
MONOGRAFIES DE L'INSTITUT D'INVESTIGACI�OEN INTEL�LIG�ENCIA ARTIFICIALNumber 6

Institut d'Investigaci�oen Intel�lig�encia Arti�cial

Monogra�es de l'Institut d'Investigaci�o enIntel�lig�encia Arti�cial
Num. 1 J. Puyol, MILORD II: A Language for Knowledge{Based Sys-temsNum. 2 J. Levy, The Calculus of Re�nements, a Formal Speci�cationModel Based on InclusionsNum. 3 Ll. Vila, On Temporal Representation and Reasoning inKnowledge{Based SystemsNum. 4 M. Domingo, An Expert System Architecture for Identi�cationin BiologyNum. 5 E. Armengol, A Framework for Integrating Learning and Prob-lem SolvingNum. 6 J.Ll. Arcos, The Noos Representation LanguageNum. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-straint Satisfaction

The Noos Representation Language
Josep Llu��s Arcos

Foreword by Enric PlazaInstitut d'Investigaci�o en Intel�lig�encia Arti�cialBellaterra, Catalonia, Spain.

Series EditorInstitut d'Investigaci�o en Intel�lig�encia Arti�cialConsell Superior d'Investigacions Cient���quesForeword byEnric PlazaInstitut d'Investigaci�o en Intel�lig�encia Arti�cialConsell Superior d'Investigacions Cient���quesVolume AuthorJosep Llu��s ArcosInstitut d'Investigaci�o en Intel�lig�encia Arti�cialConsell Superior d'Investigacions Cient���ques
Institut d'Investigaci�oen Intel�lig�encia Arti�cial

ISBN: 84{00{07742{3Dip. Legal: B{42483{98c 1998 by Josep Llu��s Arcos i RosellAll rights reserved. No part of this book may be reproduced in any form or byany electronic or mechanical means (including photocopying, recording, or infor-mation storage and retrieval) without permission in writing from the publisher.Ordering Information: Text orders should be addressed to the Library of theIIIA, Institut d'Investigaci�o en Intel�lig�encia Arti�cial, Campus de la UniversitatAut�onoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.Printed by CPDA-ETSEIB.Avinguda Diagonal, 647.08028 Barcelona, Spain.

Als meus pares,Llu��s i Am�alia.

Contents
Foreword xiiiPreface xvAbstract xvii1 Introduction 11.1 Motivation . 11.2 Goals and contributions of the thesis 41.3 Structure of the thesis . 62 Background 92.1 Knowledge modeling frameworks 92.2 Integrated architectures . 152.3 Reective representation languages 212.4 Introspective learning . 242.5 Conclusions . 253 The Noos Approach 273.1 The Noos modeling framework 273.1.1 Related work . 313.2 The Noos language . 313.2.1 Descriptions . 333.2.2 Re�nement . 343.2.3 References . 413.2.4 Methods . 443.2.5 Inference . 503.3 Reection . 543.3.1 Metalevels . 563.3.2 Default metalevels . 593.3.3 Re�nement . 603.3.4 Tasks . 613.3.5 Reective operations . 613.3.6 Rei�cation . 64vii

3.3.7 Reinstantiation . 693.4 Preferences . 703.5 Inference in Noos . 743.5.1 Metalevel methods . 753.5.2 Caching . 763.5.3 Backtracking . 763.5.4 The Noos inference engine 773.5.5 An example of inference 813.6 Summary . 844 Memory, Experience and Learning 874.1 Episodic knowledge in Noos . 884.2 Retrieval . 914.3 Perspectives . 934.4 Reasoning and learning . 964.5 Case-Based Reasoning . 984.5.1 Derivational analogy . 1004.6 Inductive learning . 1024.7 Analytical learning . 1044.8 Summary . 1065 Noos Formalization 1115.1 Basic notions of �N calculus . 1125.2 Noos formal syntax . 1155.2.1 Constant feature terms 1165.2.2 The sort of a feature term 1175.2.3 Path references . 1175.2.4 Re�nement . 1175.3 Translation rules from Noos to �N 1185.4 Using variables in feature terms 1225.5 Semantics . 1225.6 Term subsumption . 1245.7 Representing feature terms as labeled graphs 1265.8 Understanding feature terms as clauses 1285.9 Evaluable feature terms . 1285.9.1 De�ning methods in features 1295.9.2 Semantics of evaluable feature terms 1305.10 Preferences . 1305.10.1 Preference methods . 1315.10.2 Preference combination methods 1325.10.3 Higher order preferences 1335.10.4 Properties . 1345.11 Perspectives . 1355.12 Descriptive Dynamic Logic . 1365.13 Modeling Noos inference using DDL 1385.13.1 Noos unit languages . 139viii

5.13.2 Inference rules . 1405.13.3 Topology . 1425.13.4 Programs . 1425.13.5 Adding preferences . 1465.14 Summary . 1476 Applications 1496.1 CHROMA . 1506.1.1 Modeling domain knowledge 1516.1.2 Solving the puri�cation task 1526.2 SPIN . 1546.2.1 Modeling domain knowledge 1556.2.2 Solving the identi�cation task 1556.3 SHAM . 1576.3.1 Modeling musical knowledge 1586.3.2 Solving the harmonization task 1596.4 GYMEL . 1606.4.1 Modeling musical knowledge 1606.4.2 Solving the harmonization task 1626.5 Saxex . 1636.5.1 Modeling musical knowledge 1656.5.2 The Saxex task . 1686.5.3 Experiments . 1716.6 NoosWeb . 1726.6.1 The NoosWeb architecture 1726.7 Summary . 1757 Conclusions and Future Work 1777.1 The Noos language and feature terms 1777.2 Memory and learning . 1797.3 Methods and applications . 1817.4 Future work . 183A The Noos Development Environment 185A.1 De�ning feature terms in Noos 185A.2 The prede�ned sort hierarchy of Noos 189A.3 Episodic memory . 191A.4 Browsing . 192A.4.1 Feature term browser . 192A.4.2 Task/method decomposition browser 195A.4.3 Task structure browser . 197A.4.4 Re�nement hierarchy browser 199A.5 Tracing . 201A.6 Extending built-in methods . 203B Glossary 205ix

C The Noos Syntax 211C.1 Compact syntax for closed methods 213D Built-in Methods 215D.1 General . 215D.2 Comparison methods . 216D.3 Filter methods . 217D.4 Arithmetic methods . 218D.4.1 Numeric comparisons . 219D.5 Methods on sets . 220D.6 Logic methods . 222D.7 Retrieval methods . 223D.8 Preferences . 224D.9 Methods for interaction . 228D.10 Query methods . 229D.11 Eval methods . 229D.12 Reective operations . 230References 233

x

List of Figures1.1 The design and maintenance cycle of knowledge systems (adaptedfrom [Aamodt, 1991]). 23.1 Part of the domain ontology of the diagnosis of car malfunctionsapplication. 283.2 A browser of the task/method decomposition for a general diag-nosis method. 293.3 The Noos modeling framework. 303.4 Labeled graph representation of two feature terms. 323.5 A subset of Noos syntax in BNF notation. 353.6 A Noos browser visualizing the labeled graph representation of Pep. 373.7 De�nitions in the domain of cars. 383.8 The Noos sort hierarchy used in the example of Fig. 3.7. 393.9 Family relations example. 433.10 A partial expanded tree of the Noos built-in method hierarchy. . 453.11 De�nition of an adder circuit. 483.12 Inference trace. 533.13 The reection cycle. 553.14 Metalevel components of Noos and their causal connections. . . . 563.15 Task feature term reifying the inference of feature empty-level?of Peters-Car. 613.16 Speci�cation of characteristics of three personal computersPC-blue, PC-red, and PC-white. 713.17 Graphical representation of three di�erent preferences over com-puters. 723.18 Combining preferences. 733.19 Solving and Impasse for a task F(D) in the metalevel ML of D. . . 753.20 Inference trace. 834.1 A browser of the task/method decomposition from the episodicmodel of the empty-level?(Bills-car) problem task. 904.2 Using perspectives in a retrieval task. 944.3 Lazy and eager learning and the construction of domain modelsand episodic models. 984.4 Task/method decomposition of Case-based reasoning methods. . 99xi

4.5 Two precedents from the episodic memory of solved diagnosed cars.1014.6 Induction example. 1044.7 A browser of the Task/method decomposition for the cup? taskof Obj1. 1075.1 Basic �N syntax. 1135.2 Formal syntax of Noos using the �N approach. 1185.3 Translation rules from Noos syntax to �N syntax. 1185.4 Substitution of name references. 1205.5 An example of an allowed topology. 1436.1 A Noos browser of an experiment from chroma's case-base. . . . 1516.2 A Noos browser of a sponge problem from spin's case-base. . . . 1556.3 A Noos browser of a song from sham. 1586.4 A Noos browser of a song from gymel's case-base. 1616.5 General view of Saxex components. Analysis and synthesis phasesare performed in sms. Reasoning phase is performed in Noos. . . 1646.6 A Noos browser of the score for the `All of me' ballad from Saxex. 1656.7 A Noos browser of the prolongational reduction structure for the`All of me' ballad. 1666.8 A Noos browser of the musical performance structure for the `Allof me' ballad. 1676.9 Task decomposition of the Saxex CBR method. 1686.10 Two precedent cases retrieved by Saxex Problem solving method. 1706.11 First phrase from the `Autumn Leaves' theme. 1716.12 A NoosWeb browser of a sponge-problem from the spin system. . 1736.13 The NoosWeb architecture (from [Mart��n, 1996]). 174A.1 De�ning a new feature term on the Noos listener. 186A.2 The prede�ned sort hierarchy of Noos. 190A.3 A browser of the score of `Autumn Leaves' ballad from Saxexapplication. 193A.4 A text-based feature term browser of the score of `Autumn Leaves'ballad from Saxex application. 196A.5 A browser of the task/method decomposition for the general di-agnosis method. 197A.6 A task structure browser from the episodic model of problem taskempty-level?(Bills-car). 198A.7 A text-based feature re�nement hirerarchy browser of the Saxexapplication. 199A.8 A re�nement hierarchy browser from the Saxex application. . . . 200A.9 The trace generated in solving the empty-level?(bills-car)problem task. 202
xii

ForewordThis book is interesting for di�erent people with a variety of interests on Arti�cialIntelligence (AI). For people interested in knowledge representation, this booko�ers an in depth presentation of NOOS, a representation language with singularproperties. NOOS is, by genealogy, a frame representation language that hasbeen designed having in mind the most recent trends in knowledge modelingand knowledge level analysis. For persons speci�cally interested in reectionand introspection in AI systems this book also o�ers new insights. While mostapproaches on rei�cation and reection focus or of syntactic nature, the self-model of NOOS is based on the knowledge modeling concepts of task, model, andproblem solving method. This approach allows a system developed in NOOS toreason about its own content and behavior in terms of a knowledge level analysisinstead of in terms of its syntactic components.This use of reection is also interesting for Machine Learning people, es-pecially those who care about the integration of ML techniques with problemsolving systems. Indeed, the integration on ML methods into the NOOS frame-work is achieved through these notions of reection and by a proper treatment ofepisodic memory. Episodic memory, a common notion in cognitive psychology,has received less attention than it merits both in Knowledge Representation andMachine Learning research. From the NOOS point of view, solving a problem ismore that returning an answer: solving a problem is building a model. In fact,NOOS builds an episodic model that links the solution with the methods usedand stores this complex pattern in permanent memory. Some readers may havenoted two things: �rst, that the notion of problem solving as model buildingcome from knowledge modeling, and second, that storing episodes for futurereuse is the trademark of case-based reasoning (CBR). These readers are right,and they will probably �nd even more remarkable connections in reading "TheNOOS knowledge representation language"Bellaterra, July 1998 Enric Plaza i CerveraIIIA, CSICemail: enric@iiia.csic.eshttp: www.iiia.csic.es/~enricxiii

PrefaceAquest treball ha estat possible, principalment, gr�acies al recolzament, dedicaci�oi esfor�c del meu director de tesi Enric Plaza. Vull agra��r l'oportunitat que m'haofert per introduir-me i guiar-me en la recerca, aix�� com tamb�e la seva paci�enciaper anar corregint les incomptables versions dels cap��tols que formen aquestamem�oria.Vull tamb�e donar les gr�acies a tota la gent del IIIA, tant al personal cient���ccom al administratiu, pel seu ajut i recolzament. Part del treball reexat enaquesta mem�oria �es el fruit de m�ultiples discussions amb molts d'ells. Voldriafer un especial esment a tots els usuaris que han gosat posar-se a desenvoluparaplicacions en Noos a la vegada que el llenguatge s'estava gestant. Especialmentvoldria agra��r la comprensi�o mostrada a en Mart�� Cabr�e, a en Jordi Sabater i,especialment, a l'Eva Armengol. L'Eva �es la que m�es ha hagut de patir ambels canvis que hem anat introduint a Noos �ns a aconseguir una versi�o establedel llenguatge. Vull tamb�e agra��r a en Francisco Mart��n el seu treball per feraccessible Noos a trav�es d'internet. Tamb�e vull agra��r el recolzament de l'UlisesCort�es, el meu tutor i responsable de que �qu�es el nas en la intel�lig�encia arti�cial.Voldria tamb�e fer esment que aquest treball s'ha enriquit tamb�e dels suggeri-ments fets pels revisors an�onims que han llegit el resum previ d'aquesta tesi aix��com les diverses publicacions internacionals presentades.Finalment, voldria agra��r el recolzament de la fam��lia i amics i, especialment,de la Marta. Gr�acies per la vostra paci�encia i comprensi�o mostrada en totmoment. Voldria fer un especial esment a la Mireia, que tot i que en el momentd'escriure aquestes ratlles encara no ha nascut, ha estat l'est��mul �nal per poderacabar aquesta mem�oria.Aquest treball ha estat �nan�cat pels projectes de recerca AMP (CICYT801/90 c02), ANALOG (CICYT-122/93), SMASH (TIC96-1038-C04-01), per laxarxa europea d'excel�l�encia ML-NET (ESPRIT 7115) i per una beca per a larecerca del Consell Superior d'Investigacions Cient���ques.Bellaterra, Juliol de 1998 Josep Llu��s ArcosIIIA, CSICemail: arcos@iiia.csic.eshttp: www.iiia.csic.es/~arcosxv

AbstractThe aim of this thesis is the design and implementation of a representationlanguage for developing knowledge systems that integrate problem solving andlearning. Our proposal is that this goal can be achieved with a representationlanguage with representation constructs close to knowledge modeling frameworksand with episodic memory and reective capabilities.We have developed Noos, a reective object-centered representation languageclose to knowledge modeling frameworks. Noos is based on the task/method de-composition principle and on the analysis of models required and constructedby problem solving methods. Noos is formalizated using feature terms, a for-mal approach to object-centered representations, that provides a formalism forintegrating di�erent learning techniques.The integration of machine learning tasks has as implication that the knowl-edge modeling of the implemented knowledge system has to include modeling oflearning goals. Moreover, machine learning techniques have to be modeled insidethe KM framework and the knowledge requirements of ML have to be addressed.The integration of learning requires the capability of accessing (introspection)to solved problems (that we call episodes) and of modifying the knowledge ofthe system.The second proposal is that learning methods are methods (in the senseof knowledge modeling PSM) with introspection capabilities that can be alsoanalyzed in the same task/method decomposition way. Thus, learning methodscan be uniformly represented as methods and integrated into our framework.The third proposal is that whenever some knowledge is required by a prob-lem solving method, and that knowledge is not directly available, there is anopportunity for learning. We call those opportunities impasses, following soarterminology, and the integration of learning is realized by learning methods thatare capable of solving these impasses.In this memory we describe the capabilities of the Noos representation lan-guage and they use for developing knowledge systems that integrate problemsolving and learning. Examples of applications developed in Noos will be alsopresented.
xvii

Chapter 1IntroductionThe main goal of this thesis is the design and implementation of a representationlanguage for developing knowledge systems that integrate problem solving andlearning.The result has been the design and implementation of Noos, a reectiveobject-centered representation language for integrating inference and learningcomponents in a uniform representation.Our approach builds upon a variety of preceding work: knowledge-level anal-ysis of knowledge systems, knowledge modeling frameworks developed for thedesign and construction of knowledge systems, and research on integrated archi-tectures for problem solving and multistrategy learning.1.1 MotivationOne of the key issues in the current development of knowledge systems is thedegree to which di�erent components can be described, reused, and combinedin a seamless way. Moreover, the current development of knowledge systems in-creases the necessity of incorporating learning capabilities to knowledge systems.Currently, the integration of learning components is considered as an essentialtopic for future design, building, and maintenance of knowledge systems.The di�culties that arise in the development of complex knowledge systemsare broadly denominated the knowledge acquisition problem. Adapting the ap-proach given in [Aamodt, 1991], our view is that knowledge acquisition is a cyclicprocess required at the development phase and also at the problem solving phaseof a knowledge system (see Figure 1.1).The goal of the development phase is to perform a knowledge modeling analy-sis of the knowledge required for solving the problem and to design an applicationusing a speci�c computer language. First, knowledge modeling methodologiesare used to acquire knowledge models from human experts and represent theseknowledge models in an implementation independent representation formalism.Speci�cally, the knowledge-level analysis of expert systems and the knowledge1

2 Chapter 1. Introduction
Design

Development Phase

Episodes

Mental
Model

Knowledge
Modeling

Knowledge
Models

Knowledge
System

Problem
Solving

Learning
from

Experience
Revision

Problem Solving & Learning PhaseFigure 1.1. The design and maintenance cycle of knowledge systems(adapted from [Aamodt, 1991]).modeling frameworks are methodologies developed for describing and reusingknowledge systems components. These knowledge modeling frameworks, likeKADS [Schreiber et al., 1993], CommonKADS [Schreiber et al., 1994] or Com-ponents of Expertise [Steels, 1990], are based on the task/method decompositionprinciple and the analysis of knowledge requirements for problem solving meth-ods (PSM).After the knowledge modeling process (see Figure 1.1), a design process hasto be performed for translating the knowledge models to a speci�c language con-structing an executable knowledge system. A �rst issue arises here, since someknowledge models built by the KM methodologies are not directly operationaliz-able. Di�erent languages|that partially implement the knowledge models builtby KM frameworks|have been developed. Nevertheless, an active research ac-tivity is focused in developing fully operationalizable representation languageswith highly expressiveness capabilities.Machine learning (ML) techniques have been used by Knowledge Modelingmethodologies as a way to acquire certain models in the knowledge acquisition(KA) process conducive to building a knowledge system. Nevertheless, learningis only used in the development phase. That is to say, the knowledge systemdesigned is not to be capable of learning. The reason of this limited use oflearning is that the working hypothesis of knowledge modeling methodologies isthat the complete knowledge model of the problem can be acquired and modeledstatically in the development phase.

