a most
specific generalisation describing a class. DISC is a heuristic top-down
inductive learning method that builds a most general discriminant
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description for a class using anti-unification and subsumption. Finally, LID
is a lazy learning method that, in a problem-centred way and using an
entropy-reduction heuristic, builds a description capable to classify a current
problem.





Chapter 5

The INDIE Method.

1. Introduction

The method proposed in this chapter, INDIE, is a heuristic bottom-up
inductive learning method based on the subsumption relation among
feature terms. INDIE can be used to solve both the characterisation task and
the discrimination task. To solve the characterisation task (also called
discovery or description problem) INDIE only needs positive examples. This
task is useful in Knowledge Discovery in Databases and in Data Mining.
To solve the discrimination task (also called prediction problem or concept
learning) INDIE requires positive and negative examples. The discrimination
task is the usual in most ML applications. The main contributions of INDIE
are 1) the possibility of handling objects represented as feature terms and
2) the INDIE's soundness in handling imperfect data (i.e. data with noise
and/or having unknown values).

In the following section we provide a general view of INDIE by
means of a knowledge modelling analysis of the discrimination task. We
also detail how imperfect data are handled in INDIE. In section 3 we
provide a detailed explanation of the INDIE algorithm. Finally, in section
4 we provide results of the INDIE evaluation.

2. General View of INDIE

In this section we describe the INDIE method in solving the
discrimination task following the framework described in chapter 2. In
section 1.3 of chapter 4, we have defined discrimination description as follows:
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Given:  a class C, a set E+ containing the positive examples of C, a set E-

containing negative examples of C, a notion of subsumption (≤) and
background knowledge given in the form of domain methods

Find a description D for the class C such that ∀  e ∈  C : D ≤ e and ∀  e' ∈
C: D ¬ e'

In other words, a discrimination description D for a class C subsumes all
the positive examples of C and does not subsume the negative examples of
C.

Let us suppose that training examples E are classified in N solution
classes C1 ,…, CN. The goal of INDIE in the discrimination task is to build a
description Dk for a solution class Ck such that Dk subsumes all the positive
examples and does not subsume negative examples of Ck. Positive examples
of the solution class Ck are those training examples classified as belonging
to Ck. Negative examples of Ck are those belonging to solution classes
different than Ck. We assume that the training examples are correctly
classified.

INDUCTION SIMPLIFICATION

Antiunification

NEW-BIAS INDUCTION

Most discriminant attribute according 
the López de Mántaras distance

SPECIALISATIONGENERALISATION

Attribute elimination

Bottom-up induction

Bottom-up induction

INDIE

Change-bias

to

Figure 5.1. Task/method decomposition of the INDIE method for the
discrimination task.

Figure 5.1 shows the knowledge modelling of INDIE in the
discrimination task. Thus, INDIE decomposes in two subtasks: induction
and simplification. The induction task obtains general knowledge from
positive and negative examples, obtaining a description for one solution
class. The simplification  task generalises as much as possible the
description obtained by induction task. The main goal of simplification
task is the elimination of non-relevant features using a post-process similar
to the one used by FOIL (Quinlan, 1990).

The induction task is solved using the Bottom-up-Induction method.
This is the heuristic bottom-up method that builds a description that
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subsumes all the positive examples and does not subsumes negative
examples. This method decomposes in two subtasks: Generalisation and
Specialisation. The Generalisation task uses the anti-unification method
explained in section 1.1 of chapter 4 to obtain a most specific generalisation
D subsuming all the positive examples.

If the description D obtained by Generalisation task also subsumes
some negative examples, the Specialisation task has to be used to specialise
D. The specialisation is made by means of the Change-bias method that
replaces D with a disjunction of descriptions. This method decomposes in
two subtasks: new-bias and induction . The new-bias task decides how many
descriptions are necessary using López de Mántaras distance to obtain a
partition of the training examples. Finally, the induction task is newly
invoked for each partition set. This process is repeated until a description
that does not subsume negative examples is found.

3. Description of the INDIE Algorithm

Given a set of training examples E = {e1 ,…,em} and a set of solution classes
C= {C1 ,…,Cn}, the goal of INDIE is to obtain a discrimination description
Dk for each solution class Ck. Each example ei  ∈  E is a feature term having
a subset of features Ai  = {Ai1,…, Ain | Aij ∈  F}, where F is the set of features
appearing in any domain object (example).

D = ø
Function INDIE (E+, E-)
  Dk = Anti-unification(E+) ; most specific generalisation

  if there is some e ∈  E- such that Dk ≤ e
then Al = {Ai | features in Dk chosen according to a bias}
     PN = Discriminant-partition (Al,E+,E-)

for each set Si ∈  PN do
Di = INDIE(Si, E-)
Add Di to D

end for
else Add Dk to D

  end-if

  Eliminate any d ∈  D such that d ≤ d' ∈ D
  return D
end-function

Figure 5.2. INDIE obtains a set of descriptions D that do not subsume
negative examples for the current class.

A description Dk = {dj
k} represents a disjunction of feature term descriptions

for the current solution class Ck. Each dj
k subsumes a subset of positive

examples of Ck and does not subsume negative examples. In a discrimination
task, negative examples of a solution class Ck are all those training
examples that do not belong to Ck.

Given a set of positive examples E+ for a solution class Ck the INDIE
algorithm (figure 5.2) obtains, using the anti-unification operation, a most
specific generalisation D k subsuming all the examples in E+. If the
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description Dk does not subsume negative examples then Dk is a correct
description for Ck. Because the value of a feature can be a set, several most
specific generalisations subsuming all the positive examples can be built.
This means that if one of the most specific generalisations Dk subsumes
some negative example there are two options to solve this situation:

1) to search for another most specific generalisation Dj that does not
subsume negative examples, or

2) to specialise Dk until no negative examples are subsumed.
Using the first option, all the possible most specific generalisations are
tested searching for a description Dk that does not subsume negative
examples. If all the descriptions Dk subsume negative examples, the second
option has to be taken. In other words, the first option warrants the
completeness of INDIE. The second option, assumes that the only way to
describe the current solution class Ck is using a disjunction of descriptions.
In the current implementation of INDIE we have taken the second option.

The next question is, how many descriptions are necessary to
describe Ck? To answer this question a heuristic approach is taken. INDIE
selects the most relevant feature Ad  (using the discriminant-partition function
explained in section 3.3). Each feature f ∈  Ai  induces several partitions over
the set of training examples, according to values and sorts that the feature f
can take (see section 3.3 for a more detailed explanation). The most
discriminant feature Ad  is a feature inducing a partition PN  of the training
examples such that the López de Mántaras distance between PN  and the
correct partition is minimum (see section 3.3). Thus, the induced partition
PN has N classes where N is the number of different values or sorts that Ad
takes in E+. Therefore, if Dk subsumes some negative example then INDIE
will generate a disjunct of (at most) N descriptions for Ck. This new
specialised description is Dk = {dj

k}, for j = 1 to N, obtained by applying the
INDIE algorithm to each set of the partition PN .

This process is repeated until Dk does not subsume negative
examples or all the features have been used. Finally, if there are two
descriptions d1

k and d2
k  in Dk  such that d1

k  ≤ d2
k  then d2

k can be
eliminated and the disjunct is simplified.

In the next sections, we explain the bias used to select the set of
features allowing the definition of a partition of the positive examples and
how the most discriminant partition is selected (discriminant-partition
operation).

3.2. Bias

Let us suppose that Dk is a description obtained from the anti-unification of
a (sub)set of positive examples E+, and that Dk subsumes some negative
examples. INDIE specialises Dk selecting a feature Ad  that induces a
partition P over E+ (see in next section how this partition is induced). In
this section we explain which is the bias used to determine the set of
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features candidates to specialise Dk.
We could consider as candidates to produce this partition any

feature used to describe a training example. Nevertheless, when there are
imperfect data (unknown values) training examples can be described using
a different set of features. Thus, a possible bias may be to take only those
features appearing in Dk (the last description obtained by anti-unification).
This bias reduces the set of candidates to those features that all the positive
examples have in common. In a structured representation two kinds of
features can be distinguished: leaf features and intermediate features (those
belonging to intermediate levels of the structured representation).

Figure 5.3. Description of a feature term representing a marine
sponge.

For example, in figure 5.3 some leaf features are axis or grow and some
intermediate features are size  or micros . Usually, existing inductive
learning methods select one predicate at a time to specialise a clause. If we
select an intermediate feature as the most discriminant, its value is a
subterm and this means that the description Dk is specialised according to
the sorts in that subterm. This situation is equivalent to specialise a clause
introducing several predicates at a time. The selection of only one
predicate is achieved in feature terms by selecting a leaf feature. Therefore,
our bias is to consider as candidates the set of leaf features of Dk. In practice,
the selection of an intermediate feature to specialise the description Dk
tends to produce descriptions too specific (in the sense that it quickly
reaches a disjunction of M descriptions, where M is the number of positive
examples). In principle, we are interested in a description of a solution
class using the least number of descriptions.

Let us suppose now the following description of a feature term:
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Francesca :  female 

husband =  Piero 
wife =  Francesca

hair =  blond











son =  Marco 

mother =  Francesca

father =  Piero

hair =  brown
















 

hair =  brown































Which are the leaf features of the Francesca feature term? This is not a
question easy to answer. We can define a leaf feature as a feature whose
value is a feature term without features. Features as axis or grow in figure
5.3 satisfy this definition. Nevertheless, according to this definition of leaf
feature only the hair feature of Francesca is a leaf, since the values (feature
terms) of the remaining features (i.e. husband, son) have features. To deal
with this kind of feature terms we introduce the notion of depth of a
feature:

• The depth of a feature F in a feature term X is the number of features
that compose the path from the root of X to F.

According to this definition, given a depth N we can define

• The leaf features of a feature term are the set of features whose path
from the root has length N.

For instance, the features hair , husband  and son  of the feature term
Francesca have depth 1, whereas the features hair, mother, father and wife
from Piero and Marco have depth 2. INDIE allows the construction of feature
terms (descriptions) having a predetermined depth (or minor if the
feature term value has not features) as a user-given parameter. Thus, INDIE
will consider as leaves of a feature term those features in a pre-determined
depth. For example, let us suppose that we want to consider as leaves those
features having depth equal than 3. In such situation, the term Francesca
having depth 3 is the following:

 

Francesca :  female 

husband =  Piero 
wife =  Francesca husband =  Piero[ ]
hair =  blond













son =  Marco 

mother =  Francesca 

husband =  Piero

son =  Marco

hair =  brown

















father =  Piero

hair =  brown



























 

hair =  brown









































where the leaves are hair, husband (from Piero), hair, husband and son
(from Francesca mother of Marco), hair and father (from Marco) and hair
(from Francesca).
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In section 4.1.7 we explain the results of INDIE over the Mesh
dataset. In that domain the feature term depth is controlled in order to
induce descriptions of the solution classes.

3.3. Partitioning the Set of Positive Examples

In this section we explain how is induced a partition in the set of training
examples E = E+ ∪ E- . Figure 5.4 shows the algorithm followed to induce
this partition.

Function DISCRIMINANT-PARTITION (Al, E
+, E-)

   Dist = ∅
    while Al ≠ ∅  do

Pc = ((E
+)(E-))  ;; the correct partition

for Ai ∈  Al do
    Pi = {Si ⊂  E | ∀ vi ∈  Si and ∀ vj ∈  Sj: Sort(vi) ≠ Sort(vj)}
    Di = D(Pc, Pi)  ;; López de Mántaras distance
    Add Di to Dist
end-for

    end-while
    while Dist ≠ ∅  and (useful-feature = false) do

dmin = min {Di ∈  Dist}
Let Amin and Pmin be the feature and the partition associated to dmin
Pd = {S

'
i| S

'
i = Si - E

-: Si ∈  Pmin}
if Pd has only one non-empty S

'
i

then remove dmin from Dist
else  useful-feature = true

endif
    end-while

    if Dist = ∅  then return E+
        else return Pd

    end-if
end-function

Figure 5.4. Discriminant-partition function selects the most useful
feature Amin  in a description using the López de Mántaras distance.
The outcome is the partition induced by Amin . If there is not a most
useful feature, Discriminant-partition returns the set of positive examples
E+.

Let D be the description obtained from the anti-unification of the set of
positive examples E+. When D subsumes negative examples we want to
induce a partition of the set E+ in subsets E1 … En  to which the anti-
unification will be recursively applied. Let Al  = {A1  … An } be the set of
features that can be used to induce a partition in E+. The selection of a
feature Ad  ∈  Al  is made using the López de Mántaras distance (1991). The
main idea is that each feature Ai  ∈  Al  induces a partition Pi  over the
training set E according to the values and sorts that Ai  can take in E.

Usually, the partition Pj  induced by a feature Aj  is built according to
the number of different values that Ai  takes in the training set. Thus,
examples belonging to a set Si  of the partition Pj  (i.e. Si  ⊂ Pj) have the same
value in the feature Aj . INDIE obtains this partition according to the values
of the feature Aj , but also generates other partitions taking into account the
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sort hierarchies to which those values pertain. In other words, for each
feature Aj  more than one partition {Pjk } can be generated. Each partition Pjk
is induced according to different combinations of the sorts to which the
possible values of Aj  belong.

S1

S12

S2

v1 v2v3 v4

Figure 5.5. An example of sort hierarchy.

Let us suppose that a feature Aj  takes in the training set the values v1 , v2  and
v3 that are refinements of the sorts S1 , S2 , and S12 according to the
hierarchy of sorts in figure 5.5 (notice that v4 is not considered). In
addition to the partition induced by v1 , v2  and v3 , INDIE generates the
following partitions:

• (S1, v2), i.e. the training set is divided in two subsets, one containing
examples whose value in the feature Aj  belongs to the sort S1  and the
other containing examples whose value in the feature Aj  is v2 .

• (v1 , v3 , S2 ), i.e. the training set is divided in three subsets, one
containing examples whose value in the feature Aj  is v1 ; a second
subset containing examples whose value in the feature Aj  is v3  and
finally a third subset of examples whose value in the feature Aj  is of
sort S2 .

• (S1 , S2 ), i.e. the training set is divided in two subsets. One subset
contains examples whose value in Aj  is of sort S1 . Examples in the
other subset are those whose value in the feature Aj  is of sort S2 .

Notice that in the two last partitions v2 is generalized by the sort S2, and
the sort S2 also includes the value v4 (not considered in the training set).
This means that the description obtained from these partitions could
subsume new examples having the feature Aj  taking the value v4.

Thus, for each Aj  ∈  Al , INDIE induces partitions by taking into
account the sort hierarchy and computes their López de Mántaras distance
(LMD) distance to the correct partition. The LMD measures the distance
between Pi  and the correct partition1. Given two partitions PA  and PB of a
set S, the LMD between them is computed as follows:

1 In INDIE the correct partition has two sets, one containing the positive examples and the
other containing the negative examples.
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DN(PA,PB)= 2 − I(PA)+ I(PB)
I(PB ∩ PA)

where

 I(PA) = − Pi log2 Pi
i=1

n

∑ ,  Pi =
X ∩ Ci

X
 and  I(PA ∩ PB) = − Pij log2 Pij

j=1

m

∑
i=1

n

∑  

Pi  is the probability of occurrence of each class Ci  in the set of examples X,
i.e. the proportion of examples in X that belong to Ci . I(PA) measures the
information contained in the partition PA . I(PA  ∩ P B ) is the mutual
information of two partitions.

The LMD over feature terms provides the following relation among
features:

• Let Pc be the correct partition, Pj  and Pk the partitions induced by
features Aj  and Ak, we say that feature Aj  is more discriminant than
feature Ak iff LMD(Pc, Pj  ) ≤ LMD(Pc, Pk )

Then, the feature Ad  having a minimum LMD measure is selected as the
more discriminant. Using the more discriminant feature Ad  ∈  Al
inducing a partition in the set of positive examples in subsets E1 … En, two
situations can be found:

1) There is a set Ei  containing all the positive examples (and perhaps
some negative examples) and the remaining sets Ej  only contain
negative examples.

2) The positive examples are distributed in several sets Ei .
The anti-unification has to be applied to positive examples only. Thus, in
the first situation the negative examples are removed from the sets E1 … En;
it may happen that only one set Ei  remains that, in fact, is E+. Therefore,
the anti-unification would produce the same description D that is the
current hypothesis in INDIE. In this situation, the feature Ad  is removed
from Al  and another feature Ai  ∈  Al  having a second best LMD is chosen.
This process is repeated until the second situation is produced.

In the second situation we obtain a partition P'
i  containing only

positive examples, thus the INDIE algorithm is applied to each set Ei  in P'
i .

Notice that the first time that INDIE is used, the training set contains all
the positive and negative examples. When, INDIE is recursively applied
the training set contains a subset of the positive examples and all the
negative examples.

3.4. Generalisation post-process

After applying INDIE, an optional post-processing step can be used. Since
Dk = {dj

k} is a most specific generalisation for a solution class Ck, it can be
generalised (in principle) as far as no negative example is subsumed (see
figure 5.6). For each description dj

k ∈  Dk, the algorithm for post-processing
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uses López de Mántaras distance to rank all the features belonging to dj
k.

The features are considered from the least discriminant to the most
discriminant. Following this order, each step in the algorithm considers
a new general description generated by eliminating the least
discriminating feature from a description dj

k. If the new description does
not subsume negative examples, then the least discriminant feature can be
eliminated. All the features are explored in this order, and the final
result is a description containing the features that are necessary to
discriminate the examples of the current class Ck. The resulting
description is one of the most general discrimination descriptions that
describe the current solution class Ck.

Function Generalised-INDIE (E-, Dk)

  Dk = {d
i
k | disjunctive description for the solution class Ck}

  For each description dik ∈  Dk do
    Ao = (A1 ... An);Features in d

i
k ordered using the LMD heuristic

    For each Ai ∈  Ao (i = 1 to n) do
dnew := d - Ai
if there is no e ∈  E- such that dnew≤ e then
   d := dnew
end-if

    end-for
end-for

Figure 5.6. Generalised-INDIE algorithm that eliminates features from a
current description obtained using the INDIE method.

4. Evaluation of the INDIE Method

Two aspects of the INDIE method have been evaluated: the suitability of
inductively created descriptions and its predictivity degree. Suitability of
predictions has been evaluated over several relational domains. Predictivity
has been evaluated over Lymphography and Soybean databases which have
been used to evaluate most of propositional learners in the literature. In
the next sections both aspects are explained. The description of domains
used to evaluate INDIE can be found in appendix A. In chapter 9 we analyse
the INDIE behaviour when is applied to classification of marine sponges,
where domain objects (sponges) are represented as feature terms.

4.1. Evaluation of the Descriptions Suitability

In this section we analyse the INDIE behaviour used as concept learner in
relational domains. For the sake of readability, we analyse INDIE results
using the simplification post-process, since it produces more compact
descriptions.

Concept learning evaluation of INDIE has been made using
domains (such as trains, families, etc) typically used in ILP and relational
learning systems. In next sections we compare descriptions obtained by
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INDIE with those obtained by ILP systems (FOIL, LINUS, KLUSTER,…) in
the same domains.

∪ ∪ ∪ ∩ ∩

FRIENDLY UNFRIENDLY

R2 R3 R4 R5 R6�R1 

∪ ·  ··  · ·  · ·  · ·  · ·  ·

Figure 5.7. Robots used as input in the Robots dataset.

4.1.1. Robots Dataset

The Robots dataset (Lavrac and Dzeroski, 1994) consists of a description of
six robots that belong to two solution classes: friendly and unfriendly (see
figure 5.7). Each robot is described using an attribute-value representation
with five features: smiling, holding, has-tie, body-shape and head-shape. In
the follow we will describe step by step how INDIE obtains the description
for the friendly and unfriendly class.

Let us consider the friendly class. The examples of this class (see
figure 5.7) are R1 and R2 and the negative examples are R3, R4, R5 and
R6. First, INDIE obtains the anti-unification of the examples. The result of
this step is the following description:

  

D =  X :  robot 

smiling =̇  yes

holding =̇  Z :  object

has - tie =̇  yes

body - shape =̇  Y :  shape

head - shape =̇   Y :  shape























Notice that variable Y in description D is shared by two features (body-
shape and head-shape), this means there is a path equality between both
features. Due to this fact the description D does not subsumes negative
examples, so it is a discriminate description for the friendly class. Using
the generalisation post-process described in section 3.4 INDIE obtains the
following relational definition for the friendly class:

 
Friendly =  X :  robot 

body - shape =̇  Y :  shape

head - shape =̇   Y :  shape
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According to this description, robots having the same variable Y in body-
shape and head-shape (in other words, having the same body and head
shape) belong to the friendly class. LINUS (Lavrac and Dzeroski, 1994)
obtains the following rule as description of the friendly class:

Class = friendly if [smiling = yes] ∧  [holding = balloon]
Class = friendly if [smiling = yes] ∧  [holding = flag]

Lavrac and Dzeroski (1994) describe how background knowledge can be
introduced in attribute-value learning. In addition to attributes describing
domain objects, they suggest that the description of domain objects can
include attributes representing relations between other attributes. These
new attributes are like functions in the sense that their value is true or
false. In particular, descriptions of robots can include a new attribute called
same-shape that is true if both body and head have the same shape and false
otherwise. According to this new description LINUS obtain for the friendly
class the same description that INDIE does obtain directly.

Let us consider now how INDIE obtains a description for the
unfriendly class. The examples of this class are R3, R4, R5 and R6 whereas
R1 and R2 are considered as negative examples. First, INDIE anti-unifies
the examples and obtains the following description:

D1 =  X :  robot 

smiling =̇  Z :  boolean

holding =̇  R :  object

has - tie =̇  P :  boolean

body - shape =̇  N :  shape

head - shape =̇   Y :  shape























However, this description subsumes all the negative examples, therefore
INDIE has to specialise it. The first step of INDIE's specialisation takes each
feature of D1 to induce a partition over the set of positive and negative
examples. The following table shows the partitions induced by the features
of D1:

Feature Partition Values

smi l ing ((R1 R2 R3 R4) (R5 R6)) (yes, no)

holding ((R1) (R2 R6) (R3 R4 R5)) (balloon, flag, sword)

has-tie ((R1 R2 R3) (R4 R5 R6)) (yes, no)

head-shape ((R1 R4) (R2 R5) (R3 R6)) (square, octagon, round)

body-shape ((R1) (R2 R3 R4 R6) (R5)) (square, octagon, round)

The second step of specialisation is to compute the López de Mántaras
distance from each partition above to the correct partition Pc = ((R1 R2) (R3
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R4 R5 R6)). INDIE uses the most discriminant feature to obtain a
specialisation of the description D1. The feature inducing a partition with
minimum López de Mántaras distance to the correct partition is the most
discriminant. In our example, the most discriminant feature is holding.
As a consequence, the partition P = ((R1) (R2 R6) (R3 R4 R5)) will be used
to specialise D1.

In the third step of specialisation, INDIE removes the negative
examples from the partition sets, therefore the partition P is transformed
in the partition P' = ((R6) (R3 R4 R5)). The fourth step is to recursively
apply INDIE to each set of the partition P'.

In particular, the anti-unification of the set (R6) is a description D3
that is equal to the description of R6. The anti-unification of the set (R3 R4
R5) is the description:

  

D2 =  X :  robot 

smiling =̇  Z :  boolean

holding =̇  sword

has - tie =̇  P :  boolean

body - shape =̇  N :  shape

head - shape =̇   Y :  shape























This description does not subsume negative examples. Therefore, the
description of the class unfriendly is the disjunction of the descriptions D1
and D2.

Optionally, the generalisation post-process can be applied separately
to both disjuncts. The descriptions obtained by INDIE after the application
of the generalisation post-process is a disjunction of two feature terms:

  

Unfriendly =  X1 :  robot has - tie =̇  no[ ]
                         ∨  

                       X 2 :  robot holding =̇  sword[ ]

i.e. a robot is unfriendly when either it has not tie or whether it holds a
sword. LINUS using any of learners that includes (NEWGEM, ASSISTANT
or CN2) obtains the following rule:

Class = unfriendly if [smiling = no]
Class = unfriendly if [smiling = yes] ∧  [holding = sword]

It is worth noting that the disjunct [smiling  = no] is equivalent to the
condition [has-tie = no] obtained by INDIE. During INDIE's post-process,
features contained in the obtained description are ranked according to
their relevance using López de Mántaras distance.  For the unfriendly class
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the features smiling and has-tie have the same distance value and, INDIE
randomly chooses one of them for elimination. In other words, INDIE
could also obtain the following description:

  

Unfriendly =  X1 :  robot smiling =̇  no[ ]
                         ∨  

                      X 2 :  robot holding =̇  sword[ ]

The other disjunct obtained by LINUS, [smiling = yes] ∧  [holding = sword]
is more specific than those obtained by INDIE. On the other hand,
introducing the attribute same-shape, LINUS obtains that a robot belongs to
unfriendly class if the attribute same-shape has as value false, i.e. body and
head have not the same shape.

4.1.2. Drugs Dataset

The Drugs dataset contains the description of several drugs. This dataset
has been used by the KLUSTER system (Kietz and Morik, 1994). From
these descriptions KLUSTER can classify an instance in one of several
classes, i.e. active substance, monodrug, sedative substance, etc. KLUSTER
uses a representation language  based  on  K L - O N E  to represent both
generalisations and domain objects. To use INDIE we have represented
domain objects as feature terms. Descriptions obtained for these classes are
similar to those obtained by KLUSTER. The main differences are due to
the different representation formalism. A main semantic difference is
that feature terms provide a uniform representation while description logics
are hybrid since there are two different formalisms, one for describing
concepts (T-box) and another one for describing instances (A-box).
KLUSTER searches for a most specific generalisation (MSG) from positive
examples. If MSG covers negative examples KLUSTER follows a particular
algorithm to specialise MSG by means of introducing new at-most and at-
least predicates in the feature descriptions. INDIE uses anti-unification to
find a most specific description that subsumes positive examples (similarly
to KLUSTER since both follow a bottom-up strategy). During specialisation
INDIE introduces a disjunction of descriptions following the distance-based
heuristic. INDIE obtains the following descriptions for the monodrug and
combidrug classes:

Monodrug =  X:  drug 
effects =̇  Y :  drug - effect

contains =̇  Z:  active - substance affects =̇  W:  symptom[ ]












Combidrug =  X:  drug 
contains =̇  Y :  active - substance

                     Z :  active - substance
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The description of the monodrug  class means that a substance X is a
monodrug when it contains a substance affecting some symptom and the
substance X has some effect. A substance X is a combidrug when it has at
least two active substances Y and Z. Notice that the main difference
between both classes is using one active substance (monodrug) and more than
one substance (combidrug). This fact derives from the definition of
subsumption, namely that any example subsumed by the combidrug
description above, needs to have (at least) two active substances for each
feature contains . The combidrug examples would also be subsumed by
monodrug description (since they also have one active substance) except that
combidrugs do not satisfy the other two features (effects and affects).

Figure 5.8. Two negative examples of arch covered by the description
obtained by FOIL and LINUS.

4.1.3. Arch Dataset

This domain was introduced by Winston (1975). The Arch Dataset consists
of two examples of the arch concept. Each arch is composed by three pieces
(two vertical and one horizontal). As negative examples, there are two
objects also composed of two vertical pieces and one horizontal piece but
they do not form an arch (see appendix A). Authors that have used this
domain (Quinlan, 1990; Lavrac and Dzeroski, 1994) represent background
relations as Horn clauses. The arch description obtained by LINUS and
FOIL (using both the closed world assumption) is the following:

arch(A,B,C) ← left-of(B,C), supports(B,A), not touches(B,C)

Notice that this description is consistent with the positive and negative
examples provided to the system (see appendix A), but it also covers the
unseen objects shown in figure 5.8 that are not arches. Thus, LINUS and
FOIL need to include both objects as negative examples in order to obtain a
correct description of arch . Using feature terms, INDIE obtains the
following description:
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Arch = X :  figure left =̇  Y :  brick 

left - to =̇  T :  brick 

rigth - to =̇  Y

supports =̇  Z

touches =̇  no - one

















supports =̇  Z :  block over =̇  Y
T





touches =̇ no - one

              

























































i.e. an arch is an object X having a brick Y satisfying three conditions: 1)
Y is left to a brick T, 2) Y supports a block Z, and 3) Y does not touch any
brick (touches feature has value no-one). In turn, the block Z has to be
supported by the blocks T and Y. Finally, brick T is to the right of Y,
supports block Z and does not touch any brick. This description has been
build using the four standard inputs. Notice that the description above
obtained by INDIE is capable of obtaining a description that does not
subsume the unseen negative examples in figure 5.8, since both vertical
bricks in S have to support the central block Z. The graphical representation
of the description obtained by INDIE (figure 5.9) makes explicit the
relations among the pieces composing an arch.

figure left-to
brick brick block

no-one

supports
over

touchestouches
right-to

left-to

supports

Figure 5.9. Graphical representation of the feature term obtained by
INDIE to describe an arch.

4.1.4. Families Dataset

This domain, defined by Hinton (1989), consists of the definition of two
families having twelve members each (see appendix A). Several ILP
systems have been tested using this domain. In particular, LINUS obtains
the following descriptions for the mother relation:

mother(A,B) ← daughter(B,A), not father(A,B) (1)
mother(A,B) ← son(B,A), not father(A,B) (2)

 Rules obtained by FOIL to describe the mother relation are the following:
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mother(A,B) ← daughter(B,A), not father(A,C) (3)
mother(A,B) ← son(B,A), not father(A,C) (4)

Notice that FOIL obtains more specific descriptions than LINUS since (3)
and (4) use a new variable C. This new variable means that "A is not the
father of anybody", whereas in descriptions (1) and (2) "A is not the father
of B" (i.e. A should be the father of a person different than B). INDIE
obtains the following description:

 
  
mother =  X :  female son =̇  Y :  male[ ]

This description is equivalent to descriptions (2) and (4) above since the
relation not father (used by LINUS and FOIL) is equivalent to define a
person of sort female as INDIE does. On the other hand, INDIE obtains only
one disjunct because the description obtained by anti-unification already
subsumes all positive examples and does not subsume any negative example.
After applying the simplification only the son feature remains. During the
post-process, two features, son  and daughter , have the same López de
Mántaras distance; because of this any of them could have been eliminated,
and INDIE has randomly chosen the elimination of the daughter feature.
We have also used INDIE to obtain a description for the uncle relation. The
result is the following:

 
  
uncle =  X :  male niece =̇  Y :  female[ ]

This description can be interpreted as "An uncle is a male that has at least
a niece". As in obtaining the mother relation, during the post-process, two
features, niece and nephew, have the same López de Mántaras distance,
therefore INDIE has randomly chosen the elimination of the nephew
feature.

4.1.5. Trains Dataset

This domain was introduced by Michalski (1980) to test the INDUCE
system. Domain objects are 10 trains having different numbers of cars
with various shapes carrying loads of different forms (see appendix A). The
task is to distinguish between eastbound and westbound trains. Learners that
use attribute-value representation have a great difficulty to solve this task
due the variability in the number of structures and substructures present in
the domain objects (for example, trains have a variable number of
wagons). LINUS has to introduce an artificial variable to obtain the
eastbound description (see details in Lavrac et al., 1991). Using ASSISTANT,
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LINUS obtains a description consisting of 19 Prolog clauses that after post-
processing is reduced to one clause that is the same obtained by FOIL and
INDUCE:

eastbound(A) ← has-car(A,B), ¬  long(B), ¬  open-top(B)

FOIL system obtains the following description for the westbound trains:

westbound(A) ← has-car(A,B), long(B), 2-wheels(B), ¬  open-top(B)

This description covers three of the five westbound trains. FOIL is not
capable to obtain more descriptions due the encoding length heuristics.
INDUCE can obtain a description covering all the westbound trains because
uses constructive induction that introduces a new predicate: the number of
wagons (car-count) of a train. Thus, west class are described by INDUCE as
follows:

    westbound(A) ← car-count(A) = 3
westbound(A) ← has-car(A,B), jagged-top(B)

We have not data about the LINUS result in obtaining the westbound
description. Using feature terms INDIE avoids the problem of the
variability and is capable to obtain a description for both eastbound and
westbound  trains without introducing new predicates. The eas tbound
description obtained by INDIE is the disjunction of the following four
feature terms:

  

eastbound =  X1 :  train wagon3 «=  Y1 :  closed - car load - set «=  circlelod[ ][ ]
                      ∨

                         X2 :  train wagon3 «=  Y2 :  closed - car load - set «=  rectanglod[ ][ ]
                      ∨

                         X3 :  train wagon3 «=  Y3 :  closed - car load - set «=  trianglod[ ][ ]
                      ∨

                         X4 :  train wagon3 «=  Y3 :  open - car load - set «=  hexagonlod[ ][ ]
i.e. the eastbound trains are characterised by the load set of its third wagon,
which can have circlelod, rectanglod, trianglod or hexagonlod form.
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Notice that implicitly this description assumes that an eastbound train has
at least three wagons. The westbound description obtained by INDIE is also a
disjunction of three feature terms:

westbound =  X1 :  train wagon2 «=  Y1 :  open - car form - car «=  openrect[ ][ ]
                       ∨

                          X2 :  train wagon2 «=  Y2 :  open - car form - car «=  ushaped[ ][ ]
                       ∨

                          X3 :  train wagon3 «=  Y3 :  open - car load - set «=  rectanglod[ ][ ]
Similarly to eastbound description, the form-car feature and the load-set
feature are the more relevant to describe a west train.