1.1. Motivation 3Our proposal is that certain knowledge acquisition tasks can be delayed fromthe knowledge system development phase to the phase in which the knowledgesystem is actually used in the task environment. That is to say, the knowledgesystem can be designed with learning capabilities. Since knowledge modelingmethodologies view KA as a process that basically build models, our approachmeans that some models are not built in the development phase|or, in general,a preliminary model is build but needs to be improved|and their constructionis delayed to the problem solving phase where appropriate ML methods areappointed to generate those models.The delay of KA tasks has as implication that the knowledge modeling of theimplemented knowledge system has to include modeling of KA goals. Moreover,machine learning techniques have to be modeled inside the KM framework andthe knowledge requirements of ML have to be addressed. The integration oflearning requires the capability of accessing (introspection) to solved problems(that we call episodes) and of modifying the knowledge of the system (self-modi�cation).Moreover, we want to provide a framework for developing|and integratingwith problem solving|several symbolic learning methods from the knowledgemodeling analysis of application domains.The contributions of machine learning have grown in the last years and havearisen many di�erent learning techniques. Some examples of learning meth-ods are: empirical learning or inductive learning, analytic learning or explana-tion based learning, memory based learning, case-based learning, learning byanalogy, connectionist learning, genetic algorithms, learning by discovery, etc[Carbonell, 1989, Moreno et al., 1994].Each di�erent learning method is useful for speci�c tasks satisfying a set ofrequirements. For instance, analytical learning methods require a copious do-main theory and few examples, while case-based learning methods require manysolved cases and may also use domain knowledge. A di�culty with learning tech-niques is that di�erent learning systems use di�erent representation languagesand di�erent knowledge models about the architecture (the self-model).There are two main approaches adopted to integrate learning with problemsolving: (i) combining di�erent learning methods in hybrid systems in orderto be applied in a set of broader tasks, like casey [Koton, 1989] or bolero[L�opez and Plaza, 1993], or (ii) developing a computational framework capableof integrating di�erent learning methods in a uniform way. Examples of this sec-ond approach are architectures like prodigy [Carbonell et al., 1991] and theo[Mitchell et al., 1991].Integrated architectures propose di�erent frameworks for integrating prob-lem solving and learning. A di�culty with integrated architectures is that theirrepresentation languages are far from knowledge modeling frameworks (for in-stance, soar representation language is based on productions). Moreover, allthese architectures integrate diverse learning mechanisms but present some lim-itations in their integration.

4 Chapter 1. IntroductionOur approach in developing Noos was inuenced by research on integratedarchitectures. Nevertheless, our approach of integration of learning techniques isrestricted to symbolic learning techniques: we have focused on the integration ofinductive learning techniques, case-based reasoning techniques, and analyticallearning techniques. Another issue not covered by this thesis is the revisionprocess (see Figure 1.1) for re-designing knowledge models from the experienceacquired in solving problems.One of the most research activity in machine learning, at the theoreticaland practical level, is focused on the integration of several disparate learningtechniques [Langley, 1989]. This research is focussed on the development ofsystems called multistrategy learning systems (MSL systems) [Michalski, 1993].MSL systems use several learning techniques, that are combined using a spe-ci�c strategy, for learning from a greater variety of inputs and acquire moreexible knowledge. Consequently, MSL systems potentially can be applied toa wide range of problems. Following this direction, our approach in Noos is toprovide a representation language for facilitating the integration of several learn-ing techniques in a knowledge system. Moreover, a domain-speci�c analysis foreach Noos application determines di�erent strategies for combining these severallearning techniques.1.2 Goals and contributions of the thesisThe aim of this thesis is the design and implementation of a representationlanguage for developing knowledge systems that integrate problem solving andlearning. Our proposal is that this goal can be achieved with a representationlanguage with representation constructs close to knowledge modeling frameworksand with episodic memory and reective capabilities.The second proposal is that learning methods are methods (in the senseof knowledge modeling PSM) with introspection capabilities that can be alsoanalyzed in the same task/method decomposition way. Thus, learning methodscan be uniformly represented as methods and integrated into our framework.The third proposal is that whenever some knowledge is required by a prob-lem solving method, and that knowledge is not directly available there is anopportunity for learning. We call those opportunities impasses, following soarterminology [Newell, 1990], and the integration of learning is realized by learningmethods that are capable of solving these impasses.We have developed the Noos representation language, a language close toknowledge modeling frameworks, for developing knowledge systems that allowsthe integration of problem solving and learning.Furthermore, Noos is formalizated using feature terms, a formal approach toobject-centered representations, and providing a uniform formalism for integrat-ing di�erent learning techniques.Noos is a language with capabilities of :Representation : Noos is based on task/method decomposition principle andthe analysis of knowledge requirements for methods. This capability allows

1.2. Goals and contributions of the thesis 5Noos to take advantage of the KA methodologies and libraries developedin KM frameworks. There are several speci�cation languages developed inKM frameworks that can be used for knowledge modeling of applications.A knowledge modeling analysis realized in some of these speci�cation lan-guages can be then implemented in Noos. Nevertheless, this operational-ization step is not structure-preserving with respect to knowledge modelingframeworks.An object-centered representation language : Noos provides a structuredrepresentation of knowledge allowing the description of complex knowl-edge. Moreover, the Noos approach to knowledge representation providesa natural way to describe partial knowledge amenable to extension.Introspection : Noos inference behavior is partially represented in the lan-guage itself. This rei�ed behavior can be accessed by problem solvingmethods written in Noos. Introspective capabilities form the basis thatallows Noos programs to reason about the system behavior. Learningmethods are methods that use introspection.Episodic memory : problems solved in Noos are automatically memorized(stored and indexed) and amenable to be accessed and reused in solvingnew problems. The problem solving behavior in these solved problemsis also represented in Noos and, using introspection, is accessible and in-spectable. Episodic memory can be inspected by means of three di�erentaccess mechanisms: access by path, that provides a way to access to speci�cportions of the episodic memory; retrieval methods, that provide a mech-anism for content-based access to the episodic memory; and perspectives,a mechanism to describe declarative biases for case retrieval in the struc-tured representation of cases. The memorization of solved problems is abasic building block|together with introspection|for integrating learninginto our KM framework.Integrated Problem solving and learning : the integration of learning inNoos is based on two proposals:� Learning methods are methods (in the sense of knowledge modelingPSM) that can be also analyzed in the same task/method decompo-sition way. Introspective requirements of learning methods can beful�lled using Noos reective operations for accessing the episodicmemory.� Impasse driven learning : whenever some knowledge is required bya problem solving method, and that knowledge is not directly avail-able, there is an opportunity for learning. We call those opportunitiesimpasses, following soar terminology, and the integration of learn-ing is realized by learning methods that are capable of solving theseimpasses.

6 Chapter 1. IntroductionMachine learning methods : Noos provides a collection of basic mechanismsallowing the development of di�erent learning methods such as inductivelearning methods, CBR, and analytical learning methods.� Inductive learning methods are developed in Noos as search methods(that follow certain biases) over the space of feature terms. Domainspeci�c knowledge is used for constructing inductive learning methodsthat follow di�erent searching biases. Inductive learning methods arebased on the feature term subsumption and antiuni�cation operationsof Noos.� Case-based reasoning methods are developed in Noos as problem solv-ing methods with lazy learning capabilities that search for previouslysimilar solved problems in the Noos episodic memory. CBR methodsare based on the retrieval and subsumption operations of Noos.� Analytical learning methods are developed in Noos as methods that,given a training example whose problem task has been solved by aproblem solving method M and given an operationality criterion, con-struct a new problem solving method Mop for solving that task andobeying the operationality criterion. Analytical learning methods arebased on the Noos introspective capabilities for inspecting the episodicmodel built in Noos while solving the training example.A multistrategy learning approach : di�erent learning methods can be in-tegrated in Noos using a common scheme based on three main subtasks:Introspection, Construction, and Revision. Using this common scheme, wewill present how di�erent learning methods can be designed and integratedin a problem solving system.Noos has been implemented using Common Lisp and currently is running inseveral platforms. A window-based graphical interface has been also develppedin Macintosh Common Lisp [Digitool, 1996] for the MacOS version of Noos.Although the implementation details are not the main focus of this thesis, weprovide a brief description of the Noos development environment in Appendix A.Moreover, Noos has been used by several persons to develop several appli-cations that integrate di�erent problem solving methods and di�erent learningmethods. The research done in one of them, called Saxex and developed by my-self, has been awarded with the \Swets & Zeitlinger Distinguished Paper Award"at the 1997 International Computer Music Conference [Arcos et al., 1997b].1.3 Structure of the thesisThis thesis is organized in seven chapters, including this introduction chapter,and four Appendices:Chapter 2 reviews the main research relevant to our thesis and discusses theircontributions and limitations. We present research on knowledge modeling

1.3. Structure of the thesis 7methodologies for analyzing and developing knowledge systems; researchon integrated architectures for exploring the relationships among problemsolving, learning, and knowledge representation; research on reective rep-resentation languages for providing introspection capabilities on knowledgesystems; and �nally, we discuss the role of reection in learning.Chapter 3 presents the Noos representation language. The language is intro-duced incrementally. First, The Noos modeling framework is presented.Next, the basic elements of the language such as descriptions, re�nement,references, methods, and the basic inference are described. Then, the re-ective capabilities of Noos are described introducing elements such as met-alevels, tasks, reective operations, rei�cation, and reinstantiation. Next,a declarative mechanism for decision making about sets of alternatives,called preferences, is presented. Finally, the complete Noos inference en-gine is described.Chapter 4 presents the Noos capabilities for reasoning about experience andthe integration of learning and problem solving. First, the notion ofepisodic memory is introduced. Then, introspective mechanisms such asretrieval and perspectives are presented. Next, three di�erent families oflearning techniques such as case-based reasoning, inductive learning, andanalytical learning, are presented with examples of how they have beenintegrated in Noos.Chapter 5 presents feature terms, a formalism for describing the Noos lan-guage. Feature terms are introduced using a syntax notation based on the�N calculus. Then, using the work on feature structures, a semantics basedon the notion of partial descriptions is presented. The results obtained bythe research on feature structures are also adapted for providing severalequivalent representations of feature terms.Chapter 5 introduces a formalism for describing preferences based on thenotion of pre-orders. Two kinds of basic operations are de�ned over pref-erences: preference operations, that take a set of source elements and anordering criterion and build a preference (a partially ordered set), andpreference combination operations, that take two preferences and a combi-nation criterion and build a new preference.Next, using feature terms perspectives are de�ned. Perspectives are for-malized as second order feature terms that denote sets of terms.Finally, we describe formally the inference in Noos using Descriptive Dy-namic Logic, a propositional dynamic logic for describing and comparingreective knowledge systems.Chapter 6 provides a set of examples of how diverse applications have beendeveloped using Noos by several persons at IIIA. Speci�cally, the chap-ter present six applications developed using Noos: chroma, spin, sham,gymel, Saxex, and NoosWeb.

8 Chapter 1. IntroductionChapter 7 summarizes the main contributions of the thesis and discusses fur-ther directions of research.Appendix A presents the Noos development environment including develop-ment facilities such as browsing, tracing, and the extension of the built-inmethods.Appendix B provides a glossary of the main concepts introduced in this thesis.Appendix C presents the complete syntax of the Noos language, using BNFnotation, and the collection of compact descriptions for built-in methods.Appendix D presents the complete list of Noos built-in methods describingtheir required features and their functionality.

Chapter 2BackgroundThe goal of this chapter is to describe the literature relevant to our work. Onthe one hand, in Section 2.1 we will present the research on knowledge model-ing methodologies for analyzing and developing knowledge systems. Then, inSection 2.2 we will present the research on integrated architectures for exploringthe relationships among problem solving, learning, and knowledge representa-tion. In Section 2.3 we will focus on the research on reective representationlanguages for providing introspection capabilities on knowledge systems. Next,in Section 2.4 we discuss the role of reection and learning. Finally, in Section 2.5we provide some conclusions about these research approaches.2.1 Knowledge modeling frameworksKnowledge modeling frameworks (KMF) propose methodologies for analyzingand developing knowledge systems. Di�erent approaches di�er on the method-ology they propose but all of them are based on the conception of constructinga conceptual model of a system which describes the required knowledge andinferences at an implementation independent way.Knowledge modeling frameworks are highly inuenced by previous workon Knowledge Level [Newell, 1982], Generic Tasks [Chandrasekaran, 1986], andProblem Solving Methods [McDermott, 1988].Knowledge Level proposes a level of description of systems focused in de-scribing the knowledge they contain rather than the implementation structuresof these knowledge. A system at knowledge level is viewed as an agent with threecomponents: goals, actions, and bodies. This description level provides a moreadequate level of description of knowledge systems. A principle of rationalityrule guides the behavior of the agent: Actions are selected to attain its goals.Generic Tasks proposes a task-oriented methodology for developing knowl-edge systems. This methodology focuses the process of analyzing and buildinga knowledge system for given problem by representing a task-structure for the9

10 Chapter 2. Backgroundproblem and specifying the domain requirements of the tasks in the task struc-ture. A task structure is described in terms of the methods that are applicable totasks and the conditions under which each method is applicable. Each methodis itself speci�ed in terms of how it uses knowledge and inference to achieve atask, and in terms of which subtasks are required to be achieved before it cansucceed. This decomposition is done recursively until methods which achievetasks are not decomposed by additional subtasks. The task structure o�ers theadvantage that directs the knowledge acquisition, since knowledge and inferencerequirements for the methods can be explicitly identi�ed. The generic tasksmethodology is also based on the view that the task analysis is aided by the factthat a number of generic tasks and methods have been identi�ed. This libraryof generic components facilitates the development of knowledge systems.Problem Solving Methods (PSMs) are knowledge use characterizations of howproblems can be solved. Each problem solving method is described using a setof roles that have to be �lled by domain models. The advantages of focus-ing the development of knowledge systems on the problem solving methods isthat the roles required by PSMs prescribe what domain knowledge has to beacquired. A current research work on PSMs is focused on assumptions overdomain models required to perform the PSM. Assumptions facilitate the appli-cation of PSMs in tasks by assuming they use a common terminological struc-ture (see for example the work on assumptions for model-based diagnosis in[Fensel and Benjamins, 1996]). The research on PSMs is also focused on reuse.The progress on reuse of PSMs is an important aspect that will reduce consid-erably the development e�orts of knowledge systems.Below we will describe briey two methodologies proposed for the analy-sis and development of knowledge systems: The CommonKADS methodologyand the Components of Expertise methodology. Next, we will present Krest,a knowledge-system design tool implementing the kernel of the componentialmethodology. Finally, we will present another knowledge engineering environ-ment, called Prot�eg�e-II, which supports the construction of knowledge systemsfrom reusable components.CommonKADSCommonKADS [Wielinga et al., 1993] [Van de Velde, 1994a] is a methodologyfor the development of knowledge systems. CommonKADS is the evolution ofthe KADS methodology [Wielinga et al., 1992] [Schreiber et al., 1993].In CommonKADS the development of a knowledge system is viewed as theconstruction of models of problem solving behavior in a concrete organizationalcontext. CommonKADS provides a set of models, called the model set, thatallow for expressing the various perspectives of the problem solving situation:organization model, task model, expertise model, communication model, agentmodel, and design model.The organization model describes the organizational context in which the

2.1. Knowledge modeling frameworks 11knowledge system to be developed occurs (e.g. resources, functions, and pro-cesses).The task model describes the tasks and activities that are performed for real-izing organizational functions (e.g. tasks, task inputs, and required capabilities).The agent model collects relevant properties of the di�erent agents involvedin the realization of tasks described in the task model (e.g. users and softwaresystems).The communication model describes communication processes among agents(described in terms such as transaction plans, ingredients, and initiatives).The expertise model describes the knowledge of an agent relevant to solvea speci�c task and its use-speci�c structure. This knowledge and structure ofthe expertise model is described as three kinds of knowledge models (domainknowledge, task knowledge, and inference knowledge) and with a set of mappingsamong them.The design model describes the realization of problem solving behaviors de-scribed in expertise and communication model in computational and represen-tational terms.Organization model, task model, agent model, and communication modelcapture the context in which the problem solving activity is performed. Theexpertise model captures the knowledge and reasoning involved in performingtasks. The design model describes the computational realization.Here, due to the relevance with our work, we will describe in more detailthe expertise model. The purpose of the expertise model is to describe thecollection of elements of knowledge involved and their roles in solving a speci�ctask. In CommonKADS the di�erent roles are captured in three basic knowledgecategories: task knowledge, domain knowledge, and inference knowledge.The task knowledge category describes a recursive decomposition of a top-level task in (sub)tasks, speci�es what it means to achieve these tasks, anddescribes when these (sub)tasks are to be executed in order to achieve the parenttask (describes the control). A task description consists of two parts: a taskde�nition and a task body. The task de�nition speci�es what it means to achievethe task by de�ning its goal in terms of input and output roles. The inputand output roles are references to parts of domain knowledge. The task bodydescribes how the task can be achieved by means of describing a set of subtasks,a set of additional roles, and a control structure.A usual view of the task knowledge is the task decomposition of a top leveltask. The task decomposition shows the di�erent (sub)tasks that contribute tothe achievement of parent tasks and, at the leaves of the structure, the set ofinferences (from inference knowledge category) that can accomplish primitivetasks.The domain knowledge category speci�es the form, structure, and contentsof domain speci�c knowledge that is relevant for an application. The form andstructure of domain speci�c knowledge is de�ned specifying di�erent ontolo-gies, that provide partial coherent views on parts of the domain knowledge. Acollection of domain knowledge statements described by a particular ontology,

12 Chapter 2. Backgroundand describing a speci�c problem context, is called a domain model. Domainknowledge is structured in a series of domain models.The inference knowledge category speci�es the primitive reasoning steps (in-ferences) in an application. Inference knowledge also describes the knowledgeroles that refer to classes of domain knowledge elements manipulated by theinferences.The inferences modeled in a particular application form a structure called theinference structure that describes the data dependencies between the di�erentinferences. An inference structure, however, does not express a control diagram.It only expresses how knowledge elements referred to by the various roles areused and produced by the various inferences.Finally, one of the goals of the CommonKADS project is the reuse of knowl-edge components of the model set. Libraries of reusable elements potentiallyavailable for all aspects modeled in an application have been developed.ComMetThe componential methodology [Steels, 1990], called ComMet, proposes a frame-work for describing expertise at the knowledge level. ComMet decomposes theexpertise into three di�erent perspectives: the task perspective, the model per-spective, and the method perspective.The task perspective speci�es the set of tasks that a problem solver has toachieve. Usually, there is a main task that covers the whole application (e.g. di-agnose of car malfunctions). This task usually decomposes into several subtasks.These tasks can still be further decomposed until a non-decomposed elementarytasks.The decomposition of tasks into subtasks is called the task structure. Thetask structure is not necessarily static. Sometimes not all subtasks are executedfor each case. The task structure is represented as an and/or tree.Problem solving in ComMet is viewed as a modeling activity. Solving aproblem is viewed as the construction of a model of various aspects of the worldthat are relevant to �nd a solution to the problem.The model perspective focuses on the question what knowledge is availableto achieve the tasks. ComMet makes a distinction between three di�erent kindsof models: case models, domain models, and problem solving process models. Animportant e�ort of knowledge analysis is focused on the development of modelsrequired in an application and the dependencies given between the di�erentmodels.Case models describes speci�c situations to be solved. Case models can bedescribed using di�erent perspectives. A components model is a model of asystem in terms of its components and subcomponents. A descriptive model is amodel of a system in terms of a set of observable features of the system. Causalmodels, behavioral models, functional models, and temporal models are examplesof other case models. Usually the kind of model chose is strongly inuenced bythe kind of tasks to be solved. For instance, con�guration tasks are described interms of how the di�erent components of a system are connected.

2.1. Knowledge modeling frameworks 13When the di�erent case models have been identi�ed, the following step is todetermine how these models are related to each other. The result of this analysisis represented in ComMet as a case model dependency diagram.Domain models are models valid for a variety of cases. Domain modelsdescribe domain-speci�c knowledge which is used by problem solving methodsto construct case models. The domain models are added to the case modeldependency diagram to yield a complete model dependency diagram. The do-main models can be divided into two classes: the expansion models, containingknowledge relevant for expanding a model (e.g. for adding more symptoms toa symptom case model), and mapping models, used to construct or modify casemodels based on a mapping from elements of other models (e.g. from symptomsto malfunctions).Problem solving process models are needed when the problem solver has toreason about itself.The method perspective speci�es how and when the knowledge is applied. Amethod is a code that imposes a control structure between tasks and is rep-resented in a control diagram. A control diagram is a graph where the nodescorrespond to subtasks and transitions between nodes represent the control owbetween di�erent tasks. Methods are divided into three main classes: task de-composition methods, task execution methods, and search methods.Task decomposition methods decompose a task into subtasks and put a con-trol structure on the subtasks. The subtasks of task decomposition methods stillneed to be further decomposed.Task execution methods also decompose a task into subtasks and put a controlstructure on the subtasks. The subtasks of execution methods are implementa-tion tasks whose execution results in problem solving activities.Search methods are necessary when not enough information is available todecide in which way a case model has to be developed. Search methods are usedto choose, among several alternatives, the most appropriate.KresTKrest [Jonckers et al., 1992] is a knowledge-system design tool implementing thekernel of the componential methodology. According to this methodology, thebasic components of KresT are tasks, methods, and models. These componentsare described by a knowledge-level description language provided by a softwareextension called application kit (or appkit). The description language is basedof feature structures.Components can be connected together with di�erent types of relations. Ac-cording to ComMet, any component can be linked to any other, but KresTimplements task-roles, which link tasks to models or other tasks, and methodroles, which link methods to models or tasks.Task roles relate tasks to models using two roles: input roles, relating themodels required by a task, and output roles, relating the output models of atask. A task can be related to other tasks using a subtask role.

14 Chapter 2. BackgroundIn KresT each task is connected to exactly one method and each methodmay perform only one task. The rationale for that constraint comes from thefact that the methodology is case oriented: methods are viewed as instances ofalgorithms, applied in a particular context, and with particular input and outputroles.Method roles relate methods to models and tasks. When a task role is es-tablished between a task and its method, a method role is also automaticallycreated for the method with the task. Method roles hold a set of properties.The four basic properties of a method role are: its name, used as a key to selectit and to represent it on the diagrams, its type, inherited from the task role, theconstraints imposed to candidate �llers (related to input and output models),and the multiplicity of the role, whether it allows multiple �llers.Components are grouped in a larger units, called projects. A project is a setof related tasks, models, and methods required to build a particular system.The interface of KresT allows to design components by editing feature struc-tures and through a graphical interface that provides a set of diagram typessuch as a task-structure-diagram representing the task/subtask hierarchy, a task-model-dependency-diagram representing task/model relations for one task, to-gether with information about the method/model relation, and a subtask-model-dependency-diagram representing in a same window the same relations for allsubtasks of a given task.Prot�eg�e-IIThe Prot�eg�e-II [Puerta et al., 1992] is a knowledge engineering environment thatallows developers to build knowledge systems by selecting and modifying reusableproblem solving methods and domain ontologies. Prot�eg�e-II provides a suite ofknowledge-acquisition tools to generate domain-speci�c knowledge-acquisitiontools from ontologies. A main goal of Prot�eg�e-II is to support early prototyping.The model of reuse in Prot�eg�e-II is based on the notion of a library of problemsolving methods that performs tasks. PSMs have input-output requirements andare decomposable into subtasks. Other methods can perform these subtasks.Methods that are not further decomposed are called mechanisms.Ontologies in Prot�eg�e-II are de�ned as class hierarchies. There are three maintypes of ontologies in Prot�eg�e-II: domain ontologies, method ontologies, and ap-plication ontologies. Domain ontologies model concepts and relationships for aparticular domain. Method ontologies model concepts related to problem solvingmethods, including input and output requirements. To enable reuse, method on-tologies should be domain independent. Application ontologies combine domainand method ontologies for con�guring a particular application.Since a main goal of Prot�eg�e-II is to provide support for reuse of problemsolving methods and ontologies, it also provides a way to connect these two com-ponents in an application called mapping relations [Gennari et al., 1994]. Map-ping relations encode any adaptations from domain models to problem solvingmethods.

2.2. Integrated architectures 15Prot�eg�e-II provides a mappings ontology for guiding the mapping process.Mappings ontology de�nes a set of mapping relations (e.g. renaming mappingsapplied when the semantics between method and application classes match butslot name have to be translated) that constitute the language for specifyingmapping relations.2.2 Integrated architecturesThe goal of the research on integrated architectures is to explore the relationshipsamong problem solving, learning, and representation.Di�erent integrated architectures have divergent features that lead to di�er-ent properties concerning to the problem solving process (e.g. forward and back-ward chaining, or impasse-driven inference), the architecture organization (e.g.hierarchical or modular), the knowledge representation language and knowl-edge structures used (e.g. uniform representation or heterogeneous representa-tion), and the learning capabilities (e.g. deliberative/reexive, monotonic/non-monotonic).These design decisions then lead to the support of speci�c capabilities suchas capabilities related to problem solving (e.g. planning, self-reection, or meta-reasoning) or capabilities related to learning (e.g. single or multiple learningmethods, inductive learning, explanation-based learning, or learning by anal-ogy).The choice of features is often made by following some explicit methodolog-ical assumptions, often driven by the domains and environments in which thearchitecture will be used.A detailed comparison study of twelve di�erent integrated architectures canbe found in [Wray et al., 1995]. In this monograph we will describe three archi-tectures that were inuential in the initial design and implementation of Noos:theo, soar, and prodigy. We will focus the description of such systems infour aspects: the methodological assumptions, the representation language, theproblem solving process, and the integration of learning mechanisms.THEOThe design of the theo architecture [Mitchell et al., 1991] was motivated by thegoal of providing a framework to support basic research on general problem solv-ing, learning, and knowledge representation, and especially on the interactionsamong these three issues. A second motivation was to design an e�cient frame-work for developing e�ective knowledge systems. theo is intended to provideseveral levels of sophistication and e�ciency depending on the user's require-ments.theo utilizes a uniform frame-based knowledge representation. Frames rep-resent entities and have a collection of slots representing relations among entities.The integration of a frame with a slot and a value is said to be a belief. Speci�-cally, an assertion of the form (entity slot) = value represents the belief that

16 Chapter 2. Backgroundsome entity named entity stands in some relation named slot with anotherentity named value. For example, we might assert (fred wife) = wilma.Slots are themselves entities. A number of slots for describing slots are pre-de�ned in theo. Prede�ned slots of slots describe di�erent types of informa-tion about slots. Some of these slots of slots describe various slot propertiessuch as domain, range, inverse, and transitive?. Other slots of slots de-scribe how to infer values of instances of the slot, such as toget, methods, andavailable.methods. Slots such as whentocache and whentoebg describe con-trol information determining whether once the value of the slot is inferred it hasto be cached. In addition slots of slots such as explanation and dependentsdescribe information about the interdependencies among slot values.Slot values in theo can be inferred using methods. There are three layersof speci�cation of methods for a particular slot. At the most basic layer, theoallows to associate a Lisp function to a slot by asserting a value for the togetslot of that slot. At a second layer, the user can specify a list containing some ofsystem prede�ned inference methods (such as inherits, default.value, anddrop.context) in the available.methods slot of the slot. Finally, the higherlayer allows to associate the defines method. The defines method specifythe use of de�nitions for other slots or the use of methods built by theo'sexplanation-based learning mechanism.Problem instances in theo are pairs of the form (entity slot),representing the task of determining a justi�able belief of the form(entity slot) = value. For example, we might pose the problem(fred wife) whose solution is wilma.Problem classes, or sets of problem instances, are described either by a singletoken slot (e.g. wife) representing the class of problem instances of the domainof slot, or by a pair of the form (entity slot) (e.g. (male wife)) represent-ing the class of problem instances of slot and whose entity is a member of theclass represented by entity.Problem instances and problem classes are themselves entities. Thus, theocan hold beliefs about problems and pose problems regarding problems just as itcan for any other entity. For example, we could assert the belief that the problemof determining Fred's wife is di�cult by asserting ((fred wife) difficult?)= true.Problem solving in theo corresponds to inferring the value of a slot. Infer-ence in theo is impasse-driven: when a problem instance is posed to the systemand whose slot value is unknown, an impasse arises, resulting in the subtask ofinferring the corresponding slot value.Given a problem instance (E S), the theo's inference mechanism is basedon three inference layers:� Layer 1 : apply the Lisp function speci�ed in slot toget of slot S of entityE. If unspeci�ed, go to level 2.� Layer 2 : apply the list of methods speci�ed in slot available.methodsof slot S of entity E until a value is obtained. If unspeci�ed, the de-

2.2. Integrated architectures 17fault value of the available.methods slot is the list (defines inheritsdrop.context default.value). The defines method starts layer 3.� Layer 3 : Utilize de�nitions for other slots inferred from knowledge of slotsof slot such as inverse and transitive, or de�nitions inferred by theoexplanation-based learning mechanism.Once a problem is solved, theo may store the solution in the memory, assert-ing the corresponding belief, indexed by the problem name|or in other words,by the problem class. When it stores such beliefs, it also stores the explanationjustifying the new assertion in terms of the beliefs on which depends.One of theo's guiding principles was that all knowledge should be openfor inspection. Because of the uniform frame-based representation of theo,the access to any knowledge in theo is performed by accessing to the valueof corresponding slot. If desired knowledge is not present, an impasse occursand the theo inference mechanism is automatically engaged. This knowledgetransparency along with the automatic storage of solved problems is the basisfor the incorporation of learning mechanisms in theo.Three learning mechanisms are available in theo: caching of inferred val-ues, explanation-based learning of macro-methods for inferring slot values, andinductive learning for ordering the methods for inferring slot values (methods inavailable.methods slot).Caching is the simplest form of learning in theo. Once the value of a slot isinferred, the value may be stored in the slot, along with an explanation of howthe value was inferred. This mechanism decreases the cost of slot accesses infuture demands.Explanations of how slot values are inferred constitute the input knowledgefor explanation-based learning. In particular, after theo infers the value of someslot S, it forms a macro-method, using a module called tmac, by examining ex-planations of previously successful slot inferences. This macro-method is storedin a slot of the slot S' from which S was specializated. Then, theo will be ableto use this macro-method when attempting to infer values for other slots thatare specializations of S'.Since theo usually has several methods available for inferring the value ofany given slot, theo also improves its performance modifying the order in whichslot inference methods are attempted. By default, theo attempts methods inthe order in which they are listed in the available.methods slot. In order tolearn a better ordering for methods, theo keeps a set of statistics on the costand likelihood of success for each slot inference method. theo incorporates aninductive learning method called SE [Etzioni, 1988] for ordering methods. SEaccepts as input a slot address and the corresponding list of available methods,and produces as output a list of methods ordered in the sequence they shouldbe attempted.

18 Chapter 2. BackgroundSOARResearch on soar [Laird et al., 1987] [Rosenbloom et al., 1991] is focussed onthe development and application of an architecture for general intelligence. soaris based on formulating all goal-oriented behavior as search in problem spaces. Aproblem space determines a set of states and operators that can be used duringthe processing to attain a goal. Each goal de�nes a problem solving context thatcontains, in addition to a goal, the roles for a problem space, a state, and anoperator.All knowledge in soar is stored in two memories: the short-term memory(also called working memory) and the long-term memory.Working memory consists of a set of objects and preferences about objects.Each object in the working memory has a class name, a unique identi�er, and aset of attributes with associated values, which may be constants (e.g. numbers)or identi�ers. For example a particular person could be represented by thefollowing object:(person Susan ^profession engineer ^age 33)Preferences are architecturally interpretable elements that describe the ac-ceptability, desirability, and necessity of selecting particular problem spaces,states, and operators. The context in which a preference is applicable is spec-i�ed by its goal, problem-space, state, and operator attributes. There are twotypes of acceptability preferences (acceptable and reject) to select an operator,�ve types of desirability preferences (worst, worse, indi�erent, better, and best)to determine the desirability of objects, and two necessity preferences (requireand prohibit) to select and object for achieving a goal. For example, the follow-ing is a desirability preference stating that operator o1 is the best operator forstate s1, problem space p1 and goal g1:(preference p1 ^role operator ^value best ^goal g1^problem-space p1 ^state s1)All long-term knowledge is stored in form of productions. Productions havea set of conditions, which are patterns to be matched to working memory, anda set of actions to perform when the production �res.Problem solving in soar is decomposed in two phases: the elaboration phaseand the decision phase. This two phases are repeated until the goal of the cur-rent task is reached. During the elaboration phase all productions that matchthe current working memory are �red in parallel, and this is repeated until nomore productions are matched. The elaboration process retrieves into workingmemory new objects, new information about existing objects and new prefer-ences. The decision phase examines any preferences (added either in this phase,or in previous ones), and chooses the next problem space, state, operator or goalto place in the context stack. The decision phase may change any current slotvalues, or any previous slot values in the context stack.If there is not enough information (or the information is contradictory) forthe decision phase to proceed, then an impasse arises. There are four types ofimpasses: tie impasse, arising when two or more elements have equal preference,

2.2. Integrated architectures 19no-change impasse, arising when no preferences are in the working memory,reject impasse, arising when only preferences in working memory are rejectedby other preferences, and conict impasse, arising when two or more objects arethe best choices. When an impasse occurs, a subgoal with an associated problemsolving context is automatically generated for the task of resolving the impasse.Productions into the soar's long term memory cannot be directly accessedby other soar rules. Knowledge in long term memory is only indirectly accessedby pattern matching in the elaboration phase.All learning occurs in soar through the chunking mechanism. Chunking is aform of explanation based learning that has inductive properties. Whenever thedecision cycle returns a result to a supergoal, a new production is created whoseconditions are the elements tested which existed before the impasse, and whoseactions are the preferences returned. This new production is called a chunk.The conditions of a chunk are determined by a dependency analysis. The newchunk is placed in long-term memory immediately, and is available on the nextelaboration phase, thus soar's learning is intermixed with its problem solving.Chunking is the only architecturally supported learning mechanism of soar.However, other learning mechanisms such as learning by abstraction and basicanalogy have been developed from chunking and other architectural components.Prodigyprodigy [Carbonell et al., 1991] [Carbonell et al., 1995] is a general plan-ner/problem solver that integrates multiple learning modules.Knowledge in prodigy is described using a uniform representation, which iscalled the Prodigy Description Language (PDL), based on �rst order predicatelogic. PDL includes four types of knowledge concepts:� Ground atomic formulas: used to describe states and goals,� Operators: used to describe what actions e�ect which changes to the states.Operators map states into new states. prodigy operators consist of aFOL expression describing the operator's preconditions, coupled with con-ditional add and delete lists representing the resulting changes to the statewhen the operator is applied. Operators may also contain conditional ef-fects that represent changes to the world that are dependent on the statein which the operator is applied.� Inference rules: used to deduce added information about a state. Inferencerules are represented as simpli�ed operators without delete lists.� Control rules: used to guide the search. Control rules map a set of can-didate decisions (such as which legal operator to apply or which goal towork on next) into a smaller or priorized decision set. Each control rulehas a left-hand side condition testing applicability and a right-hand sideindicating whether to select, reject, or prefer a particular candidate.