4.1.6. Traffic Law Dataset

The Traffic Law dataset is concerned with some basic knowledge about
traffic regulations in Germany. This dataset, composed of a set of twelve
cases (see appendix A), has been used in the MOBAL system (Morik et al.,
1993). Thus, from a set of predicates representing basic information about a
traffic violation case, the involved vehicles and persons, and traffic
regulations, the problem solving goal of MOBAL classifies of the case
along several dimensions, i.e. determining who will be held responsible
for violation, whether the responsible person will have to go to the court
and how high the fine will be.

MOBAL represents each case by means of facts that provide
information about objects and relations among objects (see appendix A). In
addition to cases and topological background knowledge, MOBAL also has
background knowledge of inferential relations in the domain. The
background knowledge is usually represented in ILP as rules representing
relations among concepts. As we have seen in section 1.2 of chapter 4,
background knowledge using feature terms can be represented by means of
sorts, feature path references and methods. In the Traffic Law dataset the
background knowledge represented using feature terms is the following:

(define place)
(define (place no-parking-place)

(no-parking true))
(define (no-parking-place Sidewalk))
(define (no-parking-place Bus-lane))
(define (place parking-place)

(no-parking false))
(define (parking-place road-edge))

(define event
   (involved-vehicle )
   (parking-violation (>> no-parking car-parked involved-vehicle))
   ((unsafe-vehicle-violation (reify (>> major-corrosion involved-vehicle))
                   (reify (>> faulty-brakes involved-vehicle))
                       (reify (>> worn-tires involved-vehicle)))))
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Since INDIE handles feature terms in normal form (see section 3.2.1 of
chapter 3), path references and methods are reduced on demand by INDIE,
and are converted to normal form.

We have used INDIE to find the descriptions of two traffic
violations: parking-violation and lights violation. Nevertheless, we have not
used the INDIE simplification post-process since we search for regularities
among the positive examples (in a way similar to the MOBAL's module
called RDT). In other words, we are interested in descriptions that do not
subsume negative examples but having as much the features in common
with the positive examples as possible.

Positive examples of parking-violation are those objects belonging to
the event concept having the parking-violation feature with value true.
Nevertheless, some traffic violation cases provided as input do not have this
feature (see appendix A). The description for the parking-violation concept
induced by INDIE is the following:

  

X:traffic - case event =̇  Y :event 

involved - vehicle =̇  Z:  vehicle 
owner =̇  W

sedan =̇  true











responsible  =̇  W :  person

car - parked =̇  P:  no - parking - place 

















































i.e. a parking violation occurs when the involved vehicle is parked in a
place P that is of sort no-parking-place. The responsible is a person W who is
also the owner of the vehicle. The description obtained by INDIE is
equivalent to the following two rules:

car-parked (X,Y) ∧  no-parking (Y) → parking-violation(X) (1)
involved-vehicle (X,Y) ∧  owner (Z,Y) → responsible (Z,X) (2)

The rule (1) is used as background in MOBAL, and the rule (2) is
discovered by this system using the cases of traffic violations and the
background knowledge.

The description for the lights-violation concept obtained by INDIE is
the following:

  

X :traffic - case
event =̇  Y :event

involved - vehicle =̇  Z : vehicle

owner =̇  W :  person

sedan =̇  true

headlights - on =̇ false

















time =̇  L :unlit - time 





















tvr − point s − P =̇  false
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i.e. a lights violation happens when the involved vehicle has the
headlights off and the time is unlit. In this domain, unlit-time is a sort
that has dark-time and foggy-time as subsorts. Thus, the description
obtained by INDIE is equivalent to the following two rules used as
background knowledge in MOBAL:

time (X,Y) ∧  dark (Y) → lights-necessary(X)
time (V,Y) ∧  place (V,Y) ∧  fog (X,Y) → lights-necessary(X)

Moreover, we have also used INDIE to learn the concepts of court-citation and
appeals. INDIE obtains the same description for both concepts:

  

X :  traffic - case event =̇  Y :  event 
involved - vehicle =̇  Z :  vehicle 

owner =̇  W

sedan =̇  true











responsible =̇  W :  person 



































i.e. court-citation and appeals are described by an event such that the person
responsible of this event and the owner of the involved vehicle are the
same person. MOBAL also obtains a strong relation between appeals and
court-citation since both concepts occur in the same situations (see rules
learned by MOBAL in appendix A). To confirm this strong relationship
between both concepts, we have used INDIE with the simplification post-
process obtaining the following descriptions:

appeals =  X :  traffic - law event =̇  Y :  event court - citation =̇  true[ ][ ]
court - citation  =  X :  traffic - law event =̇  Y :  event appeals =̇  true[ ][ ]

i.e. the appeals concept is characterised by an event Y having the court-
citation feature with value true. Conversely, the court-citation concept is
characterised by an event Y having the appeals feature with value true.

4.1.7. The MESH dataset

The Mesh dataset is used to analyse stresses in physical structures, which
are represented quantitatively as finite collections (meshes) of elements.
Meshes can be classified as belonging to 17 solution classes. The GOLEM
system has been applied to this domain to construct rules deciding on
appropriate mesh resolution (Dolsak and Muggleton, 1992). An appropriate
representation of the geometry of a structure must include the relations
between its primitive components, which cannot be represented naturally
in an attribute-value language. There is background knowledge describing
some of the factors influencing the resolution of a mesh, such as types of
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edges, boundary conditions, and loadings. The predicates used by the
GOLEM system and also the representation of these predicates using
feature terms are shown in appendix A.

From three structures (a hydraulic press cylinder, a hook, and a
paper mill) GOLEM obtains 56 different rules, some cover few examples
and others are not useful in practice. For this reason, GOLEM authors have
eliminated some non useful rules, selecting only 26 rules as useful.
Nevertheless, they have also observed that if they allow the coverage of
some negative examples, some of the remaining rules can be generalised.
For instance (Dolsak and Muggleton, 1992), the following rule for the
class one :

mesh (A,1) :- not-important (A), not loaded (A).

covers 18 positive examples and no negative examples. Instead, allowing
cover a few negative examples, the following rule is induced:

mesh (A,1) :- not-important (A).

Since, this rule covers 27 positive examples and only one negative example,
this second rule is preferred by the authors.

FOIL and LINUS systems, in addition to the three structures used by
GOLEM, have also used two additional structures: a roller and a bearing
box. Results obtained by both systems are similar to those of GOLEM. We
have used the same three structures of GOLEM (hydraulic press cylinder,
hook, and paper mill) to obtain the description for class one.

Figure 5.10. Representation of a Mesh domain object using feature
terms.
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Using feature terms, the objects of the Mesh dataset are represented as
feature terms belonging to the sort mesh-problem (see figure 5.10). Objects in
this sort have two features: description and solution.  The description
feature has as values objects belonging to the sort edge. An object of the edge
sort can have a variable number of features (from 5 to 11 features). In
Appendix A a complete description of the objects can be found. The values of
the features (except type, boundary-conditions, and loadings) are edges
that have, in turn, some of the mentioned features. The solution feature of
mesh-problem objects contains the class to which the described edge can be
classified. Meshes can be classified as belonging to 17 solution classes
(from one to seventeen).

Each edge of a physical structure is related with many other edges
that, in turn, are successively related with other edges. In this way, a very
long chain of edges could be formed from each edge. Consequently, a
description for a class may contain all the edges of a physical structure. For
this reason, INDIE needs to control the depth of the descriptions in order
to reduce the computation time and find simpler descriptions (i.e.
descriptions relating an edge with its immediate neighbours). Depth
control (see section 3.2) is a bias similar to those biases used in most of the
ILP systems according to which rules using a smaller number of predicates
and variables are preferred.

Using feature terms with maximum depth 1, INDIE obtains 36
descriptions for class one.  These descriptions follow three kinds of patterns:

X1:  edge neighbour - ZX - R =  W :  edge[ ]
∨

X2:  edge neighbour - XY - R =  V :  edge[ ]
∨

X3:  edge neighbour - YZ - R =  S :  edge[ ]

where edges W, V, S have a concrete value in each description. Taking
depth 2, the same kind of descriptions are obtained. Probably, to obtain
more general descriptions we would need to allow higher levels of depth.
We want to remark that FOIL, GOLEM and LINUS have some difficulties
in dealing with the neighbour  relations since they are not deemed as
discriminant among positive and negative examples. This means that the
neighbour relations do not appear in the obtained descriptions since authors
report that their heuristics estimate a zero gain of information (Lavrac and
Dzeroski, 1994). Nevertheless, this relation is proved important to take into
account geometrical aspects of structures. In fact, Lavrac and Dzeroski (1994)
encourage the use of this relation to improve the obtained results. This
relation naturally appears in the descriptions obtained by INDIE since they
are selected as relevant by heuristics from the set of features.

For class two , INDIE obtains 23 descriptions that follow the
following patterns:
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X1:  edge type =  long - for - hole[ ]
∨

X2:  edge neighbour - ZX - R =  V :  edge[ ]
∨

X3:  edge neighbour - YZ - R =  W :  edge[ ]

where edges V and W are concrete edges such as, B28, A24, C8, etc. These
descriptions are very different to those obtained by GOLEM, LINUS and
FOIL (see appendix A).

4.1.8. Discussion

INDIE is capable to deal with relational domains in the formalism of
feature terms. Our experiments show that INDIE gives results comparable
to those obtained by FOIL, KLUSTER and LINUS in robots, drugs, families
and arch domains. Notice that in the Robots domain INDIE obtains a
relational description for friendly class (i.e. a robot belongs to the friendly
class if it has the same shape of head and body). This same description is
obtained by LINUS only after introducing a new feature representing the
same-shape relation. INDIE also obtains best results than FOIL, INDUCE
and LINUS when is applied to the arch domain, since INDIE does not
need additional negative examples to find a correct description of arch.

Results obtained by INDIE over the trains domain are different
from those obtained by FOIL, INDUCE and LINUS. One reason for the
different descriptions for eastbound  class is that INDIE does not use
negation. On the other hand both systems, FOIL and INDUCE, have some
difficulties in obtaining a description for the westbound class: FOIL cannot
obtain a description covering the five westbound trains and INDUCE has to
introduce a new predicate in order to achieve it. Instead, INDIE obtains
three descriptions for wes tbound  class without changing the initial
representation of trains.

INDIE has also been applied to datasets as the Traffic Law dataset
that uses background knowledge, and to the Mesh domain. Results of
INDIE in both domains are comparable to those obtained by ILP systems as
MOBAL, LINUS and mFOIL respectively.

4.2. Evaluation of the Accuracy

We have evaluated the accuracy of INDIE (using López de Mántaras
heuristic) in order to assess its utility with respect to attribute-value
learners of the decision tree family (based on similar heuristics). The
INDIE method has been evaluated over Soybean (small and large) and
Lymphography datasets from the Irvine ML Repository. Conditions used to
evaluate them have been the same as those used by (Zhou and Dillon, 1995)
in order to compare results. These conditions are the following:
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- Attribute-value representation

- Training set containing the 67% of cases

- Test set containing the remaining 33% of cases

From this conditions we have randomly constructed 20 training sets and
obtained the average of the results. During the evaluation we have observed
that INDIE can provide two kinds of answers different to those provided by
C4.5 (Quinlan, 1993) and CN2 (Clark and Niblett, 1989). On the one hand,
INDIE can provide as answer "the example has not been classified", we call
this situation a no-solution answer. On the other hand, INDIE can answer
that there are several classes in which the current example can be
classified, we call this situation multiple solutions answer. From now on, we
speak of no-solutions and multiple solutions answer.

Depending on the application domain, answering multiple
solutions may be not acceptable whereas in other domains multiple
solutions may be a valuable information. For this reason, we will propose a
new assessment of multiple solutions answer called correctness. In the next
section we explain how the correctness of multiple solutions can be
evaluated. We will also show that the accuracy definition is a particular
case of correctness definition. Later the results obtained by INDIE for each
dataset are explained in detail.

4.2.1. Analysis of Multiple Solution Answers

When a method answers only one solution, then this is either the correct
solution or not. The accuracy is measured by the number of examples for
which the method has produced the correct answer. Let A be the set of
examples correctly solved. We can consider that A is a crisp set defined by
a membership function µa  from the set of examples E to the interval [0,1]:

 

µA (e) = 1    if e ∈  E has been correctly solved

µA (e) = 0    if e ∈  E has been incorrectly solved




The measure of accuracy is the relative cardinality of A, i.e. the ratio of
correctly solved examples with respect to the total number of examples.
Therefore, if E is the set of training examples and EC is the set of correctly
solved examples (i.e. ∀ ei  ∈  EC then µa (ei) = 1), then the accuracy can be
computed using the following expression

  
Accuracy  =  

Card(EC )
Card(E)

We will now introduce the correctness of a learning method, an estimation
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that considers the set of examples correctly solved by a learning method as
a fuzzy set. A fuzzy set C is defined by a membership function µC : X →
[0,1], where X is a universal set. The membership function µC indicates
the membership degree to C of an element of X.

In our case, if E is the set of problems to be solved and sol(ei) is the
cardinality of the answer for a problem ei  ∈  E, then we define X = {i | i =
sol(ei) ∀ ei  ∈  E}. Now, we define a membership function µ C (i) that
measures the degree to which an answer with i = sol(ei ) solutions is
"correct". We want to assume that the more solutions the less informative
is the answer. Thus, a correctness function µC(i) has to be a monotonically
decreasing function such that:

- when the solution has only one correct answer (i=1) then µC(1)=1
- when the solution has several answers (i > 1), all of them incorrect,

then µC(i)=0
- when the solution has as answers all the possible solution classes

(i=N), then µC(N)=0
- when the solution has several answers (1 < i < N) and one of them is

the correct one, then 0 < µC(i) < 1

Obviously, when the method does not produce any solution for an example
µC(0) = 0. Nevertheless, this is a particular case and we are not interested
in it. We can estimate the correctness of multiple answers taking the fuzzy
membership function µC as a linear function (µ1 ) or as a logarithmic
function (µ2) defined in the following way:

µ1(i) =  
0                                    otherwise

1
1-N

i -  
N

1-N
              if 0 < i ≤  N





     

µ2(i) =  

0                           otherwise

log 2
i
N

log 2
1
N

                 if 0 < i ≤  N














The figure 5.11 shows the graphical representation of functions µ1 and µ2
for large Soybean (where N=19) and for the Lymphography (where N=4)
domain. The graphic emphasises that logarithmic function µ2  has a
higher punishment form multiple solutions than the lineal function µ1 .
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Figure 5.11. Representation of the correctness membership functions
µ1 and µ2 for large Soybean and Lymphography domains, where N=19
and N=4 respectively.

We use the notion of ∑count to evaluate the correctness degree of INDIE.
The ∑count is defined as follows:

• The ∑count of a fuzzy set C (Luca and Termini, 1972) is the summation
of the membership degrees of all elements in C.

Applied over the set E of problems solved by a learning method, the ∑count
gives us the summation of the correctness degree in which each problem
in E has been solved. In other words, the ∑count of the set E is computed as
follows

   
µC(sol(ei ))

ei ∈ E
∑

where sol(ei ) is the number of solutions in the answer of the example ei .
The ∑count  can be normalised in the interval [0,1] by defining the

relative count (or membership to the relative cardinality) of a set E as follows:
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G(E) =  

µC(sol(ei ))
ei ∈ E
∑

Card(E)

We call G the correctness of a learning method.
Notice that G(E) is the accuracy when the set E is crisp (since µC(1)

= 1 and 0 otherwise). In other words, accuracy is the special case of
correctness when the "correct" set is crisp instead of fuzzy. G produces as
result a number in the interval [0,1] (where better methods have G close to
1).

Thus the performance of a learning method can be assessed using
the relative count function (using either of the correctness membership
functions µ1  or µ2  described above). Summarising, in the next sections we
use the following correctness functions

   
G1(E) =  

µ1(sol(ei ))
ei ∈ E
∑

Card(E)
 and  G2(E) =  

µ2(sol(ei ))
ei ∈ E
∑

Card(E)

to evaluate INDIE's result on several standard datasets.

DOMAIN Method
Contains
Correct
answer

No
solution

Multiple
solutions G1(E) G2(E)

Soybean
(small)

INDIE 99% 1% 4% 0,977 0,970

INDIE 90,5% 4,1% 11,3% 0,899 0,879

Soybean CN2 81,6% — — 0,816 0,816

(large) C4.5 80% — — 0,800 0,800

INDIE 79,9% 7,9% 11,6% 0,765 0,742

Lymphography CN2 81,7% — — 0,817 0,817

C4.5 76,4% — — 0,764 0,764

Table 5.1. Results of the INDIE method compared to CN2, and C4.5
using both (small and large) Soybean and the Lymphography
datasets. Results of the propositional learners have been obtained from
(Zhou and Dillon, 1995).

4.2.2. Correctness Results in the Discrimination Task

Table 5.1 shows results of INDIE compared to those of the propositional
learners CN2 and C4.5. Used over the large Soybean dataset, INDIE has
G1(E) = 0,899 and G2 (E) = 0,879 of correctness. INDIE produces a 11,3% of
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multiple solutions answers and a 4,1% of no solution answers. Column
labelled as "contains correct answer" in table 5.1 is the percentage of
answers containing the correct solutions. Thus, if we consider that any
answer containing the correct solution is a correct answer, then INDIE
provides an accuracy of the 90% over large Soybean.

Using INDIE over the Lymphography dataset produces a G1 (E) =
0,768 and G2(E) = 0,742 of correctness, with 7,9% of no solution answers and
11,6% of multiple solution answers. In column "contains correct answer"
there is the percentage of accuracy considering that the multiple solution
answers that contain the correct solution are correct answers.

Notice that G1 (E) and G2 (E) provide a measure near to C4.5 but
worse than CN2 for the Lymphography dataset. A detailed analysis of the
multiplicity of answers (see figure 5.12) reveals that most of the times (a
95,6%) INDIE provides two solutions. Thus, a first conclusion from these
results over large Soybean and Lymphography datasets, is that the INDIE
behaviour is comparable to those of the propositional learners.

Figure 5.12. Analysis of multiple solutions obtained by INDIE.

In order to analyse the difference in the behaviour of INDIE whether or
not the domain objects have features with unknown values, we have
evaluated INDIE over the small Soybean dataset. The small Soybean dataset
shares a set of 49 examples with large Soybean dataset, but they have no
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feature with an unknown value. This means that all the examples in small
Soybean dataset are described by the same set of features. Table 5.1 also
shows that in small Soybean dataset, INDIE has G1 (E) = 0,977 and G2 (E) =
0,970 of correctness, with low percentages of no solution and multiple
solution answers.

4.2.3. Discussion

The behaviour of INDIE over propositional domains is comparable to the
behaviour exhibited by propositional learners such as C4.5 and CN2.
Nevertheless there are some differences between the results of the
propositional learners and those of INDIE. A first difference is that
propositional learners have a special mechanism to deal with imperfect
data (unknown and noisy values). INDIE can deal with unknown values as
a consequence of the feature term representation. On the other hand,
INDIE has not special mechanism handling noisy values. Probably a
treatment for imperfect data would improve the INDIE results.

A second difference is that propositional learners provides only one
(correct or incorrect) solution, whereas INDIE can produce either multiple
solution answers or no solution answer. In order to compare the INDIE
results with those of the propositional learners, we have introduced a
correctness function. The accuracy measure currently used to evaluate
propositional learners is a particular case of the correctness function.

Commonly, propositional learners use examples represented as
vectors of attribute-value pairs. In our experiments with INDIE, examples
have been represented using feature terms. Nevertheless, we have not used
all the power of this formalism since examples of standard datasets have
not been represented in a structured way. The reason is that we do not have
the domain knowledge required to translate them, in a meaningful way,
to a structured representation. So we represent vectors by means of feature
terms.

5. Conclusions

INDIE is a heuristic bottom-up inductive learning method that uses feature
terms to represent domain objects and background knowledge. Typically,
inductive learning methods are evaluated on different datasets according to
whether they are propositional or relational. INDIE can be applied to both
kinds of datasets although our main concern has been on relational
problems, where feature terms may be more useful.

The INDIE performance over relational datasets is similar to the
performance of relational learners such as FOIL, LINUS and GOLEM.
Moreover, INDIE performance over propositional datasets is also similar to
propositional learners such as C4.5 and CN2.

Feature terms allow a natural representation of partially described
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domain objects, i.e. having features with unknown values. Typically, when
an example has an attribute with unknown value, some value has to be
assigned to this attribute. INDIE has another, more simple mechanism to
deal with imperfect data, thanks to the feature term representation.
Feature terms support descriptions of objects with partial (incomplete)
information. A feature with an unknown value is formally modelled
simply as having as value any, the zero-information sort. In practice, this
feature is simply not considered in the description of that example.
Therefore, using feature terms is not necessary to assign an artifactual
value to an unknown feature.

However, some aspects related to unknown values can be improved
in INDIE. The description D obtained from the anti-unification of the
positive examples E+ of a class C contains all the features common to all the
examples in E+. If a feature A has an unknown value in some examples in
E+, then A will not appear in D. As a consequence, D is more general than
the description obtained without having unknown values. Therefore,
unknown values tends to produce an increment of the number of multiple
solution answers produced by INDIE (since the description of an unseen
example may be subsumed by the description of several classes).

Concerning noisy values, they only affect the INDIE results when
they are common to all the positive examples (E+) of a class, since a non-
common feature does not appear due to the anti-unification operation. A
noisy value v of a feature A only influences the result if it belongs to a sort S
different to the sorts to which the remaining values of A belong. As a
consequence, INDIE makes a generalisation for A that is unnecessary.

Thus, the main consequence of noisy data is that unnecessary
generalisations are produced. These unnecessary generalisations can
produce, in turn, an overgeneralisation of the obtained descriptions. The
overgeneralisation is solved in INDIE by specialisation, that in turn
introduces more disjunctions of descriptions. The INDIE post-process
eliminates those features that are not relevant for describing a class. Thus,
the INDIE post-process can contribute to the elimination of the noisy effects
when a feature whose value has been over-generalised due to a noisy value
is considered as irrelevant.

As future work we propose to design a mechanism to deal with
imperfect data. In particular, mechanisms similar to those used in ILP
learners, such as FOIL (Quinlan, 1990) or GOLEM (Dolsak and Muggleton,
1990), or some propositional learners, such as CN2 (Clark and Niblett, 1989)
could be used. Those mechanisms search for descriptions that are not
completely discriminant. FOIL can obtain clauses that do not cover all the
positive examples. Instead, GOLEM builds clauses that can cover a pre-
determined number of negative examples. Clauses built by CN2 can cover
some negative examples. Any of these threshold mechanisms could be
incorporated to INDIE.





Chapter 6

The DISC method

1. Introduction

In this chapter we describe DISC, a heuristic top-down method for feature
terms induction. DISC starts with the top feature term any (that is the most
general term) and specialises it whenever negative examples are
subsumed. The contributions of DISC are the representation of examples
and hypothesis as feature terms, and the use of the anti-unification concept
as bias to specialise descriptions.

In the next section a general view of the DISC method in the
discrimination task is described. Then, in section 3 the DISC algorithm is
described in detail. Finally, in section 4, we provide results of the DISC
evaluation over the same domains as INDIE.

2. General View of DISC

The goal of DISC in the discrimination task is to obtain a discriminant
description for a solution class Ck. The obtained description has to be a
most general description that subsumes positive examples and does not
subsume negative examples (see the description of induction in chapter 4).
As all the top-down methods, this discrimination description is obtained
by specialising a current description that covers both positive and negative
examples until no negative examples are covered. As in INDIE, positive
examples of the solution class Ck are those training examples classified as
belonging to Ck. Negative examples of Ck are those belonging to solution
classes different than Ck. We assume that the training examples are
correctly classified.
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DISC

Antiunification
Most discriminant feature according
the López de Mántaras distance
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DISCRIMINANT-
DESCRIPTION
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Figure 6.1. Decomposition of DISC method.

The DISC method used in the discrimination task is composed by two tasks
(figure 6.1): Language-bias and Induction. The Language-bias task has as
goal to select a feature to be used to specialise the current concept
description. The method Constraint&Select in this task is decomposed in
two subtasks: Constraint-language and Select-feature. The Constraint-
language task determines a subset of candidate features to specialise the
current description. Let D be the description obtained from the anti-
unification of the positive examples of the class Ck. DISC considers as
candidates to specialise the current description those features that are leaves
of D. From this set, the Select-feature task chooses the most relevant
feature using the López de Mántaras distance.

Once the Language-bias task has selected an appropriate feature to
specialise the current concept description D, the Induction task has to add
this feature to D. The method used by Induction task, called General-to-
Specific, decomposes in two subtasks: specialisation and Discriminant-
description. The specialisation task adds the selected feature to the
current concept description. The discriminant-description task checks if
the resulting description subsumes some negative examples. If the
specialised description D still subsumes some negative example, the
discriminant-description task uses the DISC method to newly specialise
the obtained description. Otherwise the description D is given as result. In
the next section the DISC algorithm is explained in detail.

Examples and concept descriptions are represented as feature terms,
therefore DISC handles unknown values as INDIE: features having
unknown value do not appear in the description of examples since they
have value any (see section 3.3 of chapter 4).



3. Description of the DISC Algorithm

Given a set of training examples E = {e1 , …, em } and a set of solution classes
C = {C1 , …, Cn}, the goal of DISC is to obtain a discriminant description Dk
for each solution class Ck. Each example ei   is a feature term having a subset
of features Ai  = {Ai1, …, Ain | Aij ∈  F}. Each training example can have a
different subset of the legal feature set F. Each feature Ai has as value a set of
objects Oi  where each oij ∈  Oi  is a feature term that can have, in turn, a
subset of features in F. Background knowledge can be used by the DISC
method in the same way as in INDIE (see section 1.2 in chapter 4).

A disjunctive description D = {Dk} represents a disjunction of feature
term descriptions for the current solution class Ck. Each Dk is a most
general description subsuming a subset of positive examples of Ck and not
subsuming negative examples. In the discriminant task, negative examples
of a solution class Ck are all those training examples that do not belong to
Ck.

Initialisation: D = Dj = any;Sj = E
+

Function DISC (Sj, E
-, Dj)

    if there is some e ∈  E- such that Dk ≤ e
then da = anti-unification (Sj)

Al =  {Ai | features of da chosen according to bias}
Ad = Select-feature (Al, Sj)
Pdk =  partition induced by Ad having minimum LDM distance
for each set Si ∈  Pd do
    Ai = Path containing the feature Ad in da
    Di = Specialise (Dj, Ai)
    Add DISC(Si, E

-, Di) to D
end-for

else return Dk
   end-if
end-function

Figure 6.2 DISC function that obtains a disjunction of descriptions for
the current class. Words in bold are processes explained in the
sections 3.1, 3.2 and 3.3 respectively.

Given a set of positive examples E+ for a solution class Ck, let E-  be the set of
negative examples for Ck. The goal of DISC is to build a discriminant
description D for the solution class Ck. The strategy of the DISC algorithm
(figure 6.2) is to specialise D until no negative examples are subsumed.
Initially D = {Dk} = any , i.e. D has only one disjunct, say Dk, that is the
description Dk = any (where any is the top element of the sort lattice). In
such situation Dk subsumes all the positive examples E+, so it has to be
specialised.

Let us suppose now that the current hypothesis is Dj  ∈  D subsuming
some negative example. Let Sj  be the subset of positive examples subsumed by
Dj. In such situation, DISC specialises Dj  using a top-down strategy. Features
candidates to specialise Dj  are those belonging to the leaves of the feature
term da  obtained from the anti-unification of the examples in Sj . The
specialisation of a description Dj  is made by selecting the most discriminant
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feature ad  of those contained in the leaves of da . Each feature induces (1) a
partition according to the values that it takes in the examples of Sj  and also
(2) other partitions taking into account the sort hierarchies of those values
(see section 3.3 in chapter 5). The heuristic takes as the most discriminant
feature the one inducing a partition having the minimum López de
Mántaras (LDM) distance to the correct partition.

Let ad  be the most discriminant feature and Pd k the partition
having minimum distance to the correct partition. In this situation, for
each set Sk of the partition Pdk a new description Djk  is build by specialising
the current description Dj . The DISC algorithm has to be recursively
applied taking as parameters the set Sk, the specialisation Dki  and the set of
negative examples E- .

In the next sections we describe the main steps of DISC, i.e. which
is the bias used to specialise a description, how select the appropriate
feature to make the specialisation and how the specialisation is performed.

3.1. Bias

Let us assume that a current concept description Di  subsumes a subset S ⊆  E+

of positive examples and also subsumes some negative examples N ⊆  E- . Any
feature included in the description of some positive example in S would be
a good candidate to specialise the description Di . Nevertheless, using
feature terms, examples can be described by features that are not present in
all examples. For instance, let us consider the following feature terms E1
and E2 describing two marine sponges specimens:

E 1 =  X :  sponge 

skel =̇  Y :  spic - skel 
size =̇  

Z :  megas 

axis =̇  
four

one

megas =̇
triaena

oxea    





















P: micros micros =̇
oxyaster  

chiaster

sterraster

















spicarch =̇  radiate

































quim =̇  silica

grow =̇  massive

dot =̇ no

hollow =̇  no

macro =̇  none
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E 2 = X :  sponge 

skel =̇  Y:  spic - skel size =̇  
Z :  megas 

axis =̇  
four

one

megas =̇
dichotriaena

oxea           

orthotriaena























P: micros micros =̇  sterraster [ ]



























quim =̇  silica

form =̇  irregularly - massive

grow =̇ massive

hollow =̇  yes

osc =̇  yes











































Notice that E1 and E2 have some features in common (for instance axis,
megas, micros, size) but there also are features that only appear in one of
the descriptions. For instance, spicarch and  macro appear in E1 but not
in E2, and the feature osc is in E2 but not in E1. If DISC would select the
feature osc (appearing only in the description E2) to specialise the current
description Di , the obtained specialisation of Di  will not subsume  E1 since
E1 does not contain the feature osc. In order to avoid this problem and
reduce the set of possible candidate features, DISC applies a bias based on
anti-unification. The bias consists of taking as candidates to specialise Di
those features contained in the feature term obtained from the anti-
unification of the positive examples. This bias reduces considerably the set
of candidate features. Moreover it is easily applicable since the anti-
unification provides all that is common for a set of examples. In our
example, without applying the bias, the set of feature candidates to
specialise the current description is the set {axis, megas, micros, size,
spicarch, skel, quim, grow, dot, hollow, macro, form, osc}. By applying
the bias, the anti-unification of E1 and E2 is the following description:

  

X : sponge 

skel =̇  Y:  spic - skel size =̇  
Z :  megas 

axis =̇  
four

one

megas =̇
triaena

oxea    





















P: micros micros =̇ sterraster [ ]























quim =̇  silica

grow =̇ massive

hollow =̇  B :  boolean

































Therefore, the set C of feature candidates to specialise Di  is C = {a x i s ,
megas, micros, size, skel, quim, grow, hollow}.
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In order to further reduce the set of candidate features to specialise a
description, we apply a second bias. This second bias is the same one used
in INDIE, i.e. taking only the features belonging to the leaves of the
feature term obtained from the anti-unification of the positive examples in
S. Applying this second bias to our example, DISC candidate features for
specialisation are {axis, megas, quim, grow, hollow}. Any of the features
contained in this set could be used by DISC to specialise the description Di .

As in INDIE, there is a parameter (given by the user) called
maximum depth that controls the depth of a feature term (see section 3.2 in
chapter 5). Such parameter allows the determination of the leaves of a
feature term f when f has features with circular references between their
values.

3.2. Selection of the Most Discriminant Feature

Given a description Di  that subsumes some negative examples, the goal of
the select-feature task is to obtain the most discriminant feature ad . The
main idea pursued in taking the most discriminant feature is to build
descriptions with a small number of features. This is the same idea
followed by most of learners that search for short descriptions of concepts.
As will be seen in the evaluation of DISC, the obtained descriptions are
similar to those obtained by the INDIE method.