20 Chapter 2. BackgroundAll the knowledge used or learned in any prodigy module is open for inspec-tion and use for every other module. The uniform logic-based representation ofboth control knowledge and domain knowledge provides a uniform access to allknowledge.A problem consists of an initial state and a goal expression. Solving a problemin prodigy|given an initial state, a goal, a set of operators, and a set of controlrules|is to �nd a sequence of operators that, if applied to the initial state,produces a �nal state satisfying the goal expression. The search tree initiallystarts out as a single node containing the initial state and a goal expression. Thetree is expanded by repeating the following two steps:1. Decision phase: There are four types of decisions that prodigy makesduring problem solving. First, it must decide what node in the search treeto expand next, defaulting to a depth-�rst expansion. Each node consistsof a set of goals and a state describing the world. After a node has beenselected, one of the node's goals must be selected, and then an operatorrelevant to this goal must be chosen. Finally, a set of bindings for theparameters of that operator must be decided upon.2. Expansion phase: If the instantiated operator's preconditions are satis�ed,the operator is applied. Otherwise, prodigy subgoals on the unmatchedpreconditions. In either case, a new node is created.When prodigy is solving a problem, it makes decisions about which nodeto expand, which operator to apply, which objects to use, and which goal togo on. These decisions are inuenced by control rules in order to increase thee�ciency of problem solving search and to improve the quality of the solutionsthat are found. Using backtracking, the candidates are attempted, according tothe preference order inferred by control rules, until all candidates are exhaustedor a global solution is found.Learning in prodigy is a deliberative metareasoning process: learning mod-ules are activated when the system believes that the acquisition of new knowledgecan be useful. prodigy has six learning modules: apprentice, ebl, static,analogy, alpine, and experiment.apprentice is a graphic-based interface for knowledge acquisition of domainknowledge and for guiding the problem solving search.ebl is an explanation-based learning module for acquiring control rules froma problem solving trace. After a search problem solving episode, explanationsare generated in a three stage process. First, ebl considers what to learn froma problem solving trace, then it considers how to best represent the learnedinformation as control rules, and �nally it empirically tests the utility of theresulting control rules to insure that they are indeed useful. Because ebl hasaccess to the complete trace, it is used to learn from successes as well as to learnfrom failures.static is a learning module for learning control rules by analyzing domaindescriptions. static can be viewed as a compiler for prodigy's domains.

2.3. Reective representation languages 21analogy is a case-based learning module based on derivational analogy.The focus of analogy is to use similar previously solved problems to solvenew problems [Veloso, 1992] [Veloso and Carbonell, 1993]. The problem solverrecords justi�cations for each decision taken during its search process. Thesejusti�cations are then used to guide the reconstruction of the solution of newsituations where equivalent justi�cations hold true.alpine is an abstraction learning and planning module. alpine is used forperforming hierarchical planning in prodigy and is based on an analysis of thedomain for automatically generating multiple abstraction levels.Finally, experiment is a learning by experimentation module for re�ningdomain knowledge that is incompletely speci�ed.2.3 Reective representation languagesThe research on reective representation languages is motivated by the factthat the implementation of complex knowledge systems requires the incorpo-ration of mechanisms for reasoning about themselves. The goal is thereforethe design of reective languages for developing knowledge systems able todescribe and modify themselves. Examples of reective representation lan-guages based on procedural reection are RLL-1 [Greiner and Lenat, 1980],MOP [Kiczales et al., 1991], and 3-Lisp [Smith, 1985].Moreover, the development of knowledge modeling frameworks carriedout the design of formal and executable speci�cation languages for de-scribing and implementing knowledge systems based on these knowledgemodeling frameworks (see [Fensel, 1995a]). Examples of languages aremodel-k [Karbach et al., 1991], (ML)2 [van Harmelen and Balder, 1992], andkarl [Angele et al., 1994][Fensel, 1995b] based on kads model, or KresT[Jonckers et al., 1992] and MetaKit [Slodzian, 1994b] based on the componentialframework.RLL-1RLL-1 [Greiner and Lenat, 1980] is a reective representation language whichwas used as the basis for implementing the eurisko system [Lenat, 1983], asystem for learning by discovery. RLL-1 is a highly self-descriptive representationlanguage developed by means of a uniform representation of frames and slots,and by possessing declarative descriptions of parts of itself.Every component of the RLL-1 language (e.g. individual slots, modes ofinheritance, and even data-accessing functions) is visible: can be representedwithin the language, inspected and modi�ed. The description of all componentsis given also in terms of frames and slots.KRSkrs [van Marcke, 1987] [van Marcke, 1988] is a representation language for sup-porting knowledge based programming. krs design was inuenced by RLLs such

22 Chapter 2. Backgroundas RLL-1 and ARLO [Haase, 1987]. It is a representation language de�ned ontop of Lisp.The primitive for representation in krs is a large network of concepts, calledthe concept-graph. Nodes of the network are called concepts. Links betweennodes are called subjects. Each concept represents a particular entity in therepresentation domain.The concept graph is de�ned and inspected by descriptions de�ned in aconcept-language. The concept-language has two important features: descrip-tions are interpreted such that the concept-graph is constructed in a lazy way,and the concept-language is lexically scoped.Lazy interpretation allows to de�ne large libraries without consuming all thememory, and allows an easy description of circular parts of the concept-graph.Lexical scope gives all concepts described by the same description in theconcept-language easy access to each other.Inference in krs is based on two mechanisms: referent computation andinheritance. Referent computation is a mechanism to compute concept's referentfrom its de�nition. Inheritance in krs is the process of augmenting a concept'sdescription by copying the subjects of the concept's type into the concept. Aconcept's type is also a concept. Inheritance in krs is a single inheritancemechanism.The Reect ProjectThe aim of the reflect project was the development of an architecture for theconstruction of knowledge systems providing facilities such as knowledge-basemaintenance, validation, and adaptative interaction. The claim of the reflectproject is that more advanced knowledge systems can only be realized by areective reasoning architecture.The reflect approach is based on the research on basic mechanisms of self-representation, causal connections, and integrated reective computation in thesame direction as fol [Weyhrauch, 1980]. The aim of the reflect project is todescribe an architecture by way of a generic module structure and correspondingrelationships among them.The reflect architecture is based on the kads expertise model of problemsolving. Following the kads approach, it is proposed an architecture based onthree layers: a domain layer for de�ning domain knowledge, an inference layerfor de�ning inference knowledge, and a task layer for de�ning task knowledge.The approach in reflect project was that this reective architecture can berepresented in a formal language. For this purpose, languages such as model-k[Karbach et al., 1991] and (ML)2 [van Harmelen and Balder, 1992] were devel-oped. Below we will describe the reflect approach by means of the descriptionof the (ML)2 language.

2.3. Reective representation languages 23(ML)2The (ML)2 language [van Harmelen and Balder, 1992] is a language developed inthe reflect project that provides a formal speci�cation language for the kadsmethodology. (ML)2 combines three types of logic: extended order-sorted �rst-order logic for specifying the domain layer, �rst-order meta-logic for specifyingthe inference layer, and quanti�ed dynamic logic for specifying the task layer.Domain knowledge is modeled in (ML)2 using an order-sorted �rst-orderlogic extended by modularization. The speci�cation of domain knowledge canbe divided into several modules. Such a module de�nes a signature (i.e. sorts,constants, functions and predicates) and de�nes axioms (i.e. logical formulae).Modules can be combined by a union operator. Constants model instances ofthe domain. Sorts model a class hierarchy for constants. Predicates modelrelationships among concepts. Functions model attributes of concepts.Inference knowledge is modeled in (ML)2 using a �rst-order meta-logic. Ev-ery inference action is described by a predicate and a logical theory (e.g. a setof input and output roles, a signature, and a set of axioms). Inferences aremodeled using a meta-language of the domain knowledge that allows to expressproperties of relations over domain knowledge formulae. The domain layer andthe inference layer are causally connected by a set of reection rules.Task knowledge is modeled in (ML)2 using a quanti�ed dynamic logic. Taskknowledge models dynamic control between inference actions. Every predicatespecifying an inference action in the inference knowledge is regarded as an ele-mentary program statement and the knowledge roles are used as input and out-put parameters of such programs. For every inference a history variable is de�nedwhich stores the input-output pairs for every execution step. Four types of oper-ations are available for each inference action in the task layer: checking whetheran instantiation exists, checking whether an instantiation has already been com-puted, checking whether more instantiations exists, and actually computing andstoring a new instantiation. Moreover, (ML)2 provides a set of elementary com-bination operations such as sequential composition, non-deterministic iteration,and non-deterministic choice.MetaKitMetaKit [Slodzian, 1994b] is an extension of KresT's Basekit which provides anontology for metalevel design. MetaKit provides a set of methods and forms todesign meta-projects and a library of knowledge elements that can be reused inany meta-project.Ameta-project is a project performing operations at the meta-level of anotherproject, called the object-project. Meta-projects are projects that operate onanother project, using methods and content forms de�ned in the MetaKit. Thesame meta-project can be successively or simultaneously working at a meta-levelabove several object-projects. A meta-project may equally operate on anothermeta-project and there are no limitations imposed on the number of levels.Domain models of a meta-project are models of parts of the object-project.

24 Chapter 2. BackgroundMetaKit provides a set of attributes and values for describing such models.For instance, the type of an object-level object is characterized by the value ofthe referent attribute, which can be component (task, model, or method) orproject.MetaKit provides also a set of metalevel methods for operating on mod-els of methods, such as get-method-type and get-method-task, methods forworking with models of models, such as get-tasks-reading-model, meth-ods for operating on models of tasks, such as get-task-input-models andget-task-output-roles, methods for operating on roles, such as fills-rolesand get-method-role, methods for operate on attribute representation, such asget-attribute-value and unify-fragments, methods for operating on mod-els of projects and fragments, such as extract-model-set, and methods forencoding, such as encode-component and compile-project.These set of metalevel methods allows to work at three di�erent levels: knowl-edge, code, and execution.One of the capabilities of MetaKit is that allows to design meta-projectscovering several veri�cation strategies and to apply them to object-projects. Anexample of a meta-project performing detection and correction of other projectsis a meta-project looking for missing or incompletely described relations betweenmodels, tasks and methods.On another hand, MetaKit o�ers also capabilities for completing missingcomponents of the current project from comparing the current project to someolder fragments of designs and deducing what has to be added to the currentproject. Is in this approach how machine learning techniques could be used inMetaKit. An example of the incorporation of decision tree learning algorithmsis described in [Slodzian, 1994a].Finally, MetaKit can be used for controlling the execution. The executioncontrol is based on a description of temporal and causal relations between com-ponents.2.4 Introspective learningLearning methods in a reective framework are a type of inference methods thathave a model of certain aspects of the system (the self-model) that is usefulfor improving the system behavior. Usually, this self-model is amenable to beanalyzed in order to detect the failures and successes of the system. Moreover,the learning method has to have some knowledge about how to assign blame forfailures and merit for successes to components of the system (the meta-theoryof the learning method). As a result, the meta-theory has to decide whichactions are amenable to be e�ected to the system to improve it. For instance,assuring that successful methods will be used in appropriate situations (similarsituations or classes of situations) and that failures will not be repeated (forsimilar situations or classes of situations). This knowledge is also part of themeta-theory and constitutes the extension of the self-model that the reectionprocess will translate into e�ective modi�cations of the system.

2.5. Conclusions 25The rei�cation process and the type of model it constructs determines thekind of learning that can be performed. Usually, the models used in ML systemsinvolve \sets of rules", in that learning results in the addition of new rules (andthe modi�cation of old rules) to the \rule set". Another important issue is thetypology of situations for which learning is applied. In a \rule set" system,the typology is usually \false positives" (a rule �red and achieved an erroneousstate) and \false negatives" (no rule �red that achieved the correct state); then,repair is achieved through learning of new rules or generalizing old rules for falsenegatives and deleting or specializing old rules for false positives. Using schemalanguages, on the other hand, the meta-theory talks about correct and incorrectretrieval of schemas and repair is realized modifying the indexing of schemas (see[Ram et al., 1992] for an instance of introspective learning in schema languages).Learning methods that learn plans, such as learning methods in soar[Newell, 1990] and prodigy [Carbonell et al., 1991], have self-models about theapplicability and ordering of operators. The meta-theory has to know aboutproperties of the architecture and of the learning method in order to decide howto modify the rule-set. Since prodigy knows that new rules learned by EBLmodule are assured to be correct by EBL properties, prodigy knows new rulescan be added and will not be modi�ed or retracted. In soar, however, sincechunking can overgeneralize, the reection process has not only to construct newrules, but has to assure that old, overgeneralized rules will be less preferred tothe new ones (adding a worse-preference between the two, since it \knows" thatthe semantics of the system will never execute the less preferred one when thepreferred one is applicable).Although this review is very short, the points we wish to make is that thelearning methods, albeit implicitly, can be used only because they realize thisknowledge about the architecture (the self-model). Another, collateral argumentfor this claim, is the fact that most ML \methods" have to be always modi�edor adapted to be usable in other domains where other systems are used. Thisis usually conceived of as \implementation details", but we argue this is not so:the proliferation of learning methods proves that some fundamental issue is atstake. Our claim is that the families and variations of ML methods, come fromthe fact that the (implicit) self-model is an essential part of learning, and manyvariants of a method come from variations of meta-theory and self-model. Forinstance, adapting a ML method to a di�erent architecture require changes inthe meta-theory to include what the learning component needs to know of thenew system (and similarly adapting a ML method to some new domain involvesadapting its meta-theoretic content to the features required by the new domain).2.5 ConclusionsIn this chapter we have reviewed the research relevant to our work organiz-ing the presentation on four main topics: the research on knowledge modelingframeworks, the research on integrated architectures, the research on reectiverepresentation languages, and the role of reection and learning.

26 Chapter 2. BackgroundKnowledge modeling frameworks propose methodologies for analyzing anddescribing applications at a knowledge level in an implementation independentway. These methodologies are based on the task/method decomposition prin-ciple and on the analysis of knowledge requirements for problem solving meth-ods. Usually, the task/method decomposition and the models resulting from theknowledge modeling analysis are acquired using learning techniques. Neverthe-less, learning techniques are not incorporated for improving the behavior of theknowledge system from reasoning about the experience of acquired in solvingproblems. Moreover, the task/method decomposition and the models are fullydetermined in the knowledge modeling analysis. Another di�culty with someknowledge modeling methodologies is that knowledge models are not directlyoperationalizable.Integrated architectures propose di�erent frameworks for integrating problemsolving and learning. A di�culty with integrated architectures is that their rep-resentation languages are far from knowledge modeling frameworks (for instance,soar representation language is based on productions). We have described threedi�erent architectures: theo, soar, and prodigy. All these architectures in-tegrate diverse learning mechanisms but present some limitations in their inte-gration. theo has �xed learning strategy based on three prede�ned learningmechanisms. Chunking is the only architecturally supported learning mecha-nism of soar and other learning techniques are di�cult to integrate. prodigyintegrates six learning modules but a speci�c learning module cannot inuencenor take advantage of the learning form other modules.Reective representation languages propose di�erent languages providing re-ective mechanisms for describing and implementing knowledge systems thatreason about themselves. These introspective mechanisms allows to developcomplex knowledge systems in a more clear way.Finally, we have discussed how the rei�cation process and the type of modelused in a system determines the kind of learning that can be performed.

Chapter 3The Noos ApproachIn this chapter we present incrementally the Noos representation language. Thechapter is organized in six main sections: Section 3.1 presents the Noos model-ing framework based on four knowledge categories: domain knowledge, problemsolving knowledge, episodic knowledge, and metalevel knowledge. Section 3.2describes the basic elements of the language such as descriptions, re�nement,references, methods, and the basic inference. Section 3.3 presents the reectivecapabilities of Noos introducing elements such as metalevels, tasks, reectiveoperations, rei�cation, and reinstantiation. Section 3.4 describes preferences, adeclarative mechanism for decision making about sets of alternatives. Section 3.5presents the complete Noos inference engine. Finally, Section 3.6 summarizes themain features of the Noos language.3.1 The Noos modeling frameworkKnowledge-based problem solving is characterized by the intensive use of highlydomain speci�c elements of knowledge. The purpose of knowledge modeling ap-proaches is to describe this knowledge and how it is being used in a particularproblem in an implementation independent way. Di�erent knowledge model-ing approaches have proposed di�erent categories of knowledge elements anddi�erent abstractions to describe them (see Section 2.1).We propose a model based on four knowledge categories: domain knowledge,problem solving knowledge, episodic knowledge, and metalevel knowledge.Domain knowledgeThe �rst knowledge category of the Noos framework is domain knowledge. Do-main knowledge speci�es a set of concepts, a set of relations among concepts, andproblem data that are relevant for an application. Concepts and relations de�nethe domain ontology of an application. For instance, Figure 3.1 shows part ofthe domain ontology de�ned in the diagnosis of car malfunctions application.27

28 Chapter 3. The Noos Approach
complaintcar person

unleaded-car diesel-car

spouseperson person

ownercar person symptomcar complaintFigure 3.1. Part of the domain ontology of the diagnosis of car malfunctionsapplication.Problem data, described using the domain ontology, de�ne speci�c situations(speci�c problems) that have to be solved. For instance, in the diagnosis of carmalfunctions application, problem data represents speci�c car problems. Prob-lem data constitutes part of the episodic model (see below).Problem solving knowledgeAnother category of the Noos framework is problem solving knowledge. Prob-lems to be solved in a domain are modeled as tasks. For instance, following theprevious example, the main task in the cars diagnosis domain is to establishmalfunctions of cars. In our approach, a method models a way to solve prob-lems. Methods can be elementary or can be decomposed into subtasks. Thesenew (sub)tasks may be achieved by other methods. A method de�nes a speci�ccombination of the results of the subtasks in order to solve the task it performs.For a given subtask there may be multiple alternative methods that may becapable of solving that subtask in di�erent situations. This recursive decompo-sition of a task into subtasks by means of a method is called the task/methoddecomposition. For instance, Figure 3.2 shows a browser of the task/methoddecomposition of general-diagnosis method (following [Benjamins, 1993]).The general-diagnosis method is decomposed into three subtasks, namelydetect-complaint, generate-hypothesis, and discriminate-hypothesis.For each subtask one or several alternative methods are speci�ed|e.g. subtaskdetect-complaint has methods ask-user, classify, and compare.Episodic knowledgeProblem solving in Noos is considered as the construction of an episodicmodel. In this sense the Noos approach to problem solving is close tothat of CommonKADS [Wielinga et al., 1993] and to the TASK language

3.1. The Noos modeling framework 29

Figure 3.2. A browser of the task/method decomposition for a generaldiagnosis method. Methods are drown with thin boxes; tasks are drownwith thick boxes; dots indicate not expanded terms.[Pierret-Golbreich and Hugonnard, 1994]. Our view of \problem solving as mod-eling" is that problem solving is the process of constructing an episodic model.This model is obtained from transformations of problem data performed us-ing problem solving knowledge. A clear and explicit separation between tasks,methods, and domain knowledge permits the dynamical link between a givenproblem, tasks, and methods as well as the dynamical choice of a method suitedto achieve a task in that problem context: a `task' uses a `method' on a `episode'(described using domain knowledge and problem data). An episodic model isthe set of knowledge pieces used for solving a speci�c problem. Once a prob-lem is solved Noos automatically memorizes (stores and indexes) the episodicmodel that has been built. Episodic memory (see Section 4.1) is the (accessibleand retrievable) collection of the episodic models of the problems that a systemhas solved. The memorization of episodic models is a basic building block forintegrating learning into a KM framework.Metalevel knowledgeThe last category of the Noos framework is metalevel knowledge. Metalevel (orreective) knowledge is knowledge about domain knowledge, problem solving

30 Chapter 3. The Noos Approach

concepts
relations

Domain Knowledge

tasks
methods

Problem Solving
 Knowledge

Metalevel Knowledge

metalevel tasks
metalevel methods

metalevel concepts
metalevel relations

preferences

Figure 3.3. The Noos modeling framework.knowledge, and episodic knowledge.On the �rst hand, metalevel knowledge can have models about concepts, re-lations, tasks, and methods. These models are formed by metalevel concepts,metalevel relations, metalevel tasks, and metalevel methods (see Fig. 3.3). More-over, metalevel knowledge includes preferences to model decision making aboutsets of alternatives present in domain knowledge and problem solving knowledge.For instance, metalevel knowledge can be used to model criteria for preferringsome methods over other methods for a task in a speci�c situation. Metalevelconcepts and metalevel relations can be used to build particular views of thedomain knowledge de�ning more abstract models, such as causal models, thatease the usage of domain knowledge. An example of metalevel task is one thatchooses|from a set of alternative methods|a speci�c method for a given task.An example of metalevel method is one that|for a speci�c situation|searchespossible methods for a task, selects some methods as suitable alternatives, and�nally ranks them using a set of preferences (see Section 3.3.1).On the other hand, metalevel knowledge has models about how problemsare solved in the system|or in other words, knowledge about episodic models.Knowledge about episodes models knowledge such as the method that has suc-ceeded in achieving a speci�c task, the methods that have failed in achieving aspeci�c task, the tasks that have been engaged in the evaluation of a method,and the preference orders built while choosing among alternatives. Metalevelknowledge about episodic knowledge is the basis for the integration of learningin Noos (see Chapter 4).

3.2. The Noos language 313.1.1 Related workOur purpose in the design of the knowledge categories of Noos was to use aset of knowledge categories close to the knowledge modeling proposals such asKADS [Wielinga et al., 1993] and Components of Expertise [Steels, 1990]. Weare interested in proposing a compatible approach in order to take advantageof their work. Speci�cally, the research on problem solving methods (PSM)[Benjamins, 1993] is able to help the design of problem solving methods in Noos.Moreover, our work on incorporating learning capabilities can bene�t to otherexisting knowledge modeling proposals.Nevertheless, there are some di�erences between Noos and the other propos-als. The �rst di�erence is that since in our approach a PSM de�nes a way inwhich a task can be achieved, PSMs determine the subtask decomposition oftasks. In this sense we have joined tasks and methods as elements of problemsolving knowledge. Another di�erence is that task speci�cation and method se-lection knowledge, as are de�ned in KADS, is modeled as metalevel knowledgein Noos.3.2 The Noos languageNoos is an object-centered representation language based on feature terms. Fea-ture terms are record-like data structures embodying a collection of featuresthat are a generalization of �rst order terms. Feature terms and its relationwith other works are presented in Chapter 5. For now we will only introducesome intuitions about feature terms.In �rst order terms the parameters of a predicate are identi�ed by position.For instance, we can de�ne a predicate person containing four parameters asfollows person(x1; x2; x3; x4)with the implicit assumption that the �rst argument of the constructor personcarries the \feature" name, the second argument carries the \feature" age, thethird argument carries the \feature" profession, and the fourth argument car-ries the \feature" nationality.Using this predicate we can describe a person whose name is Peter, whoseage is 28, whose profession is butcher, and whose nationality is greek writingthe following term: person(Peter; 28; butcher; greek)A �rst order term is formally described as a tree with a �xed tree traversalorder. For instance, the previous term is represented as the following tree witha left-to-right ordering:
person

greekPeter 28 butcher

32 Chapter 3. The Noos ApproachLet us suppose now that we want to describe a person whose name is Janetand whose profession is engineer ignoring the age and the nationality. This kindof representation results inappropriate for representing incomplete informationsince it requires to specify all the arguments. Another limitation presented in thisrepresentation is the support for extensibility (we cannot add a new \feature" likespouse that would involve a �fth parameter). The �xed number of and the posi-tional meaning of parameters is the cause of these shortcomings|and the justi-�cation for research performed on feature terms [A��t-Kaci and Podelski, 1993].The intuition behind a feature term is that of providing a way to constructterms embodying partial information and amenable to extension. The proposalof feature terms is that these goals can be achieved by building terms withparameters identi�ed by name (regardless of order or position) and with no�xed number of parameters. For instance, the previous example is speci�ed asa feature term as follows:person[name := Peter age := 28 profession := butcher nationality := greek]saying that the feature term has sort person, its feature name is Peter, its featureage is 28, its feature profession is butcher, and its feature nationality isgreek.The identi�cation of parameters using names instead of position allows torepresent partial knowledge. Thus, we can describe a person whose name isJanet and whose profession is engineer, ignoring other features, as follows:person[name := Janet profession := engineer]More formally, while �rst order terms can be described by trees with animplicit ordering, feature terms can be seen as a generalization of them and canbe described by labeled graphs where nodes are labeled with sorts and edges arelabeled with named parameters (called features). For instance, the two previousdescriptions are represented as labeled graphs as follows:
person

greekPeter 28 butcher

Name
nationality

ag
e

profession

person

Janet engineer

N
am

e

professionFigure 3.4. Labeled graph representation of two feature terms.There are two types of feature terms in Noos: constant feature terms andevaluable feature terms (Feature terms are described formally in Chapter 5).Domain knowledge, as de�ned by the Noos model, is mapped to the Noos lan-guage as constant feature terms. A feature term F representing a concept Cclusters together (as features) the relations in which C is involved. Methods are

3.2. The Noos language 33mapped to the Noos language as evaluable feature terms. Numbers, strings andsymbols are considered as prede�ned constant feature terms without features.All the knowledge elements of the Noos model are represented into the lan-guage by means of feature terms. This means that with a small set of com-putational elements we capture all the elements of the Noos knowledge model.Besides, this uniform representation of the knowledge bene�ts the introspectivecapabilities of Noos.After this introduction about feature terms, we will present in the next sec-tion descriptions, the syntax Noos uses for constructing feature terms. Followingsections describe the di�erent elements that con�gure the Noos language: thesecond section is dedicated to explain the re�nement capabilities provided bycode reuse and subtyping. The following section presents the use of references inthe language. The next section explains the way problem solving knowledge|tasks and methods|is represented in the language. The last section presentsthe basic inference process of Noos.3.2.1 DescriptionsDescriptions are the syntax Noos uses for constructing feature terms. The de-scription syntax is based on lists (like Lisp) starting with token define, followedby a name (identi�er), and a body composed of some features. A feature is a pairof feature name and feature value. A feature value can be simply the name of afeature term described elsewhere. For instance, the following two descriptions1:(define Peter(age 28)(wife Mary))(define Mary(age 27)(husband Peter))construct two feature terms; the �rst feature term with name Peter containingtwo features: age and wife with corresponding feature values 28 and Mary; Thesecond feature term with name Mary containing two features: age and husbandwith corresponding feature values 27 and Peter.Features describe direct labeled relations among terms. For instance, in the�rst previous description a direct relation labeled as wife is speci�ed from Peterto Mary.Since a name in a feature value denotes a feature term, a symbol is describedwith the quote operator for distinguishing to references to feature terms. Stringsare described using double quotes at the beginning and at the end. For instance,the following non-sense description1In the Noos language, like Lisp, there is no di�erence in the case of letters used|Noos isa case insensitive language. For instance, Car, car, and CAR are all valid and equivalent.

34 Chapter 3. The Noos Approach(define Peter-variants(name-reference Peter)(symbol 'Peter)(string "Peter"))de�nes, in turn, a name of the feature term Peter, the symbol 'Peter, and thestring "Peter".Noos allows features where the feature value is a set. The syntax used forfeature set values is the enumeration of names. For instance, the previous de-scription of Peter can be extended incorporating the description of his childrenas the set composed by Sara, Paul, and Shirley.(define Peter(age 28)(wife Mary)(children Sara Paul Shirley))3.2.2 Re�nementThe notion of re�nement is introduced in the Noos language as a methodologyto de�ne a feature term from another existing feature term. The feature termthat is reused is called the constituent. Re�nement involves two distinct aspects:code reuse and subtyping, that will be explained below.Syntactically, a description by re�nement is a list composed of the definetoken, a constituent, a name and a body embodying a collection of features. Thesyntax of a description by re�nement is the following:Named Description (define (constituent name) body)where name and body have the same meaning as de�ned before and constituentis the name of the reused feature term. The name is optional and when it is notgiven we say that an anonymous feature term is de�ned:Anonymous Description (define (constituent) body)Figure 3.5 describes the basic Noos syntax that will be explained in followingsections (The complete Noos syntax can be found in Appendix C).Anonymous feature terms can be also de�ned as feature values. For instance,we may de�ne the concept person as a feature term whose father is also a personof sex male and whose mother is another person of sex female as follows:(define Person(father (define (person)(sex male))(mother (define (person)(sex female))))We say that descriptions of features father and mother are subdescriptionsof Person and that Person is the root description.

3.2. The Noos language 35
description ::= single-descriptionj named-descriptionj anonymous-descriptionj metalevel-descriptionj set-descriptionsingle-description ::= (define name body)named-description ::= (define (constituent [:id] name) body)anonymous-description ::= (define (constituent) body)metalevel-description ::= (define (constituent (meta+ of name)) body)set-description ::= (define (set name) value+)body ::= feature-description*feature-description ::= (feature-name value*)j (feature-name path-reference)j ((feature-name value+))value ::= name j anonymous-descriptionpath-reference ::= (>> feature-name* [of name])Figure 3.5. This �gure shows a subset of Noos syntax used for the de�ni-tion of descriptions in BNF notation. Remark that in feature-descriptiondouble parenthesis are used to de�ne methods. Typewriter font words areprede�ned terminal symbols that are part of the language, italic wordsare user-de�ned identi�ers and ::=, j,[], + and * are part of the BNFformalism.

36 Chapter 3. The Noos ApproachCode reuseUsing re�nement a new feature term can be constructed reusing another exist-ing feature term. Speci�cally, a new feature term N de�ned as a re�nementof another feature term E as (define (E N) body) includes (reuses) all thefeatures de�ned in E that are not rede�ned in body. In other words, N extendsE with features de�ned in body. For instance, we may de�ne the concept of acitizen, with two features lives-at and pays, as follows(define citizen(lives-at region)(pays taxes))Then, we model the citizens of a given region by a re�nement of citizenthat overrides the feature value of the lives-at feature with the name of thatspeci�c region. In addition, we may incorporate new features like the languagespoken by citizens of that region. For instance, we may de�ne a bagenc as acitizen that lives at Bages (a beautiful region of Catalonia) and that speaksCatalan and Spanish.(define (citizen bagenc)(lives-at Bages)(speaks catalan spanish))Finally, a speci�c citizen Pep can be de�ned describing the languages hespeaks by overriding the speaks feature and incorporating a new feature suchas his interests:(define (bagenc Pep)(speaks catalan english)(likes climbing))Recall that descriptions are syntax for building feature terms, so the featureterm constructed for Pep in fact includes the feature pays from citizen descrip-tion, the feature lives-at from bagenc description, and features speaks andlikes from Pep description. The graph representation of the feature term Pepis given in the browser of Figure 3.6.Figure 3.7 shows another example of de�nition by re�nement. First, thecar description is de�ned containing the common knowledge about cars. Then,speci�c models of cars can be de�ned by re�nements of car. Finally, speci�c carscan be described as re�nements of models of cars. Thus, all the features de�nedin car and Ibiza-car that are not rede�ned in the car that Peter drives areincluded in this new feature term.SortsNoos provides an initial set of sorts with an order relation among them. Thereis a top sort called any. Any represents the minimum information and all theother sorts are more speci�c than any (for each sort S we have that any �S). Prede�ned sorts are for instance (see Appendix A for a description of thecomplete Noos prede�ned sort hierarchy):

3.2. The Noos language 37

Figure 3.6. A Noos browser visualizing the labeled graph representation ofPep. Feature names are represented as thin boxes. Note that feature termsare rooted labeled graphs. The root node in this example is node Pep.� all numbers and the sort number, with the order relations number � n forall numbers n,� all strings and the sort string, with the order relations string � s for allstrings s,� all symbols and the sort symbol, with the order relations symbol � s forall symbols s,� sorts boolean, true, and false with the order relations boolean � trueand boolean � false,� sorts set and empty-set with the order relation set � empty-set.From this set of initial sorts new sorts can be de�ned, using re�nement, forspecifying the sort hierarchy for a given domain.SubtypingUsing re�nement we are specifying the sort of the feature term and we are alsode�ning a sort hierarchy for a given domain. On the one hand, names of featureterms are interpreted as sorts. This means that when we de�ne a named term,we are also de�ning a sort with the same name. On the other hand, the notionof re�nement involves the construction of an order relation � among the sorts.Speci�cally, a description such as (define (X Y) body) de�nes a new sortY with an order relation X � Y with the existing sort X. Moreover, the sortof the new feature term being constructed is Y. For instance, the de�nitionof Ibiza-car as a re�nement of car involves (1) the de�nition of a new sort

38 Chapter 3. The Noos Approach
(define Car(owner (define (person)))(gas-level-in-tank gas-level)(gas-gauge-reading (>> gas-level-in-tank))((empty-level? (define (Identity?)(item1 empty)(item2 (>> gas-gauge-reading)))))(price (>> price model)))(define (Car Ibiza-car)(model Ibiza))(define (car-model Ibiza)(manufacturer Seat)(price 12000))(define (Person :id Peter)(age 28)(spouse Mary)(drives (define (Ibiza-Car)(owner (>> spouse))(symptom does-not-start)(gas-level-in-tank full))))Figure 3.7. Car, Ibiza-car, Ibiza, and Peter are de�ned using Noosdescriptions; features owner, gas-level-in-tank, gas-gauge-reading,empty-level? and price are de�ned for the Car description; the fea-ture model is de�ned for Ibiza-car; features manufacturer and priceare de�ned for the Ibiza car model; features age, spouse, and drivesfor Peter; �nally, owner, symptom and gas-level-in-tank features arede�ned in the (sub)description of the car that Peter drives. For brevity,some descriptions like car-model or person are not included. The Noosbasic syntax is summarized in Figure 3.5.

3.2. The Noos language 39
any

complaint modellevel

full empty

car

person

Ibiza-carSeat

Ibizadoes-not-startstrange-noise

manufacturer
malfunction

no-gas-malfunction

low-batt-malfunctionFigure 3.8. The Noos sort hierarchy used in the example of Fig. 3.7 (thediagnosis of car malfunctions domain).Ibiza-car and, (2) an order relation: car � Ibiza-car (see Figure 3.8 for theNoos sort hierarchy relevant to the diagnosis of car malfunctions domain).When we de�ne a feature term using an anonymous description we are notde�ning a new sort. An anonymous description such as (define (X) body)de�nes a feature term that has as sort X.The problem with anonymous feature terms is that, since they have no name,they cannot be referred to by name. When we want to de�ne a feature termwithout introducing a new sort, but we want to have an identi�er in order torefer to it, Noos provides an extended syntax for named descriptions using the:id token as follows:Named Description (define (constituent [:id] name) body)When we use the optional token :id, we are de�ning a feature term withname name without introducing a new sort. For instance, for the previousde�nition of a speci�c citizen Pep, it was more appropriate the use of the :idtoken as follows:(define (bagenc :id Pep)(speaks catalan english)(likes climbing))since we are using the name Pep as an identi�er and not as a sort.Named feature terms de�ned with the :id token cannot be re�ned.The intuition about the order among sorts is that it speci�es an informationalordering: given two sorts X and Y, the order X � Y is interpreted as Y containsall the information contained in X plus more information. In other words, Y ismore speci�c than X (see a detailed description in Chapter 5).This sort hierarchy is the basis to model an order relation among featureterms. We call this order relation among feature terms subsumption (see Sec-tion 5.6).

40 Chapter 3. The Noos ApproachAll the feature terms constructed in Noos are in fact de�nitions by re�ne-ment. Speci�cally, examples of descriptions such as Peter and Mary given inthe previous section are also considered de�nitions by re�nement from a featureterm without features whose sort is the top sort any. When a description isconstructed directly as a re�nement of this top feature term, Noos provides thecompact syntaxSingle description (define name body)that is equivalent to (define (any name) body)Named setsAnother kind of descriptions provided in Noos are named sets. Named sets allowsto group descriptions in an identi�er and refer to them using only the name. Thesyntax of named sets is the following,(define (set setname) name1 � � � namen)where each namei is a name of a feature term described elsewhere. For instance,we can group our favorite colors in the named set my-colors and refer themelsewhere(define (set My-colors)yellow green blue)Concluding remarks about re�nementWe have presented the notion of re�nement as a crucial methodology of theNoos language for constructing feature terms that involves two distinct aspects:(1) code reuse (the construction of a feature term by reusing another featureterm) and, (2) subtyping (the de�nition of the sort hierarchy). As a summaryof this section we will describe briey the di�erent aspects involved in each kindof de�nition by re�nement previously presented:� A named description such as (define (X Y) Z) involves:{ the de�nition of a new sort Y,{ the de�nition of an order relation X � Y between sorts X and Y, and{ the de�nition of a feature term with name Y, with sort Y, with thefeatures de�ned in Z, and including all the features de�ned in X thatare not rede�ned in Z.� An anonymous description such as (define (X) Z) involves:{ the de�nition of a feature term with sort X, with the features de�nedin Z, and including all the features de�ned in X that are not rede�nedin Z.