Let Si  be the subset of examples subsumed by the current description
Di  and Al  be the set of features candidate to specialise the current
description. Each feature ai  ∈  Al  induces a set of partitions {Pi1,… Pik} on the
training set. Each partition Pij is induced according to different
combinations of the sorts to which the possible values of ai  in Si  belong (see
section 3.3 in chapter 5). We can measure the distance of each induced
partition to a partition Pc that is a restriction of the correct partition1.
Using López de Mántaras distance, DISC selects the attribute amin ∈  Al
inducing a partition Pmin ∈  {Pi1,… Pi k } having the least distance to the
correct partition. This heuristic chooses amin as the most discriminant
feature inside Al .

Function Select-feature (Al,Sj)
  for each ai ∈  Al do
      Let {Pi1,… Pik} be the set of partitions induced by ai in Si
      for each Pij ∈  {Pi1,… Pik} do

d(Pij,Pc)  ;; López de Mántaras distance to the correct partition Pc
  end-for
  return amin := ai with Pij such that dmin = min {d(Pij,Pc)}
end-function

Figure 6.3. The select-feature algorithm of the DISC method.

1 Notice that  now the set of positive examples is Si .
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3.3. Specialising a description

Let Di  be the description to specialise, Si  the subset of positive examples
subsumed by Di , Al  the set of features candidate to specialise Di , amin ∈  Al
the most discriminant feature and Pmin = (Smin,1 … Smin,N) the partition
induced by amin having minimum López de Mántaras distance to the
correct partition. That is to say, all examples contained in each Smin,j have
the same value or sort in the feature amin. Thus, for each partition set Smin,j a
specialisation of Di , that we call Dij, is build. Each Dij has the same features
as Di  plus the path from the root of da  to the feature amin  and where am i n
has as value the one taken by amin in Smin,i.

Notice that the selection of a leaf feature introduces in the
description Di  all the features in the path from the root to the selected
feature. For example, let us suppose that D = {Di } = any and that the feature
sterr (see figure 5.3 in chapter 5) is selected as the most discriminant. The
sterr feature takes two values: flat and globular. Therefore the description Di
will be replaced by the disjunction of two descriptions that are
specialisations of Di . Both specialisations contain the path formed by the
features skel, size, micros and sterr. Figure 6.4 shows one of these
specialisations. The other has globular as value of the sterr feature.

Figure 6.4. The path from the root to the sterr feature.

Therefore the overgeneral description Di  is specialised into D'i = {Di k } (k =
1…N) where D'i is a disjunction of N descriptions, and N is the number of
sets contained in the partition Pmin associated to the discriminant feature
amin .

4. Evaluation of DISC

As in INDIE, two aspects of the DISC method have been evaluated: the
suitability of inductively created descriptions and its correctness. Suitability
of predictions have been evaluated over several relational domains.
Predictivity has been evaluated over Lymphography and Soybean databases
which can be used to evaluate propositional learners. In the next sections
both aspects are explained (see appendix A for the description of domains).
In chapter 9 we also analyse the DISC behaviour when applied to marine
sponges classification.
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4.1. Evaluation of the Descriptions Suitability

In this section we analyse DISC as a concept learner over several relational
domains: robots, drugs, arch, trains and traffic law (see Appendix A and
also INDIE in previous chapter for their definition). Results obtained by
DISC are compared to results obtained by some ILP systems (mainly FOIL,
LINUS and KLUSTER) in the same domains.

4.1.1. Robots Dataset

The domain of Robots (Lavrac and Dzeroski, 1994) contains a description of
six robots. Each robot is described by five features:  smiling, holding, has-
tie, body-shape and head-shape and they can belong to two solution classes:
friendly and unfriendly (see appendix A). LINUS describes robots using an
attribute-value representation whereas in DISC robots are described using
feature terms. The following descriptions for the friendly class are obtained
using DISC:

  

Friendly =  X1 :  robot holding =̇   balloon[ ]
                    ∨

                   X 2 :  robot 
holding =̇  flag

has - tie =̇  yes










i.e. a robot belongs to the friendly class when 1) it holds a balloon, or 2) it
holds a flag and has tie. The obtained descriptions show that the most
discriminant feature was holding since it appears in both disjuncts. Holding
has two possible values in the positive examples balloon  and flag. Thus two
descriptions are created, X1  and X'2 , both having only the feature holding.
The value balloon is discriminant enough for X1 , since there is no negative
example having this value, so the description X1  is already correct.
However, the description X'2  having the feature holding  with value flag
subsumes one negative example (R6, see figure 5.7 in previous chapter),
therefore DISC is recursively applied over the description X'2 . Following
the same process, DISC finds that the most discriminant features covering
the example R2 are has-tie and smiling. Both features can take two values:
yes and no and have the same value of the López de Mántaras distance. In
other words, both features are equally discriminant and DISC randomly
chooses has-tie to specialise X'2 . This new specialisation would obtain two
new descriptions (both specialisations of X'2 ). Nevertheless, the feature has-
tie only takes the value yes in the positive examples so only one description
(the X2 above) is generated.

As it has been explained in section 3.1.1. of chapter 5, LINUS
obtains the following descriptions for the friendly class:

Class = friendly if [smiling = yes] ∧  [holding = balloon] (1)
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Class = friendly if [smiling = yes] ∧  [holding = flag] (2)

Notice that the description X1  obtained by DISC is more general than the
description (1) obtained by LINUS. On the other hand, X2  and description
(2) are equivalent since DISC considers equally discriminant the features
has-tie and smiling.

The description obtained by DISC for the unfriendly class is the
following:

 

Unfriendly =  X1 :  robot holding =̇   sword[ ]
                      ∨

                       X 2 :  robot 
holding =̇  flag

has - tie =̇  no










As it has been shown in section 3.1.1. of previous chapter, LINUS obtains
the following descriptions for the unfriendly class:

Class = unfriendly if [smiling = no]
Class = unfriendly if [smiling = yes] ∧  [holding = sword]

Comparing DISC and LINUS results, we see that they are equivalent.
Notice that the descriptions of both classes, friendly and unfriendly, are more
similar among them than those obtained by INDIE. This is due to the fact
that INDIE focuses in the whole feature term structure and, consequently, it
can detect path equality (as occurs in the friendly class description). Instead
DISC searches each time only for one discriminant feature to specialise the
current hypothesis.

4.1.2. Drugs Dataset

The Drugs domain used in KLUSTER (Kietz and Morik, 1994) consists of
descriptions of some drugs that can be classified as: monodrug, combidrug,
placebo, active, additive, sedative, etc. The DISC method, using feature terms,
has produced the following description for the monodrug class:

Monodrug =  X1 :  drug contains =̇  Active - substance affects =̇  headache[ ][ ]
                           ∨

                      X 2 :  drug 
contains =̇  Active - substance affects =̇  stress[ ]
effects =̇  sedative













i.e. a monodrug can be defined in two ways: 1) as a active substance affecting
to the headache, or 2) as a active substance with sedative effects affecting the
stress. Thus, affects  is the most discriminant feature but there is a
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combidrug that also affects the stress and, consequently, the obtained
description has to be specialised by adding the affects feature.

DISC obtains the following descriptions for the combidrug class:

  

Combidrug =  X1 :  drug contains =̇  

Phenazetin

    Prophymazon

Nhc

















                           ∨

                        X 2 :  drug contains =̇  
     Oxazepun

Finalin











There are two substances defined as combidrug. In searching for the
description of the monodrug class, DISC takes the feature contains as the
most discriminant. Contains has as values in the examples two sets, so two
descriptions X1  and X2  have been obtained. None of both descriptions
subsume negative examples.

figure block

supportsrigh
brick

over
brick

touches
no-one

Figure 6.3. Path to be included in the description of arch due to the leaf
bias. The heuristic selects the touches feature as the most discriminant.

4.1.3. Arch Dataset

This domain, introduced by Winston (1975) has as input the description of
four objects (two arches and two non-arches). An arch is a figure formed by
three pieces: two vertical and one horizontal. We have applied DISC to
obtain the description of the arch concept. The heuristic has selected the
feature touches. Touches is a leaf of the description obtained from the anti-
unification of the examples of the arch concept. This implies the inclusion
in the arch description of the path from the root of the anti-unification to
the touches feature. In other words, the path composed by the features
right, supports and over is added to the arch description concept (see
figure 6.3). This instance shows the utility of the leaf bias. Therefore, DISC
obtains the following description:

  
Arch = X:figure rigth =̇  Y :brick supports =̇  Z:brick over =̇  T:brick touches =̇ no - one[ ][ ][ ][ ]

That is to say, an arch is a complex of objects (a figure) X having a brick Y at
the right supporting a brick Z. This brick Z is over another brick T which
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does not touch any other brick. Notice that the description obtained by
DISC does not cover the negative example of the figure 5.8 in chapter 5 (as
is the case with the descriptions obtained by LINUS and FOIL).

4.1.4. Families Dataset

This domain of Family relations was defined by Hinton (1989). This
dataset contains the description of two families with twelve members each
(see appendix A). We have represented the examples in this dataset as
feature terms belonging to the sort person. The sort person has two subsorts
male and female. Thus, members of a family are defined as belonging to
either male or female subsorts. Features of the sort person correspond to
familiar relationships as mother, father, brother, sister, etc. The goal of
DISC in using this domain (as LINUS) is to obtain a description for the
concept mother. The obtained description has been the following:

mother = X: female [daughter = Y : female]

In searching for the most discriminant feature, DISC obtains two features
equally discriminant: daughter and son. Now, the feature daughter has
been randomly chosen, nevertheless DISC could also have obtained the
following description:

mother = X: female [son = Z : male]

Both descriptions were also same obtained by INDIE, which are in turn
equivalent to those obtained by FOIL and LINUS (see section 4.1.4 in
previous chapter).

We have also used DISC to obtain the description for the uncle
relation. As in INDIE we have obtained the following description:

uncle = X: male [nephew = Y : male]

that is equivalent to the description:

uncle = X: male [niece = Z : female]

since nephew and niece are equally discriminant.

4.1.5. Trains Dataset

This domain, introduced by Michalski (1980), has as training examples
the description of ten trains. Five of these trains have eastward direction
and the remaining five trains have westward direction. Thus, there are
two solutions classes to characterise: eastbound and westbound. DISC obtains
the following descriptions for the eastbound trains:
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eastbound =  X1 :  train wagon 3 =̇  Y 1 :  closed - car load - set =̇  
circlelod

circlelod






















                      ∨

                      X 2 :  train wagon 3 =̇  Y 2 :  closed - car load - set =̇  rectanglod[ ][ ]
                      ∨

                      X 3 :  train wagon 3 =̇  Y 3 :  closed - car load - set =̇  trianglod[ ][ ]
                      ∨

                      X 4 :  train wagon 3 =̇  Y 3 :  open - car load - set =̇  hexagonlod[ ][ ]
i.e. the eastbound trains are characterised by the load-set  of the third
wagon (which is the most discriminant feature), which may be a set of two
circlelod, or a rectanglod, or a trianglod or a hexagonlod. Notice that
implicitly this description requires that eastbound trains have at least three
wagons (notice that the load-set  feature in the obtained descriptions
belongs to the wagon3 feature). The descriptions obtained by DISC are
similar to those obtained by the INDIE method (section 4.1.5 of chapter 5).

The westbound description obtained by DISC is also a disjunction of
three feature terms:

  

west =  X1 :  train wagon 2 =̇  Y 1 :  open - car form - car =̇  openrect[ ][ ]
             ∨

            X 2 :  train wagon 2 =̇  Y 2 :  closed - car - car form - car =̇  jaggedtop[ ][ ]
             ∨

            X 3 :  train wagon 2 =̇  Y 3 :  open - car form - car =̇  ushaped[ ][ ]
i.e. the form-car feature is the more relevant to describe a west train. Note
than these descriptions are also similar to those obtained by INDIE.

As we have explained in the section 4.1.5 of chapter 5, FOIL is not
capable to obtain a description covering all the westbound  trains and
INDUCE uses constructive induction to introduce a new predicate in order
to reach a complete description for the westbound class.

4.1.6. Traffic Law Dataset

This domain was introduced for testing the MOBAL system (Morik et al.,
1993) and requires the use of background knowledge as was shown in
INDIE (section 4.1.6 of chapter 5). Training examples are twelve traffic
violation cases describing several violations such as parking-violation, unsafe-
vehicle-violation, etc. Using some background knowledge rules, MOBAL is
capable to obtain descriptions of concepts such as who is the responsible of a
traffic violation, when a traffic violation is appealed, or when a traffic
violation goes to the court.

DISC has been used to obtain descriptions for the same concepts as
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INDIE, i.e.  parking-violation and lights-violation. DISC has obtained the
following description for parking-violation concept:

  
X1 :  traffic - case event =̇  Y :  event car - parked =̇  no - parking - place [ ][ ]

i.e. to parking a car in a no-parking-place constitutes a parking violation. 
For, lights-violation  concept DISC has obtained the following

description:

X:traffic - violation event =̇  Y :event involved - vehicle =̇  Z:vehicle headlights - on =̇ false[ ][ ][ ]
i.e. a lights violation is committed when a car has not the headlights on.
As in INDIE we have also asked for concepts as court-citation and appeals.
DISC obtains for both concepts the same description as INDIE, namely:

X :  traffic - law event =̇  Y :  event 
involved - vehicle =̇  Z :  vehicle 

owner =̇  W :  person

sedan =̇  true











responsible =̇  W 



































4.1.7. Mesh Dataset

The Mesh dataset used by GOLEM (Dolsak and Muggleton, 1992) contains
examples of three physical structures: a hydraulic press cylinder, a hook
and a paper mill. These structures are represented qualitatively as finite
collections of elements (meshes). Each structure is a set of several kinds of
edges (e.g. important, not important, circuit, etc). Each edge can be related
to other edges according to some geometrical constraints. The background
knowledge in this dataset is described by types of edges, boundary
conditions and loadings. DISC represent the objects of the Mesh dataset as
feature terms belonging to the sort edge. Each edge can have from 5 to 11
features: type, boundary-conditions, loadings, neighbour-XY-R, neighbour-

YZ-R, neighbour -ZX-R, neighbour-XY-L, neighbour-ZX-L, neighbour-YZ-L,
opposite-R and opposite-L. See in appendix A the representation of the
examples of the Mesh dataset. There are 17 solution classes to which the
meshes can belong.

GOLEM obtains 56 different rules some which cover few examples
and others that are not useful in practice. To reduce the final number of
rules, GOLEM authors have eliminated some of the not useful rules and
have allowed that rules cover some negative examples. LINUS (Lavrac and
Dzeroski, 1994) and FOIL (Quinlan, 1990) have also been tested in this
dataset, but they use five different structures (a hydraulic press cylinder, a
pipe connector, a paper mill, a roller and a bearing box). We compare the
results of DISC with those produced by GOLEM since we have not complete
information (i.e. total number of rules, descriptions, etc) about the results
of LINUS and FOIL.
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As INDIE, DISC needs to control the depth of the feature terms
since all objects of each structure are related and the use of complete feature
term consumes a lot of time and memory. So, by taking as maximum
depth 1, DISC has obtained 36 descriptions for class one, some of which are
the following:

X1:  edge 
boundary - conditions =  one - side - fixed

type =  not - important










∨

X2 :  edge 
boundary - conditions =  free

type =  not - important










∨

X3 :  edge edge 
boundary - conditions =  one - side - fixed

type =  short






















In addition, there are 33 descriptions that, as in INDIE, correspond to the
following patterns:

  

X1 :  edge 

boundary - conditions =  fixed

type =  not - important

neighbour - ZX - L =̇  W :  edge

















∨

X2 :  edge 
type =  short - for - hole

neighbour - ZX - L =̇  S :  edge











∨

X3 :  edge 

boundary - conditions =  free

type =  short

opposite - R =  C 5

















∨

X4 :  edge 

boundary - conditions =  fixed

type =  short

loadings =  cont - loaded

neighbour - ZX - L =̇  P :  edge



















∨
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X5 :  edge 

boundary - conditions =  fixed

type =  short

loadings =  not - loaded

neighbour - XY - L =̇  V :  edge



















where the edges W, S, P and V take the value of a concrete edge. We have
also used DISC to obtain the descriptions for class two. The result is 23
descriptions some of which are the following:

X1:  edge type =  long - for - hole[ ]
∨

X2 :  edge 
type =  usual

neighbour - ZX - L =̇  S :  edge











∨

X3:  edge 
type =  short - for - hole

neighbour - ZX - L =̇  V :  edge











∨

X4 :  edge 

boundary - conditions =  free

type =  short

loadings =  one - side - loaded

















∨

X 5:  edge 

boundary - conditions =  free

type =  short

loadings =  not - loaded

















∨

X6 :  edge 

boundary - conditions =  fixed

type =  short

neighbour - ZX - L =̇  P :  edge

















∨

X 7 :  edge 
opposite - R =  W :  edge

type =  not - important











Where S, V, P and W are concrete edges such as B27, B36, etc. The
description X5  is also obtained by the GOLEM system, and there are other
descriptions obtained by DISC that are equivalent to those obtained by
GOLEM for class one (see appendix A).
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4.2. Evaluation of the Accuracy

In this section we have evaluated the accuracy of DISC in order to assess its
utility with respect to propositional learners. The evaluation of DISC has
been made in the same domains as INDIE, (i.e. Lymphography and
(small and Large) Soybean) datasets, and under the same conditions, i.e.
attribute-value representation, training set containing the 67% of cases,
and test set containing the remaining 33% of cases.

We have randomly constructed 20 training sets and the results of
them have been averaged. As INDIE, DISC may answer multiple solutions
and no solution. We have used the correctness function explained in
section 4.2.1 of chapter 5 to analyse the information degree of the solutions
with multiple answers.

DOMAIN Method
Correct
answer

No
solution

Multiple
solution G1(E) G2(E)

Soybean
(small)

DISC 99,3% 1% 3% 0,981 0,976

DISC 88,7% 5,9% 8,1% 0,882 0,867
Soybean CN2 81,6% — — 0,816 0,816
(large) C4.5 80% — — 0,800 0,800

DISC 72,4% 9,8% 5,1% 0,705 0,697
Lymphography CN2 81,7% — — 0,817 0,817

C4.5 76,4% — — 0,764 0,764

Table 6.1. Results of the DISC method over Soybean (small and large)
and Lymphography datasets. The results of CN2 and C4.5 are obtained
from  (Zhou and Dillon, 1995).

Table 6.1 shows results of DISC compared to those of the propositional
learners CN2 and C4.5. Used over the large Soybean dataset, DISC has
G1(E) = 0,882 and G2 (E) = 0,867 of correctness. DISC produces a 8,1% of
multiple solution answers and a 5,9% of no solution answers. The column
in table 6.1 labelled as "correct answer" is the percentage of answers
containing the correct solutions. Thus, if we consider that any answer
containing the correct solution is a correct answer, then DISC provides an
accuracy of the 88,7% over large Soybean, that is higher that the produced
by the propositional learners.

Using DISC over the Lymphography dataset produces a G1 (E) = 0,705
and G2(E) = 0,697 of correctness, with 9,8% of no solution answers and 5,1%
of multiple solution answers. In column "correct answer" there is the
percentage of accuracy considering that the multiple solution answers that
contain the correct solution are correct.

An analysis of the answers having multiple solutions (see figure
6.5) shows that in both domains the highest number of solutions is three,
although usually multiple answers have only two solutions. The correctness
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functions G1(E) and G2(E) over the large Soybean dataset show the higher
correctness of DISC with respect to CN2 and C4.5. Instead, the correctness
of DISC, used in the Lymphography dataset are lower than those of the
propositional learners.

In order to see the DISC behaviour in dealing with domains with
objects that have some features without unknown values, we have evaluated
DISC over the small soybean domain. Both small and large Soybean have
a common set of examples (all those examples in small Soybean are also
present in large Soybean), but some of the examples in large Soybean are
only partially described. Table 6.1 shows the results obtained by DISC over
both Soybean datasets. Notice that the number of multiple answers is
higher in the large Soybean dataset.

Figure 6.5. Analysis of the solutions with multiple answers produced
by DISC over Soybean and Lymphography domains.

5. Conclusions

We have described DISC, a top-down method handling domain objects
represented as feature terms. DISC searches for a discriminant description
in the hypothesis space of feature terms using positive and negative
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examples. These examples can be partially described, i.e. some of their
features can have unknown values.

Used over relational datasets, DISC has a behaviour similar to that
exhibited by INDIE. The main difference between both methods is that
DISC sometimes specialises eagerly and finds a larger disjunction of
descriptions to characterise a class. The obtained descriptions are quite
general (since they have few features) but the values of the features
sometimes tend to be too specific. This is reflected in some of the relational
domains, for instance in the combidrug description of the Drugs dataset.

Summarising, DISC has been capable to obtain descriptions in all
the relational datasets in which it has been used, even in datasets such as
trains or arch in which some relational learners have shown some
problems. DISC tends to obtain class descriptions composed of many
disjuncts, although each disjunct is a description having few features.

Concerning propositional datasets,  the correctness functions G1 (E)
and G2(E) for the large Soybean dataset are higher for DISC than those of
C4.5 and CN2 but lower than in the Lymphography domain.

The existence of domain objects having features with unknown
values influences the DISC results by reducing the set of features that may
be candidate to specialise the current description. When there are positive
examples having some discriminant feature, say F, that is not common to
all the examples of a class, F will not be a candidate to specialise the
current description, and another feature F' will be selected. Nevertheless,
the feature F may be candidate in the next specialisation. This situation
occurs when F is common to the positive examples belonging to a set of the
partition induced by F'. 

Noisy values influence the results of DISC in a different way than
INDIE. Let us suppose that Ai  with a noisy value V is a feature candidate to
specialise the current description. Ai  only influences the DISC results if it
is selected as the most discriminant. In such situation, the partition
induced by Ai  has at least, one more set (that corresponding to the value
V). Since DISC builds at each step a description for each set of the partition,
the final description may have one additional disjunct (that corresponding
to the noisy value).

As future work we plan to improve DISC with a mechanism capable
of dealing with imperfect data. A common criteria in most ILP systems for
dealing with imperfect data is to relax the stopping condition, allowing,
according to a threshold: (1) the covering of some predetermined number
of negative examples, or (2) not covering some predetermined number of
positive examples. In the future, the same criteria could be applied to DISC.
Moreover, the bias used by DISC to determine the features that are
candidates to specialise the current description may be relaxed. In
particular, we want to study the DISC performance using a bias that takes as
candidates any of the features belonging to the feature term obtained from
the anti-unification of a (sub)set of examples.



Chapter 7

The LID Method

1. Introduction

The learning method proposed in this chapter, Lazy Induction of Descriptions
(LID), is a lazy learning method for CBR applications. LID builds, in a
lazy problem-centred way, a discriminant description for a specific
problem. The basis of LID are the anti-unification operation and an
entropy-reduction heuristic. Formally, LID is useful to solve the following
task:

Given: - A set of precedents S classified in a partition of classes C = {C1 …
Cn}

    - A problem P to be solved

Find : A discriminant description D satisfying the following two
conditions:

1) D subsumes P (D ≤ P)
2) For SD  = {s ∈  S | D ≤ s}, the set of precedents subsumed by

D, all precedents in SD belong to one class Ci .

These conditions are achieved by LID using a top-down strategy to build a
description D subsuming both P and a subset of S (namely SD). The top-
down strategy uses an entropy-reduction heuristic over the set SD. Entropy
measures the disorder degree of a set with respect to a partition. In
particular, a set whose elements belong to several classes has higher
entropy than a set whose elements belong to less classes. LID uses the
Shannon's entropy to estimate the disorder degree of the set SD with
respect to the partition C. The second condition of the task above is achieved
when LID reaches a description D such that the corresponding set SD has
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entropy zero. The description D finally obtained by LID can be interpreted
as an explanation of why the problem P belongs to a class Ci  ∈  C.

CBR methods usually retrieve precedents according to a set of
indexes that have been determined during the Design phase (see section
3.2.2 in chapter 2). In other CBR systems, the similitude between cases is
estimated using some metrics. Our proposal in designing LID is twofold.
On the one hand we want to determine which are the relevant features in
the retrieval process according to the problem to be solved whenever
domain knowledge about feature relevance is not present. On the other
hand, indexes and similitudes are used when domain objects are
represented as attribute-value vectors. Because LID uses objects represented as
feature terms, we propose an approach based on symbolic similitudes and
heuristics allowing the assessment of the similitudes between feature terms.

In the next sections we provide first a general view of LID by
means of its knowledge modelling analysis. Then, in section 3 we provide a
detailed analysis of the LID algorithm. In section 4 we provide some results
of the LID evaluation. Finally, in section 5 we explain a conversational
version of LID. In chapter 9 can be found the application of LID over the
marine sponges domain.

LID

SPECIALISE

REUSE

Shannon's Entropy

Filter-by-subsumption

top-down

FIND-PRECEDENTS

COMPUTE-ENTROPY FIND-PRECEDENTS

SELECT-PRECEDENTS

reduce-entropy

SELECT-FEATURE BUILD-DESCRIPTION

López de Mántaras distance Add-feature

SEARCH-DISCRIMINANT-BASE

selection-of-precedents

selection-of-precedents

Figure 7.1. Decomposition of the LID method
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2. General View of LID

Given a description problem model P, a description model D, a set of
precedents S, and a partition of classes C = {C1 … Cn}, LID finds a subset SD'
⊂  S of solved episodes models such that all the problems described in SD'
belong to the same class Ci . Moreover, LID builds a description D' that
subsumes both the problem P and all the elements of the set SD'.

The LID method decomposes in two tasks (figure 7.1): find-
precedents and reuse. The find-precedents task has the goal of obtaining a
set of precedents having entropy zero (or as close to zero as possible). From
the set of precedents obtained by the find-precedents task, the reuse task
elaborates a solution for P. The find-precedents task uses the selection-of-
precedents method that decomposes in two tasks: search-discriminant-base
and select-precedents.
Given a description D and the set of precedents S, the goal of the search-
discriminant-base task is to obtain a subset of precedents SD ⊂  S subsumed by
D. W e call this subset SD the discriminant base with respect to the description D.

The select-precedents  task has the goal of obtaining a
discriminant base SD having entropy zero. This goal is achieved by means
of the reduce-entropy method that decomposes in three tasks: compute-
entropy, specialise and find-precedents. The compute-entropy task uses
the Shannon's entropy to estimate the entropy of the discriminant base SD
with respect to the partition C.

Let D be the current description, SD  the discriminant base
associated to D and H(SD) the entropy of SD with respect to the partition C.
If H(SD) is not zero, the specialisation task uses a top-down method to
specialise D. Intuitively, if D' is a specialisation of D and SD' is the
discriminant base associated to D', then SD' ⊂  SD. The specialisation of D is
made following the following steps (similar to those followed by DISC):

1) a feature term F that is the anti-unification of all the precedents in
SD and the problem P is obtained

2) the most discriminant feature in F is determined using the López de
Mántaras distance. Let Ad  the most discriminant feature.

3) D is specialised by adding the feature Ad  with value the same value
that Ad  has in P. Let D' be the specialisation of D.

Once the description D' has been obtained by specialising D, the find-
precedents task is used taking as input models the description problem P,
the description D' and the discriminant base SD. This process is repeated
until either the entropy of the set of subsumed precedents is zero or it is not
possible to reduce the entropy.
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The reuse  task of the LID method classifies the new problem
according to the discriminant base SD obtained by the find-precedents
task. If the entropy of SD is zero, all the elements in SD belong to one
unique class Ci; then the problem P can be classified as belonging to Ci.
Nevertheless, if the entropy is not zero, several methods to solve the reuse
task can be used. The easiest method is to produce a multiple solution
answer. Thus, if the precedents in SD can belong to several classes of a
partition CD ⊆  C, the reuse task can suggest that the new problem can
belong to any class in CD. In fact, this method can be improved producing
a ranking of the classes CD. A second method is to produce only one
solution applying the majority rule to the classes CD. In other words, the
problem P can be classified as belonging to the class Ci to which the most
of precedents in SD belong.

In the next section we explain in detail the algorithm followed by
the LID method.

3. Description of the LID Method

Given a set of precedents S = {e1… em} that can be classified in a partition of
classes C = {C1 … Cn}, and a problem P to be solved, the goal of LID is to
build a discriminant description D such that 1) D subsumes P, and 2) all
the precedents subsumed by D belong to a unique class Ci . Each precedent ei
is a feature term and each feature Ai  of a feature term has as values a set Oi
where each oij ∈ Oi is a feature term.

Let D = any
Function LID (P, S, D)
  SD := discriminant-base (S, D)
  H(SD) := entropy of SD
  if H(SD) = 0 then reuse(SD)

      else D' := specialise (P, SD, D)
  LID (P, SD, D')

  end-if
end-function

Figure 7.2. The LID algorithm.

The LID algorithm (see figure 7.2) follows a top-down strategy having
three main steps. Given a set of precedents S and a description D (initially
any), the first step uses the subsumption relation to obtain a subset of
precedents SD (the discriminant base) such that for all ei  ∈  SD we have D ≤
ei . The second step is to estimate H(SD), the entropy of the discriminant
base SD. When the entropy of the discriminant base is zero then all the
precedents contained in SD belong to only one class Ci . In such situation,
the third step of LID is to obtain a solution for P by means of the reuse task.

However, when the entropy of the discriminant base is not zero,
the goal of LID is, according to the top-down strategy, to reduce the set SD
in order to reduce the entropy. In such situation, the third step of LID is to
build a specialisation D' of the current description D with a smaller
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discriminant base SD'. Next, LID recurs with parameters P, SD and D',
where P is the current problem to be solved, SD is the subset of precedents
subsumed by D, and D' is the specialisation of D. Notice that if D' is a
specialisation of D, the respective discriminant base satisfies the relation
|SD'| ≤ |SD|. Thus, the goal of the specialisation operation is to obtain a
subset SD' of precedents in SD such that H(SD') ≤ H(SD). This is a top-down
strategy where descriptions are specialised in search of a description D such
that D ≤ P and the discriminant base SD has entropy zero (or close to zero).

In the next sections we explain in detail how the entropy of the
discriminant base is estimated, how the current description D is
specialised, and how a solution for the problem P can be achieved.

3.1. Estimation of the Entropy

Given a partition of classes C = {C1 … Cn } and the discriminant base SD
with respect to the current description D, LID uses Shannon's entropy to
determine if the current description D is discriminant enough. The
expression of the Shannon's entropy is the following:

H = - pi log 2 pi  
i = 1

n
∑

Where the function xlogx is defined as zero if x = 0. The entropy of the
discrimination base SD is estimated using the following expression:

H(SD ) = − pilog2pi
i =1

n

∑        where p i =
SD ∩ Ci

SD

where Ci  is a class in C and SD is the discriminant base with respect to the
description D.

The entropy measures the disorder degree of the set SD with respect
to the partition C. When all the elements in SD are uniformly distributed
among the sets in C, the set SD has maximum entropy. Conversely, if all
the precedents in SD belong to a unique class, the entropy of SD is zero. LID
uses the entropy measure of the discriminant base SD as an assessment of
the discrimination degree of a description D.

Function SPECIALISE (P, SD, D)
   AS := {Candidate features to specialise D}
   ad := select-feature (AS, SD)
   vd := value of ad in P
   D' := Add-feature (D, ad, vd)
end-function

Figure 7.3.  Algorithm used to specialise the description D. The
function add-feature(D, ad , vd) builds a description D' having the same
features that D plus the feature ad with value vd .



164 Chapter 7. The LID method

3.2. Description Specialisation

Let D be the current description, SD the discriminant base with respect to D
and P the problem to be solved. The description D is specialised using a top-
down strategy close to that used by the DISC method (section 3.3 in chapter 6).
The first step (see algorithm in figure 7.3) is to decide which is the set of
candidate features to specialise D. This set can be formed by any of the
features appearing in the precedents. Nevertheless, as shown in DISC, since
not all precedents use all features, we can use a bias that considers only the
set of features Ac that are common to all the precedents and to the problem
P. Let Da  be the feature term obtained by the anti-unification of P with all
ei , i.e. ei » P (∀ ei ∈  SD), i.e. all the precedents in SD and the problem P. Let Ac
be the set of features in Da . The set Ac can be reduced by applying a second
bias: to take only the subset AS in Ac formed by the features that are leaves
of the feature term Da (notice that INDIE and DISC use the same biases).

Function SELECT-FEATURE (As, SD)
   for each ai ∈  AS do

Let Pai be the partition induced by ai over SD
dist := {d(Pai,CD) | López de Mántaras distance from Pai to CD}

   end-for
   dmin := min {d(Pai,CD)}
   return ad associated to dmin
end-function

Figure 7.4. Algorithm used to select a feature ai to specialise the
current description.  CD is the partition C containing only precedents
in SD.