3.2. The Noos language 41� A named description such as (define (X :id Y) Z) involves:{ the de�nition of a feature term with name Y, with sort X, with thefeatures de�ned in Z, and including all the features de�ned in X thatare not rede�ned in Z.3.2.3 ReferencesThere are two forms of references in Noos: name references and path references.We already have used name references|for instance, the feature value of featuremodel of Ibiza-car in Figure 3.7 is de�ned using a name reference to Ibiza.However anonymous feature terms cannot be referred to by named references,anonymous feature terms are referred to using path references. There are twokinds of path references: absolute and relative path references.Absolute path referencesAn absolute path reference is a list that starts with the >> token, followed by asequence of feature names, then the of token, and �nally the name of a namedfeature term. Following an example from Figure 3.7, an absolute path referenceto the symptom of the car that Peter drives (which is does-not-start) iswritten: (>> symptom drives of Peter) (3.1)It is clear that this reference is in fact the concatenation of two references:The reference to the car that Peter drives, which is an Ibiza-car, and thereference to its symptom. These two concatenated references can also be writtenas: (>> symptom of (>> drives of Peter)) (3.2)In fact, expression (3.1) is just shorter syntax for expression (3.2). Consider-ing that the path reference (>> drives of Peter) refers to a feature term withprint name <Ibiza-car-33> (print names of feature terms are written in Noosinside angles) expression (3.2) is equivalent to the path reference(>> symptom of <Ibiza-car-33>) (3.3)Finally, since the value of the symptom feature of <Ibiza-car-33> is thedoes-not-start complaint, expression (3.3) is equivalent to the name referencedoes-not-start.Relative path referencesA relative path reference elides the name of a feature term and speci�es only asequence of feature names, e. g. (>> price model). A relative path referenceis bound to a speci�c description by the rules of scope and re�nement.

42 Chapter 3. The Noos ApproachScopeScope in Noos is lexical ; that is to say, a relative reference is determined bythe text in which it appears. Speci�cally, a relative path reference is bound tothe root of the description in which it appears|the outmost define in the textwhere it occurs. For instance, considering the following description of Peterdriving a speci�c model of Ibiza-car (let us call it <Ibiza-car-33>):(define (person :id Peter)(age 28)(spouse Mary)(drives (define (Ibiza-Car)(owner (>> spouse))(symptom does-not-start)(gas-level-in-tank full))))the relative path reference (>> spouse) in the feature owner of the<Ibiza-car-33> refers to Peter (and not to <Ibiza-car-33>) since Peter isthe root of the description.In Figure 3.7 root descriptions are car, Ibiza-car, Ibiza, and Peter, sorelative path references appearing in those descriptions are bound to those roots.Scope plus re�nementA relative path reference de�ned in a description D and incorporated by re�ne-ment into a new description D' is bound in the scope of D' relatively to the rootdescription where D was textually de�ned.For instance, feature price is de�ned in car by the relative path reference(>> price model) as follows:(define Car(price (>> price model)))Thus, the relative path references occurring in car description (price fea-ture in this example) are always relative to the appropriate car in whateverre�nement of car, regardless of whether that car is a subdescription of anotherdescription.Then, since in the previous example <Ibiza-car-33> is de�ned by re�nementof Ibiza-car|and Ibiza-car is de�ned by re�nement of car|feature price isincorporated to <Ibiza-car-33> bound to <Ibiza-car-33> (and not to Peter).The Noos scope is formally explained in Chapter 5.Null pathThe sequence of feature names in a path reference can be empty. A null path(>>) is a relative path reference that denotes directly the root of the descriptionin which it textually appears. For instance, in the following description of Janet

3.2. The Noos language 43(define (person Jane)(brothers Adam Arthur)(sisters Abigail Alison))(define (person Abigail)(husband Bob))(define (person Alison)(husband Bart))(define (person Adam)(wife Linda))
(define (person Arthur)(wife Lucy))(define (person Linda)(brothers Clement Charles))(define (person Lucy)(brothers David Douglas))

Figure 3.9. Family relations example.(define (person :id Janet)(drives (define (Car)(owner (>>))(symptom does-not-start)(gas-level-in-tank empty))))the null path reference in the owner feature of the car subterm would refer toJanet.Reference over setsSince feature values can be sets, path references have to deal with feature valuesthat are sets. For instance, since a feature like brothersmay have as value a setof feature terms, a path reference like (>> wife brothers of Jane) should beunderstood as referring to the sisters-in-law of Jane. Using the family relationsdescribed in Figure 3.9, since the brothers of Jane are (the set of) Adam andArthur, the question is the meaning of (>> wife of <Set of Adam Arthur>).A path reference over a set is interpreted as the set of element-wise path ref-erences. The element-wise de�nition of a reference over sets indicates that thereference (>> wife of <Set of Adam Arthur>) is interpreted as the set of ref-erences (>> wife of Adam) and (>> wife of Arthur)|that is to say the setof Linda and Lucy (see Figure 3.9).It is also important to notice that references over sets produce at sets . Inother words, the result of a reference over a set is a set containing all the resultsand is not a set of sets of results. For instance, the path reference(>> brothers wife brothers of Jane)yields the result <Set of David Charles Clement Douglas>

44 Chapter 3. The Noos Approachwhich is the set of objects that are the brothers of the wives of the brothers ofJane. Notice, in particular, that Noos will not return as result from a referenceover a set something like<Set of <Set of David Douglas> <Set of Charles Clement> >which is a set of sets of values.Path equalityA property of feature terms is that subterms of a feature term are univocallydetermined by a path leading to a subterm from the root. For instance, we mayde�ne Edward as follows:(define (Person Edward)(lives-at (define (address)(city (define (city)(name Manchester)(in England)))))(daughter (define (child)(lives-at (>> lives-at)))))where the address subterm is determined by the path(>> lives-at of Edward)the city subterm is determined by the path(>> city lives-at of Edward)and the child subterm is determined by the path(>> daughter of Edward)Another property of feature terms is that of path equality. Since any featurevalue can be determined by a path from the root feature term, given a featureF1, determined by a path P1 leading from the root to F1, with feature value apath P2, P2 determines a path equality with P1.For instance, the path reference (>> lives-at) in feature lives-at inEdward's child subterm speci�es the following path equality:(>> lives-at daughter of Edward) = (>> lives-at of Edward)saying that the daughter of Edward lives at the same place as her father (Edward).3.2.4 MethodsMethods are represented in Noos as evaluable feature terms and are constructedalso by descriptions. The features of a method description have a di�erentinterpretation from that of descriptions of concepts: the set of features de�nedin a method description is interpreted either as a reference to some knowledge

3.2. The Noos language 45
set-method

method

conditional sequence
arithmethic-method

comparison-method

add
...

minsubstract

identity? subsumption
union

...
member

...Figure 3.10. A partial expanded tree of the Noos built-in method hierarchy.source required by the method, or as a subtask required to be accomplished bythe method.Intuitively, a method can be interpreted as a function the parameters ofwhich are passed by name (the required feature names) instead of by position.A method reduces to a value as result of being evaluated. The value can be anyfeature term|including a method.A second important aspect of a method is the speci�c way in which it com-bines the values of its features|i.e. the knowledge of sources and the resultsof its subtasks. Noos provides an initial set of existing methods, called built-inmethods, that perform speci�c combinations of feature values. New methods canbe de�ned by re�nement of built-ins.We will �rst present Noos built-in methods and then, how new methods arede�ned in Noos.Built-in methodsNoos provides an initial set of built-in methods that perform speci�c combina-tions of knowledge sources and results of the subtasks (see Figure 3.10 for apartial description of Noos built-in method hierarchy).For instance, the conditional function in Lisp is an expression (if x y z)where x is an expression returning a boolean, y is the expression evaluatedwhen condition is true and z is the expression evaluated when condition is false.Clearly the role of each variable or subexpression is given by being in position1, 2, or 3 of the parameter list. The conditional method in Noos is a built-in called conditional, and the three roles (that we call subtasks) are givenby features with name condition, result, and otherwise. The conditionalmethod performs �rst the subtask condition and depending on its result beingtrue or false2 either the result subtask or the otherwise subtask is performedand its result is the value yielded by conditional method.2Both true and false are the boolean constants in the Noos language.

46 Chapter 3. The Noos ApproachNotice that, since the evaluation ordering of the subtasks of a method isperformed taking into account the subtask names, subtasks of a method can bede�ned in any order. For instance, conditional can be written de�ning �rstthe result subtask, then the otherwise subtask, and �nally the conditionsubtask and the evaluation ordering will be the same.Examples of Noos built-in methods are arithmetic operations, set opera-tions, logic operations, operations for comparing feature terms, and other basicconstructs such as conditional or sequencing (see Appendix D for a detailed ex-planation of Noos built-in methods). Each built-in method has a set of built-inrequired features. For instance, built-in method Identity? is a comparisonmethod that compares two feature terms passed in features item1 and item2returning true when are the same and false otherwise (identity? methodworks like eq predicate of Lisp).De�nition of methodsMethods are de�ned by re�nement from built-in methods or other already de-�ned methods. In order to illustrate the de�nition by re�nement of methods inNoos we will introduce an example: a causal-explanation method to be usedin the context of causal reasoning. A causal-explanation is a method withtwo subtasks: the �rst subtask checks whether a given cause occurs in a targetproblem, and if so the effect subtask is performed|and otherwise it fails (thenotion of failure is described in Section 3.5). This method can be de�ned as are�nement of the built-in conditional method where features condition andresult (the built-in required features de�ned for conditional) are re�ned asreferences to effect and cause feature values respectively.(define (conditional Causal-Explanation)(cause boolean)(effect any)(condition (>> cause))(result (>> effect)))Note that cause and effect are unspeci�ed|since they are parameters tobe passed in particular causal-explanations. It is not required to write thesefeature names in the description, but as a matter of style it helps in clarityto write the feature names referred to in a description even if they will notbe speci�ed until further re�nements are made. Also note that the otherwisesubtask of conditional is unspeci�ed, thus when the cause subtask (equivalentto condition subtask) is not the case, the method will fail since there is no wayto achieve the otherwise subtask. Next, more speci�c causal explanations canbe de�ned through re�nements of causal-explanation, as for instance:(define (causal-explanation Wet-Causal-Expl)(location place)(cause (>> recent-rain? location))(effect wet))

3.2. The Noos language 47Wet-Causal-Expl has a new parameter, location and determines that sucha location is wet whenever the feature recent-rain? of that location is true.This is still a generic (or parametric) method, although specialized for a giventask. When we re�ne Wet-Causal-Explmethod giving a speci�c place value forlocation feature, we will have a closed method.We say that a method is closed when all the required features (referencesand subtasks) are speci�ed (see section 5.9.1). In other words, a closed methodis amenable to be evaluated and reduced to a value. For instance, if we re�neWet-Causal-Expl specifying a speci�c location as follows,(define (Wet-Causal-Expl)(location (define (place)(recent-rain? true))))we are describing a closed method amenable to be evaluated and return a result(returning wet as result in this example).Summarizing, �rst we have built the Causal-Explanationmethod by re�n-ing the conditional built-in method with two new named parameters calledcause and effect. Then, we have de�ned Wet-Causal-Expl method by re-�nement of Causal-Explanation specifying parameters cause and effect andintroducing a new parameter named location. Finally, we have de�ned a closedmethod specifying a speci�c location. This last method can be evaluated.Methods in featuresA closed method can be incorporated into a feature to infer its value. Speci�cally,introducing a closed method we describe a feature value by means of an inferenceinstead of a constant or a path reference. In order to syntactically distinguish ina feature of a description a reference to a value from a method to infer a value,a method is indicated by a double parenthesis. That is to say, a feature with amethod is written as follows:(define (constituent name)((feature-name closed-method)))For instance, in Figure 3.7 the built-in identity? method is used to describethe empty-level? feature value of car. The empty-level? feature value willbe true when gas-level-in-tank is empty and false otherwise.Using another example, in the domain of digital logic circuits (see Fig-ure 3.11) a half-adder component can be represented as a term with two inputwires (represented by features A and B), and two output wires (represented bythe features S and C). The value of feature S is de�ned using a composition ofclosed methods (conjunction, disjunction, and not) and will become 1 (true)whenever only one of A and B is 1. The value of feature C is de�ned using anotherconjunction closed method and will become 1 whenever A and B are both 1.Next, we can de�ne a full-adder component composed of two half-adders(represented by features H1 and H2). The full-adder is the basic circuit for

48 Chapter 3. The Noos Approach
(define Half-adder(A)(B)((S (define (conjunction)((item1 (define (disjunction)(item1 (>> A))(item2 (>> B)))))(item2 (define (not)(item (>> C)))))))((C (define (conjunction)(item1 (>> A))(item2 (>> B))))))(define Full-adder(A)(B)(C-in)(H1 (define (half-adder)(A (>> B))(B (>> S H2))))(H2 (define (half-adder)(A (>> B))(B (>> C-in))))(Sum (>> S H1))((C-out define (disjunction)(item1 (>> C H1))(item2 (>> C H2)))))

B

A
S

C

B
A Sum

C-out
C-in

half
adderhalf

adder

Figure 3.11. De�nition of an adder circuit.

3.2. The Noos language 49adding two binary numbers. A full-adder is represented as a term with threeinput wires and two output wires (represented as features): features A and B holdthe bits at corresponding positions in the two numbers to be added. FeatureC-in is the carry bit from the addition one place to the right. The value offeature Sum will hold the sum bit in the corresponding position. The value offeature C-out will hold the carry bit to be propagated to the left.Concluding remarksWe have shown how new methods can be de�ned as a combination of othermethods. That is to say, a new method is speci�ed (1) by a re�nement ofanother method that determines how the results of subtasks are combined, (2)by specifying which methods are used in each subtask, and (3) by specifying aset of named parameters.Next, we can de�ne closed methods, by specifying the required parameters ofmethods. A closed method can be incorporated into a feature to infer its value.For instance, using the task/method decomposition for general diagnosis de-scribed in [Benjamins, 1993], a speci�c con�guration of a model based diagnosismethod can be de�ned as follows3:(define (Sequence Model-based-diagnosis)(device faulty-device)((detect-complaint (define (ask-user)(source (>> device)))))((generate-hypothesis (define (model-based-hypothesis-generation)(device (>> device))(symptom (>> detect-complaint)))))((discriminate-hypothesis (define (discrimination)(device (>> device))(hypothesis (>> generate-hypothesis))))))where the Model-based-diagnosis method is de�ned by re�nement of thesequence built-in method, with a named parameter device, and decomposedinto three subtasks, namely detect-complaint, generate-hypothesis, anddiscriminate-hypothesis. For each subtask one method is speci�ed: Thedetect-complaint task is performed by the ask-user method that requests tothe user for determining complaint symptoms; the generate-hypothesis taskis performed by the model-based-hypothesis-generation method that usesa domain model to generate hypotheses that explain the set of initial observa-tions from the device; and discriminate-hypothesis task is performed by thediscriminationmethod that determines if an hypothesis generated by previoustask has to be discarded.3see Figure 3.2 on page 29 for a browser of a task/method decomposition for general diag-nosis.

50 Chapter 3. The Noos Approach3.2.5 InferenceAfter describing the basic components of the Noos language, we are ready tointroduce the main intuitions on the basic inference process of Noos. The wholeNoos inference process involving metalevel inference and reasoning about pref-erences, however, is described in Section 3.5.Inference in Noos involves three processes: the inference of feature values,the reduction of path references, and the evaluation of closed methods. Since afeature value can be de�ned either as a constant value, as a path reference, orby means of the evaluation of a closed method, the inference of a feature valuecan involve, in turn, the reduction of a path reference and the evaluation of aclosed method.A main characteristic of inference in Noos is that it is on demand (also calledlazy inference). On demand inference means that no inference is performed untilit is required.Inference starts when the user poses a query to the system by means of aquery expression. There are two kinds of query expressions: path references andeval expressions.Path referencesPath references can be used as query expressions. Speci�cally, when a queryexpression (>> F of D) is posed to the system and the feature value for featureF of D is unknown, the task of inferring the corresponding feature value is engagedin Noos.Tasks engaged by query expressions are called problem tasks. A problem taskF(D) engages the inference to determine the feature value for feature F of featureterm D. For instance, the following query expression:(>> diagnosis of Peters-car)engages the problem task diagnosis(Peters-car) for determining the featurevalue of feature diagnosis of Peters-car.Eval expressionsAnother way to specify a query expression is by requesting the evaluation of aclosed method using the following syntax:(noos-eval M)that engages the evaluation of the closed method M.For instance, the following query expression:(noos-eval (define (Wet-Causal-Expl) (location my-home)))engages the evaluation of a closed method de�ned by re�nement of theWet-Causal-Explmethod where a speci�c place value my-home for the locationfeature is given (see Section 3.2.4 for the de�nition of the Wet-Causal-Explmethod).