The next step is to select one feature ad ∈  AS to specialise the current
description D and the algorithm is shown in figure 7.4. Let Pai be the
partition that a feature ai ∈  AS induces on the set SD. The goal is to select the
most discriminant feature ad using López de Mántaras distance that
measures how similar are two partitions (see section 3.3 in chapter 5). LID
uses López de Mántaras distance to estimate the distance from each
partition Pai to the correct partition CD. The partition CD is formed by the
classes to which belong the precedents in SD. The selected feature ad  is the
feature inducing a partition Pai with minimum López de Mántaras distance
to the partition CD

1.
Let vd  be the value that the feature ad  takes in P. The new

description D' is the specialisation of D obtained by adding to D the feature
ad  with value vd . Notice that if {v1  … vn } is the set of values that ad  takes in
the precedents in the discriminant base SD, it would be possible to obtain n
specialisations of D (one for each value of ad ). Nevertheless, only D' satisfies
D' ≤  P. In other words, LID is interested only in building discriminant
descriptions for one problem at time.

1 Notice that this is different from the correct partition in INDIE and DISC. In these methods
the correct partition has only two sets: one containing the examples belonging to one solution
class Ck for which the description is constructed, and the other containing the remaining
training examples.



3. Description of the LID Method 165

3.3. Reusing Precedents

In this section we describe how the precedents in a discriminant base SD
can be reused in order to obtain a solution for P. The ideal situation holds
when SD has entropy zero since in such situation P can be easily classified
from the precedents in SD. However, there are some situations in which it
is not possible to achieve a discriminant base with entropy zero. In this
section we also analyse which are these situations and how LID can obtain
a solution for P.

Let D be the current description and SD the discriminant base with
respect to D. If SD has entropy zero then all the precedents in SD belong to
a unique class, say Ci . In such situation, the description D can be considered
as a partial description of Ci , i.e. D is a correct description for a subset of
elements in Ci  (see next section). Because D ≤  P also holds, LID can
classify P into class Ci .

Let us suppose now that H(SD) ≠ 0 and D' is a specialisation of D
such that D' ≤ P. In such conditions, the following two situations can occur:

1. The discriminant base SD' is empty. Let vd  the value that the most
discriminant feature ad  takes in P, and D' the specialisation of D
obtained by adding the feature ad  with value vd . In such situation the
discriminant base SD' is empty when there are not precedents in SD
taking the value vd  in the feature ad .

2. Let As be the set of candidate features to specialise D. If there is no
feature in As producing a specialisation D' of D such that SD ≠ SD',
then the discriminant base cannot be reduced by specialising D.

Both situations above are abnormal stopping criteria in the sense that the
solution for P cannot be directly obtained since D is not discriminant
enough for P. The reuse  task of LID has associated several methods,
commonly used in CBR, that the user can choose to obtain a solution for P.

Let CD the partition C restricted to the elements in SD. If we are
interested in a multiple solution answer, LID can use a method that
produces as solution the set of classes in CD. So, P can be classified as
belonging to any of these classes.

A second method that also produces multiple solution answers is to
rank the classes CD according to the number of precedents of each class that
also belongs to SD. So, given two classes Ci  and Cj  such that |Ci  ∩  SD|= ni , |Cj
∩  SD| = nj , and ni  < nj  then the class Ci  is a better solution than Cj .
Moreover, the  solution classes in CD could be weighted, i.e. if |Ci  ∩  SD|= ni
then the class Ci  is a solution for P with degree ni .

Finally, LID can use a third method that applies the majority rule
to the ranking produced by the second method above. Thus, LID proposes as
solution for P the class Ci  such that ni  is maximal.
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3.4. Some Remarks

Given a problem P to be solved, let us suppose that D is a description having
associated a discriminant base SD such that H(SD) = 0. Let Ci  be the class to
which all the precedents in SD belong. In such situation, the description D
can be considered as a partial description of Ci  since it subsumes a subset of
the examples in Ci .

Despite some similarities, LID has important differences with the
methods INDIE and DISC. A main difference is that INDIE and DISC are
eager learning methods whereas LID is a lazy learning method. This
difference provides a different interpretation of the built descriptions.
Thus, INDIE and DISC search for a description D for a given class Ci
whereas LID wants to solve a new problem and during the problem
solving process, a description is built. As a consequence, the description D
built by INDIE and DISC characterises the class Ci , i.e. D is satisfied by all
the examples in Ci . Instead, the description D built by LID is only satisfied
by some of the examples in Ci , i.e. D is satisfied by the examples in Ci
sharing some relevant features with the problem to be solved. In other
words, the description D built by LID can be considered as the
generalisation of the precedents ei  ∈  Ci  such that ei  ∈  SD. Notice that the
description D only can be associated to a class Ci  when the discriminant
base associated to D has entropy zero. LID is a lazy learning method since
the description D that LID finds is used to solve a problem P and it is not
used (nor intended to be used) to solve further problems.

4. Evaluation of the LID method

We have evaluated LID over some relational and propositional datasets. In
particular, we have used both Robots and Mesh relational datasets and
small Soybean, large Soybean and Lymphography propositional datasets.
The evaluations have been made following the same conditions as used in
DISC, and INDIE. We have constructed 20 training sets containing the
67% of the examples and the remaining 33% have been used as tests. These
20 training set are the same that those used in the evaluation of INDIE and
DISC. In the next sections we analyse the results over each domain.

LID provides two kinds of answers: those having one (correct or
incorrect) solution and those having multiple solutions. In chapter 9 the
results of LID in the domain of marine sponges identification can be found.

4.1. Robots Dataset

The Robots dataset (Lavrac and Dzeroski, 1994) consists of the descriptions
of six robots (see section 4.1.1 in chapter 5). Two of them belong to the
friendly class and the remaining four robots belong to the unfriendly class.
Each robot is described by five features (see appendix A): smiling, holding,
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has-tie, head-shape and body-shape. Since LID is problem-centred, the
evaluation of LID has to be made by identifying new robots. Because the
robots dataset is small, we have defined the four new robots in Table 7.1.

Attributes and Values

Robot Smiling Holding Has-tie Head-
shape

Body -
shape

R8 yes flag yes octagon square
R9 no balloon yes octagon round

R10 no balloon no round octagon
R11 yes flag yes square square

Table 7.1. Description of new robots.

LID classifies the robot R8 as belonging to the friendly class obtaining the
following description as justification of this membership:

D8  = (holding = flag) ∧  (head-shape = octagon)

By means of a detailed analysis of the steps followed by LID, we see that
the more discriminant feature is holding . R8 has flag as value of this
attribute, thus LID produces the following description:

D8
1 = (holding = flag)

The discriminant base associated to D8
1  is the set {R2, R6}. Both robots have

holding with value flag, but they belong to different classes, so the entropy of
the discriminant base is 1. This means that D8

1  has to be specialised using
the next most discriminant feature. There are three features producing a
discriminant base with entropy zero: head-shape, has-tie and smiling. LID
has randomly chosen the head-shape entropy to specialise D8

1 . So, the
result is the description D8

 above.
Nevertheless LID could have produced the following alternative

descriptions if one of the other equally discriminant features were selected:

D8
2 = (holding = flag) ∧  (smiling = yes)

D8
3 = (holding = flag) ∧  (has-tie = yes)

Notice that descriptions D8
2 and D8

3 are the same obtained by DISC and
LINUS (see section 4.1.1 in chapter 6).

The robot R9 is classified as belonging to the f r i endly  class
producing the following explanation:

D9 = (has-tie = yes) ∧  (head-shape = octagon)
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Now, the most discriminant feature is has-tie , so the first description
obtained by LID is the following:

D9
1 = (has-tie = yes)

that has the set {R1, R2, R3, R8} as discriminant base. Because the
discriminant base contains examples belonging to both friendly and
unfriendly classes, the description D9

1 has to be specialised. The next most
discriminant feature is head-shape, which is included in the specialisation
of D9

1 with value octagon. Thus, D9  is a specialisation of D9
1 having as

discriminant base the set {R2, R8} that only contains robots belonging to
the friendly class.

The robot R10 is classified as belonging to the unfriendly class
producing as explanation the description:

D10 = (has-tie = no)

that is one of the descriptions obtained by INDIE (section 4.1.1 in chapter
5).

Finally, the robot R11 is classified as belonging to the friendly class
with the explanation:

D11 = (has-tie = yes) ∧  (head-shape = square)

The first most discriminant feature is has-tie. When this feature takes as
value yes, as R11, provides a description D11

1  that has the set {R1, R2, R3, R8,
R9} as discriminant base. This discriminant base contains examples of
both solution classes, thus the obtained description D11

1  has to be
specialised. The feature selected to make this specialisation is head-shape.
The description D11 is a specialisation of D11

1  whose discriminant base is
the set {R2, R8, R9} that contains only robots belonging to the friendly class.

Summarising, LID provides three descriptions for the friendly class
and one description for the unfriendly class. These descriptions could be used
to identify new robots before starting the complete LID process. This
suggest a possible improvement of LID (see section 6).

4.2. Mesh Dataset

Domain objects of the MESH dataset are elements (meshes) composing
three physical structures: a) hydraulic press cylinder, b) hook and c) paper
mill. This domain has been used by GOLEM (Dolsak and Muggleton,
1992), FOIL (Quinlan, 1990) and LINUS (Lavrac and Dzeroski, 1994).
However, FOIL and LINUS use five physical structures instead of three.

Objects in the Mesh dataset are represented in LID as feature terms
belonging to the sort mesh-problem (see figure 7.5). Objects of this sort have
two features: description and solution.  Values of the description feature
belong to the sort edge. Each edge feature term can have from 5 to 11 features:
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type, boundary-conditions, loadings, neighbour-XY-R, neighbour-YZ-R,

neighbour-ZX-R, neighbour-XY-L, neighbour-ZX-L, neighbour-YZ-L,
opposite-R and opposite-L (see appendix A). The values of these features
(except type, boundary-conditions, and loadings) are edges that have, in
turn, some of the mentioned features. The solution feature of mesh-problem
objects contains the class to which the described edge is classified. Meshes
can be classified as belonging to 17 solution classes (form one to seventeen).
For instance, the object in figure 7.5 belongs to class one.

Figure 7.5. Representation of a Mesh domain object using feature
terms.

We have used LID to identify the class to which a set of edges belongs. The
conditions of this experiment have been the following:

• Precedents: - All the edges of the hook structure

- All the edges of the paper mill structure

- The edges of the hydraulic press cylinder belonging to
the classes from two to seventeen.

• Test Set: Edges of the hydraulic press cylinder belonging to the class
one.

Edges in the test set are not classified, that is to say, LID does not know the
class to which they belong. So, LID has classified the 21 edges of the test set
as follows:
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- 7 edges have been correctly classified as belonging to the class one

- 8 edges have been incorrectly classified as belonging to the class two

- 6 edges have been classified (after applying the majority rule in reuse
task) as belonging to either classes one or two

Notice that edges could have been classified as belonging to any of the 17
solution classes, but LID produces answers having as maximum two
solutions (classes one and two).

We only have accuracy results of FOIL, mFOIL and GOLEM used
over five physical structures (hydraulic press cylinder, hook, paper mill,
roller, and bearing box). The evaluation of these systems has been made
using a leave-one-out strategy, i.e. all the edges of a structure have been
identified one by one using the edges of the remaining structures (Lavrac
and Dzeroski, 1994). Under these conditions, the accuracy of FOIL, mFOIL
and GOLEM is, respectively, 12%, 21% and 19%.

These results are not comparable to those obtained using LID since
results of FOIL, mFOIL and GOLEM are the mean value of the accuracy
obtained from the identification of all the edges belonging to one physical
structure. Results of LID are obtained from the identification of only a
subset of edges of one physical structure.

For each edge, LID has also produced a description D that can be
viewed as an explanation of the classification, when the entropy of the
discriminant base SD  is zero. We are interested in analysing these
descriptions in order to improve LID (see section 6). In particular, for the 7
edges classified as belonging to class one, LID has produced the following
explanation:

X1 :  edge 
loadings =  not - loaded

type =  not - important










that is the same description obtained by GOLEM for class one.
LID has incorrectly classified 8 edges as belonging to class two.

However, the descriptions provided by LID as explanation of the
classification have been the following:

  

D1 =  X1 :  edge 

loadings =  not - loaded

type =  not - important

loadings =  cont - loaded

















D2 =  X2 :  
loadings =  one - side - loaded

type =  short










D1 is not comparable to the descriptions obtained by the other methods
(GOLEM, FOIL, INDIE and DISC) and D2  is similar but more general
than X4  obtained by DISC (see section 4.1.7 in chapter 6). Nevertheless,
both descriptions D1  and D2  only subsume edges belonging to class two.
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We have made a second experiment changing the set of edges to be
identified and, consequently, the set of precedents. In particular, the
conditions of this second experiment have been the following:

• Precedents: - All the edges of the hook structure

- All the edges of the paper mill structure

- The edges of the hydraulic press cylinder belonging to
classes one and three to seventeen.

• Test Set: Edges of the hydraulic press cylinder belonging to class two.

Now, the test set contains 15 unclassified edges that LID has identified in
the following way:

- 2 edges have been correctly classified as belonging to class two

- 9 edges have been incorrectly classified as belonging to class one

- 4 edges have been classified (after applying the majority rule in the
reuse task) as belonging to several classes.

As in the previous experiment, we want to analyse the descriptions
obtained by LID. So, the explanation given by LID of why an example
belongs to class two is the following:

  X1 :  edge type =  long - for - hole[ ]

that is the same description obtained by DISC (section 4.1.7 in chapter 6).
The explanations of why the 9 incorrectly classified examples have

been classified as belonging to class one are the following:

  

D1 = X1 :  edge 
loadings =  not - loaded

type =  short - for - hole











D2 = X2 :  edge 
type =  short - for - hole

neighbour - ZX - L =̇  V :  edge











D3 = X3  :  edge type =  not - important[ ]

D4 = X4  :  edge 
type =  short

loadings =  one - side - loaded
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D5 = X5 :  edge 

type =  short

loadings =  no - loaded

boundary - conditions =  fixed

















where V can take as value A24 or A25. These descriptions are not comparable
with those obtained by the methods FOIL, GOLEM, INDIE and DISC.

As conclusion we want to emphasise the LID performance over the
Mesh dataset since the obtained descriptions seem more general and
accurate than those obtained by INDIE and DISC.

4.3. Small Soybean Dataset

This dataset contains 49 examples belonging to four solution classes:
diaporthe-stem-canker, charcoal-rot, phytophtora-rot and rhizoctonia-root-rot. Each
one of these solution classes has 10 examples, except phytophtora-rot that has
19 examples. All the examples are completely described, i.e. there are not
features having unknown values (see appendix A).

Method Correct
answers

No
solution

Multiple
solutions

G1(E) G2(E)

LID 100% 0 0 1 1

INDIE 99% 1% 4% 0,977 0,970

DISC 99,3% 1% 3% 0,981 0,977

Table 7.2. Results of the LID method applied to small Soybean
Database.

Table 7.2 shows the results of the LID method compared with those
obtained by INDIE and DISC. LID improves the results produced by both
methods. In particular DISC has a good behaviour in this domain but some
examples are not classified and also has multiple solution answers. The
value of the correctness functions using LID is 1 (i.e. LID has a 100% of
accuracy), no multiple solutions and no problem is left unclassified.

Mainly, the higher correctness of LID is due to small Soybean
dataset is very regular in the sense that there are not training examples
having features with unknown values. However, notice that in this "perfect"
dataset LID obtains "perfect" results while other methods do not.

4.4. Large Soybean Dataset

This dataset is composed by 306 examples, 49 of which are also present in
the small Soybean database. Examples have partial information, i.e. they
may have features with unknown values. There are 19 solution classes (see
appendix A) containing as a mean 10 training examples (but there is one
class containing 40 examples whereas others contain 1 or 3 examples).



4. Evaluation of the LID Method 173

Method Correct
answers

G1(E) G2(E)

LID 80,8% 0,808 0,808

CN2 81,6% 0,816 0,816

C4.5 80% 0.800 0,800

Table 7.3. Results of the LID method applied to large Soybean
Database.

The result of the LID application over the large Soybean dataset is shown
in table 7.3. LID does not produce multiple solution answers and always
provides a solution. Correctness functions of LID are comparable to
correctness functions of CN2 and C4.5. In fact, because LID always produces
at least one answer, the correctness functions are equivalent to the accuracy
measure (see section 4.2 in chapter 5).

The large Soybean dataset has features with unknown values. Notice
that unknown values in INDIE and DISC yield overgeneralised
descriptions that subsume examples belonging to several classes. As a
consequence, both methods produce multiple solution answers. Unknown
values in LID also produce more general descriptions that, in turn, have
associated discriminant bases with higher entropy. Nevertheless, several
methods can be used in LID to avoid multiple solutions. In particular, we
have used the majority rule method.

We have observed that the majority rule can increase the number
of incorrect answers when the number of examples in each solution class
is very different. Let us suppose that in solving a problem P, LID has built a
description D with a discriminant base SD. Let us also suppose that SD
contains examples belonging to two solution classes Cc and Ci , where Cc is
the correct solution for P and Ci  is an incorrect solution. In such situation,
if C'c = {ej  | ej  ∈  Cc ∩  SD}, C'i  = {ej  | ej  ∈  Ci ∩  SD}, and Card(C'c) < Card(C'i ),
LID will provide Ci  as the solution class for P. In other words, LID provides
a unique solution that is incorrect whereas without applying the majority
rule LID provides a multiple solution answer that includes the correct
solution. As a consequence, the utility of using the majority rule has to be
determined for each domain. This issue also appears when LID is used to
identify marine sponges (see chapter 9).

4.5. Lymphography Dataset

This dataset is composed of 148 examples that can belong to four solution
classes: malign-lymph, metastases, fibrosis and normal-find. Examples in this
domain are described by 18 features none of which has unknown values.
Solution classes of the Lymphography dataset  are composed of a very
different number of examples. So, the malign-lymph  class contains 61
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examples; the metastases  class contains 81 examples; the fibrosis class
contains 4 examples; and, finally, the normal-find class contains 2 examples.

As in the Soybean datasets, the LID method has not produced
multiple solution answers nor no solution answers.

Method Correct
answers

G1(E) G2(E)

LID 74,4% 0,744 0,744
CN2 81,7% 0.817 0,817
C4.5 76,4% 0,764 0,764

Table 7.4. Results of the LID method applied to Lymphography Dataset.

Table 7.4 shows the results of the application of LID over the
Lymphography dataset. In this table we show that the correctness functions
of LID are lower but comparable to those of the C4.5 method. However, it is
not possible to state whether the difference among LID and the
propositional learners is significant or not since we have not used the
same set of training examples than those used by C4.5 and CN2 in the
results reported.

5. Conversational LID

Aha and Breslow (1997) defined Conversational Case-based Reasoning (CCBR)
as a CBR process that iteratively interacts with a user in a conversation in
order to solve a task. The goal of the CCBR is to retrieve precedents
making as few questions as possible to the user.

Aha and Breslow use a top-down algorithm to induce a decision
tree from cases in order to make the minimum number of questions. The
construction of a decision tree implies the selection of the most
discriminant attributes. Usually, this selection is made taking into account
that all the examples from which the decision tree has to be induced have
the same attributes. However, cases can have few attributes in common, so
this selection criterion has to be changed. In particular, Aha and Breslow
propose to select the most frequently used attribute in order to partition the
case base.

Initialisation: D = any
Function CLID (S, D)
  SD := discriminant-base (S, D)
  H(SD) := entropy of SD
  if H(SD) = 0 then reuse(SD)

      else D':= conversational-specialisation (SD, D)
  CLID (SD, D')

  end-if
end-function

Figure 7.6. The CLID algorithm.
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The LID algorithm (explained in section 3) can be used for CCBR with
some modifications. We call CLID the conversational version of LID.
Given a set of precedents S = {e1… em} that can be classified in a partition of
classes C = {C1 … Cn}, and a problem P to be solved, the goal of CLID is to
build a discriminant description D such that 1) D subsumes P, and 2) all
the precedents subsumed by D belong to a unique class Ci . That is to say,
CLID has the same goal than LID. The strategy followed in CLID is also
the same than that of LID (compare algorithms in figures 7.2 and 7.6): the
main difference between both algorithms is that the problem P to be
solved is a parameter of LID but it is not a parameter of CLID. In other
words, LID initially knows all the information about P and uses it during
the construction of D. Instead, the only information that CLID knows about
P is that asked to the user.

Function CONVERSATIONAL-SPECIALISATION (SD, D)
   Da := anti-unification (Sd)
   AS := {leaves of Da}
   ad := select-feature (AS, SD)
   c := path from root(Da) to ad
   Ac := features in c whose value has not been asked
   Ask-path-to-user (Ac)
   while all features in Ac have unknown value do

ad := select-next-feature (AS, SD)
   end-while
   D' := Add-feature (D, c)
end-function

Figure 7.7. Algorithm used by CLID to specialise the description D.
Conversational-specialisation task ask to the user for the value that the
selected feature takes in the problem P to be solved.

The conversational part of CLID is included in the conversational-
specialisation task (see figure 7.7). Let D be the current description and
SD the discriminant base of D. The bias of CLID takes as feature candidates
to specialise D only the subset AS formed by the features that are leaves of
the feature term Da  obtained from the anti-unification of the precedents in
SD. Notice that in LID the feature term Da  was obtained from the anti-
unification of both the precedents in SD and the problem P.

As before, the most discriminant feature ad  is selected using López
de Mántaras distance for all features in As. Then, CLID asks the user the
value of ad  in the current problem. Notice that the selected feature ad  is a
leaf of the feature term Da . This means that there is a path c from the root
of Da to ad . Notice that some features (for instance the root) of the path c can
belong to several paths. Therefore, the path c can include features that have
already been asked as a consequence of the previous selection of other leaf
features. Let Ac be the set of features whose values have not yet been asked. If
the user answers that he does not know any value for any of the features in
Ac then the next most discriminant feature has to be selected and asked.
Otherwise (i.e. the user answers some value for a feature in Ac), the path,
although incomplete, has to be included to the specialisation of D.
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The main difference between CLID and LID is that CLID does not
use the current problem in the anti-unification operation for selecting
candidate features. A consequence is that the feature selected as the most
discriminant may be unknown in P. This situation does not appear in LID
since the most discriminant feature is obtained from the anti-unification
of both, the precedents and P.

6. Conclusions

The LID results are quite similar to that exhibited by the DISC method. In
fact, LID often builds a description for a solution class Ck that is one of the
disjuncts of the description for Ck obtained by DISC. Inductive learning
methods such as INDIE or DISC build descriptions that subsume all the
examples of a class, while the descriptions built by LID are a discriminant
description valid for a subset of examples of a class.

Differently than INDIE and DISC, LID does not provide multiple
solution answers, since it applies the majority rule. Nevertheless, the
majority rule can increase the number of incorrect answers, specially
when the solution classes of a domain have a very different number of
examples (as explained above in the large Soybean dataset).

From a CBR point of view, LID is interesting as a method allowing
the retrieval of past cases with a structured representation without using
domain-specific knowledge to determine which features are relevant for a
task. The description D built by LID can be considered as the set of relevant
indexes allowing the retrieval of precedents relevant to the current
problem. Let Pi  be a problem to be solved and Di  the discriminant
description having a discriminant base SDi  such that H(SDi) = 0.

LID is a lazy method since it does not store the built descriptions.
As future work we will consider to store each built description in order to
be used to solve new problems. Let us suppose that LID stores all the
obtained descriptions Di , and we call this set I. Given a problem P to be
solved, LID could search in the set I for a description Di  such that Di  ≤  P. If
such Di  is found, the problem P can be identified as belonging to the class
Ci  to which all the precedents in SD i  belong. Otherwise, the pure lazy
version of LID (the one explained in this chapter) has to be applied.

Notice that if each generated description Di  is stored and used to
solve new problems, the LID method can be seen as a method between
eager and lazy learning methods. The storage of the description implies
the analysis of some issues such as how the stored descriptions have to be
updated with the resolution of new problems or how to detect
incompatibilities between descriptions of the same class.
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Feature terms formalism is a subset of first-order logic. Most of relational
datasets have been studied in the context of ILP, using Horn clauses (that is
a subset of first-order logic) as representation formalism. We have shown
in Part II how several strategies for relational learning can be designed
and implemented as learning methods for feature terms. Two of them are
inductive learning methods: INDIE and DISC, and the third one, LID, is a
lazy learning method.

The anti-unification concept is used in INDIE, DISC and LID,
although each method uses this concept in a different way. INDIE uses the
anti-unification as a basis to search a class description whereas DISC and
LID use the anti-unification as a bias to restrict the set of features that are
candidates to specialise a class description.

INDIE, DISC and LID have been applied over relational and
propositional datasets. Applied over relational domains, these methods
have produced results similar to those of other relational learners such as
GOLEM, LINUS and FOIL. In particular, the proposed methods have
reached a solution in all the domains in which they have been applied,
whereas some of the relational learners cannot. For instance, FOIL cannot
found a description for the westbound class of the trains dataset, and also, in
the Arch dataset FOIL finds a escription that is not correct. In some
datasets, INDIE and DISC build descriptions composed of may disjuncts (for
instance, the descriptions of the Mesh domain). This issue is a consequence
of the unknown values and it is discussed later.

Applied over propositional domains, our methods have produced
results comparable to those of propositional learners such as C4.5 and CN2.
When INDIE and DISC have been applied to propositional domains, they
may provide multiple solutions answers or no solution answers. We have
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proposed a correctness function allowing the estimation of the goodness of
the method. Two approaches: G1(E) and G2(E) have been used as correctness
functions.

The anti-unification of partially described examples produces a
description that is more general than the description obtained when all
the examples are completely described. Such situation is due to both the
representation of unknown values using feature terms and the use of the
anti-unification operation as bias. When a feature F of an example E has
unknown value, F does not appear in the description of E. Moreover, F will
not appear in the description D obtained anti-unifying E with other
examples, since D contains only the features common to all the anti-
unified examples.

INDIE anti-unifies the positive examples of a class C to build a
description for C. Therefore, when there are examples with unknown
values, INDIE tends to produce more general descriptions. In turn, more
general descriptions tend to produce more multiple solution answers.

DISC and LID use anti-unification as bias to determine a set S of
features candidate to specialise a currently over-generalised description D.
In both methods, the set S contains the features of the feature term obtained
from the anti-unification of the examples. Thus, partially described
examples reduce the set S, since only features common to all the examples
are candidates. This reduction, in turn, can affect the result of the heuristic
used to search the most discriminant feature in order to specialise the
current description D. That is to say, if some discriminant feature is not
contained in the set S the heuristic can never select it. In such situation,
DISC tends to obtain a final description with a larger number of disjuncts.
Concerning LID, the discriminant base associated to the obtained
description tends to have a entropy higher than zero.

On the other hand, features with noisy values influence the results
of the proposed methods in two ways: 1) tending to produce unnecessary
general descriptions (as in the INDIE method), 2) tending to produce a
disjunction having a larger number of disjuncts (as in DISC). Concerning
LID, noisy values affect the results just as unknown values: they tend to
produce more general descriptions with discriminant bases having
higher entropy.

Summarising, we were specially interested to analyse the use of
feature terms in relational domains. For this reason, the experiments
with INDIE, DISC and LID have mainly been made over relational
datasets whereas only two propositional datasets have been used. The results
of induction using DISC and INDIE have been comparable to those
produced by relational learners such as LINUS, FOIL and GOLEM. LID
also works adequately but results are not comparable since it is not a pure
inductive learning method.

Concerning propositional datasets, the INDIE and DISC
performance is comparable to that of C4.5 and CN2 (as before, the LID
results are not directly comparable since it is a lazy learning method).
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There are several issues (such as numerical values and noise) that have not
been addressed in dealing with propositional learners. Both questions
will be addressed in the future. On the other hand, the use of feature terms
allows the representation of objects partially described, i.e. having features
with unknown values.

As future work we plan to improve the INDIE, DISC and LID
methods with a mechanism capable to deal with imperfect data. Both
noisy values and unknown values could be handled in two ways: 1)
allowing the construction of descriptions subsuming some negative
examples (as in GOLEM and CN2), or 2) allowing the construction of
descriptions that do not subsume all the positive examples (as in FOIL). In
fact, both threshold mechanisms can be incorporated together to our
methods.

Commonly, propositional learners use objects described by a fixed
vector of attribute-value pairs. This representation presents some problems
in dealing with objects having attributes whose values depend on the value
of other attributes. For instance, let us suppose that the attribute A2  only
makes sense if the attribute A1  has the value v. In such situation, when A1
has a value different to v, the value assigned to A2  is DNA (does not appear).
This situation in structured representation is easily modelled by defining
the value of A1  as a structured object that has A2  as attribute. That is to say,
A2  is an attribute of a subcomponent of the problem. The translation from
the vector of attribut-value pairs into a structured representation requires
domain information for establishing which subcomponents are to be used.
We do not have the domain knowledge required to translate the standard
datasets, in a meaningful way, to a structured representation. Thus, in fact,
we have not used the power provided by the feature terms representation,
since we have represented vectors by means of feature terms.

As future work we want to address the questions above mentioned
(numerical values, noise and structured representation of datasets). Once
these questions have been addressed we will experiment with other
propositional datasets.

The main contributions of the part II are the following:

• Definition of methods that use feature terms to represent both
relational and proposititonal datasets.

• Definition of a heuristic bottom-up inductive learning method
(INDIE).

• Definition of a heuristic top-down inductive learning method (DISC).

• Definition of a lazy learning method (LID) that does CBR retrieval
for structured representation of cases.

• We have proposed a correctness function to estimate the goodness of
methods when they can provide answers with multiple solutions. The
accuracy is a particular case of this correctness function.





PART III





MOTIVATION

In this part we have developed some prototype applications that show the
feasibility of the framework proposed in chapter 2 and the methods of the
part II. Mainly we want to show that the proposed integration of problem
solving and learning. Secondly, we want also show the utility of the lazy
problem-centred approach to search for appropriate methods to solve the
tasks.

Thus, in chapter 8 we describe CHROMA, an application supporting
the search for an appropriate plan to purify a protein. CHROMA shows
integration of problem solving and learning and also lazy problem-
centred selection of the appropriate method for a task.

In chapter 9 we describe SPIN, an application to identify marine
sponges. This application integrates several learning methods and
problem solving. In particular, SPIN uses the learning methods INDIE,
DISC and LID explained in the Part II. Objects of this domain are sponges,
and they are described in a structured representation using feature terms.





Chapter 8

CHROMA: A Support Tool
for Protein Purification

1. Introduction

When bioscientists are interested in the analysis of the behaviour of a
molecule they should obtain this molecule in a pure form from a biological
sample. This sample could be a biological tissue (animal or vegetal) that
contains, besides the molecule of interest, hundreds of other molecules that
should be removed. Protein purification is the process that allows the
isolation of one molecule among many others. Once the molecule of
interest has been isolated, its structure, function, electrical and physical
properties and behaviour can be analyzed. The development of techniques
and methods for the separation and purification of biological macro-
molecules (such as proteins) has been an important prerequisite for many
of the advancements made in biosciences and biotechnology over the past
three decades. The main problems that can appear in a purification process
are in general related with denaturation, proteolysis and contamination
with pyrogens, nucleic acids, bacteria and viruses. These problems can be
limited by the proper choice of an extraction medium.

The purification process may be analytical or preparative. An
analytical purification is made when there is a small amount of the
molecule to purify. This kind of purification is used to adjust an appropriate
purification process. A preparative purification process has as goal the
purification of a greater amount of a molecule.

A purification process is composed by one or several steps that can be
included in three groups: fractionation and extraction, electrophoresis and
chromatographic techniques. Extraction and fractionation steps are usually
based on precipitation and centrifugation techniques, and they are useful to
make a first cleaning of the sample. Electrophoresis (from Greek elektros:
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electricity and foresis: movement) allows to separate molecules in solution
according to their net electric charge or the ratio mass/charge.
Electrophoresis is a powerful analytical tool, widely used in the
biochemical laboratory.

The term chromatography groups a set of separation techniques based
on the movement of the molecules between two phases: one stationary
phase and the other mobile phase. The chromatographic techniques allow
the obtention of purified molecules using analytical or preparative
processes. More information about the chromatographic techniques can be
found in appendix B.

The first step to purify a molecule is to choose a source (sample)
containing a sufficient protein concentration. This source has to be easily
available, and the protein of interest into this source has to be stable
enough, possible interferences and stranger activities have to be known
and controllable. The second step is to design a purification scheme useful
to obtain the protein of interest sufficiently pure to make the analysis we
want.

There are two ways to proceed. The first one is to take an available
source. It is advisable to use as source materials constituting a proteinic
solution not very complex (for example, blood, urine, snake venom or
extra-cellular mediums from cultures) since that they contain a limited
number of non-desired components. In contrast, a sample from a tissue has
a lot of contaminants and the adjustment of the process may be difficult.
Once the source has been chosen, it has to design and adjust, according to
the characteristics of the different chromatographic techniques (described
in previous sections), a purification scheme achieving the expected result.
This way is not easy and the adjustment of a purification process can take
months.

The usual way is to look in the literature for previos purifications of
the protein that we are interested in. Then we can use the same source
than the obtained experiments and, consequently, the same purification
process will be useful. Let us suppose that we have found in the literature an
experiment purifying the Alkaline Phosphatase protein from dog liver
using three steps. If we are also interested in the Alkaline Phosphatase but
our source is fish, we can assume that the same purification process with a
few variations may be useful1 .

The main difficulty of this way is the unavailability of the sources
used in the obtained literature. Therefore, the purification process has to be
modified according to the characteristics of the available source. The
optimisation of the chosen purification process is made by a systematic
variation of parameters as the composition of the extraction method. The
extraction of a protein from a solid source implies an agreement between
the retrieval of the protein and its purity.

1 In fact, this is a very usual assumption due to few available information about the variability
of the proteins in the different species. But there are proteins having different physico -
chemical features according to the species from which they are obtained.
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There is a commercial system called FPLCassistant™  sponsored by
Pharmacia (Osterlund, 1993) that also supports the process of search for a
purification plan. Its knowledge base is composed of text book knowledge in
form of a database to which the user can access. The user gives the parameters
of its particular purification and the system recommends which techniques
may be used and which not. Once the user has chosen a technique, he can
introduce parameters such as volume, pressure, etc and the system computes
the condition under which the chosen technique can be applied.

CHROMA has a base of cases containing experiments obtained
from the literature (Comparative Biochemistry and Physiology revue). CHROMA
searches in this base and the result of this search is one or several
experiments close to our experiment providing a first approximation of
how the protein of interest can be purified. We want to make special
emphasis in that the adequacy of the proposed solution can be only
evaluated in the laboratory. That makes difficult the evaluation of CHROMA.

In the next sections we present the CHROMA application,
detailing its knowledge modelling, its implementation and its evaluation.

2. Description of CHROMA

Given a protein to purify, the main goal of CHROMA is to obtain a plan
purifying the protein. This goal is achieved by the purification task. From
a knowledge engineering phase we have detected that searching past
purification experiments is an essential part in the human expert solving
the purification task. We have modelled this as a CBR system, called
CHROMA. CHROMA is based on purification cases, and it is capable to
find precedent cases useful for solving new experiments. A requirement
that emerged in the knowledge engineering phase was that the user of
the system has to have the final decision about which plan is finally
chosen. This requirement arises from the fact that the user is
knowledgeable of the chemical domain and wants to maintain control on
the purification process. The CHROMA application supports the user in
inspecting the candidate cases proposed for taking his final decision.

In this section we describe the models used in the CHROMA
application. Then we show how the purification  task is solved. The
implementation of CHROMA is made using the NOOS language described
in chapter 3.

2.1. Models in CHROMA

Domain knowledge used in CHROMA is constituted by 108 purification
experiments obtained from the Comparative Biochemistry and Physiology revue.
Each purification experiment contains the sample from which a protein
has been purified and the purification plan that has been used.
Experiments in CHROMA are represented by feature terms belonging to



188 Chapter 8. CHROMA: A Support Tool for Protein Purification

the sort experiments having two features: description and purification (see
figure 8.1). Description is a feature whose value is an object belonging to
the description-experiment sort. Objects in the description-experiment sort have
two features: the protein purified in the experiment, and the sample. A
sample is described in turn by two features: the species where the sample
comes from, and the source of the sample (an animal or vegetal tissue, a
culture, etc).

Figure. 8.1. Description of an experiment from the case-base of the
CHROMA application. An experiment is composed of a description,
containing the protein to purify; a sample from which the protein has
to be purified; and the purification plan composed of several steps.

The purification feature has as value a feature term belonging to the plan
sort having a feature (steps) for each chromatographic step. For example,
the experiment in figure 8.1 uses a purification plan having three features:
step1, step2 and step3. Each step has the name of the chromatographic
technique (affinity, gel filtration, etc.) and the name of the substance
(reagent or resin) used to purify the protein2 . For instance, the purification
plan of experiment10 shown in figure 8.1, uses as first step an Acetic Acid
Precipitation, as second step a Ion Exchange with DEAE-Cellulose and as
third step an Affinity with 5-AMP-Sepharose.

A new experiment to purify has only the description feature and
the purification task has as goal to complete the Solved Episode model
(see section 2.1.1 in chapter 3), i.e. to find a value for the purification
feature .

2 Eventually, a step can have additional features such as the pH or the pI.
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2.2. Solving the Purification task

Given a new experiment and a base of solved experiments, the goal of the
purification  task is to find a sequence of chromatographic techniques
(purification plan) purifying the protein of the new experiment. The
domain expert uses different strategies to find a purification plan for the
current protein:

M1) Searching for an experiment using exactly the same sample for the
same protein.

M2) Searching for experiments purifying the same protein but from
other kinds of sample. If more than one is found, the domain expert
chooses one of them according to some specific criteria.

M3) If the sample of the current experiment satisfies some specific
domain properties (i.e. the current protein belong to a special family
of proteins), the domain expert knows which purification plan to
apply without searching for past experiments.

M4) If the domain expert has not found any experiment in the
literature purifying the protein of the current experiment, he tries to
build a purification plan by trial and error in the laboratory. The
steps of this purification plan are build according to the characteristics
of each purification techniques.

Each of these strategies has been modelled in CHROMA by a different
problem solving method. In particular, strategy M1 has been modelled by
the equal-sample method that detects if there is an experiment in the case
base having the same protein and sample as the current experiment. The
analogy-by-determination method is a case-based method, used to model
strategy M2, that retrieves experiments from the case base that purify the
same protein. Given a protein P, several experiments purifying P can be
retrieved: the analogy-by-determination method performs some interaction
with the user in order to let him decide the most appropriate precedent.

Strategy M3 has been modelled by a classification method called
purify-by-class. This method uses intensional concept descriptions to
determine the class to which an experiment belongs. The purify-by-class
method needs two input models: new experiment and class descriptions.
The New experiment model contains the description of a sample from
which a protein has to be purified. The class descriptions model contains
the descriptions of the classes to which a purification experiment can
belong. This model is not provided by the domain expert, so during the
KM analysis a KA-Task has to be associated to it (see figure 8.2). This KA-
Task is solved using a learning method, called induce-classes , that
induces the descriptions of the classes from the experiments contained in
the experiments model.
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Selection of PSM

META-LEVEL

OBJECT-LEVEL

Purification-task KA-Task

Problem Solving methods

Equal-sample

Analogy-by-determination

Purify-by-class

Default-plan

Induce-classes

Class

descriptions

Experiments

New experiment Purification plan

Applicability conditions

Preferences

Selection task

selection of PSM

Induce-classes

Figure 8.2. The CHROMA architecture.

Finally, strategy M4 has been modelled using the default-plan method:
domain-specific method acquired during the knowledge engineering
stage. This method is based on statistical analysis of purification
experiments and provides a starting point for the trial and error process of
the M4 strategy.

Next step is to decide which of the four methods above is the most
appropriate to achieve the purification task. According to the framework
described in chapter 3, the selection of the appropriate method achieving a
task can be delayed until the Problem Solving phase. In CHROMA, this
selection is made using a task at the meta-level (figure 8.2). Thus, when a
new experiment has to be solved, it is analysed at the meta-level in order
to choose which of the four methods above is the most appropriate.

Input models of the purification task are the experiments model
(that contains purification experiments already solved), and the new
experiment  model (that contains the description of experiment to be
purified). During the KM analysis, four PSM have been associated to the
purification  task. The selection of one of them is delayed until the
Problem Solving phase.

Given an experiment to be solved, the selection task at the meta-
level of purification task analyses the applicability conditions model
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and the preferences model (see section 2.1.1 in chapter 3) and selects the
most appropriate PSM. In particular, when the selected method is the
purify-by-class method, the class descriptions model is necessary.
During the KM phase we have defined a KA-Task that uses a learning
method, called induce-classes, to acquire this model.

In the next sections each method is explained in detail.

2.2.1. The Equal-Sample Method

The equal-sample method is a case-based method composed by two tasks :
retrieve and reflect (figure 8.3). Method for retrieve task is retrieve-by-

pattern  that is a NOOS built-in method that retrieves from the memory
those cases that are subsumed by a pattern. In this situation, the equal-
sample method takes the description of the current experiment as a pattern
and searches the base of cases for experiments having at least that
description. In other words, the retrieve task retrieves, if exists, a past
experiment whose description is subsumed by the current experiment
description. The reflect  task completes the construction of the Solved
Episode model of the new experiment. This task assigns as value of the
solution  feature of the new experiment, the purification plan of the
experiment retrieved by the retrieve task.

Equal-sample

Retrieve

Retrieve-by-Pattern

A Case

Reflect

Reflect Down

The new experiment purification reuses the
solution of the retrieved case

Pattern: Sample

Figure. 8.3. Task-method decomposition of  equal-sample method.

The equal-sample method fails if there is no experiment having the same
description than the new one. The equal-sample method is useful to solve
routine purifications with commonly occurring samples and proteins and
assures a successful solution (since it deals with "identical" problems).

2.2.2. The Analogy-by-Determination Method

The analogy-by-determination method is a case-based method for
solving the purification task. This method uses the domain knowledge
embodied in a de t e rminat i on  stating that the correct plan for the
p u r i f i c a t i o n  task is determined by the protein to be purified.
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Determinations are functional dependencies that can be used to justify
analogical reasoning (Russell, 1990)3 . In the analogy-by-determination
m e t h o d the determination used states that the solution for the
purification task depends on the value of the protein feature. The method
can justify a purification plan as solution from the fact that a precedent case
with the same protein has successfully used that plan.

Analogy-by-Determination

Retrieve

Retrieve-by-
Determination

Select

Ask-User

User-PreferenceFilter-by-species Filter-by-Source

Reflect Result

Reflect-Down

Union
Set of cases

A case

The new experiment
purification reuses the
solution of the selected

case

Set of cases with the
same species

Set of cases with
the same source

Determination:
Protein

Select&Prefer

Select Relevant

Select by Species Select by Source

Preferences

Prefer

Prefer-by-
Determination

Set of cases

Prefer&Ask

Figure. 8.4. Decomposition of Analogy-by-determination method.

The analogy-by-determination method is composed by three tasks:
retrieve, select and reflect (figure 8.4). The retrieve task uses the
method retrieve-by-determination, that searches in the case base for those
experiments purifying the same protein as the current problem. When it
retrieves more than one experiment, the select  task uses the method
select-&-prefer in order to select only one experiment. The select-&-
prefer method has two subtasks: select-relevant and preferences. From
the set of experiments obtained by the retrieve task, the select-relevant
task selects the subset of experiments that have either the same species or
the same source as the new experiment.

If the select-relevant task retrieves more than one experiment,
the preferences task is used to select only one of them. The preferences

3 The classical example of an analogy justified by a determination is the following: the usual
language spoken by a person is determined by the person’s nationality. We know a case,
Janos, that is Hungarian and speaks Magyar. The language of another person can be solved by
an analogy-by-determination method. If this method is used for the task of determining the
language of a person that happens to be Hungarian then it concludes that he speaks Magyar
because of the determination and the Janos precedent.
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task uses the prefer&ask method that decomposes it in two subtasks: prefer
and ask-user. The prefer task has as criterion that of preferring those
experiments using a species of the same kingdom as the new experiment.
If the prefer task obtains more than one preferred experiment, the ask-
user task presents them to the user who can choose one of them.

Finally, the reflect task completes the New solved episode model
by instantiating for the solution feature of the current experiment the
purification plan of the precedent selected by the previous task.

The analogy-by-determination method fails when there is no
experiment in the case base purifying the same protein as that of the
current experiment (i.e., it fails when there is no experiment in the case
base that satisfies the protein determination).

2.2.3. The Purify-by-Class Method

The purify-by-class method uses as input models the new experiment

model and the class descriptions model. During the KM analysis of the
domain, we have identified sets of experiments following the same
purification plan. We have considered that those experiments using the
same purification plan constitute a class. The description of a class is
determined by the common characteristics of the experiments using the
same purification plan. We can define a KA-Task to acquire the class
descriptions during the problem solving phase. We associate to this KA-
Task a learning method, called induce-classes , that induces the
descriptions of the classes from the case base (this method is explained in
the next section).

Purify-by-class

Plausible Classes Select

User-PreferenceSubsumption

Classes that subsume
current problem

Reflect Result

Reflect Down

Selected class
The new experiment purification
reuses the solution of the selected

class

Figure. 8.5. Task-method decomposition of purify-by-prototype
method.

The purify-by-class method is composed of three tasks: plausible-classes,

select and reflect (figure 8.5). The plausible-classes task selects, using
the subsumption-matching method, only those classes whose description
subsumes the new experiment. When more than one solution class is
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obtained by plausible-classes, the select task, using the user-preference
method, asks the user to select one of them. As in the analogy-by-
determination method, the final decision has to be taken by the user and
NOOS supports the browsing and inspection of the alternatives in a
graphical interface. So the user can examine in detail the selected classes
(and also the precedents in the classes) before choosing one class.

The reflect task completes the Solved Episode model of the current
experiment taking as value for the solution feature the purification plan
associated to the selected class.

The Purify-by-class method fails when there is no description
class subsuming the current experiment.

2.2.4. The Induce-Classes Method

This method is associated to the KA-Task to acquire the class descriptions
model. A class Ci  contains experiments having the same purification plan.
From the samples of the experiments belonging to Ci , the induce-classes
method induces a description Di  = {pj

i } (that is a disjunction of descriptions)
for Ci . The description of a class Ci  is obtained by generalising the samples
of the examples belonging to Ci .

Induce-classes

Partition into equal plans

Partition into equal
plans

Select sets

Filter-by-Criterion

Representative sets of
plans

DISC
INDIE

Generate-descriptions

class description

Create-Partition

KA-Task

Figure. 8.6  Task-method decomposition of induce-classes method.

Thus, a new experiment E belongs to a solution class Ci  if there is a
description pj

i  in Di  subsuming E. Therefore, E may be purified using the
purification plan associated to Ci .

The  induce-classes method is composed by three subtasks:
partition-into-equal-plans, select-sets and generate-descriptions

(figure 8.6). The method of partition-into-equal-plans task divides the
case base in sets containing experiments with the same purification plan.
Because some of the formed sets may have few elements and it is not
desirable to make induction from them, the select-sets task obtains only
those sets having a number of elements above a threshold. The goal of the
generate-descriptions task is to generate a description for each solution
class selected by the select-sets task. To solve the generate-descriptions
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task any inductive method explained in Part II can be used. Thus, the
model of each solution class is a disjunction of descriptions. Each
description is a feature term having the same features as an experiment,
i.e. description-experiment  and purification , but the values of them are
generalised. For instance, the description in figure 8.7 can be applied if
the new experiment has a protein belonging to the Dehydrogenases family,
the sample species is an animal, and the sample source is liver. In other
words, according to the experiments in the case base, any Dehydrogenase
protein may be purified in any tissue of an animal species using a
purification plan composed of four steps: Precipitation, Gel Filtration, Ion
Exchange and Affinity.

Figure 8.7. The experiment-pattern  EP14 is the description for the
solution class containing experiments that use a purification plan
composed by four steps: a Precipitation, a Gel Filtration, an Ion-
Exchange and an Affinity.

2.2.5. The Default-Plan Method

The default-plan method is a domain-based method that can be used
indepently of the protein and the sample of an experiment. This default
purification plan has been obtained from a statistical study (Janson and
Ryden) where many purification plans were analysed. The conclusion of
this study was that the most frequently used chromatographic techniques in
each step of a purification plan are the following:  1) Clarification, 2) Ion-
Exchange, and 3) Gel-Filtration. This purification plan is useful when there
is no literature on a particular protein subject. The use of this purification
plan implies a costly adjustment in the laboratory.

This method is equivalent to design a purification plan according to
the characteristics of both each chromatographic technique and the protein
to purify. The advantage is that the default-plan method focuses the user on
adjusting the parameters of the suggested techniques. In that way the time
to design an appropriate purification plan is considerably reduced.



196 Chapter 8. CHROMA: A Support Tool for Protein Purification

2.3. Integration

During the KM analysis of the domain, four PSM have been associated to
the purification task. CHROMA uses a lazy problem-centred selection to
decide which method to use to solve the purification  task for a new
experiment. The selection task at the meta-level of purification task
performs the selection of the appropriate method. Before the selection of
some method, the new experiment is analysed. From this analysis and
the models  Applicability Conditions and Preferences, the selection
method associated to the selection task chooses an appropriate method. If
the selected method does not achieve a solution, another method has to be
tried.

Let us suppose that in the CHROMA application the methods equal-
sample, purify-by-class, analogy-by-determination, and default-plan are
sequentially tried in this order. If a new experiment wants to purify a
protein that is not used in any experiment of the base of cases, the only
applicable method is default-plan. Using the sequential order, all the
methods have to be executed (and fail) before to obtain the solution from
default-plan.

The KM analysis of the domain suggests a more intelligent
strategy to select the appropriate method. We propose to use a lazy problem-
centred selection of the method taking into account the Applicability
Conditions model and the Preferences model (see section 2.1.1 in chapter
3). In particular, the Applicability Conditions model in CHROMA
contains the following knowledge:

- If the protein of the current problem is not purified in any experiment
in the case base (Problem Solved Episodes model), the only applicable
method is default-plan.

- If there is no experiment in the case base using the same sample that
the current problem the applicable methods are the purify-by-class
method, the analogy-by-determination method and the default-plan
method.

- If the sample of the current problem does not satisfy any class
description, the applicable methods are the analogy-by-determination
method and the default-plan method. As we will see later, to evaluate
this condition CHROMA needs an additional model called control
sample.

The Preferences model contains preferences provided by the domain
expert in order to choose one method if more than one is applicable. In
CHROMA the Preferences model contains the following preferences:

1) If applicable, equal-sample is preferable to others (since identical
precedent assures an appropriate solution)
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2) default-plan is the less preferable

3) analogy-by-determination and purify-by-class are equally preferable
if both are applicable.

The lazy problem-centred strategy has been implemented using a
selection task at the meta-level of the purification task. The selection
task has as input the control sample model that contains the description of
a sample S. Each feature A of the sample S has as values the disjunction of
the values that A takes in all the case base experiments. The selection task
is solved using the method described in figure 8.8. Thus, if there is no
experiment in the case base using the current protein, the purification
plan is always to be obtained using the default-plan method. If the
protein was already used and there is an experiment having the same
sample that the new one, the equal-sample  method can be used. If the new
experiment belongs to some solution class, the purify-by-class method
can be used (also the analogy-by-determination method could be used).
Otherwise, the new experiment only can be solved using the analogy-by-
determination method.

Are there any experiments purifying the same protein?

YesNo

Default-plan

Analogy-by-determination Purify-by-class

Does the new experiment
belong to a solution class?

YesNo

Is there an equal experiment in the base of cases?

Yes No

Equal-Sample

Figure. 8.8.  Decisions taken by the method used by selection task at
the meta-level of Purification task.

Notice that using only two methods (analogy-by-determination and
default-plan), CHROMA can always solve the purification task. We can
thus ask, is it really better to use four methods when two are enough? The
use of several methods requires the definition of some criterion to select
the most appropriate. The most simple criterion is the sequential one, i.e.
applying each method in a predetermined order. A method is only
applicable if the previous one has failed. CHROMA has a more intelligent
strategy using a selection  task at the meta-level. When using the
selection  task at the meta-level is better than using the sequential
strategy? In the next section several configurations of CHROMA are
evaluated in order to answer the questions above.
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In this section, four configurations of CHROMA are compared. A
configuration  is the set of both the problem solving and the learning
methods that can be used. The default-plan method is included in all the
configurations in order to assure that CHROMA always solves the
purification task. Only one configuration may have a selection task at the
meta-level selecting the appropriate method in a lazy problem-centred
way. In the following the four CHROMA configurations are described.

Configuration 1. There are two problem solving methods: analogy-by-
determination and default-plan. Using this configuration, new
experiments using proteins already existing in some experiment
already performed will be solved using the analogy-by-determination
method. Other experiments will be solved using the default-plan
method.

Configuration 2. This configuration is composed by the problem solving
methods purify-by-class and default-plan and by an inductive
learning method (any of the explained in Part II) associated to
purify-by-class  method. In particular, we have evaluated this
configuration using the INDIE method with the generalisation post-
process. Using this configuration, only new experiments subsumed by
some solution class description will be solved using the purify-by-
class method. Other new experiments will be solved using default-
plan method.

Configuration 3. The purification  task is solved by sequentially
selecting the methods purify-by-class, analogy-by-determination
and default-plan. In this configuration, a method is selected only
when the previous one has failed to find a solution. The rationale
behind this ordering is to use first the more specific methods. This
sequential strategy is the most used in systems having more than one
problem solving method.

Configuration 4. This configuration uses the same methods that
configuration 3 but also uses the selection task at the meta-level of
the purification task.

The empirical comparison of the configurations is made taking into
account the mean time used for solving 25 new experiments. The solution
quality is not analysed because it is difficult to evaluate without actually
performing the purification experiment in the laboratory. However, we
know that the purification obtained from the default-plan method is the
less desirable because it is too general and adjusting its solution requires
many laboratory time. Therefore, those configurations that minimise the
use of the default-plan method are preferred.
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The equal-sample method does not appear in the configurations
because the selection task cannot decide if it is applicable without executing
it. If the equal-sample method is taken into account, a constant (the mean
execution time of the equal-sample method) has to be added to the total
time obtained for each configuration.

The evaluation of each configuration is made using a training set
containing 108 solved experiments from which 14 solution classes with
their respective descriptions can be induced. Testing involves 25 new
experiments that are presented to CHROMA in 15 test sets with different
random orders; the obtained values are the mean values averaged over
these 15 test sets.  From these 15 test experiments, 7 can be solved using
purify-by-class, 12 by analogy-by-determination and 6 by default-plan.
The results of the evaluation are the following.

Configuration 1. Six of the 25 new experiments can be solved using the
default-plan method and the remaining ones are solvable using the
analogy-by-determination method. Mean time of this configuration
in solving one experiment is 1.338 seconds.

Configuration 2. From the 25 new experiments that are proposed to
CHROMA, only 7 can be solved using purify-by-class. This means
that other 18 new experiments are solved using the default-plan
method that is not enough accurate and it is less desirable than
configuration 1. The mean time of configuration 2 is 1.221 seconds.

Configuration 3. In this configuration the methods are sequentially
tried until one that solves the new experiment is found. Thus, the
time for solving an experiment is increased by the time expended
executing methods that eventually fail. For instance, from the 25 test
experiments, 6 can only be solved by the last method, default-plan;
in these 6 experiments, the mean time is the sum of the execution
times for the three methods. From the remaining 19 experiments,
only 7 are solved by the purify-by-class method, and the remaining
12 are solved by the analogy-by-determination method. The mean
time of configuration 3 is 1.352 seconds.

Configuration 4. The main idea of configuration 4 is to choose in a lazy
problem-centred way the appropriate method to solve a new
experiment. The advantage in respect to configuration 3 is that only
one method will be completely executed. Using the selection task,
time requirements are more stable because newly stored cases only
increase the problem solving time during the retrieval and the
selection subtasks of the analogy-by-determination method. Mean
time of this configuration is 1.022 seconds.
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Figure 8.9. The evolution of problem solving time in four different
configurations of CHROMA. The values shown are averaged over 15
trials.

Figure 8.9 shows the time evolution of the configurations above. The time
is initially high due to NOOS, since internal structures are created in a
lazy way. This time decreases quickly and later stabilises. In the stable
stage, the best configuration is clearly Configuration 4. Also, we can see
that Configuration 3 (using three PSM and a sequential selection them)
does not improve Configuration 1 and Configuration 2. Configuration 1 is
worst because new solved experiments are added to the case base and thus
the retrieval time increases. This increment only appears in
Configuration 4 when the analogy-by-determination method is chosen to
solve a new problem, other PSM are not affected.
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Figure. 8.10. Comparison of the time evolution of configuration 4 with
configurations having only one method (analogy-by-determination
or purify-by-class).

Other evaluations have been made comparing Configuration 4 with
having only one method (analogy-by-determination or purify-by-class).
Figure 8.10 shows the result of this comparison. The Analogy-by-
determination method takes a mean time of 0,497 seconds, whereas the
purify-by-class method takes 0,764 seconds. Clearly, having only one
method is more efficient but when the method fails CHROMA cannot
provide a solution. Thus, Configuration 4 takes more time but always
provides a plan to purify a new experiment. For instance, to use only the
purify-by-class method implies that from the 25 new experiments of our
test, CHROMA produces no solution for 18 of them.

There are several conclusions from this empirical analysis. The
first one is that the selection task at the meta-level not always deteriorates
the CHROMA performance. In other words, the use of the selection task
tends to increase the predictivity without losing efficiency. A second
conclusion is that the mean time of Configuration 4 is clearly better that
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the mean time of Configuration 3, that is one of the most common
strategies. The mean time of Configuration 1, initially best, tends to
worsen when the number of cases in the base increases. Instead the mean
time of Configuration 4 appears as more stable when more problems are
solved.

4. Conclusions

The CHROMA application has been developed using the framework
proposed in chapter 3. During the KM analysis we have modelled the
main task, purification, as a task that can be achieved by four methods.
The analysis of these methods has identified the models required to
achieve the purification task. The acquisition of one of these models,
description classes, is delayed to the Problem Solving phase. To this
purpose, we have modelled a KA-Task that using an inductive learning
method induces this model from the experiments in the case-base.

During the KM analysis we have also determined under which
conditions each method associated to the purification task can be applied
and which are more preferable. Therefore, this analysis has shown a
strategy to select the appropriate method that is more intelligent that the
sequential strategy. In particular, we have defined a selection task at the
meta-level of purification task. This task is solved by a meta-level method
called selection. The selection method uses the knowledge acquired
during the KM about the applicability conditions of the methods and the
preferences among them, and also analyses the experiments to be solved
in order to select a method for the purification task. The KM analysis of
the domain is a key issue in determining which selection strategy may be
more efficient.

A future line of research is to investigate how to automatically
learn the selection strategy based on features of previously solved problems
and on features of the available methods.

There is some work dealing specifically with the combination of
case-based methods and knowledge produced by inductive learning
methods. The KATE system (Manago, 1989) induces a decision tree and
combines decision-tree classification with case-based classification. The
combination of methods is fixed: decision-tree classification is tried first
and if it "fails" (for instance, because of a missing attribute) then a case-
based method is used. The INRECA project (Manago et al., 1993) follows a
similar approach integrating the induction of decision trees (using KATE)
and case-based reasoning using PATDEX. Currently KATE and PATDEX
are able to interchange results through the format of the CASUEL
language, but the combination of both methods is fixed. The integration of
the multiple inference methods is easily realised by the support given by
the NOOS language to the knowledge modelling analysis of the
CHROMA application. As we have seen all methods (case-based, inductive,
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knowledge-based) can be described in our knowledge modelling
framework and then implemented using the NOOS language. This is a
tighter integration than other proposals for integrating inductive and
case-based methods; for instance the INRECA project is based on the
establishment of the syntax of an interchange format called CASUEL.
Different modules (CBR, induction) read from and write to this format but
each module uses a different representation language.

Concerning the chromatography application domain, there is only
one system called FPLCassistant™  from Pharmacia (Osterlund, 1993). This
application uses as domain knowledge textbook information about the
conditions under which each chromatographic technique is useful.
FPLCassistant™  advises the user each step of the purification plan. The user
has to determine  parameters of the experiment such as volume of the
sample, pressure, pH, pI, etc. Nevertheless, the determination of some of
these parameters is not an easy task. In particular, the determination of
the pI (isoelectric point) requires a great laboratory effort, sometimes
bigger than adjusting a purification plan already used in another
experiment. In fact, this is the methodology followed by an expert, and
also by CHROMA, i.e. the purification plan used in an experiment with a
similar sample is adjusted in order to purify the current sample.





Chapter 9

SPIN: A Tool for Marine
Sponges Identification

1. Introduction to Marine Sponges Domain

The identification of specimens is a very common task in biological
research. There are several types of biological studies, for instance
ecological investigations, that need a taxonomic analysis of organisms.
Frequently, an error in the identification of the organisms invalidates the
whole study.

Systematics is the part of the Biology having as goal the
identification of organisms. Typically, researchers in Systematics support
researchers in other fields of Biology in characterising and identifying
the organisms they deal with. So, a tool supporting the specimen
identification to non-experts in Systematics may be interesting since each
expert could do their own research.

Marine sponges (phylum Porifera) are relatively little studied and
most of the existing species are not yet fully described. The identification of
marine sponges is specially complex and often the support of an expert is
necessary. Moreover, sponges are genetically much more diverse than
other marine invertebrates. This high variability is also present within
species due to their capability of adaptation to environmental conditions.
As example of the complexity in the identification of marine sponges, we
want to remark than some researchers have assumed the discovery of a
new specie whereas it really was a morph of an already known species.

Historically, the identification of marine sponges has been based
on characteristics of the skeleton. Nevertheless there are other biological
and cytological characteristics that have not been sufficiently studied. Main
problems are due to the morphological plasticity of its species, to the
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incomplete knowledge of many of their biological and cytological features,
to the frequent description of new taxa, to the variety of specific terms
applied to homologous characters and, conversely, to the occurrence of
single terms that name analogous characters. Since taxa are closely alike,
controversy around the species delimitation or even around higher
taxonomic levels of the classification is common. More details about the
morphology, behaviour and systematic of the sponges can be found in
appendix C.

But identification needs classification, and in the Porifera phylum
it is not clear how the different taxa are to be characterised. At present, the
general requirements for accurate identification are concerned with
descriptional characters. In taxonomy, characters are used to discriminate
between taxa. A character should be discontinous enough to be diagnostic
for a taxon1. Indeed, characters should be stable, that is, genetically spread
but independent of external influence. Or, if influenced by the
environment, their incidence should be statistically established before
being used as diagnostic characters. These are desired requirements but in
many taxonomic domains they are not accomplished. In other words,
Taxonomic knowledge is not simply a hierarchy of taxa but it is concerned
with a highly complex theory that emerges from the study of the
characters, their variability, their phylogenetic significance, etc. In many
taxonomic groups, there is not enough knowledge to build a definitive
theory.

The basic goal of taxonomic studies of living organisms is to
establish their phylogenetic relationships on the basis of observable
features and to build up a store of information from which deductions can
be made about biological processes. At present, this goal is difficult to
achieve in many taxa of the Porifera due to the lack of well-established
taxonomic theories, the subjective interpretation of features and the
inherent imprecision of natural language, which has been traditionally
used to express the taxonomic knowledge.

The taxonomic classification of any group of organisms has the aim
of establishing a hierarchical ordination of taxa with two major goals: (1)
to provide a framework for making biological statements and
generalisations and (2) to serve as an information storage system. There
are three different approaches followed by taxonomists when trying to
build a classification. The most objective method for achieving this
classification is called phenetical  or numerical taxonomy. This method
considers all the characters that are available without weighting them.
This involves numerical procedures on distance or correlation matrices
among the organisms to be classified. The classic methodology for
approaching this classification is called cladistics or phylogenetic systematics
and searches for monophyletic classes. Lastly, a third approach is made by

1 Characters are said to be diagnostic for a taxon when their presence in a particular state
confirms the identification of members of that particular taxon.
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the evolutionary systematics school. They interpret the observed similarity in
the light of its evolutionary history. As in the case of the previously
mentioned school, it aims to build classes on the basis of a common
ancestor but permits groups that are not entirely monophyletic.

Expert research usually focus on one or several portions of the
Porifera taxonomy. Thus, expertise is scarce and phylum knowledge is
usually scattered among several experts. In fact, taxonomic knowledge in
any group depends on the past work of a systematic biologist in this group
and the expertise knowledge of the present experts, taking into account
current scientific trends, is to be lost when they retire. Recently, several
sponge systematists are using database systems to store either bibliographic
references, species names or biogeographic information. To date, these
databases have been individual efforts of creating a tool useful for taxonomic
research, mainly concerned with the access to specialised literature, but
not with any identification purpose.

There are two general methods used in the identification of
specimens: elimination or matching. Elimination consists in successively
observing a new character in the unknown specimen and eliminating the
taxa that do not present such value for that character. Matching involves a
direct comparison of the specimen with the standard description of the
taxa. This is usually based on a similarity criterion related to the number
of similar (or dissimilar) characters. Obviously, analogy of a number of
characters does not necessarily mean a common taxon assignment unless
these characters are diagnostic for that taxon. Both of these methods
assume that the possible taxa solutions are known. The experts'
identification skills seem to combine elimination and matching to result
in a particular identification procedure that is based mainly on the expert's
heuristics.