3.2. The Noos language 51The inference engineFrom the inference process engaged by a query expression, the Noos inferenceengine can be described using three basic processes: the Engage-Task process,involving the inference of feature values; the Reduce-Path-Reference process,involving the reduction of a path reference; and the Noos-Eval process, involvingthe evaluation of a method. These three processes will be presently explained inturn.Engage-TaskThe goal of the Engage-Task process is to infer the value of a feature. Engage-Task is engaged for solving a problem task. Engage-Task process involves fourdi�erent actions according to the di�erent feature value speci�cations as follows:Given a task F(D) engaged for determining the value of a feature F of afeature term D,1. When there is a constant feature value C de�ned for feature F of D, thetask is achieved yielding C.2. When there is a path reference R de�ned for feature F of D, the processReduce-Path-Reference is engaged for path reference R. The task is achievedif the reduction process succeeds, yielding the feature term to which thepath reference R reduces. Otherwise Engage-Task fails.3. When there is a closed method M de�ned for feature F of D, the Noos-Evalprocess is engaged for method M. The task is achieved if the evaluation ofmethod M succeeds, yielding the value inferred in that evaluation. Other-wise Engage-Task fails.4. When neither a path reference nor a method is de�ned for feature F of D,an impasse occurs. In this situation the control of the inference is passedto the metalevel. Metalevel inference is explained in Section 3.5, so we willignore this case until section Section 3.5.Once the task of inferring the value for a feature F of a term D is achieved,the inferred value is automatically cached in the feature F. Caching mechanismallows Noos to answer quickly future demands of previously inferred featurevalues (see Section 3.5).Reduce-Path-ReferenceThe goal of the Reduce-Path-Reference process is to infer the feature termreferenced by a path reference. As we have shown in Section 3.2.3, a pathreference like (>> F1 F2 of D) is in fact a concatenation of two references thatcan be de�ned in the following equivalent syntax:(>> F1 of (>> F2 of D))We will call this form a canonical path reference. The Reduce-Path-Referenceprocess will be described considering only canonical path references.

52 Chapter 3. The Noos ApproachGiven a canonical path reference R, the Reduce-Path-Reference process canbe described recursively as follows:1. when the path reference R is of the form (>> F of D), being F a featurename and D a name reference, the engage-task process is engaged for solvingthe task F(D). If engage-task fails, then the Reduce-Path-Reference processfails. Otherwise Reduce-Path-Reference yields the value inferred by taskF(D).2. when the path reference R is a relative path reference of the form (>> F),the system determines the corresponding absolute path (>> F of D) fol-lowing the rules of scope and re�nement (see Section 3.2.2). Then, theengage-task process is engaged for solving the task F(D).3. when the path reference R is of the form (>> F of R'), being R' anotherpath reference, then the Reduce-Path-Reference process recursively reducesR'. If we call D the feature term yielded in the reduction of R', then theengage-task process is engaged for solving the task F(D).Noos-EvalThe Noos-Eval process for a method M �rst engages a task for each requiredfeature of M and then performs a speci�c combination of the results of the sub-tasks according to the built-in method it is a re�nement of. The Noos-Evalprocess is engaged for solving an eval expression.Speci�cally, given a method M that is a re�nement of a built-in method Bwith required features F1, F2, � � �, Fn,1. tasks F1(M), F2(M), : : :, Fn(M) are consequently engaged by M, using theEngage-Task process.2. if all tasks F1(M), F2(M), : : :, Fn(M) can be achieved, a speci�c combinationof the results of the subtasks, according to the built-in de�nition of B, isperformed and the method yields this value.3. if there is a required task Fi(M) that cannot be achieved, the evaluation ofthe method fails.For instance, being M a re�nement of the identity? built-in method, �rstsubtasks item1 and item2 will be engaged and then, if those subtasks can beachieved, M yields true when are the same and false otherwise.The conditional built-in method is the only built-in method that engages itsrequired features in a di�erent manner with regard to the previous description.The conditional method performs �rst the subtask condition and dependingon its result being true or false either the result subtask or the otherwisesubtask is performed yielding the value inferred by that subtask.Once a method M is evaluated, the inferred value is also automatically cached(see Section 3.5).

3.2. The Noos language 53(>> kind of material-stuff)Problem Task: kind(<material-stuff>)Eval: <conditional-1>=)Task: condition(<conditional-1>)Reduce: (>> solid? made-of)=)Task: made-of(<material-stuff>)Value: <thing-1>Task: solid?(<thing-1>)Value: <true>(=Result: <true>Task: result(<conditional-1>)Value: <material>(=Result: <material><material>Figure 3.12. Inference trace.An example of InferenceWe will illustrate the Noos inference process using a short example. Suppose wede�ne a concept stuff with a feature kind determining whether a given stu� ismaterial or ideal using a conditional method as follows:(define Stuff((kind (define (conditional)(condition (>> solid? made-of))(result material)(otherwise ideal)))))Then, we de�ne a concept material-stuffby re�nement of stuff as follows:(define (stuff material-stuff)(made-of (define (thing)(solid? true))))Next, using the following query expression(>> kind of material-stuff)we start the inference of the problem task kind(material-stuff). Since thereis a method (that we will call <conditional-1>) de�ned to infer the featurevalue, it is evaluated. The evaluation of the method performs �rst the subtaskcondition reducing, in turn, the path reference (>> solid? made-of) in the

54 Chapter 3. The Noos Approachscope of material-stuff. Since the result of the subtask condition is trueand the feature value of the result subtask of <conditional-1> is the constantvalue <material>, the result reduced in the evaluation of <conditional-1>is <material>. Finally, <material> is reduced as the solution for the queryexpression. Figure 3.12 shows the trace of the inference performed by Noos inthis short example.3.3 ReectionA reective system is a computational system which is able to reason aboutaspects of itself. A reective system has a partial representation of itself thatcan be inspected and manipulated. The representations the system has of itselfare causally connected to the system. This means that a change to its self-representation is reected in the behavior of the system and vice versa. Following[Rademakers, 1988] and [Maes, 1988], a programming language is said to have areective architecture if it incorporates a framework for implementing reectivesystems.On a formal view, the reection principles specify the relationship betweena theory T and its meta-theory MT . Reection principles, in turn, are de-scribed using three di�erent components: the upward principles, the metalevelinference, and the downward principles. The upward principles specify the rei�-cation process that encodes some aspects of T into ground facts of MT . Thatis to say, rei�cation constructs a particular model of T in the language used byMT . The nature of rei�cation and the model constructed is open, i.e. it de-pends on the purpose for which the rei�cation is made. In logical reection, themodel is about syntactic properties of base-level formulae, so that proof schemasand proof tactics can be the contents of the meta-theory and used to constructstrategies for proving base-level formulae [Giunchilia and Traverso, 1990]. Pro-cedural reection, on the other hand, is based on reifying part of the languagesemantics for functional languages [Smith, 1985] or for object-oriented languages[Kiczales et al., 1991]. We will use in Noos a knowledge-level model of inferencebased on tasks and methods. The meta-theory contains knowledge that allowsto deduce how to extend the model of the base theory. This deduction processis called metalevel inference, and the content of this theory is again speci�c tothe purpose at hand (the meta-theory is indeed no more than a theory). Finally,downward principles specify the reection process that given a new extendedmodel of T has to construct a new theory T 0 that complies this new model (seeFigure 3.13).There is another thing needed to characterize reective architectures: meta-level lift rules. Metalevel lift rules specify when rei�cation and reection e�ec-tively occur, i.e. they specify the control regime. Mainly, there are two classes:(1) explicit reection and (2) impasse driven reection (also called implicit reec-tion) . In (1) base-level explicitly calls the meta-theory, and in (2) meta-theory isimplicitly called when certain situations (impasses) occur at the base-level4. As4Some systems call the meta-level every time a new fact is inferred at the base-level. Al-

3.3. Reection 55
Model of T

Theory T

Reification

Extended
model of T

Theory T'

Reflection

Metalevel

inference

Metalevel Theory MT

Figure 3.13. The reection cycle. Rei�cation constructs a model of a theoryT. Metalevel inference infers new facts or takes new decisions that extend(or modify) the model of T using a meta-theory MT. Finally, reectionconstructs a new theory T' that complies the extended model of T.we will see, Noos mainly uses an impasse-driven approach. Nevertheless, Noosprovides a collection of metalevel methods that allows reasoning using explicitreection.In Section 3.1 we have presented the Noos metalevel knowledge as knowledgeabout domain knowledge, problem solving knowledge, and episodic knowledge.Speci�cally, metalevel knowledge of Noos is modeled as tasks, metalevels, anddefault metalevels. Tasks, metalevels, and default metalevels are represented inthe language as feature terms.Each feature term is causally connected with one metalevel feature term. Ametalevel feature termM is only causally connected with one (base-level) featureterm B (called the referent of the metalevel).The features of the referent B have a corresponding feature with the samename on the metalevel M . A feature f of the metalevel M has as feature valuethe set of methods methods fMig that are applicable to the feature f of thereferent B. In other words, since a method is a way to solve a particular task,the set of methods fMig speci�es alternative ways to infer a feature value for f ofB. Thus we can conceive of the sets of feature values in a feature f of a metalevelM as a disjunction over the methods that can be used in the feature f of B. Adisjunctive expression of methods is used when there is not su�cient knowledgeto uniquely determine the method that is guaranteed to solve a speci�c feature.Noos provides a backtracking mechanism that assures all alternative methodswill be reected down to the referent B and tried if needed. Section 3.4 describesthe use of preferences as a way to reason and order the evaluation of alternativemethods for a given task. Metalevels are described in Section 3.3.1.A default metalevel is a special kind of metalevel. A default metalevel con-tains a set of methods that can be applied to all the features of a referent andthough it is an extreme case, it can be seen as impasse-driven systems where every new factcauses an impasse.

56 Chapter 3. The Noos Approach
Default metalevel

D

Base-level B

Metalevel M

fi ={M i}
...

fi = v
...

metadefault referent

Task fi(B)

...

referent

Figure 3.14. Metalevel components of Noos and their causal connections.are explained in Section 3.3.2. Each feature term can be causally connected withone default metalevel.Tasks reify the status of the inference in the language. The status of theinference for each feature is rei�ed in the Noos metalevel as a task. A giventask T rei�es the inference status for a feature f of a base-level B. This task Tis causally connected to the base-level B and to the metalevel M of B. Tasksembody episodic knowledge such as the method that has succeeded in achievingthat task (the method used to infer the feature value of the feature) and theresult of the evaluation of the method (the feature value). Tasks are describedin Section 3.3.4.Noos language provides a set of reective operations that provides a wayto access to the metalevel relations of a given feature term with other featureterms. For instance, reective operation meta applied to a speci�c feature termB yields the metalevelM with which is causally connected. Reective operationsare described in Section 3.3.5. Some of them are illustrated in Figure 3.14.Noos is mainly an impasse-driven reective architecture. The Noos architec-ture speci�es which types of impasses can appear and which kind of metaobjectwill handle them. For instance, when no method is speci�ed for a given task,a no-method impasse occurs and the control of the inference is passed to thecorresponding task at the metalevel. Impasses and reection are described inSection 3.5.3.3.1 MetalevelsA metalevel in Noos is also a feature term constructed by means of a descrip-tion. A metalevel description is always a re�nement of (prede�ned) feature termmetalevel, i.e. the constituent should be metalevel or some re�nement of it.Metalevels can have a name but usually they are anonymous. An anonymousmetalevel is de�ned as a feature term that has a metalevel causal connection

3.3. Reection 57with another (base-level) feature term T (called the referent of the metalevel)with the (meta of T) idiom. That is to say, a metalevel is de�ned as follows(where usually metalevel is metalevel itself).Named Metalevel (define (metalevel NewMetalevel) body)Anonymous Metalevel (define (metalevel (meta of T)) body)Since a metalevel feature term is also a feature term, it can have its ownmetalevel that can be indicated by using two meta constructs in its de�nition,as in (meta meta of T). Although this \metalevel tower" can grow in principleas far as needed, in practice only one or two metalevels are used.Since metalevels are feature terms, feature values of metalevel features can bede�ned by name references to feature terms, by path references, by anonymousfeature terms, or giving a (metalevel) method to compute the feature value. Thede�nition of feature values in metalevels by means of name references allows tode�ne directly a set of alternative methods for a given feature. For instance, thefollowing example:(define (Metalevel (meta of Car))(empty-level? gas-gauge-reading-explgas-level-in-tank-expl))de�nes a metalevel that has as referent the car feature term. Moreover, it de�nesthe metalevel feature empty-level? using two name references to methodsgas-gauge-reading-expl and gas-level-in-tank-expl.Metalevel feature values can be also de�ned using a path reference, allowinga metalevel to refer to some methods described in any other feature term. Forinstance, the nationality of a person can be inferred as follows5,(define (Metalevel (meta of Person))(nationality (>> comes-from of (meta of citizen))))using methods de�ned for feature comes-from in metalevel of citizen.Multiple methods to achieve a subtaskSince methods are also de�ned as feature terms by means of descriptions witha set of features interpreted as subtasks, the metalevel feature description ofa subtask allows to de�ne multiple methods to achieve that subtask. In theexample below, a metalevel for the generate-and-test method is de�ned. Inthe generate subtask two di�erent methods for generating hypotheses are given.The test subtask also has two methods for testing the generated hypothesis:(define (Metalevel (meta of Generate&Test))(generate generate-hypothesis-method-1generate-hypothesis-method-2)(test test-method-1 test-method-2))5The (meta of citizen) reective operation is used in path references as a way to referthe metalevel of citizen instead of citizen (see Section 3.3.5).

58 Chapter 3. The Noos ApproachThere is a simpli�ed syntax that allows to de�ne alternative methods fora feature without the need to explicitly de�ne the metalevel object: the dou-ble parenthesis syntax. For instance, the equivalent of the previous metaleveldescription using double parenthesis is the following:(define (sequence Generate&Test)((generate generate-hypothesis-method-1generate-hypothesis-method-2))((test test-method-1 test-method-2)))That is to say, a set of methods in a double parenthesis feature is specifyinga disjunctive set of applicable methods to that feature. Note that double paren-thesis avoids to type the metalevel description but it is, in fact, creating such ametalevel (by re�nement of metalevel) if it not yet existed.In fact, we can combine descriptions of methods for some features using thecompact syntax and descriptions of methods for other features using a metaleveldescription. Note that we cannot de�ne methods for a given feature at thebaselevel and metalevel at the same time. The Noos interpreter detects thisinconsistency and generates an error.Metalevel MethodsThe last way to de�ne a metalevel feature value is by means of a (metalevel)method. A metalevel method computes a set of ordered methods for that meta-level feature. Any metalevel method can take into account the information givenin the current problem. There are two basic ways in which a method can produceother methods as result: searching for already de�ned methods or constructingnew methods.In this section we will explain metalevel methods that search for and selectsfrom other methods. Metalevel methods for creating new methods are explainedin Chapter 4.7.In the following example, a metalevel method is de�ned for the diagnosisfeature. The metalevel method for diagnosis is speci�ed in a way that accessesand obtains di�erent methods for inferring the diagnosis of a car after consultingthe age of that particular car6.(define (Metalevel (meta of Car))((diagnosis (define (conditional)((condition (define (bigger-than?)(is-bigger (>> age of (referent)))(than 10))))(result (>> usual-malfunctions of (meta of old-cars)))(otherwise (>> malfunctions of (meta of new-cars)))))6The expression (referent) is a reective operator that obtains the base-level entity thatis the referent of the metalevel where it occurs. In this case, referent of meta of Car refers toCar (see Section 3.3.5).

3.3. Reection 59Learning methods are examples of methods implemented in Noos by meansof metalevel methods. For instance, a CBR metalevel method for diagnosiscan be de�ned as a retrieval method that examines previous solved car problemsand retrieves those that have in common with current problem at least thesame complaint. Then, it selects the explanation methods that were successfullyused in the diagnosis task of those cases as the best possible explanations forthe current diagnosis problem (CBR methods and other learning methods aredescribed in Chapter 4).Multiple Inheritance as Metalevel InferenceWe have said on Section 3.2.2 that, using re�nement, the features of a constituentdescription that are not rede�ned in the new description are \copied" into thenew description. In fact, the re�nement operation in Noos can be seen as equiv-alent to single-inheritance with overriding. Moreover, multiple inheritance canbe achieved by re�nement plus the explicit use of metalevel descriptions.A simple way to have specialized inheritance is creating a metalevel such thatfor each feature indicates which methods (de�ned elsewhere) are to be used. Inthe following example the methods to be used in person are de�ned to be thosede�ned in metalevels of citizen and homo-sapiens:(define (metalevel (meta of person))(nationality (>> comes-from of (meta of citizen)))(children (>> children of (meta of homo-sapiens))))In the example above we show that we can explicitly determine which features\inherit" (reuse) methods of citizen and which of homo-sapiens, although onlytwo features are shown. Thus, re�nements of person will reuse methods fromperson, citizen, and homo-sapiens.3.3.2 Default metalevelsA default metalevel is a special kind of metalevel that applies to all the featuresof its referent. The description of a metalevel is feature-wise: for each featurea method (as a value) or a metalevel method has to be speci�ed. In a defaultmetalevel we can specify a method (or a set of methods) for any feature (andall unspeci�ed features) of a referent.A metalevel description is always a re�nement of (prede�ned) feature termdefault, i.e. the constituent should be default or some re�nement of it. De-fault metalevels can have a name but usually they are anonymous. An anony-mous default metalevel is de�ned as a feature term that has a default metalevelcausal connection with another (base-level) feature term T (called the referentof the default metalevel) with the (default of T) idiom. That is to say, adefault metalevel is de�ned as follows (where usually default is default itself).Named Default (define (default NewDefault) method+)Anonymous Default (define (default (default of T)) method+)

60 Chapter 3. The Noos ApproachThe referent T can be a base-level object or a metalevel (indicated by theconstruct (default meta of T)). Whenever a feature f of T is unspeci�edthe method in the default metalevel is installed as method for feature f in T .More precisely, it is installed as the value of feature f of the metalevel of T . Ifthe default speci�es a set of methods, they are installed as the value of featuref of the metalevel of T . The default metalevel is used only when a feature isunspeci�ed in any of the levels of the metalevel tower. However, only one defaultcan be speci�ed in such a tower. Any other default would be useless since the�rst one would act on all unspeci�ed features.An example of the use of a default metalevel for analogical reasoning can befound in Section 4.53.3.3 Re�nementAs we have shown in Section 3.2.2, re�nement is used to construct a new featureterm reusing another existing feature term. Metalevel knowledge is also reusedusing re�nement. Speci�cally, a new feature term N de�ned by re�nement ofanother feature term E as (define (E N) body) includes (reuses) all the fea-tures de�ned in E that are not rede�ned in body and, at the metalevel of N, allthe features de�ned in the metalevel of E that are not rede�ned in the metalevelof N.For instance, giving the following description of car:(define Car(owner (define (person)))(price (>> price model)))(define (Metalevel (meta of Car))(empty-level? gas-gauge-reading-explgas-level-in-tank-expl))and de�ning a speci�c car Toms-Car by re�nement of car as follows:(define (car :id Toms-Car)(owner Tom)(model Ibiza))and de�ning also a metalevel for Toms-Car(define (Metalevel (meta of Toms-Car))(fault-symptoms model-based-methodempirical-method))then, both features price and empty-level? are included in Toms-Car from carand from metalevel of car respectively. Feature price is included in Toms-Car.Feature empty-level? is included in the metalevel of Toms-Car.Default metalevels are also reused by re�nement in a similar way to metaleveldescriptions of features.