The diagnostic or dichotomous keys (an elimination method) and the
multiple-entry key are methods traditionally used to identify sponges. The
main shortcoming that they present is that if a specimen is partially
described and a key is not present, the specimen cannot be identified.
There are also on-line programs that emulate the identification methods
and improve them in the selection of more accurate characteristics to
perform an identification. Nevertheless, most of the on-line programs
have difficulties to deal with uncertain and unknown data, even though
some of them incorporate different facilities to solve special situations in
the identification process.

Expert System technology also provides a means for building
computer assisted identification tools. Some expert systems dealing with
taxonomic knowledge have been developed. The more illustrative are to be
briefly mentioned. Wooley and Stone (1987), in a general discussion of
the advantages of expert systems for taxonomic identification, report on the
development of an expert system to identify 12 species of the genus
Signiphora Ashmead (Hymenoptera:Signophoidae). A case-based expert
system dealing with the genus Hyalonema Ijima (Porifera:Hexactinellida)
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is briefly reported in Conruyt et al., (1993). It was build from about a
hundred case descriptions and its identification scope is the level of
subgenus (12 taxa). In this work the emphasis is put on the modelling of
an expert's knowledge rather than on the usefulness of the identification
tool. An interesting expert system application dealing with Mediterranean
zooplankton (about 100 species) is presented in Thonnat and Gandelin
(1988). This program consists of an automatic system that searches for
complex shapes representing the main groups of zooplankton. Each group
is represented in two dimensional images and a classification expert
system that identifies the species. In this case, both reasoning and pattern
matching techniques are used. SPONGIA (Domingo, 1995) is a knowledge
based system developed using the Milord II programming environment
(Puyol, 1994). SPONGIA deals with the identification of sponges from the
Atlanto-Mediterranean biogeographical province. It covers the identification
of more than 100 taxa of the phylum Porifera from class to species. The use
of fuzzy logic makes possible an accurate representation of the imprecise
knowledge which constitutes the classificatory theory of Porifera to a large
extent. SPONGIA also provides the user with some means of expressing his
state of knowledge with accuracy.

In this chapter we describe SPIN, a tool capable to identify marine
sponges. This identification can be made using domain-specific and case-
based methods. A main contribution of SPIN is the capability to deal with
partially described specimens.

2. Description of the SPIN Application

In this section we use the framework explained in chapter 3 to develop
SPIN, a KS capable to identify the taxa to which a marine sponge belongs.
Taxa are organised in five taxonomic levels: class, order, family, genus and
species. A specimen is completely identified if it has been included in one
taxon of each taxonomic level.

During the KM analysis we have determined that there are to
ways in which a specimen E can be identified. The first one is to compare
the characteristic description of each taxon to the description of E. As a
consequence, E can be said to belong to a taxon T when E shares the
characteristic features with the description of T. The second way is to
search in the literature for descriptions of already identified specimens,
until a specimen, say P, very similar to E is found. In such situation E can
be classified as belonging, at each taxonomic level, to the same taxa that P.

In this section we describe the models used in the SPIN
application. Then we show how the identification task is solved. The
SPIN implementation is made using the NOOS language described in
chapter 3.
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Demospongiae 
(26)

Astrophorida 
(26)

Geodiidae 
(26)

Geodia (8)

Erylus (9)

Caminus (3)

Isops (4)

Pachymatisma Pachymatisma              
johnstonia (2)

[ Caminus vulcani (3)

Erylus corsicus (1)
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Figure 9.1. Part of the Porifera taxonomy to which belong the 26
sponge specimens used by SPIN. The number means how many
specimens has each taxon.

2.1. Models in SPIN

The identification of a new sponge is achieved in SPIN by means of the
identification task (explained in the next section). The identification
task needs two input models: one that contains the description of a sponge
to be identified (new sponge model) and the other containing sponges
already identified (classified sponges model).

In particular, the classified sponges model contains the description
of 26 sponge specimens. These descriptions are a subset of the specimens
that have been used to test the SPONGIA system (Domingo, 1995). We have
not used all the features reported in the literature for each sponge
specimen but only those features used by SPONGIA. In other words, let us
suppose that a sponge E in the literature has been described by means of a
set of features F. During the execution of SPONGIA only a subset F' of these
features have been used to identify E. Thus, E is described in SPIN using
only the subset F'. This is an important remark since the SPIN behaviour
could have been different if each specimen were described using all the
known features F. On the other hand, results of both SPIN and SPONGIA
may be compared.

A specimen can be identified as belonging to taxa at five different
taxonomic levels (see figure 9.1): class, order, family, genus and species. The 26
available specimens belong to the Demospongiae class, Astrophorida order and
Geodiidae family, thus SPIN can only identify sponges at the level of genus
and species. Nevertheless, SPIN could identify sponges belonging to levels
higher than genus if the classified sponges model were enlarged.
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Figure 9.2. Description of a sponge-problem  in SPIN. A sponge-problem  is
composed of a description of a sponge specimen and its classification
in five taxonomic levels: class, order, family, genus and species.

Each sponge in the classified sponges model is a feature term belonging
to the sort sponge-problem. Objects of this sort have two features (figure 9.2):
description and solution. Description is a feature having as value an object
belonging to the sort sponge. Objects belonging to the sponge sort have a
different number of features according to known characteristics of each
specimen (a sponge may be partially described). The solution feature of an
sponge-problem contains the identification of the described sponge in the
taxa class, order, family , genus  and species. The sponge to be identified
(contained in the new sponge model) only has the description feature. The
identification task assigns a value to the solution feature of the new
sponge.

2.2. Solving the Identification Task in SPIN

Commonly, the identification of specimens is made from the descriptions
of the taxa. Therefore, given a sponge specimen E, a strategy for achieving
the identification task is to explore the taxonomy and to find, for each
taxonomy level, one taxon in which E can be included. This goal is
achieved by a task called identification that, in addition to the model
containing the description of E, also needs another model containing the
descriptions of the taxa. We can thus model the identification task in the
following way:
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new sponge
descriptions of taxa

IDENTIFICATION identification of 
the new sponge

explore-taxonomy

i.e. the identification task may be solved using the explore-taxonomy
method that searches in each taxonomy level for those taxa whose
description subsumes the description of the sponge to be identified.

However, as we have explained in previous section, there is no
agreement among the experts about which are the characteristic features of
the taxa. Nevertheless, there are many sponges whose identification is not
discussed, so they could be used to identify new sponges. In other words, a
new sponge can be identified using a lazy learning method that uses as
input a model containing a set of sponges and their classification at each
taxonomy level. In such situation, the modelling of the identification task
can be the following:

new sponge
classified sponges

IDENTIFICATION identification of 
the new sponge

lazy learning 
method

Summarising, given the description of a new sponge E, the goal of the
identification task is to identify the class, order, family, genus and species to
which E belongs.  There are two methods that can be followed to identify a
new sponge:

1. A lazy learning method searching in the case base for the most
similar sponge and identify the new one as belonging to the same
taxa that the precedent. We have used LID to implement this CBR
method

2. to use the general description of each taxa to find one taxon of each
level in which the new sponge can be included. We call this method
explore-taxonomy and it is explained presently.

Notice that the descriptions of taxa model, necessary to use the explore-
taxonomy   method, are not directly available from experts, as we have
already explained. An alternative is to learn the descriptions of the taxa
model from the description of the already classified sponges. So, during
the KM analysis we have defined a KA-Task for descriptions of taxa

model, and an associated inductive learning method capable to acquire the
descriptions of taxa.
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Identification-task KA-task

Problem Solving methods Inductive methods

Explore-taxonomy INDIE

Descriptions

of taxa

Classified spongesNew specimen

Identification of

the new specimen

LID DISC

classified sponges

Inductive methods

Figure 9.3. Structure of SPIN. The main task, called identification
task, can be achieved using two methods: explore-taxonomy or LID.
The KA-Task can be achieved using the INDIE or DISC methods.
Notice that learning takes place not only for the KA-Task, but also
inside the lazy learning process of LID.

Figure 9.3 shows the structure of the SPIN application according to the
knowledge modelling analysis previously explained. SPIN has not a
selection method at the meta-level selecting the appropriate method to
identify a new specimen. Instead, SPIN uses a sequential strategy to solve
the identification task. This strategy consists of to use first the explore-
taxonomy method and, if it fails, a lazy learning method such as LID will
be used. The domain expert has provided only descriptions of sponge
specimens and their classification (the classified sponges model).
Therefore, when the explore-taxonomy method is used, there are not
available the descriptions of the taxa (the descriptions of taxa model).
The acquisition of the descriptions of taxa model is made using a KA-
Task that has associate two inductive learning methods. The inductive
learning method to be used to solve the KA-Task is selected by the user.

In the next sections we explain the explore-taxonomy method and
how SPIN integrates learning and problem solving. Since LID has already
been explained in detail in chapter 7, we will not repeat this explanation
here.

2.2.1. The explore-taxonomy Method

The explore-taxonomy method may be modelled as having five subtasks (one
for each taxonomy level): identify-class, identify-order, identify-family,
identify-genus and identify-species. Each one of these tasks is solved by
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the same method, called identify-by-subsumption. Given a taxonomy level TL
(i.e. class, order, family, genus or species), the identify-by-subsumption. method
uses the descriptions of the taxa in TL to identify the new specimen.

Identify-by-subsumption

Plausible
Descriptions

Select
description

user-preferencesSubsumption

Descriptions
that subsume

current problem

Reflect Result

Reflect Down

Selected
description

The new sponge has
been classified

Figure. 9.4. Task-method decomposition of Identify-by-subsumption
method.

The Identify-by-subsumption method is composed by three tasks (figure
9.4): plausible-descriptions, select-description and reflect-result. The
plausible-descriptions task selects, using the subsumption method, only
those taxa whose description subsumes the description of the new sponge.
The subsumption method uses the descriptions of taxa model that may
not be currently available. The acquisition of this model is explained in
the next section. When more than one taxon is retrieved by the plausible-
descriptions task, the select-description task uses the user-preferences
method to choose only one taxon. Finally the reflect-result  task
completes the solved episode model of the new specimen by instantiating
as value of the taxonomy level solution for the new example the obtained
taxon. The identify-by-subsumption method fails if there is no taxon
description subsuming the new example. Notice that a new sponge
specimen can be incompletely identified, i.e. it could have only been
classified into some taxonomy levels.

2.2.2. The KA-Task

The goal of the KA-Task is to acquire the descriptions for all taxa in order
to build the descriptions of taxa model required by the plausible-
descriptions  task. The descriptions have to be learned using some
inductive learning method. In particular, the KA-Task can use either
INDIE or DISC to induce the taxa descriptions. As it has been explained in
chapters 5 and 6 respectively, both INDIE and DISC obtain discriminant
descriptions. In other words, a description for a taxon Tk subsumes all the
examples belonging to Tk and does not subsume negative examples.
Negative examples of a taxon Tk are all the specimens that belong to the
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rest of taxa in the taxonomic level of Tk. According to the results of INDIE
and DISC, a taxon can be described by a disjunctive description.

In the next section we will analyse the description that SPIN
obtains for the taxa using INDIE, DISC and LID.

3. Evaluation of SPIN

The case base contains descriptions of 26 sponges belonging to the family
Geodiidae (Demospongiae:Astrophorida). Below the family Geodiidae
there are 5 genus (caminus, erylus, geodia, isops and pachymatisma) and 11
species. Some of the specimens of the case base are completely described
whereas some others have an incomplete description.

The specimens used by SPIN, even they are representatives of taxa to
which they belong, they are not a good sample of the existing sponge
populations. Consequently, it is not a dataset were prediction on unseen
examples can be meaningfully.  Figure 9.1 shows that some taxa of the
level species have only one specimen (erylus corsicus and erylus pachydermata),
and most of the species have only two or three specimens. In taxa of the
genus level the situation is better since all have more than one example
(may be incompletely described). Thus, the performance of SPIN in the
identification task is evaluated at the genus level.

SPIN can be analysed under two points of view: according to the
results of the identification (predictivity) and according to the description
for each taxon learned using INDIE, DISC or LID. For the reasons
expressed above, we have not evaluated the predictivity of SPIN because of
the short size of the case base. Therefore only the descriptions obtained by
the learning methods are explained in detail.

To evaluate the LID performance we need to identify some new
specimen, so we have used the leave-one-out method technique. The
application of this technique means that the identification of some
specimens may be difficult for two reasons. One reason is that the
specimens are highly representative of each taxon, so the extraction of one
of them means to loose a significant part of the taxon. A second reason is
that taxa such as caminus and pachymatisma have few specimens (3 and 2
respectively), so there is a little sample to identify a new specimen.

In the next section we explain the descriptions obtained by SPIN in
using INDIE, DISC and LID. Then, we present a summary of the
discussion of these descriptions with an expert.

3.1.2. Analysis of the descriptions of taxa

Each taxon T can be described by a disjunctive description D = {Dk } where for
each sponge S ∈  T such that there is a Dk subsuming S, and if S ∉  T then ∀  Dk
∈  D : Dk ¬ S. In this section we present the descriptions obtained from the
taxa at the genus level.
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Genus Caminus

There are three specimens (namely E1, E2 and E3) belonging to genus
caminus  in the case base. Two of these specimens (E1 and E2) have a
detailed description (around 12 features) whereas the other (E3) is
described using only 3 features.

Figure 9.5. Description obtained from the anti-unification of the
specimens belonging to the genus caminus in the case base of SPIN.

From the anti-unification of E1, E2 and E3 the feature term show in figure
9.5 is obtained. This description does not subsume negative examples, so it
is a discriminant description for genus c a m i n u s . Applying the
generalisation post-process, INDIE obtains the description in figure 9.6 for
the genus caminus.

Let D = any be the current description for genus caminus. Since D
subsumes negative examples (specimens belonging to other genus), DISC
has to specialise it. The first step is to build a description da  from the anti-
unification of E1, E2 and E3 (description in figure 9.6). The bias of the
DISC method selects as candidates to specialise D those features that are
leaves of da . From this set, DISC selects the feature megas  as the most
discriminant. Finally, the path from the root of da  to megas is added to D,
obtaining the same description as INDIE for genus caminus (see figure 9.6).

Figure 9.6. Description obtained by INDIE (with the generalisation
post-process) and DISC for the caminus genus.
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The use of LID to identify specimens has produced the following results.
The specimens E1 and E3 have been correctly identified as belonging to
the genus caminus . The description provided by LID to justify this
identification is the same as that of INDIE and DISC (i.e. that in figure
9.6). While identifying the specimen E2, LID produces a multiple solution
answer that includes the correct solution.

Figure 9.7. Disjunctive description obtained by INDIE to describe
sponges belonging to the genus erylus.

Genus Erylus

Nine of the specimens (namely E4, E5 … E12) in the case base belong to
the genus erylus. Each specimen is usually described by about 6 features, but
there are few features common to all them. First, INDIE obtains an initial
hypothesis by anti-unification. Since it is not discriminant, INDIE
specialises and it finds the disjunctive description (composed by two
disjuncts) in figure 9.7.

The heuristic of DISC selects the s t e r r  feature as most
discriminant. This feature can take two values: sterr and flat. Therefore, the
specimens of the genus erylus are partitioned according to these values
obtaining the partition ((E4, E5, E6, E7, E8, E10, E11, E12) (E9)), where the
sterr  feature takes in E9 the value globular , and in the remaining
specimens takes the value flat. The description D1 build with the sterr
feature having value flat is discriminant but the description D2 containing
the sterr feature having value globular is not. So, D2 has to be specialised by
selecting the next most discriminant feature. After this step, DISC finds
that the next feature to use for specialisation is ped. Finally, the disjunctive
description that characterises the sponges belonging to the genus erylus is
that of figure 9.8

Figure 9.8. Disjunctive description obtained by DISC for the genus
erylus.
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There are two remarks to make about these results. On the one hand, the
sterr feature with value flat is characteristic of the sponges belonging to
the genus erylus. On the other hand, the description of E9 is likely to be
erroneous and also human experts fail in their identification (Domingo,
personal communication).

The LID results using the leave-one-out technique are the
following: 3 correct answers, 4 multiple solution answers including the
correct solution, 1 multiple solution answer without including the correct
solution and 1 incorrect answer. For the correct answers, LID has provided
the description in figure 9.9 as justification of the membership to the
genus erylus.

Figure 9.9. Justification provided by LID for the specimens belonging
to the genus erylus.

We have not applied the majority rule to the multiple solution answers,
since most of them produce an incorrect answer3. In fact, LID identifies
these specimens as belonging to the genus isops. The genus erylus and isops
are very similar. The main difference between them is that the genus
erylus is characterised by a flat sterr in the microscleres whereas the genus
isops has not a flat sterr (Domingo, personal communication). LID does not
select the sterr feature as the most relevant since this feature is not present
in all the training sponges. therefore it does not appear in the built
description. As a consequence, without this feature it is very difficult to
distinguish both genus.

3 This is quite logical since, as we stated before, the sponges dataset is not a good sample of
sponges population, and the majority rule only works if we assume a good population sample
in the dataset (so that most frequent in the sample implies more frequent in the real
population).
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Genus Geodia

The case base of SPIN has 8 sponges (namely E13 … E20) belonging to the
genus geodia. These sponges are described by means of a number of features
varying from 5 to 10. This variability among the descriptions makes it
difficulty to find a set of discriminant features common to all the geodia
specimens. So, INDIE needs several specialisations of the description
obtained from the anti-unification of E13 … E20 in order to build a
discriminant description D. Figure 9.10 shows the disjunctive description
(composed of 5 disjuncts) obtained by INDIE to describe the genus geodia.

Figure 9.10. Disjunctive description for the genus geodia  obtained by
INDIE

The variability of the sponge descriptions affects the DISC results in
constructing the set of candidate features to specialise a current description.
In other words, there are few features common to E13 … E20, therefore the
set of candidates to specialise the current description is also reduced. As a
consequence, it may be necessary to select several common features in order
to obtain a discriminant description. Notice that for each selected feature
several disjuncts have been introduced (one for each different value of the
selected feature). Figure 9.11 shows the disjunctive description (composed of
6 disjuncts) obtained by DISC.

Concerning LID, the results obtained have been the following: 2
correct answers (specimens E15 and E18), 4 multiple solution answers
including the correct solution(E13, E16, E19 and E20), 1 multiple solution
answer without the correct solution and 1 incorrect solution. The
justification for the membership of E15 and E18 to the genus geodia is
shown in figure 9.12.
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Figure 9.11. Disjunctive description for the genus geodia  obtained by
DISC.

Figure 9.12. Descriptions build by LID to justify that E15 and E18
belong to the genus geodia .
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Genus Isops

The case base of SPIN contains four sponges (namely E21, E22, E23 and E24)
described using respectively 11, 5, 13 and 12 features. The description D
obtained from their anti-unification has 5 common features (skel, quim,
form, grow and geo). According to INDIE, D has to be specialised since it
subsumes some negative examples. As in the genus above, INDIE needs
several specialisation steps to find the discriminant disjunctive description
in figure 9.13.

Figure 9.13. Disjunctive description obtained by INDIE for the genus
isops .

Concerning DISC, the heuristic selects sterr as the most relevant feature.
In the specimens of the genus isops, the sterr takes only the value globular,
so more specialisations are necessary. Figure 9.14 shows the disjunctive
description obtained by DISC for the genus isops.

Figure 9.14. Disjunctive description obtained by DISC for the genus
isops .
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LID provides multiple solution answers in identifying specimens
belonging to the genus isops. Only one of these answers does not include
the correct solution (the identification of E21).

Genus Pachymatisma

There are only two specimen (E25 and E26) in the case base that belong to
the genus pachymatisma. Both specimen have very similar descriptions. In
fact they only differ in the description of the spiculate-skeleton feature term
as value of the skel feature. The spiculate-skeleton in E25 has a feature called
spicarch whereas this feature is not present in E26.

The description D obtained from the anti-unification of E25 and
E26 has the same features and values as the description of E26. This
description D does not subsume negative examples, so INDIE (after the post-
process) produces as result the description in figure 9.15.

Concerning DISC, it uses the description D as bias to select a feature
to specialise the current description (initially any). The feature selected as
the most discriminant is pach, so DISC produces the same discriminant
description as INDIE.

Figure 9.15. Description obtained by INDIE and DISC for the genus
pachymatisma.

LID identifies E25 and E26 as belonging to the genus pachymatisma or to the
genus caminus. Let us analyse this result. LID builds a description in a way
similar to DISC. The main difference is that DISC only uses the examples
belonging to the current class whereas LID uses the complete training set.
As a consequence, features common to all the examples of a class may not
be common to all the examples. So, DISC biases these features to specialise
the current description whereas LID does not.

In particular, specimen E25 and E26 have many common features
and DISC takes the pach feature as the most relevant. In fact, this feature is
very characteristic for the genus pachymatisma  (Domingo, personal
communication). Nevertheless, the pach feature is not common to all the
training examples, so it does not appear in the description build by LID
(figure 9.16).

Figure 9.16. Description build by LID to identify the specimens E25
and E26.
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3.1.3. Discussion

The descriptions obtained using INDIE and DISC have been presented to a
domain expert. In general, the expert has considered these descriptions
accurate. This is because although 26 specimen are few they are, however
quite representative of the taxa they belong.

Most of the descriptions obtained are different from the
descriptions that an expert would provide. For instance the description
provided by INDIE and DISC for genus pachymatisma (figure 9.15) is very
short (it contains only the feature pach). Our expert would provide
descriptions having more features but she also thinks that the descriptions
obtained by INDIE (with the post-process) and DISC indeed contain those
features in which an expert focuses his attention to classify a specimen
(Domingo, personal communication).

Concerning LID, applied over the domain of marine sponges, it
provides a high number of answers with multiple solutions (most of them
including the correct one). LID results cannot be compared to those of
INDIE and DISC since the descriptions built by the inductive methods have
used all the available specimens. Instead, LID (that is a lazy learning
method) has been evaluated using the leave-one-out technique. That is to
say, one example perhaps very representative of a taxon, has been leaven for
identification. As a consequence, due to the narrowing strategy followed by
LID over such a small dataset, results of the identification are not
satisfactory. The use of the majority rule is not appropriate because of the
size of the dataset.

4. Conclusions

The goal of SPIN was to solve the identification task in the domain of
marine sponges. The identification task in SPIN can be solved using two
methods: the explore-taxonomy  and the lazy learning method (LID)
explained in chapter 7. The explore-taxonomy method uses the descriptions
of the taxa to identify a new specimen (sponge). These descriptions are
inductively learned from the available specimens using DISC or INDIE. 

Because the available sponges are highly representative of the taxa
they belong, the obtained descriptions are accurate. Also the descriptions
obtained by INDIE, DISC and LID are often equivalent. The opinion of a
domain expert is that the descriptions inductively built by the inductive
methods (INDIE and DISC) contain features that characterise the taxa.
These descriptions are very different (usually shorter) than those found in
the literature.

As future work we plan to extend the case base in order to obtain
descriptions for other others and families of the demospongiae class. This
extension will be made in collaboration with experts in marine sponges of
the CEAB-CSIC institute.



4. Conclusions 223

From the obtained results by extending the case base, it will be
interesting to compare the results of SPIN with those produced by the
SPONGIA Expert System in identifying the same specimens. Also we can
use all the information reported in the literature about the available
specimens since we have used in SPIN the same features that SPONGIA
used.





Chapter 10

Conclusions and Future
Work

This summary chapter contains a short list of the contributions of this
thesis and outlines of some issues which can be object of future research.

1. Contributions

The goal of this thesis is to integrate learning and problem solving. We
have chosen Knowledge Modelling (KM) methodologies to make this
integration since they are methodologies allowing the construction of KS
with problem solving capabilities. We have defined a framework for
developing knowledge systems where learning capabilities are integrated
to the problem solving process resulting from a KM analysis of the
application domain.

Moreover, elements of our framework can be represented using the
feature terms formalism. This formalism solves the question of the
different representations used by both Knowledge Modelling and
Machine Learning techniques.

Summarising, the contributions of the framework we propose are
the following:

• Use of Knowledge Modelling methodologies to analyse Machine Learning
techniques as methods. As a consequence, learning methods are
analysed by means of a task/method decomposition and the models
that a learning method requires and constructs for each task. In this
view, a learning method is like a problem solving method.

• Uniform representation of problem solving and learning methods. Learning
methods are associated to tasks, called KA-Tasks, whose goal is the
acquisition of knowledge required from some problem solving
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activity. Therefore, we propose that an application with learning
capabilities, can be analysed in terms of tasks, models and (problem
solving and learning) methods.

• Problem solving and learning integration. The KM analysis of a domain
application with learning capabilities produces a task/method
decomposition. During the Design phase, the acquisition of some
models is delayed to the Problem Solving phase. For each of these
models a KA-Task and its associated learning method have to be
defined. Therefore, the task/method decomposition representing a
domain application includes tasks (solved using PSM) and KA-tasks
(solved using learning methods).

• Lazy problem-centred selection of PSM during the Problem Solving phase. In
our framework, a task (or KA-Task) can have more than one PSM
associated. The selection of the appropriate PSM can be delayed until
the Problem Solving phase, being the implemented system the
responsible of this selection. In other words, we propose to select the
appropriate method for a task during the problem solving phase
according to the information available when the problem is being
solved. As a consequence, the knowledge required to make this
selection has to be acquired during the KM analysis of the application
domain.

• Multistrategy Learning Systems. A Multistrategy Learning system is a
specific combination of learning methods. During the KM analysis
of a domain, several KA-Tasks can be identified and each KA-Task
can be achieved using a specific learning method. In our framework,
the integration of multiple learning methods is domain specific
(since it depends on the KM analysis) and has not a pre-defined
strategy (since it depends on the PSM selected to solve each new
problem). In other words, when the PSM selected to solve a task
requires a not yet available model, its KA-Task (with an associated
learning method) will be used to acquire it. Therefore, the learning
performed is adapted to both the domain task and the current task
environment. Moreover, each KA-Task, as any task, may have
associated more than one learning methods if need be.

The integration of Machine Learning and Knowledge Modelling needs
to solve a practical issue: the different representation formalisms used by
both techniques. We have addressed this issue using the NOOS
representation language. NOOS uses feature terms (that are a
generalisation of first-order terms) as representation formalism. As a
consequence, we need to introduce learning methods capable to deal with
feature terms. In Part II we have introduced three learning methods
whose contributions are the following:
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• Learning using feature terms. We have shown that relational learning
using feature terms is feasible. Moreover, the learning methods we
propose can deal with relational datasets commonly used in
relational learning and ILP.

• Learning as construction of models. Problem solving is viewed as a process
of construction of models. A PSM solves a problem by building the
solved episode model of that problem. An inductive learning
method is a process that, from past problems (solved episode models)
constructs a model M (required by a PSM). Then, this model M is
used by the PSM to build a solved episode model for the current
problem. A lazy learning method directly builds a new solved
episode model from past problems (solved episode models).

• Inductive learning methods using feature terms. Feature terms form a partial
order with respect to the subsumption relation. In this context,
induction can be seen as a search process in the space of feature terms.
We have defined two inductive learning methods handling feature
terms: INDIE and DISC. INDIE follows a heuristic bottom-up strategy
to build a concept description whereas DISC follows a heuristic top-
down strategy.

• Lazy learning methods using feature terms. Feature terms allow the
structured representation of the examples. We have proposed a lazy-
learning method, LID, for CBR systems where cases have a structured
representation.

• Anti-unification for biasing learning methods. INDIE is a bottom-up method
that uses anti-unification as basis to build concept descriptions. DISC is
a top-down method that uses the anti-unification to select the features
candidates to specialise a current description. LID uses anti-
unification similarly to DISC.

Using the framework proposed in Part I we have analysed both application
domains (Chromatography and Marine Sponges). The obtained analysis
and the learning methods introduced in Part II have been used to develop
two domain applications: CHROMA and SPIN. CHROMA is a tool
supporting protein purification. SPIN is an application to the identification
of marine sponges. CHROMA shows the integration of learning and
problem solving, and also the capability of lazy problem-centred selection
of methods. SPIN integrates learning and problem solving and uses all
the learning methods proposed in Part II.
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2. Future Work

This work has shown that several issues are interesting enough for future
research. Some of these issues are the following:

• Analysis of other biases for the inductive learning methods. The learning
methods defined in Part II have a bias that considers only the
features that appear as leaves of the description obtained from the
anti-unification of the examples. In particular for DISC, it would be
interesting to relax this bias, i.e. to consider any of the features
included in the description obtained from the anti-unification.

• Improvements of the methods in Part II. The learning methods in Part II
have no special mechanism to deal with noisy values. We think that
the incorporation of threshold mechanisms like those used in
propositional learners and in FOIL could be useful. Moreover, ILP
systems use biases controlling the number of predicates and variables
that may be included into an inductive hypothesis. An equivalent bias
mechanism over feature terms can be introduced by controlling the
number of features and nodes of an inductive hypothesis (description).

• Inductive learning of programs. ILP systems use Horn clauses as
representation formalism. The performance of Horn clauses has been
widely studied in two fields: concept learning and program
learning. We have analysed the feature terms performance in
concept learning. Nevertheless, feature terms are used in NOOS to
also represent methods. Therefore, in the future we plan to analyse
how methods (i.e. programs) can be learned using feature terms.

• Variants of the LID method. A variant of LID is to store and reuse the
description inductively build. This LID modification can be seen as
an intermediate strategy between eager (inductive) and lazy
learning. Another possible variant of LID is to use some domain
knowledge (such as relevant features of the problem to be solved) to
build the description from which the discriminant base is obtained.

• Translation of propositional datasets. Feature terms allow the structured
representation of objects. Nevertheless, we have not used all the power
of this formalism since examples of standard propositional datasets
used in Part II have not been represented in a structured way. The
reason is that we have not the domain knowledge required to
translate them, in a meaningful way, to a structured representation.
Only after having this translation, in addition to the mechanism to
control noise, it will be worthwhile to perform further evaluations of
INDIE, DISC and LID with other propositional datasets.
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• Improvement of CHROMA. The selection of a PSM to solve the
purification task is based on the applicability conditions model
and on the preferences model, both acquired during the KM analysis
of the domain. In the future we plan to analyse how to learn, for each
PSM, the applicability conditions model and the preferences
model. As a consequence, the acquisition of both models during the
KM analysis was not necessary.

• Improvement of SPIN. The SPIN application can be improved by
enlarging the case base in order to include other classes, families
and orders of marine sponges. This improvement will be made in
collaboration with spongiologists of the CEAB-CSIC.





APPENDIX A

Description of the Datasets

1. Robots Dataset

This dataset is used in (Lavrac and Dzeroski, 1994) to describe the LINUS
system. Examples are tuples of attribute values labelled with a concept
name. Domain objects are robots (see figure A.1) described by five features:
smiling, has-tie, holding, body-shape and head-shape.

Attributes and Values

Robot Class Smiling Holding Has-tie
Head-
shape

Body -
shape

R1 friendly yes balloon yes square square
R2 friendly yes flag yes octagon octagon
R3 unfriendly yes sword yes round octagon
R4 unfriendly yes sword no square octagon
R5 unfriendly no sword no octagon round
R6 unfriendly no flag no round octagon

Figure A.1. Description of the robots used as inputs.

We have represented the robots (see figure A.2) as feature terms having
two features: description and solution. The description feature contains
the description of a robot, which is a feature term belonging to the sort
robot and has the same five features as LINUS, i.e. smiling, has-tie,

holding, body-shape and head-shape. The solution feature contains the
class to which the described robot belongs, i.e. friendly or unfriendly.
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Figure A.2. A robot description using feature terms.

The hypotheses induced by LINUS have the form of if-then rules, for
instance:

Class = friendly if [smiling = yes] ∧  [holding = balloon]
Class = friendly if [smiling = yes] ∧  [holding = flag]

Class = unfriendly if [smiling = no]
Class = unfriendly if [smiling = yes] ∧  [holding = sword]

In section 4.1.1 of chapter 6 we have shown that DISC obtains similar
descriptions as LINUS.

To obtain relational descriptions, LINUS needs to introduce
background knowledge. This background knowledge is introduced by
adding attributes whose value may be true or false according to the relation
of other attributes.

For example, background knowledge can check for attributes with
the same set of values). In the world of the robots this would lead to two
new attributes that test the equalities [smiling = has-tie] and [head-shape =
body-shape], named same-shape, the values are true and false. Using this
idea the robot descriptions can be expressed in the following way:

Attributes and Values

Robot Class Smiling Holding Has-tie
Head-
shape

Body -
shape

Same-
shape

R1 friendly yes balloon yes square square true
R2 friendly yes flag yes octagon octagon true
R3 unfriendly yes sword yes round octagon false
R4 unfriendly yes sword no square octagon false
R5 unfriendly no sword no octagon round false
R6 unfriendly no flag no round octagon false
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Using the feature term representation described above, INDIE has obtained
the same relational representation as LINUS using the additional attribute
same-shape (see section 4.1.1 in chapter 5).

2. Drugs Dataset

The Drugs domain is used by the KLUSTER system (Kietz and Morik,
1994). Domain objects are descriptions of several drugs. Inputs to KLUSTER
are the following assertions:

contains(aspirin, asa) affects(oxazepun, stress)

contains(adumbran, coffein) affects(phenazetin, headache)

contains(adumbran, oxazepun) affects(asa, headache)

contains(anxiolit, oxazepun) affects(prophymazon, headache)

contains(anxiolit, finalin) sedative(adumbran)

contains(adolorin, phenazetin) active(finalin)

contains(adolorin, prophymazon) active(oxazepun)

contains(adolorin, nhc) active(asa)

contains(placo, nhc) active(phenazetin)

contains(alka-seltzer, nhc) active(prophymazon)

contains(placo, sugar) add-on(sugar)

contains(alka-seltzer, asa) add-on(coffein)

excitement(stress) add-odd(nhc)

pain(headache) monodrug(alka-seltzer)

combidrug(anxiolit) monodrug(aspirin)

combidrug(adolorin) monodrug(adumbran)

placebo(placo) anodyne(adolorin)

anodyne(aspirin) anodyne(alka-seltzer)

From these descriptions KLUSTER builds a basic taxonomy, which is a
hierarchy of primitive concepts and roles based on set inclusion between
the known extensions of concepts and roles. From this taxonomy a set of
learning problems is defined. The concepts that KLUSTER tries to define
are taken top-down and breadth-first from the basic taxonomy. A concept
learning problem of KLUSTER is to build discriminant definitions of
mutually disjoint concepts (those having a same superconcept and that are
mutually disjoint). A description is considered discriminant if the
number of misclassified examples is lower or equal than a given
threshold. KLUSTER obtains the following descriptions for the monodrug
and combidrug concepts:
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monodrug := drug and atleast(1, constains) and atmost(2, contains) and
atleast(1, constains-active) and at-most(1, contains-active) and atmost(1,
contains-add-on)

combidrug := drug and atleast(2, contains) and atmost(3, contains) and atleast(2,
contains-active) and atmost(2, contains-active) and atmost(1, contains-add-on)

We have represented the drugs as feature terms. Thus, each drug (i.e.
Alka-Seltzer, Aspirine, Adumbran, Adolorin and Anxiolit) is an object
belonging to the sort drug . Objects in this sort contains two features:
contains and effects. In turn, the feature contains has as values objects
belonging to sort active-substance, to sort add-on-substance, or to both (since
the value of the contains feature may be a set). Objects belonging to the
active-substance sort can have the affects feature showing the symptom to
which the active substance affects. The feature effects can take as value
anodyne or sedative. The solution feature contains the solution class to which
the described drug belongs. Figure A3 shows the background knowledge
in the form of sorts relevant to the Drugs domain.
(define DRUG)

(define SYMPTOM)

(define (symptom STRESS))

(define (symptom HEADACHE))

(define SET-EFFECTS)

(define (set-effects SEDATIVE))

(define (set-effects ANODYNE))

(define SUBSTANCE)

(define (substance ACTIVE-SUBSTANCE))

(define (substance ADD-ON-SUBSTANCE))

     (define (active-substance FINALIN))

     (define (active-substance ASA)
       (AFFECTS headache))

     (define (active-substance OXAZEPUN)
       (AFFECTS stress))

(define (active-substance PHENAZETIN))

(define (active-substance PROPHYMAZON))

(define (add-on-substance COFFEIN))

(define (add-on-substance NHC))

(define (add-on-substance SUGAR))

(define (drug ANXIOLIT) 
  (CONTAINS oxazepun finalin))

(define (drug ASPIRINE) 
  (EFFECTS anodyne)
  (CONTAINS asa))

(define (drug ADUMBRAN) 
  (EFFECTS sedative)
  (CONTAINS coffein oxazepun))

(define (drug ADOLORIN) 
  (EFFECTS anodyne)
  (CONTAINS phenazetin prophymazon nhc))

(define (drug PLACO) 
  (CONTAINS nhc sugar))

(define (drug ALKA-SELTZER) 
  (EFFECTS anodyne)
  (CONTAINS asa nhc))

Figure A.3. Representation of the background knowledge of the Drugs
dataset using feature terms.
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Thus, for instance DP6 has as value in the description feature, the feature
term Alka-Seltzer belonging to the sort drug. This drug is a feature term
having two features: effects (with value anodyne) and contains (with a set
of values: asa and Nhc). The value Asa (acetyl salicylic Acid) is a feature term
belonging to the sort active-substance and Nhc is a feature term belonging to
the add-on-substance sort. The solution feature of DP6 has as value monodrug.
In figure A.4 can be shown the description of the examples using feature
terms.

(define (drug-problem DP1)
  (DESCRIPTION anxiolit)
  (SOLUTION (define (solution)
              (CLASS combidrug))))

(define (drug-problem DP2)
  (DESCRIPTION aspirine)
  (SOLUTION (define (solution)
              (CLASS monodrug))))

(define (drug-problem DP3)
  (DESCRIPTION adumbran)
  (SOLUTION (define (solution)
              (CLASS monodrug))))

(define (drug-problem DP4)
  (DESCRIPTION adolorin)
  (SOLUTION (define (solution)
              (CLASS combidrug))))

(define (drug-problem DP5)
  (DESCRIPTION placo)
  (SOLUTION (define (solution)
              (CLASS placebo))))

(define (drug-problem DP6)
  (DESCRIPTION alka-seltzer)
  (SOLUTION (define (solution)
              (CLASS monodrug))))

Figure A.4. Representation of the Drugs dataset using feature terms.

3. Arch Dataset

The Arch dataset was introduced by Winston (1975). This dataset has four
examples of figures (figure A.5). A figure is composed of three blocks: two
vertical and one horizontal. Two of the figures correspond to an arch figure
and the remaining two figures are not arches.

Figure A.5. Training examples of the Arch dataset
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In the ILP framework, the goal is to induce the relation arch(A,B,C),
stating that A, B, and C form an arch with columns B and C and lintel A.
The following background relations were used: supports(X,Y), left-of(X,Y),
touches(X,Y), brick(X), wedge(X) and parallelepiped(X).

The result of LINUS when the negative examples are explicitly
provided is the following:

arch(A,B,C) ← supports(B,A), not touches(B,C).

i.e. A, B, and C form an arch if B supports A and B does not touch C.
Regarding FOIL, it is not capable to obtain a description when the
negative examples are explicitly given. When the negative examples are
provided according the closed-world assumption FOIL and LINUS provide
the following result:

arch(A,B,C) ← left-of(B,C), supports(B,A), not touches(B,C).

i.e. A, B, and C form and arch if B is left to C and B supports A and B does
not touch C. The definition obtained when the negative examples are
explicitly given is more general than the obtained using the closed-world
assumption.

As it has been explained in section 4.1.3 in chapter 5, the
description obtained by FOIL and LINUS is consistent with the provided
input examples nevertheless it covers some unseen negative examples.
When the covered negative examples are also entered as training
examples, LINUS obtains the following description:

arch(A,B,C) ← supports(B,A), supports(C,A), not touches(B,C).

Using feature terms we have represented the objects in figure A.5 in the
following way:
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Each figure is a feature term with root of the sort figure representing the
descriptions above. A figure is described by three features: left, center and
right. The values of these feature are feature terms belonging to the sort
brick. Brick feature terms have four features: left-to, right-to, supports and
touches. The touches feature of a brick B1 has as value the brick feature
terms that are in contact with B1. If there are not brick feature terms
touching B1, the value of the touches feature is no-one.

4. Families Dataset

The families dataset was introduced by Hinton (1989). This dataset contains
the description of two families having twelve members each (figure A.6).

LINUS was used to learn the relation mother(A,B) from examples
of this relation and the background relations father(X,Y), wife(X,Y),
son(X,Y) and daughter(X,Y). Negative examples were generated under
closed-world assumption.
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Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

Colin Charlotte

Roberto = Maria Piero = Francesca

Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonso Sophia

Figure A.6. Training set of the Families dataset.

Methods described in Part II search for concept descriptions instead of
relations as LINUS. In particular, we have searched for the mother and uncle
concepts (see section 4.1.4 in chapter 5 and section 4.1.4 in chapter 6).
Negative examples of a concept are those person feature terms that do not
belong to the concept. For instance, some negative examples of mother are
Christopher, Andrew and Margaret (see figure A.6).

The representation of a family of this dataset using feature terms is
shown in figure A.7. Each person of a family can belong to the sort male or
female and its features are relations with other persons feature terms. So, for
example, Charles belongs to the sort male and has three features: wife,
niece and nephew. Instead, Colin also belongs to the sort male but they have
7 features: mother, father, sister, grandfather, grandmother, uncle, and
aunt.
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(define (male CHRISTOPHER)
  (SON Arthur)
  (DAUGHTER Victoria)
  (WIFE Penelope))

(define (female PENELOPE)
  (SON Arthur)
  (DAUGHTER Victoria)
  (HUSBAND Christopher))

(define (male ANDREW)
  (SON James)
  (DAUGHTER Jennifer)
  (WIFE Christine))

(define (female CHRISTINE)
  (SON James)
  (DAUGHTER Jennifer)
  (HUSBAND Andrew))

(define (female MARGARET)
  (HUSBAND Arthur)
  (NIECE Charlotte)
  (NEPHEW Colin))

(define (male ARTHUR)
  (WIFE Margaret)
  (FATHER Christopher)
  (MOTHER Penelope)
  (SISTER Victoria)
  (NIECE Charlotte)
  (NEPHEW Colin))

(define (male CHARLES)
  (WIFE Jennifer)
  (NIECE Charlotte)
  (NEPHEW Colin))

(define (female VICTORIA)
  (HUSBAND James)
  (FATHER Christopher)
  (MOTHER Penelope)
  (BROTHER Arthur)
  (SON Colin)
  (DAUGHTER Charlotte))

(define (male JAMES)
  (WIFE Victoria)
  (FATHER Andrew)
  (MOTHER Christine)
  (SISTER Jennifer)
  (SON Colin)
  (DAUGHTER Charlotte))

(define (female JENNIFER)
  (HUSBAND Charles)
  (FATHER Andrew)
  (MOTHER Christine)
  (BROTHER James)
  (NIECE Charlotte)
  (NEPHEW Colin))

(define (male COLIN)
  (FATHER James)
  (MOTHER Victoria)
  (SISTER Charlotte)
  (GRANDFATHER Christopher Andrew)
  (GRANDMOTHER Penelope Christine)
  (UNCLE Arthur Charles)
  (AUNT Jennifer Margaret))

(define (female CHARLOTTE)
  (FATHER James)
  (MOTHER Victoria)
  (BROTHER Colin)
  (GRANDFATHER Christopher Andrew)
  (GRANDMOTHER Penelope Christine)
  (UNCLE Arthur Charles)
  (AUNT Jennifer Margaret))

Figure A.7. Representation of a family using feature terms.



240 Appendix A. Description of the Datasets
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Eastbound Trains Westbound Trains

Figure A.8. Training examples of the Trains Dataset

5. Trains Dataset

This dataset was introduced by Michalski (1980) to test the INDUCE system.
The Trains dataset is composed of the description of 10 trains having
different numbers of cars with various shapes (figure A.8). The task is to
distinguish between eastbound and westbound trains. Having structured
objects with varying numbers of substructures, the task is difficult to be
solved with attribute-value learning programs but should be appropriate for
relational learning. Relations eastbound(T) and westbound(T) are defined in
terms of the following relations:

has-car(T,C) long(C)
open-rectangle(C) u-shaped(C)
open-trapezoid(C) ellipse(C)
closed-rectangle(C) jagged-top(C)
sloping-top(C) two-wheels(C)
three-wheels(C)

Using ASSISTANT, LINUS generated a long description (consisting of 19
Prolog clauses) for the eastbound trains. After post-processing reduced to
only one clause, identical to the one induced by FOIL.
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FOIL also has been applied to this dataset. This system has no
problem in finding the eastbound description. Nevertheless, FOIL is not
capable to obtain descriptions covering all the positive examples of the
westbound class. The INDUCE system is capable to obtain a description for
the westbound class thanks to its ability to generate new descriptors.

The representation of this dataset using feature terms can be seen
in figure A.9.

(define (train TRAIN-1)
  (WAGON1 (define (open-car)
            (WHEELS 2)
            (SIZE (define (long)))
            (FORM-CAR (define (openrect)))
            (LOAD-SET (define (rectanglod))
                      (define (rectanglod))
                      (define (rectanglod)))))
  (WAGON2 (define (closed-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (slopetop)))
            (LOAD-SET (define (trianglod)))))
  (WAGON3 (define (open-car)
            (WHEELS 3)
            (SIZE (define (long)))
            (FORM-CAR (define (openrect)))
            (LOAD-SET (define (hexagonlod)))))
  (WAGON4 (define (open-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (openrect)))
            (LOAD-SET (define (circlelod))))))

(define (train TRAIN-5)
  (WAGON1  (define (open-car)
             (WHEELS 2)
             (SIZE (define (short)))
             (FORM-CAR (define (dblopnrect)))
             (LOAD-SET (define (trianglod)))))
  (WAGON2 (define (closed-car)
            (WHEELS 3)
            (SIZE (define (long)))
            (FORM-CAR (define (closedrect)))
            (LOAD-SET (define (rectanglod)))))
  (WAGON3 (define (closed-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (closedrect)))
            (LOAD-SET (define (circlelod))))))

(define (train TRAIN-6)
  (WAGON1 (define (closed-car)
            (WHEELS 2)
            (SIZE (define (long)))
            (FORM-CAR (define (closedrect)))
            (LOAD-SET (define (circlelod))
                      (define (circlelod))
                      (define (circlelod)))))
  (WAGON2 (define (open-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (openrect)))
            (LOAD-SET (define (trianglod))))))

(define (train TRAIN-9)
  (WAGON1 (define (open-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (opentrap)))
            (LOAD-SET (define (circlelod)))))
  (WAGON2 (define (closed-car)
            (WHEELS 2)
            (SIZE (define (long)))
            (FORM-CAR (define (jaggedtop)))
            (LOAD-SET (define (rectanglod)))))
  (WAGON3 (define (open-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (openrect)))
            (LOAD-SET (define (rectanglod)))))
  (WAGON4 (define (open-car)
            (WHEELS 2)
            (SIZE (define (short)))
            (FORM-CAR (define (opentrap)))
            (LOAD-SET (define (circlelod))))))

Figure A.9. Some of the trains in figure A.7 represented as feature
terms.

i.e. each train is a feature term belonging to the sort train which has a
variable number of features. Thus train-1 has four wagon features whereas
train-6 has two wagon features. Each wagon is a feature term that can belong
to two sorts either open-car or closed-car. Both are subsorts of the car-type sort
which features are the following: wheels, size, form-car, and load-set.
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As we have seen in section 4.1.5 of chapter 5 and in section 4.1.5 of
chapter 6, the representation of the trains dataset using feature terms
allows the construction of descriptions for both eastbound and westbound
classes.

6. Traffic Law Dataset

The Traffic Law dataset was introduced to test the MOBAL system (Morik et
al., 1993) has background knowledge of some basic traffic regulations and a
few sample cases of traffic violations. The Traffic Law domain is concerned
with some basic knowledge about traffic regulations in Germany. The
problem solving goal of the model is to derive a classification of the case
along several dimensions, i.e. determining who will be held responsible
for violation, how high the fine will be, and whether the responsible
person will have to go to court.

The intention behind the creation of this domain model was to
construct a model which could be used for experiments with MOBAL
knowledge representation and learning modules. The datasets examples
are about parking regulations, speed limits, vehicle safety and fines. The
resulting domain, has 15 cases and background knowledge.

The basis for the Traffic Law domain model consists of a
representation of several cases of traffic violations (see figure A.10). Each of
these cases is represented by a number of MOBAL facts which provide
featural and relational information.

The system automatically constructs a sort lattice based on the actual
arguments used as predicate arguments in a domain model. Also this
lattice can contain explicit symbolic sort definitions, provided by the user,
for the predicates that are used (see (Morik et al., 1993) for more
information about the MOBAL performance). MOBAL also has a predicate
topology that either can be acquired automatically by the system based on
the current set of rules or can be defined manually.
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===============================
responsible(sw,event1).
not(appeals(sw,event1)).
not(court_citation(sw,event1)).
owner(sw,b_au_6773).
pays_fine(event1,sw).
involved_vehicle(event1,b_au_6773).
car_parked(event1,place1).
car_towed(event1,b_au_6773).
fine(event1,20).
bus_lane(place1).
sedan(b_au_6773).
not(tvr_points_p(event1)).

===============================
responsible(dj,event2).
appeals(dj,event2).
court_citation(dj,event2).
owner(dj,b_dx_1385).
involved_vehicle(event2,b_dx_1385).
car_parked(event2,place2).
sedan(b_dx_1385).
sidewalk(place2).
not(tvr_points_p(event2)).
not(unsafe_vehicle_violation(event2)).

===============================
responsible(mo,event3).
involved_vehicle(event3,hh_mo_195).
appeals(mo,event3).
car_parked(event3,place3).
court_citation(mo,event3).
owner(mo,hh_mo_195).
level_crossing(place3).
sedan(hh_mo_195).
not(tvr_points_p(event3)).

===============================
responsible(md,event4).
involved_vehicle(event4,b_md_4321).
appeals(md,event4).
car_parked(event4,place4).
court_citation(md,event4).
owner(md,b_md_4321).
fire_hydrant(place4).
sedan(b_md_4321).
not(tvr_points_p(event4)).

===============================
responsible(ab,event6).
involved_vehicle(event6,b_ab_89).
eco_expired(b_ab_89).
owner(ab,b_ab_89).
not(lights_necessary(event6)).
not(parking_violation(event6)).
sedan(b_ab_89).
not(tvr_points_p(event6)).

===============================
responsible(bc,event7).
involved_vehicle(event7,b_bc_90).
color(b_bc_90,blue).
eco_expired(b_bc_90).
owner(bc,b_bc_90).
sedan(b_bc_90).
not(tvr_points_p(event7)).

===============================
responsible(cd,event8).
time(event8,time8).
involved_vehicle(event8,b_cd_01).
dark(time8).
owner(cd,b_cd_01).
not(headlights_on(b_cd_01,event8)).
sedan(b_cd_01).
not(tvr_points_p(event8)).

===============================
responsible(de,event9).
involved_vehicle(event9,b_de_12).
appeals(de,event9).
court_citation(de,event9).
owner(de,b_de_12).
sedan(b_de_12).

===============================
responsible(ef,event10).
time(event10,time10).
involved_vehicle(event10,b_ef_23).
appeals(ef,event10).
court_citation(ef,event10).
owner(ef,b_ef_23).
faulty_brakes(b_ef_23).
fog(time10,place10).
not(headlights_on(b_ef_23,event10)).
location(event10,place10).
sedan(b_ef_23).
not(tvr_points_p(event10)).

Figure A.10. Some of the cases used by MOBAL.
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Finally, the Traffic Law dataset also contains background knowledge of
inferential relations in the domain. In figure A.11 there are the rules
used as background knowledge.

sidewalk(X) → no-parking(X)

second-row (X) → no-parking(X)

bus-lane → no-parking(X)

fire-hydrant (X) → no-parking(X)

level-crossing → no-parking(X)

road-edge(X) → not(second-row(X))

road-edge(X) & not(no-parking-sign(X)) → parking-allowed(X)

car-parked(X,Y) & no-parking(Y) → parking-violation(X)

time(X,Y) & dark(Y) →  lights-necessary(X)

time(O;X) & place(O,Y) & fog(X,Y) → lights-necessary(O)

involved-vehicle(X,Y) & major-corrosion(Y) → unsafe-vehicle-violation(X)

involved-vehicle(X,Y) & faulty-brakes(Y) → unsafe-vehicle-violation(X)

involved-vehicle(X,Y) & worn-tires(Y) → unsafe-vehicle-violation(X)

Figure A.11. Background knowledge used by MOBAL.

Authors first entered data consisting of a group of twelve sample cases so as
to provide as basis for the learning process. Then the module of MOBAL
called RDT was applied to a number of interesting predicates and several
rules were discovered. They have found that some of the rules were not
what they had intended, and augmented the knowledge base with
additional facts and predicates. The RDT module finally arrived to the
following set of rules:

R51: responsible(X,Y) & unsafe-vehicle-violation(Y) → appeals(X,Y)

R52: responsible(X,Y) & unsafe-vehicle-violation(Y) → court-citation(X,Y)

R53: court-citation(X,Y) & parking-violation(Y) → appeals(X,Y)

R54: involved-vehicle(X,Y) & owner(Z,Y) → responsible(Z,X)

R55: court-citation(X,Y) & unsafe-vehicle-violation(Y) → appeals(X,Y)

R56: appeals(X,Y) & parking-violation(Y) → court-citation(X,Y)

R57: appeals(X,Y) & unsafe-vehicle-violation(Y) → court-citation(X,Y)

R58: involved-vehicle(X,Y) & not(buckled-up(X,Y)) → not(tvr-points-p(X))

R59: involved-vehicle(X,Y) & lights-necessary(X) & not(headlights-on(Y,X)) →
not(tvr-points-p(X))

R60: parking-violation(X)  → not(tvr-points-p(X))

R61: lights-necessary(X)  → not(tvr-points-p(X))
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In section 1.2 of chapter 4 we have described how the background
knowledge is represented using feature terms. An example of how the
cases in figure A.10 are represented using feature terms is the following:

(define (traffic-law-case tlc-1)
  (DESCRIPTION (define (description-case)
                 (event (define (event)
                          (involved-vehicle (define (vehicle)
                                              (owner SW)
                                              (sedan true)))
                          (car-parked (define (bus-lane)))
                          (car-towed (>> involved-vehicle event))
                          (responsible SW)      
                          (fine 20) 
                          (pays-fine SW)))
                 (appeals false)
                 (tvr-points-p false)))
  (SOLUTION no-court-citation))

In particular, the TLC-1 is a feature term belonging to the sort traffic-law-
case that has two features: description and solution. The solution feature
indicates the kind of traffic violation that describes the case. In section
4.1.6 of chapter 5 and in section 4.1.6 of chapter 6 can be seen the results of
the application of INDIE and DISC respectively to this dataset.

7. Mesh Dataset

The finite element method is frequently used to analyse stresses in
physical structures represented quantitatively as finite collections (meshes)
of elements. Engineers partition the structure into a finite number of
connected elements and the deformation of each element is computed
using linear algebraic equations. In order to design a numerical model of
a physical structure it is necessary to decide the appropriate resolution for
modelling each component part.

The mesh would represent the exact shape of the structure. Fine
meshes are adequate where the expected deformations are small. Ideally,
the coarsest mesh which gives rise to sufficiently low errors is employed.
This minimises the required computation time since each additional
element adds an extra linear algebraic equation to the set which must be
solved.

Too fine a mesh leads to unnecessary computational overheads
when executing the model, while too coarse a mesh produces intolerable
approximation errors. It is very difficult to known in advance where the
mesh should be fine and where it should be coarse because a number of
parameters have to be considered (i.e. shape of the structure, loadings and
boundary conditions).
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Usually it is necessary to make a few different meshes until the
right one is found. The trouble is that each mesh must be analysed, since
we generate the next mesh on the base of the results derived from the
previous mesh. Each mesh analysis can take several days of computer time,
so iterative analysis can be very costly. There exists a great need for
knowledge-based systems which are able to automatically design finite
element meshes.

An attribute-value representation used in most of the available
Machine Learning systems is essentially inappropriate for representing
this problem since a reasonable representation of the geometry of a
structure must include the relations between its primitive components,
which cannot be represented naturally in an attribute-value language.
Instead, ILP techniques have been applied. Dolsak applied the ILP system
called GOLEM (Dolsak and Muggleton, 1992) to construct rules deciding
on appropriate mesh resolution. Then the same problem was used in FOIL
and mFOIL.

The resolution of a finite element mesh is determined by the
number of elements on each of its edges. The problem of learning rules
for determining the resolution of a finite element mesh can be formulated
as a problem of learning rules to determine the number of elements on an
edge. The training examples have the form mesh(E,N) where E is an edge
label (unique for each edge) and N is the number of elements on the edge
denoted by label E. N takes values from 1 to 17.

In preliminary experiments (Dolsak and Muggleton, 1992), three
objects (structures) with their corresponding meshes were used in the
learning process: a hook, a hydraulic press cylinder and a paper mill. In
figure A.12 there is the representation of the hook used in GOLEM.

mesh(b1,9)
mesh(b2,1)
mesh(b3,2)
mesh(b4,7)
mesh(b5,1)
mesh(b6,1)
mesh(b7,1)

mesh(b8,9)
mesh(b9,1)
mesh(b10,2)
mesh(b11,7)
mesh(b12,1)
mesh(b13,1)
mesh(b14,1)

Figure A.12. Meshes corresponding to the hook structure used in
GOLEM.

FOIL and LINUS gathered data about three additional structures: a pipe
connector, a roller and a bearing box. Our experiments have used the same
structures that GOLEM, since we have not an exhaustive information about
the results obtained by LINUS and FOIL.
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• Types of the edges

   important-long(b1)
   important-long(b8)

   important(b4)
  important(b11)

   important-short(b3)
   important-short(b10)

   not-important(b2)
   not-important(b5)
   not-important(b6)
   not-important(b7)
   not-important(b9)
   not-important(b12)
   not-important(b13)
  not-important(b14)

• Boundary conditions

   free(b2)
   free(b3)
  free(b7)
   free(b9)
   free(b10)
   free(b14)

   one-side-fixed(b1)
   one-side-fixed(b4)
   one-side-fixed(b8)
   one-side-fixed(b11)

   two-side-fixed(b5)
   two-side-fixed(b6)
   two-side-fixed(b12)
   two-side-fixed(b13)

• Loads

   not-loaded(b1)
   not-loaded(b2)
   not-loaded(b5)
   not-loaded(b6)
   not-loaded(b7)
   not-loaded(b8)
   not-loaded(b9)
   not-loaded(b12)
   not-loaded(b13)
   not-loaded(b14)

   one-side-loaded(b3)
   one-side-loaded(b4)
   one-side-loaded(b10)
   one-side-loaded(b11)

• Geometric representation

   neigbour-xy-r(b1,b13)
   neigbour-xy-r(b13,b8)
   neigbour-xy-r(b8,b7)
   neigbour-xy-r(b7,b1)
   neigbour-xy-r(b4,b6)
   neigbour-xy-r(b6,b11)
   neigbour-xy-r(b10,b14)
   neigbour-xy-r(b14,b3)

   neighbour-zx-r(b5,b1)
   neighbour-zx-r(b8,b9)
   neighbour-zx-r(b9,b10)
   neighbour-zx-r(b10,b11)
   neighbour-zx-r(b11,b12)
   neighbour-zx-r(b12,b8)
   neighbour-zx-r(b1,b2)
   neighbour-zx-r(b2,b3)
   neighbour-zx-r(b3,b4)
   neighbour-zx-r(b4,b5)

neighbour-yz-r(b5,b6)
neighbour-yz-r(b6,b12) 
neighbour-yz-r(b12,b13) 
neighbour-yz-r(b13,b5)
neighbour-yz-r(b2,b7)
neighbour-yz-r(b7,b9)
neighbour-yz-r(b9,b14)
neighbour-yz-r(b14,b2)

opposite-r(b11,b8)
opposite-r(b1,b8)
opposite-r(b3,b1)
opposite-r(b3,b1)
opposite-r(b4,b1)
opposite-r(b10,b8)

same-r(b1,b8)

Figure A.13. Description of the edges composing the hook structure
used by the GOLEM system. Some predicates such as neighbour-xy-l,
neighbour-yz-l, neighbour-zx-l, opposite-l and same-l are
not show here. They have the same arguments as the predicates with
suffix -r.

GOLEM needs three types of input data to build the rules:

• Foreground examples that contains the examples of classified edges of
meshes (as in figure A.12).
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• Negative examples that contain all possible combinations of names
and number other than those found in the foreground examples.

• Background facts that are definitions of the vocabulary that can be used
to describe hypotheses about meshes. The contents of the background
are divided into five parts: declarations, type of edges, boundary
conditions, loads, and geometric representations. Figure A.13 shows
the definitions of the elements of the hook.

Using feature terms we have defined two main sorts: mesh and edge. Objects
of the mesh  sort have two features: description  and solution . The
description feature contains the description of an object of sort edge. The
solution feature contains the solution class to which the described edge
belongs. Some of the meshes and edges of the hook structure are the
following:

(define (edge B1) (define (mesh-problem M349)
  (TYPE half-circuit-hole)   (DESCRIPTION b1)
  (BOUNDARY-CONDITIONS fixed)   (SOLUTION nine))
  (LOADINGS no-loaded)
  (NEIGHBOUR-XY-R B34)
  (NEIGHBOUR-YZ-R B2) (define (mesh-problem M22)
  (NEIGHBOUR-XY-L B34)     (DESCRIPTION b2)
  (NEIGHBOUR-YZ-L B2)   (SOLUTION one))
  (OPPOSITE-R B3)
  (OPPOSITE-L B3))

(define (mesh-problem M24)
(define (edge B2)   (DESCRIPTION b3)
  (TYPE not-important)   (SOLUTION two))
  (BOUNDARY-CONDITIONS fixed)
  (LOADINGS no-loaded)
  (NEIGHBOUR-YZ-R B3) (define (mesh-problem M25)
  (NEIGHBOUR-ZX-R B5)   (DESCRIPTION b4)
  (NEIGHBOUR-YZ-L B3)   (SOLUTION seven))
  (NEIGHBOUR-ZX-L B5))

(define (edge B3) (define (mesh-problem M26)
  (TYPE half-circuit)   (DESCRIPTION b5)
  (BOUNDARY-CONDITIONS fixed)   (SOLUTION one))
  (LOADINGS no-loaded)
  (NEIGHBOUR-XY-R B5)
  (NEIGHBOUR-YZ-R B4) (define (mesh-problem M27)
  (NEIGHBOUR-XY-L B5)   (DESCRIPTION b6)
  (NEIGHBOUR-YZ-L B4))   (SOLUTION one))

(define (edge B4)
  (TYPE not-important) (define (mesh-problem M349)
  (BOUNDARY-CONDITIONS fixed)   (DESCRIPTION b7)
  (LOADINGS no-loaded)   (SOLUTION one))
  (NEIGHBOUR-ZX-R B35)
  (NEIGHBOUR-ZX-L B35))

Notice that the objects belonging to sort edge have as values of some features
(i.e. neighbour, opposite, etc) objects that are also of sort edge.
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Results of the application of INDIE and DISC over the Mesh dataset
can be respectively found in section 4.1.7 of chapter 5 and in section 4.1.7 of
chapter 6.

8. Soybean Dataset

This dataset has been obtained from the Irvine ML Repository. Objects of
this dataset are descriptions of soybean plant having some disease.
Concretely, there are 19 solution classes corresponding to the different
diseases. Each example is described by 35 features.

There are two datasets: small soybean and large soybean. Small
soybean dataset is a subset of the large Soybean. It contains 49 examples that
are also contained in large soybean dataset. None of these 49 examples has
unknown values and there are only four solution classes: diaporthe stem
canker, charcoal rot, rhizoctonia root rot and phytophtora rot. Instead,
large soybean has 307 examples that can belong to 19 solution classes. Some
features of the examples can have unknown values and others can have the
special value DNA (does not appear).

Commonly, examples in this domain are represented as attribute-
value vectors. We have represented the examples as feature terms
belonging to the sort soybean-problem having two features: description and
solution. The description feature contains the description of a soybean
plant (that is represented as an object of the sort soybean) and the feature
solution contains the solution class to which the described plant belongs.
Figure A.14 shows the description of an example.

As we have explained in section 4.2.3 of chapter 5 when a feature
has unknown value it does not appear in the feature term. Concerning the
DNA value, we have handled it as any other value.
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Figure A.14. Description of a soybean example.

9. Lymphography Dataset

This dataset has been obtained from the Irvine ML Repository. Objects of
this dataset are descriptions of lymphographies. Each lymphography is
described by 18 features and there is no features with unknown values.
There are four solution classes: malign-lymph, metastases, fibrosis and normal-
find. These solution classes have a very different number of examples, i.e.
malign-lymph contains 61 examples, metastases contains 81 examples, fibrosis
contains 4 examples and normal-find contains 2 examples.

Using feature terms we have defined each lymphography as a
feature term belonging to the sort lymphography-problem. A lymphography-
problem has two features (see figure A.15): description and solution. The
value of the feature description is a feature term belonging to the sort
lymphography that has 18 features. The value of the feature solution is the
class to which the described lymphography belongs.
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Figure A.15. Description of a Lymphography example.





APPENDIX B

Introduction to the Protein
Purification domain

1. Introduction

Protein purification is the process that allows the isolation of one molecule
among many others. Once the molecule of interest has been isolated, its
structure, function, electrical and physical properties and behaviour can be
analyzed. The development of techniques and methods for the separation
and purification of biological macro-molecules (such as proteins) has been
an important prerequisite for many of the advancements made in
biosciences and biotechnology over the past three decades.

The purification process  may be analytical or preparative. An
analytical purification is made when there is a small amount of the
molecule to purify. This kind of purification is used to adjust an appropriate
purification process. A preparative purification process has as goal the
purification of greater amount of a molecule.

A purification process is composed by one or several steps that can be
included in three groups: fractionation and extraction, electrophoresis and
chromatographic techniques.

The term chromatography groups a set of separation techniques
based on the distribution of the molecules to be separated between two
phases: one stationary phase and the other mobile. The chromatographic
techniques allow the obtention of purified molecules using analytical or
preparative processes.
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The CHROMA application has a base of cases containing
purification experiments over the biological macro-molecules called
proteins1 which have been purified using chromatographic techniques. In
order to justify the utility of CHROMA, in the next sections we briefly
explain several chromatographic techniques and then we discuss them.

2. Chromatographic Techniques

A chromatographic technique is based on the interaction of a stationary
phase (chromatographic medium or the adsorbent) and a mobile phase
that is a liquid or gas that moves through the stationary phase at a fixed
flow rate. Molecules having a high tendency to stay in the stationary phase
sill move through the system at a lower velocity than will those which
favour the mobile phase. There are several configurations for the
chromatography, such as the thin-layer chromatography (TLC) and the
paper chromatography, the column chromatography probably the most
common, and the high performance liquid chromatography (HPLC) that
works at very high pressure conditions. In a column chromatography the
stationary phase is packed into a tube through which the mobile phase (the
eluent) is pumped (see figure B1). The various sample components move
with different speeds through the column and are subsequently detected
and collected at the end of the column. Column chromatography is very
useful purifying molecules in biological extracts.

All the experiments in CHROMA have liquid mobile phase
(might also be a gas) and the stationary phase is a porous matrix. This
immobile solvent usually is a gel that constitutes the 90% of the stationary
phase. In chromatography of proteins, the solvents are normally aqueous
buffers and the gel-forming materials are usually composed by hydrophilic
polymers. The shape, rigidity and particle size distribution profile of the
gel matrix are important parameters which govern the performance of the
stationary phase.

There is a wide variety of adsorbents allowing to exploit the
different physico-chemical protein properties. Most important adsorbents
are the Gel Filtration, Ionic Exchange Chromatography, Chromatofocusing,
Hydrophobic Interaction Chromatography, Reversed phase Chromatography, Covalent
Chromatography, Immobilized Metal Ion Affinity Chromatography and Bioaffinity.

1 Proteins are polimeric structures based on the binding of single structural units, called
aminoacids. All the proteins from all the species are a combination of the same 20
aminoacids. Proteins play key roles in almost all biological processes, this means, in life.
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SAMPLE

Molecule of interest: 

Chromatography 
column

Step 1. Introducing sample

resin

Step 2. Interaction sample-resin

Step 3. Elution of contaminant components Step 4. Elution of the molecule of 
interest

Buffer 1 Buffer 2

Figure B.1. Column chromatography scheme. The sample
containing the molecule of interest is introduced into one end
of the column and it is collected at the other end. The different
elution time allows the separation.



256 Appendix B. Introduction to the Protein Purification Domain

There are highly specific methods, such as those based on bioaffinity (e.g.
antibody-antigen interaction) giving a highly pure protein in a single
step. Normally, however, one has to combine several chromatographic
methods to achieve complete purification of a protein from a crude
biological extract2.

In the follow we briefly describe the most used chromatographic
techniques.

Elution order

time
-

+

MW

-

+

Step 1. Introducing 
the sample

Step 2. Sample-resin 
interaction 

Step 3. Elution

Figure B.2. Scheme of a Gel Filtration Chromatography.

2.1. Gel Filtration Chromatography

Gel Filtration is a chromatographic technique that separates proteins
according to its size (see figure B.2). Gel Filtration is an uncomplicated
and straightforward technique, but there are some points worth
consideration before starting the experimental work. The actual sample
may require a special pH, solvent, additives or pre-treatment to yield a true
solution. The next step is to select the gel that will cope with the chosen
solvent and pH and that has a suitable separation range. Possible
adsorption properties of the gel must also be considered. The nature of the
separation and the sample may put demands on such parameters as
resolution, separation time and sample load which in turn are partly
dependent on the selected gel. These parameters are, however, also affected
by the choice of column dimensions and the packing efficiency of the
column. Obviously, for different separation problems, such as desalting,
preparative purifications or analytical separations different requirements

2 A crude extract is that directly obtained from the treatment (mashing, trituration) of an
animal or vegetal tissue.
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should be stressed. Economic factors and the possibilities of scaling up may
also be important.

A Gel Filtration chromatography over lower size of proteins
produces more efficient columns that can be used to obtain higher
resolutions and/or faster separations. The Gel Filtration chromatography
is useful to estimate the molecular weight of a protein, for desalting or
fractionating solutions of proteins, and in analytical applications.
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Figure B.3. Scheme of an Ion Exchange Chromatography.

2.2. Ion Exchange Chromatography

The basis for the ion exchange process (see figure B.3) is the competitive
binding of ions of one kind, for example proteins, for ions of another
kind, for example other proteins or salt ions of the same charge, to an
oppositely charged chromatographic medium, the ion exchanger. The
energy gained by the formation of an ionic bound between a protein and a
charge on the stationary phase is expressed by the Coulomb's law.
Therefore, if the two charges are of opposite sign there is a decrease in
energy and if they are of the same sign there is an increase.

The interaction between the proteins and the ion exchanger
depends on factors as the net charge and the surface charge distribution of
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the protein; the ionic strength and the nature of the particular ions in the
solvent; the pH, and other additives to the solvent, such as organic solvents.
The pH is one of the most important parameters which determine protein
binding as it determines the effective charge on both the protein and the
ion exchanger. The proteins are elued from the column in different order
according to the pH. Thus, if using a pH the expected result is not obtained,
the experiment may be repeated using a different pH. The control of the
pH using a buffer salt is essential to reproduce the experiments. In fact, the
results of the ion exchange process depends on the relative charges of the
proteins in the sample at the pH in which the separation is made, since
that the charge sign of a protein depends on the pH.

The binding of proteins to charged groups on the stationary phase
competes with the binding of the ions in the solvent in a way that the
proteins can be displaced from the ion exchanger due to the bind
strengthens. There is no general rule to know the needed salt
concentration to displace a protein with a certain net charge.

Altogether to the Coulomb's forces might be other interactions as
the hydrogen bonds or hydrophobic interactions3 producing additional
effects for obtaining the separation of two similar proteins but these effects
are difficult to predict and thus difficult to exploit them.

The ion exchange chromatography is specially indicated to purify
great volumes of proteins due to its charge capacity and to its capability to
concentrate proteins from the eluted solution.

Protein

+

Chromatographic matrix 
with hydrophobic ligands

Interaction of ligands on an amohilic gel 
and hydrophobic surfaces on a protein

Hydrophobic zones

Figure B4. Scheme of a Hydrophobic Interaction Chromatography

3 In a hydrogen bond one hydrogen atom is shared by other two atoms (usually oxigen and
nitrogen). This kind of dynamical sharing, that some authors illustrate as a "menage a
trois", is the basis of the bond.
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2.3. Hydrophobic Interaction

Hydrophobic interactions are a phenomenon of great biological
significance. They are one of the main forces that stabilize the three-
dimensional structure of proteins. Hydrophobic interactions can be
exploited and used as a means of separation.  A definition of hydrophobicity
is the repulsion between a non-polar compound and a polar environment
such as water. Dissolving a non-polar substance in water is
thermodynamically unfavourable due to the high surface tension. When a
single hydrophobic compound is put into water, an energetically
unfavourable conditions results. The hydrophobic compounds forces the
surrounding water into an ordered structure as if it were forming a cavity.
Because the solvent molecules close to the solute tend to gain order, the
entropy decreases. Entropy is probably the driving force in hydrophobic
interaction chromatography. An increase in the solvent entropy occurs
when hydrophobic regions associate with an expulsion of water and
reduction in the exposed surface available for solvation. High-ionic-
strength mobile phases drive this association by increasing the surface
tension of water, thus decreasing the amount of water molecules available
to solvate the hydrophobic regions. This same phenomenon is the basis for
the "salting out" of proteins by ammonium sulphate. The choice of salt for
use in hydrophobic interaction chromatography is critical.

The hydrophobic interaction is of prime importance in biological
systems, specially in folding globular proteins, the association of proteins
subunits, the binding of many small molecules to proteins as in enzyme
catalysis4, regulation and transport across surfaces. It is also responsible for
the self-association of phospholipids and other lipids to form the biological
membrane bilayer and the binding of integral membrane proteins. The
hydrophobic interaction is used for the binding of proteins to adsorbents
with hydrophobic ligands. The degree of hydrophobicity of a protein is
dependent on its amino acid sequences.

Hydrophobic Interaction Chromatography is a separation method
based on the interaction between hydrophobic zones and protein molecules
in a sample of a sample and an insoluble, immobilized hydrophobic group
(those in the matrix, that is hydrophilic). The mobile phase is usually an
aqueous salt solution. Separations on Hydrophobic Interaction
Chromatography matrices are usually done in aqueous salt solutions,
which generally are non denaturing conditions. Samples are loaded onto
the matrix in a high-salt buffer and elution is by descending salt gradient.
The elution can be made in three different ways: changing the salt
concentration, changing the solvent polarity or adding solvents (organic

4 Hydrophobic  interactions are a weak and non-specific kind of bindig. Also known as Van
der Waals interactions occurs when any type of atoms are as close as 3-4 Årmstrongs.
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solvents are commonly used to alter the water polarity). Another way is to
change the pH, but it is impossible to predict how this pH change can affect
the strength of the interaction among the protein and the hydrophobic
interaction gel.

The hydrophobic interaction chromatography is, in general, a
mild method due to the stabilizing influence of salts. More labile proteins5

upon contact with an hydrophobic interaction adsorbent, can change their
structures. To do an hydrophobic interaction chromatography factors as the
used salt concentration (when higher is the salt concentration produces a
higher interaction), the additives changing the solvent polarity and the
temperature have to be taken into account. The pH of the used buffers have a
decisive influence in the adsorption of proteins to the gel. The only
limitation for the pH value is the stability of both the protein to purify and
the chromatographic matrix.

The hydrophobic interaction chromatography is based on a
separation principle different of the used in other separation techniques.
In that way, combining the hydrophobic interaction with other techniques
can give a high purification degree. The high capacity of the hydrophobic
interaction adsorbents makes them suitable for use at an early stage in a
purification scheme.

2.4. Affinity

All the biological processes depend on specific interactions between
molecules. These interactions might occur between a protein and low
molecular weight substances, between bioinformative molecules (as
hormones or transmitters) and receptors, and so on. Often biospecific
interactions occur between two or several biopolymers, in particular
proteins.

The affinity chromatography owes its name to the exploitation of
these various biological affinities for adsorption to a solid phase. One of the
members of the pair in the interaction, the ligand is immobilized on the
solid phase, while the other, the counterl igand  (usually a protein) is
adsorbed from the extract that is passing the chromatographic column.
It is essential that the ligand remains intact during the immobilization
process. Also, the ligand has to be enough stable to carry out the projected
affinity chromatography. Stability may be a problem when proteins are
coupled at high pH, and the purity of the ligand should be as high as
possible and in particular does not contain substances with functional
groups that can react competitively in the immobilization.

5 The stability of a protein in aqueous solution is extremely dependent on its own structure
and composition. Some proteins are stable but others (labile proteins) lost its integrity in
several hours.
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Figure B5. Scheme of an Affinity chromatography.

In many cases, the affinity chromatography is a very powerful method,
particularly when the protein of interest is a minor component (i.e. it has
very small concentration) from a complex sample. The affinity
chromatography depends on the functional properties, therefore the active
and inactive forms may be separated. This chromatography is useful if the
fractionement of the nucleic acids where the complementary base
sequences may be used as ligands and, in the separation of the cell surface
receptors are the basis of the affinity.

A field in which the affinity chromatography has been specially
useful is acting over the antigen-antibody interactions, called
immunoadsorptions. Very often this is the only way to purify a protein and it
is specially attractive when there is a useful antibody at hand.

Main shortcoming of the affinity chromatography is that it often
requires that the researcher synthesizes the adsorbent. Nevertheless, the
methods to synthesise adsorbents are well known and easily adaptables. In
preparing the affinity adsorbents we need to establish the binding
between the matrix and the ligand as stable as possible. The stability will
prevent the ligand leakage.

A property needing special consideration is the ligand-
counterligand strength, since that if the strength is weak there is no
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adsorption and if the strength is high it is difficult to elute the adsorbed
protein. It is important to search for conditions as the pH, salt
concentration or inclusion of detergents or other substances promoving the
complex dissociation without damage the active proteins. Frequently this is
one of the main difficulties in the affinity chromatography.

A lot of affinity separations allows one step purifications.
Nevertheless, sometimes is useful to include a preliminary step using a
precipitation (if there is a lot of sample amount or a lot of contaminants) or
a ion exchange chromatography to remove the big contaminants and
consequently, to reduce the amount of processable material. In that way the
resolution and the effects of the concentration of the affinity step are
improved. When the sample is obtained from a tissue or from a cellular
culture or it is a fermentation product, it is advisable to include some steps
of solubilization, homogenization, extraction and/or centrifugation. To
elute the affinity chromatography, changes of pH salinity or a specific
ligand can be used.



APPENDIX C

Introduction to Marine Sponges
Domain

1. Introduction

Species belonging to the animal kingdom can be distributed in two
groups: Protozoa, including those simple organisms formed by only one
cell; and Metazoa, including those organisms which body is formed by the
union of several cells having a coordinated activity. Usually, metazoa are
originated from one cell called zygote , which yields a pluricellular
organism by means of successive subdivisions. The zygote origins a morule,
having an empty spherical form that constitutes the blastulae. The blastulae
is folded forming a bag of two layers called gastrulae . The internal
gastrulae layer is called endoderm and the external layer is called ectoderm.
This differentiation state basically characterises sponges and celenterea.
All other metazoa follow their development state. During this
development a third embrionary layer (called mesoderm) between the
endoderm and the ectoderm appears.

It has been widely discussed the convenience of considering
sponges as a separate animal subkingdom instead considering them as
belonging to the metazoa group. Nevertheless, the analysis of the sponge
development shows that this development is characteristic of the metazoa,
although the cellular inversion observed in the blastulae is specific of the
sponges. Another reason to consider the sponges as metazoa is the way in
which they realise the gametogenesis1 . Sponges present a wide variety of
cellular kinds and, although they have not true organs, they present
differentiated cellular sets showing morphological and functional well-
determined properties. Thus sponges constitute the phylum Porifera into
the metazoa.

1 gametogenesis is the production process of sexual cells.
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Sponges are aquatic animals that live fixed to a substrate in both
marine or fresh water habitats. The sponge body is constituted by a system
of pores, ostia, canals and chambers called aquiferus system. The food is
obtained from a water flow that is originated by an epithelium of
flagellated cells called choanocytes. In the simplest case, the water pass
through the sponge pores to the internal cavity, called atrium, and then
goes out for a wide hole called oscule (see figure C.1). This process provides
the sponge with food particles and oxygen. This way to obtain food is
unique of the sponges. Choanocytes have a rounded body with an isolated
flagellum and a collar of cytoplasmatic tentacles which are responsible for
producing the water flow.

Most sponges have inorganic concretions of either calcium
carbonate or silica called spicules, and also organic fibres can be observed.
Both (organic and inorganic) elements in diverse combinations form the
sponge skeleton.

The reproduction of sponges can be sexual (by means of larva
production) or asexual (by producing gemmules). Gemmules produced in an
asexual way are more resistant to adverse conditions of the environment.
The external aspect of the sponges is very varied, because there are a wide
variety of shapes, colours, sizes and growing strategies. Usually, these
characteristics are closely related to the external environment conditions.
Into a group or species there may be high plasticity according to the
environment conditions. Is for this reason that to separate the groups of the
Porifera phylum, the skeleton morphology is used. In the next sections we
will describe different aspects of the biology of sponges.

2. Morphology

In this section some general trends of the marine sponges, such as their
structure, organisation levels and kinds of skeleton are described.

2.1. Structure and Level of Organisation

As all the metazoa, the sponge body is constituted by the external
epithelium (ectoderm) and by the internal epithelium (endoderm). The
ectoderm (see figure C.1) is formed by a layer of flat cells called pinacocytes,
which form canals and allow the fixation of the sponge to the substrate.
The endoderm is formed by flagellated cells called choanocytes. Between
both epithelia there is the mesohyl2  that can have different composition and
amplitude but it always has skeletal material, cellular elements as the
scleroblasts (that form the spicules) and the choanocytes that pump the
water. The mesohyl also contains ameboide cells (amebocytes) transporting

2 The mesohyl is composed by embrionary support tissue which cells have a big capacity of
division by means of mitosis. The mesohyl is the main tissue from which the other support
tissues of an organism are formed.
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food particles and excretion products. Choanocytes are a kind of cell
indicative and characteristic of the phylum.

An adult sponge can shows the following three organisation levels
according to the water canalisation system (see figure C.1):

- Asconoid - This is the most simple type of sponges. The body is a
simple tubular unit, with thin walls enclosing a central cavity which
opens apically by a single osculum. The pinacoderm is interrupted by
specialised pinacocytes which, in development, elongate and roll to
enclose a cylindrical canal. These cells traverse the thin mesohyl
and pierce the choanoderm between the bases of adjacent choanocites,
thus placing the external medium in direct communication with the
central choanocite layer.

- Syconoid - From an asconoid, folding of both pinacoderm and
choanoderm produces a syconoid type. In a syconoid the inner
choanoderm surface is amplified to line a series of projections which
extend radially outward from the central cavity. The pinacoderm is
folded outward to invest the projections. Choanocytes are now
restricted to lining the choanocite chambers each of which opens to
the central, atrial cavity by a wide aperture, the apopyle. The mesohyl
has undergone relatively little thickening and thus inward flow of
the water current can still be effected by way of porocytes, several of
which open to each choanocyte chamber. The separation of inhalant
surface and choanocyte chambers by the interposition of the cortex
necessitates the development of an inhalant system. Most frequently
this is a system of superficial ostia opening into inhalant lacunae,
lined by pinacocytes, which then open by way of porocytes, or pores
surrounded by several pinacocytes, prosopyles, to the choanocyte
chambers. The atrial cavity is lined by a pinacoderm and opens by a
single osculum.

- Leuconoid- Further folding of the choanoderm in the syconoid type is
accompanied by subsivision of the flagellated surface into discrete
spherical or oval chambers which are the typical flagellated, or
choanocite chambers. Choanocyte chambers cluster in groups in the
thickened mesohyl, and each chamber is serviced by two or more
inhalant canals which open through propopyles and is drained by a
single apopyle which leads to an excurrent canal. The excurrent
canals coalesce to form larger channels and these converge toward
exhalant apertures. This kind of organisation allows the development
of very large sponges with high pumping efficiency.



266 Appendix C. Introduction to Marine Sponges Domain

A

   

B

   

C

  

Figure C.1. Organisation levels of the sponges. A) Asconoid. B)
Syconoid. C) Leuconoid.
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Indepently on the organisation level of the canal system, all
sponges need to maintain a continuos water flow from the exterior to the
atrial cavity. A reduction in the pressure between the input and output
holes produces a breath in effect over the water in the afferent conducts.
This effect also transports food particles. When the water leaves the canal
system still conserves the pressure excedent, which is profited to throw out
the excretion products.

2.2. Sponge Skeleton

The main function of the skeleton is to maintain the body's structure. This
function is achieved by the combination of inorganic spicules with some
organic parts producing as result a solid texture. Another function
attributed to the skeleton is to provide to the sponge a less attractive
consistency for the predators.

Skeleton elements are very important to classify a sponge. An
accurate analysis of the spicular geometry and its morphological characters
are essential to determine the morphological and phylogenetic relations
into the Porifera phylum. In the next sections several skeleton elements
will be analysed.

2.2.1. Composition

The sponge skeleton has an internal and an external zone that can present
a high diversity of combinations based on two kind of component: organic
and inorganic. The organic part of the skeleton is mainly formed by
collagen, the structural protein most widely distributed into the animal
kingdom. In the sponge skeleton, there are two main types of collagenous
organisation: scattered fibrilar collagen and spongin fibres. Thus, several
dispositions can appear, for example fibres between 0 and 100 µm
containing either silica spicules or foreign material (eg. sand, little
debris, ...), fibres without spicules or thin fibres that are only visible at the
ultrastructural level.

The spongin forms fibres less rigid than the pure collagen fibres,
providing flexibility to the sponge body. Examples of sponges containing
spongin are the typical bath sponges (Euspongia officinalis or Hippospongia
communis) which skeleton is exclusively constituted by spongin.

The inorganic part of the sponge skeleton may be siliceous or
calcareous. The siliceous skeleton is constituted by hydrated silica in a (no
crystallised) amorph form. This siliceous skeleton can contain free spicules
that either can be deposited in the mesohyl or can form nets together with
spongin. The calcareous skeleton is composed of calcium carbonate mixed
with magnesium carbonate. It is organised in several forms: as free
spicules distributed along the mesohyl, forming nets of cimented spicules,
or forming solid crystalline stores visible using a microscope.
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2.2.2. The Spicules

Spicules are inorganic concretions of either calcium carbonate or silica.
There are two kinds of spicules according to its function: the megascleres
and the microscleres. Megascleres provide a solid structure supporting the
skeleton, since they can take different dispositions as layers in different
orientations. Instead, microscleres does not appear as a layer but as
compactants among big spicules or reinforcing delicate surfaces as those of
the internal canals.

The terminology used to name the spicules is related to its shape,
size and ornamentation. Thus, the -axon termination is referred to the
number of existing axis; -actine is referred to the radius finished in point;
and the prefix acantho - is referred to other variations related to the
apparition of spiny formations on the spicule surface.

According to this nomenclature, calcareous spicules could be
classified in diactines, large and pointed; triactines, having three axis; and
tetractines having four axis.

The silica sponges show a more wide variety of spicules. Among
others, there are the monaxons (having a unique axis), the tetraxons (having
four axis) and the polyaxons (having several axis starting from a common
center. Monaxons and tetraxons are typical megascleres. Microscleres are
more varied in form and they can characterise orders and families of
Porifera. Three main classes of microscleres can be distinguished: aster,
sigma and raphid. Aster is star-shaped due to a polyactine, and a divergent
radius from a point or axis. There are several variants of the aster: spiraster,
spheraster, quiaster, etc.

3. Nutrition of the Sponges

The nutrition process is carried out thanks to both the canal system and the
continuos water flow. Sponge food is based on monocellular organisms,
bacteria, organic detritus and soluble nutrients in coloidal status.

The global nutrition mechanism has three steps: ingestion,
distribution and digestion of the food particles, and excretion. The
ingestion of the particles can be made in different ways according to the
size of the particle to be ingested. Nevertheless, it is not possible to
establish a general form of operation for all the species. Thus, a way for
ingestion is by the choanocytes collar. There are also described ingestion
processes in cells belonging to the inhalant conducts and the exopinacocytes.
Finally, the particles can directly pass to the mesohyl from an inhalant
canal through a porocyte. Inside the sponge, the food particle is put in
contact to mesohyl cells (the archaeocytes) which directly digest it.

The digestion is always intracellular. The digestion process has not
been exhaustively studied but it seems clear that the archeocites are the
main element in which the digestion is produced. The ingested particles
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flow to the mesohyl and then are stored in digestive vacuoles. When the
vacuolae are full they are covered by an archeocite and incorporated to its
interior where the digestion is made. On the other hand, the digestion
may also be possible in the phagosomes3  of the choanocytes. At present, there
is still some uncertainty around the possible cellular sites of digestion and
assimilation in choanocytes. Toxic or non digestible substances are
evacuated by the exhalant canal system or by the sponge surface.

4. Reproduction

The sponges can present two forms of reproduction: sexual and axexual. In
the next sections both forms are described. The lack of organs devoted to
reproductive function makes it difficult the study of reproduction. Moreover,
asynchrony in reproductive processes within individuals and within
populations is common. thus, the knowledge on this area is still uncertain
and is based on the observations made on different species trying to find
the main lines  for sponge reproduction.

4.1. Sexual reproduction

Sexual reproduction has been identified in all the studied species
belonging to the Porifera phylum, even the concrete mechanism is
different depending on the group. The gametogenesis process has been
widely studied in several species but a complete scheme is not available. As
consequence of the gametogenesis, the sponge can produce either sperm
that are throw out at the water flow output or ovules which remain at the
mesohyl. The release of the gametes (sperm or ovules) may be synchronous
or asynchronous between individuals or between populations.

Many species are hermaphrodite, but usually produce oocytes or
spermatocytes at different time. Gonads are not differentiated maintaining
the general characteristics of the sponges that have not organs. Thus, all
the functions are done at cellular level. The production of both male and
female gametes is related to the choanocytes and archeocytes differentiation.

The spermatogenesis begins with the development of stem cells,
called spermatogonia , from which the spermatic cysts are formed, and
finally the spermatozoa maturation. The adult sponge has not reproductive
tissue, thus, the sequence above begins with the differentiation of adult cells
in the spermatogonia. In some species, the precursor cell is the choanocyte,
but it is also possible that the precursor are cells in the mesohyl.

The oogenesis is also unclearly described. In the first studies
choanocytes were considered as the precursor of the oocyte, but recent
studies have suggested that the archaeocyte could undergo modifications
during the oogenesis process. Specific studies in some species shown some

3 Phagosomes are vacuoles formed at the time of phagocytosis.
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mechanisms close to that above, although some processes still remains
unclear. Thus, despite many factors related to the reproduction that have
been studied, such as the temperature or size and age of the animal, there
is a lack of knowledge in some essential points. Among others, why
oogenesis and spermatogenesis are initiated, what causes the release of the
gametes, or what is responsible of the reproductive period duration.

4.2. Asexual reproduction

The Porifera phylum has different kinds of asexual reproduction. The most
common is based on the production of buds and regeneration processes, but
in some species the production of larvae similar to those produced by sexual
reproduction has been identified.

The production of buds has been observed in marine and fresh-
water species. Currently, it is not clear which are the factors producing the
asexual reproduction of sponges, nevertheless it seems that buds are a
survival strategy in adverse environment conditions. Buds are initially
formed by an agglomerate of archaeocytes with nutrient reserves and
surrounded by spongin with characteristic spicules stores. This structure is
able to survive on dry periods and low temperatures thanks to some
vitelline platelets elaborated in the archaeocytes during the gemmule
formation. Buds form a layer that remains in contact with the substract
and consists in a mass of cells contained into a capsule. When other tissues
are death, the buds are developed producing a little adult.

There is another kind of buds that produce larvae as those produced
during the sexual reproduction. In fact, there are some sponge species
capable to produce both sexual and asexual larvae.

Sponges are capable to regenerate from one or several fragments of
an organism. The sponge reorganisation from an apparently random
movement to form aggregate of cells has been observed in the study of cell
suspensions in marine water. Then, these aggregates are surrounded by a
cover of pinacocytes and is reorganised in its usual disposition.

5. Behaviour of the Sponges

Sponges have two states: larvary and adult. Almost all the sponges have a
larvary state only known at the general level. The larvae measures from 50
µm to 5mm and it may be totally or partially ciliated. The larvae is very
simple and it has not structures capable to select a concrete habitat.
Nevertheless, the larvae state in different species present a high diversity
of movements, longevity and reaction to contact and the light. These
attributes indirectly represent a distribution form in respect to determined
ambiental conditions in the adult state. In the larvary stady there are
three factor influencing the movement and the fixation of the sponge
larvae: light, gravity and turbulence.
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The substrate that supports the sponge is a very documented trend of
the sponges. In general, the larvae can be fixed in several surfaces, but most
of species prefer hard natural substrates as rock, shells, coralin algae, etc.

As conclusion, we can deduce that the larvary state of the Porifera
has different reactions to the external stimule. Thus, it seems obvious that
the high habitat specialisation observed in adult poblations prove of a
selective mortality of the larvae that have chosen indiscriminately a
substrate. Nevertheless, it is important to remark that larvae of some
species made a preselection of the substrate (Uriz, 1982).

Once the larvae has fixed and is converted into an adult individual
it remains exposed to ambiental conditions that determine it their survival
and expansion possibilities. Temperature seems one of the more
significative factors in the larvae distribution. Therefore, the sponges are
geographycally and bathymetrically distributed according to this factor.
The sudden alterations of the temperature are mitigate with adaptations of
the biological clicle allowing the survival: production of resistency forms.
The body and spicular size into a species is bigger in lower temperatures.
Some variations in the skeletal morphology correlated with the
temperature are also observed.

The distribution of the sponges according to the depth is directly
correlated to the light. The light quantity arriving to a determined depth
also depends on other factors as the (organic or inorganic) material in
suspension. Thus, indirectly varies according to the production and
hydrodynamism of the water.

Sponges are distributed specially in the bathyal and in the
circalitoral stages. The bathyal zone is the less deep of the aphytal zone in
which the big poblations of the benthic community water have been
disappeared. The circalitoral stage is the most depth zone where only
calcified water are found. In the major irradiance zone can also be found
some species usually associated with simbiont microalgues.

Porifera are mainly distributed in zones having a lower
hydrodynamism with relative calm. Too violent waters cannot allow a
correct fixation of the larvae and damage the adult body. Usually the sized
is reduced and the form is constrained specially to the incrustant type. In
too calm waters there are difficulties to maintain the continuos water flow
which makes possible the physiology with filtrator character. It can exists
an excessive sedimentation delays the normal development of the
individual (usually by the obstruction of the ostia) and it is a limiting
factor. In these conditions are possible several forms of the body (ramified,
pinnate, flabelate or papillate).

The colonisation place of the Porifera is mainly the semidark part
of the submerged caves. The population study has supported the bathymetric
zonation according to the light factor, because they reproduce the open sea
gradient but in the horizontal direction.

Sponges can live in very dark zones. When this occurs they became
almost colorless. In these zones, sponges do not share the substrate with
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algae, thus it is usual to find rocky walls covered only by with sponges.
Nevertheless, in extremely dark zones sponges disappear as well.

The trophyc and hydrodynamic conditions and the internal
temperature of a cave have to be considered separately because they do not
share the values of the exterior. In this case, it is not possible to generalise
because each cave presents a community and a very particular characteristics
conditioning the gradients of the physical factors mentioned above.
Nevertheless it is not possible to state that the conditions of a semi-dark
cave are a reflection of the depth environment having a hard substract. It is
reasonable to think that larvae of species that are fixed in both
geographical situations can have a similar evolution despite of the possible
depth differences.

6. Poblational Dynamic

Dynamics of the Porifera populations is very varied depending in part on
its own physiology, but also on problems derived of the coexistence with
other organisms.

Each habitat presents specific difficulties for sedentary invertebrates.
In principle, we can consider that the main objective of the larvae is to
find an appropriate place to fix it on. Thus, the competition for the substrate
can substantially influence the number, size and diversity of the species,
and it constitutes the most limiting factor, even more than the
alimentation sources.

To deal with this situation some species adopt the strategy of a
quickly grow, achieving a good productivity despite a short life. These
species are good colonisers. Other species have a longer life but a slow
growing, and are placed in habitats that do not present problems of
competition. Some species shows oscillations in the rhythm of productivity
due to the fact that when they have a considerable size, it is more difficult
for them to transport the food into the inner part.

7. Systematics

The Porifera phylum is composed by three main groups (classes):
Hexactinellidae, Calcarea and Demospongiae. Hexactinellidae are the
more primitive living sponges. Nowadays they live in deep waters but
during the Jurassic and Cretacean period (195 and 65 millions of years
ago) all the sponges lived on the littoral. Hexactinellidae have developed
long spicules (of about 3 m) to use as anchorage. Hexactinellidae have a
silica skeleton in which megascleres and microscleres can be clearly
distinguished. Megascleres form a silica net in which there is disperse
soft tissue. Typically, spicules have three main axis and, therefore, six
pointed terminations: the hexactines.
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Calcarea are small marine sponges that usually live in the littoral
encrusted to stones. They have an skeleton constituted by calcium carbonate
that is organised in spicules having two, three or four axis. These small
sponges have a structure more complex that the Hexactinellidae, because
the most of choanocytes are isolated in holes and they not cover the
internal cavity.

Demospongiae are sponges from fresh or marine water. They
represent the 95% of the actual sponge species. The Demospongiae are
characterised by its inorganic skeleton formed by silica spicules (usually
monoactines or tetractines) and an organic skeleton formed by collagen.
The tetractines are considered as the primitive structure of the sponges
belonging to this group. Nevertheless, some demospongiae have not
skeleton, other have not megascleres, and other have not spicules.
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