3.3. Reection 61
Figure 3.15. Task feature term reifying the inference of featureempty-level? of Peters-Car. Note that the printname of the task con-tains the referent.3.3.4 TasksA task is a feature term that it rei�es the current state of the inference for agiven feature. Tasks are built automatically by Noos. A task embodies threefeatures: task-name, task-domain, and method. Tasks cannot be de�ned bydescriptions.Feature task-name keeps the feature name of the feature that it rei�es. Fea-ture names are represented in Noos as symbols (e.g. 'Empty-level?). Featuretask-domain keeps the feature term in which appears the feature that rei�es.Feature method keeps the method that has succeeded in achieving that task.For instance, given a feature term D with one feature f built from the followingdescription(define D((f M)))the feature value of feature task-name of the task built by Noos is f, featurevalue of feature task-domain is D, and the feature value of feature method is M,assuming that M has succeeded in achieving the feature value for f. Figure 3.15shows the task built by Noos for the feature empty-level? of Peters-carfeature term.Tasks allow Noos programs to inspect its own inference status. The taskof a given feature can be introspected using reective operations task andcurrent-task (see Section 3.3.5). Since tasks are feature terms, their featurescan be inspected using path references.3.3.5 Reective operationsReective operations allows to know the metalevel relations of a given featureterm with other feature terms.MetaGiven a reference to a feature term term, the meta reective operation

62 Chapter 3. The Noos Approach(meta term)refers to the metalevel of term. The reference to a feature term term, that isoptional, can be a name reference, a path reference, or a reective operation.For instance, the following expression(meta Peter)is a reference to the metalevel of Peter. Another example is using a pathreference as follows(meta (>> wife of Peter))that is a reference to the metalevel of the wife of Peter. Assuming that, forinstance, the wife of Peter is Mary this metalevel operation de�nes a referenceto the metalevel of Mary.The metalevel of any feature term can be always obtained. When a metalevelis requested and it was not previously de�ned, it is created.When the term is not speci�ed it is determined by the rules of scope andre�nement (see Section 3.2.3).DefaultGiven a reference to a feature term term, the default reective operation(default term)allows to refer to the metalevel default of term. The reference to a feature termterm can be a name reference, a path reference, or a reective operation. Forinstance, the following expression(default Peter)is a reference to the default metalevel of Peter.Default metalevels are optional. This means that not all feature terms havea default metalevel. When the default metalevel operation is performed over afeature term without a default metalevel, the default metalevel operation fails(see Section 3.5 for the de�nition of failure).TaskGiven a feature name f and given a reference to a feature term term, the taskreective operation (task f of term)allows to refer to the task feature term that rei�es the inference status for afeature f of that feature term. For instance, the following expression(task diagnosis of Peters-car)is a reference to the task feature term that rei�es the inference status for afeature diagnosis of Peters-car.

3.3. Reection 63Current-taskReective operation current-task allows to refer to the task in which a methodis involved. (current-task method)Since the task is a term with the task-domain feature holding the featureterm in which the method is inferring a feature value, current-task is usedin Noos as a way to access directly to other features of the feature term. Thisalternative avoids the use of parameters in the method.For instance, we de�ne the adult? method as a method that directly accessesto the feature value of the age feature, and returns true if the age is higher to17 and false otherwise.(define (higher-than adult?)(is-higher (>> age task-domain of (current-task)))(than 17))Then, we de�ne a speci�c person using the adult? method for inferring thefeature value of feature can-vote? as follows:(define Carol(age 22)((can-vote? adult?)))Finally, the following query expression:(>> can-vote? of Carol)yields true since the age of Carol is 22 years old.ReferentThe referent reective operation is used with the following syntax:(referent term)where term follows also the previous de�ned alternatives.The referent reective operation performs di�erent references dependingon the feature term from which it is applied. The referent of a metalevel featureterm M refers to the feature term T of which M is the metalevel. For instance,the referent of the metalevel of Peter is expressed as follows:(referent (meta Peter))Clearly, the referent of the metalevel of Peter is Peter.The referent of a default metalevel feature term D refers to the featureterm T of which D is the default metalevel. For instance, Peter is the referentof the default metalevel of itself an is expressed as follows:(referent (default Peter))

64 Chapter 3. The Noos ApproachThe referent of a task T that rei�es the inference status for a feature f ofa feature term B, refers to the result of the evaluation of the method used toinfer the feature value of f . For instance, assuming that the feature value for theempty-Level? feature of Peters-Car is the feature term false, the followingexpression(referent (task empty-level? of Peters-car))is a reference to the feature term false.Combining reective operations with path referencesSince reective operations are references to feature terms, reective operationscan be used as references in path references. Speci�cally, path references andreective operations can be combined as follows:comb ::= (>> feature-name* of comb)j (meta comb)j (default comb)j (task feature-name of comb)j (current-task comb)j (referent comb)j nameFor instance, the following path reference(>> diagnosis of (meta Peters-car))is a referent to the set of alternative methods that are applicable to the featurediagnosis of Peters-car that are embodied in the metalevel of Peters-car.3.3.6 Rei�cationRei�cation is the process by which an expression is converted into an object(a value) of a particular language. In Noos there are two kinds of rei�cation:rei�cation of path references, and rei�cation of method evaluation.Rei�cation of Path ReferencesIn Noos, path references can be rei�ed into the language as query-methods. Noosprovides four kinds of built-in query-methods: Infer-value, Exists-value,Known-value, and All-values. Infer-value is a method that rei�es the in-ference process involved in the reduction of a path reference. The rest threequery-methods provide a set of basic metalevel inference capabilities about fea-ture values. Query-methods allow to de�ne path references using method de-scriptions.Infer-value

3.3. Reection 65The Infer-value method has two required features: feature and domain(all the query-methods have these two required features). Infer-value rei�espath reduction inference. Its evaluation engages �rst the feature subtask (forobtaining a feature name F), next engages the domain subtask (for obtaining afeature term D), and �nally engages the F(D) task (see Section 3.2.5) and theevaluation of Infer-value method yields the value inferred by task F(D). Featurenames are represented as quoted symbols.For instance, the following path reference de�ned in the feature father ofPerson:(define Person(father (>> husband mother)))can be rei�ed as an infer-value method in the following way:(define Person((father (define (infer-value)(feature 'husband)(domain (>> mother))))))Finally, the remaining path reference (>> mother) can also be rei�ed as amethod. In this case, the expression above is equivalent to the one de�ned as acomposition of two infer-value methods in the following way:(define Person((father (define (infer-value)(feature 'husband)((domain (define (infer-value)(feature 'mother)(domain (>>)))))))))We have seen that a path reference can also be de�ned as a method. Thisprocess can be performed directly using the reify construct. The reify con-struct takes a path reference and builds an infer-method that rei�es the pathreference.For instance, the following path reference(>> father mother of Peter)can be rei�ed using the reify construct as follows(reify (>> father mother of Peter))yielding an infer-value method equivalent to the following:(define (infer-value)(feature 'father)((domain (define (infer-value)(feature 'mother)(domain Peter)))))

66 Chapter 3. The Noos ApproachThe reify construct is handy when we require to have multiple alternativereferences in a feature. In the following example, a person may be located by aphone number, but there are several phone numbers where she could be found.An easy way to model this situation is to have a disjunctive set of path referencesto di�erent phone numbers as follows:(define (person professional)((phone-number (reify (>> phone-number spouse))(reify (>> phone-number home))(reify (>> phone-number works-in)))))As this example shows, the phone-number feature has at the metalevel threepath references rei�ed as methods. Since they are methods, we can interpretthem as three alternative ways to �nd out the phone number where a professionalcan be located.The three other query-methods provide a set of basic metalevel inferencecapabilities about feature value inference. These query-methods allows to reasonabout the value of any feature F of a term D without neither modifying the valuenor engaging the inference in the task F(D).Before to explain these other query-methods, we will extend the syntax ofpath references in order to provide to all the four query-methods a syntax basedon path references as follows:path-reference ::= (>> feature-name* [of name])j (?>> feature-name* [of name])j (!>> feature-name* [of name])j (*>> feature-name* [of name])where a path reference starting with the token >> corresponds to a infer-valuemethod as we have seen. Moreover, a path reference starting with the token ?>>corresponds to an exists-value method; a path reference starting with thetoken !>> corresponds to a known-value method; and a path reference startingwith the token *>> corresponds to an all-values method.Exists-valueExists-value is a query-method that determines if the feature value for agiven feature F of a feature term D can be inferred|or in other words, if thetask F(D) can be achieved. The evaluation of Exists-value method yields trueif there is at least one method that succeeds in achieving task F(D), and falseotherwise. Note that Exists-value method does not yield the value that can beinferred.For instance, we can de�ne a bird with a feature can-fly? as follows:(define Bird((can-fly? (define (conditional)(condition (?>> exceptional-bird?))((result (define (not)(item (>> exceptional-bird?)))))(otherwise true)))))

3.3. Reection 67specifying that a bird can y excepting when it is de�ned as an exceptional bird.Note that the feature value of feature can-fly? will yield always a feature valuewithout forcing to de�ne the feature exceptional-bird? for all re�nements ofbird. For instance, we can de�ne a speci�c bird's species as follows:(define (bird sparrow))where the exceptional-bird? feature is still unde�ned.Then, performing the query expression (>> can-fly? of sparrow), valueyielded is true because path reference (?>> exceptional-bird?) will yieldfalse (since there is no way to infer a value for exceptional-bird? feature).On the other hand, de�ning penguins as follows:(define (bird penguin)(exceptional-bird? true))and performing the query expression (>> can-fly? of penguin), we will ob-tain false as answer because path reference (?>> exceptional-bird?) willyield true (since there is a value for exceptional-bird? feature) and the nega-tion of value for exceptional-bird? feature is false.Known-valueKnown-value is a query-method that determines if the feature value for agiven feature F of a feature term D is already known. Since inference in Noos islazy, a feature value is known only if the feature value is a constant or it has beenpreviously inferred|or in other words, task F(D) has been previously achieved.The required features of a known-valuemethod are also the feature and domainfeatures. The evaluation of Known-value method yields true whenever taskF(D) has been previously achieved and false otherwise. Note that Known-value method neither does yield the value of F(D).A known-value method can be used to check the inference status in a giventask. For instance, suppose that in a speci�c step of the inference we have twoalternative methods m1;m2 to achieve a subtask. We know that one of them(for instance m1) requires a knowledge source that is complex to acquire. Then,we can check �rst whether this source has been inferred previously using theknown-value method and choose m1 only when this source is already availableand choose m2 otherwise.All-valuesAll-values is a query-method that, for a given task F(D), determines theset of all feature values that can be inferred for F(D)|in other words, the setcontaining the values that result from all the methods that may succeed inachieving that task.For instance, de�ning Carol by re�nement of professional as follows:

68 Chapter 3. The Noos Approach(define (professional Carol)(spouse (define (person)(phone-number 3344)))(works-in (define (company)(phone-number 8766))))and performing the query expression (*>> phone-number of Carol) we willyield the set of phone numbers <set of 3344 8766>. Note that thephone-number feature of a professional was de�ned in page 66 with threepath references. The reference to the phone number of Carol's home did notsucceed, so only two phone numbers are inferred by all-values.Rei�cation of method evaluationThe process of method evaluation can be rei�ed also in the language. Methodevaluation is rei�ed by means of the noos-evalmethod. The noos-evalmethodhas one required feature called methods. The evaluation of a noos-evalmethodengages �rst the subtask methods for obtaining a method (or a set of methods)to be evaluated, and then engages the evaluation of that method. For instance,the evaluation of the following method de�ned for inferring the feature value offeature can-vote? of Person:(define Person((can-vote? (define (higher-than)(is-higher (>> age))(than 17)))))can be also rei�ed using a noos-eval method as follows:(define Person((can-vote? (define (noos-eval)(methods (define (higher-than)(is-higher (>> age))(than 17)))))))Rei�cation can be also performed to query expressions. For instance, thequery expression (>> diagnosis of Peters-car) has a meaning that is equiv-alent to(noos-eval (reify (>> diagnosis of Peters-car)))In turn, this query expression can be rei�ed into a noos-evalmethod with afeature methodswhose value is the query-method corresponding to the rei�cationof the original query expression, as follows:(define (noos-eval)(methods (reify (>> diagnosis of Peters-car))))The reify operator constructs a query-method from a query expression. Sothe former expression is equivalent to

3.3. Reection 69(define (noos-eval)(methods (define (infer-value)(feature 'diagnosis)(domain Peters-car))))In order to provide a set of metalevel inference capabilities about methodevaluation, four evaluation-methods are de�ned corresponding to the four ex-isting query-methods: Noos-eval, Exists-eval, Known-eval and All-eval.Noos-eval performs the method evaluation process previously explained. Therest of three evaluation-methods are built on top of this basic method evaluationprocess.The Exists-evalmethod determines if it is possible to evaluate successfullya method; Exists-eval yields true if it is possible and false otherwise.The evaluation of a Known-eval method determines if a method M has beensuccessfully previously evaluated; Known-eval yields true when M has been suc-cessfully previously evaluated and false otherwise.Finally, the evaluation of an All-eval method giving a speci�c method Myields the set of results of all the successful evaluations of method M.3.3.7 ReinstantiationEach time a method M for solving a task F(D) is reected down to D from themetalevel term of D, M is reinstantiated and bound in the context of D. Thereinstantiation mechanism can be understood as re�nement: a new method M'is built by re�nement of method M, and relative path references are bound in thecontext of D.The calculus of the scope of a relative path reference is performed taking intoaccount three cases:� When method M was de�ned in the context of D or in the context of itsmetalevel, the new method M' is a re�nement of M where relative pathreferences have not to be changed;� When method M was de�ned alone (as a root description), the new methodM' is a re�nement of M where relative path references to M are bound toM'; and� When method M is a closed method de�ned in the context of another termD', the new method M' is a re�nement of M where relative path referencesare bound following re�nement scope rules (see Section 3.2.3).For instance, suppose that we de�ne the phone-number of a professional,as de�ned in Section 3.3.6, as follows:(define Professional((phone-number (reify (>> phone-number spouse))(reify (>> phone-number home))(reify (>> phone-number works-in)))))

70 Chapter 3. The Noos ApproachNext, we de�ne Ann as a person that works in a particular company, andwith a feature phone-number using the methods described in professional asfollows:(define (Person Ann)(works-in (define (company)(phone-number 2627))))(define (metalevel (Meta of Ann))(phone-number (>> phone-number of (meta Professional))))Methods de�ned for feature phone-number in professionalwill be reecteddown in the context of Ann using re�nement and bound to Ann. Thus, posingthe following query expression to Noos:(>> phone-number of Ann)one of the three methods succeeds yielding 2627 as result.The automatic reinstantiation mechanism of Noos provides a powerful mech-anism for integrating learning methods (see Chapter 4).3.4 PreferencesPreferences in Noos are a declarative mechanism for decision making about setsof alternatives present in domain knowledge and problem solving knowledge.The main usages of preferences in Noos are:� As a declarative control construct for search and backtracking|by deter-mining the order in which a metalevel task chooses a method for a taskfrom a set of alternative methods.� As a symbolic representation of relevance (or \similitude") in comparinga given current problem with problems previously solved by the system(also called precedents).As we have shown in Section 3.3.1, we can de�ne a set of alternative methodsto solve a given task. Preferences provide a declarative mechanism for rankinga set of alternative methods. Speci�cally, preference knowledge can be used (1)for determining a �xed order of execution of methods in a given task, or (2)for dynamically calculating an execution ordering of methods according of theknowledge available for each problem. Notice that in our approach preferencesare local to some taskPreferences are also used as a symbolic representation of relevance in retrievaland selection of precedents in case-based reasoning. For instance, preferenceknowledge can be used to model criteria for ranking some precedent cases overother precedent cases for a task in a speci�c situation.Preferences over sets are modeled by partially ordered sets (also calledposets). A partially ordered set is a pair hS;�i composed by a set of elementsS and a partial order relation � de�ned on S. When a � b we say that a ispreferred to b. Preferences are described formally in Section 5.10.

3.4. Preferences 71(define (personal-computer PC-blue)(freq-MHz 150)(disk-capacity-Gb 1)(monitor color-14)(price-$ 4000))(define (personal-computer PC-red)(freq-MHz 133)(disk-capacity-Gb 2)(monitor color-14)(price-$ 4000))
(define (personal-computer PC-white)(freq-MHz 200)(disk-capacity-Gb 2)(monitor color-15)(price-$ 6000))Figure 3.16. Speci�cation of characteristics of three personal computersPC-blue, PC-red, and PC-white.Preference methodsPreferences in Noos are built by means of preference methods. A preferencemethod takes a set of source elements and an ordering criterion and builds apartially ordered set (for the sake of brevity, the poset that is the result of sucha method it will be simply called a preference). Since preference methods areNoos methods, they can be used as any other method. Di�erent preferencemethods correspond to di�erent ordering criteria.There are several built-in preference methods in Noos. A built-in prefer-ence method is decreasing-preference. Decreasing-preference takes a setof elements in feature set and the identi�er of a numeric feature in featurefeature-name and builds a preference where the preferred elements are thosewith a lesser value in the speci�ed feature. Another built-in preference method isincreasing-preference that builds a preference for higher values with respectto lesser values in a similar way to decreasing-preference.For instance, given the computer descriptions in Figure 3.16 three di�erentpreference criteria based on numerical values of feature values can be built. A�rst preference method cheaper-pref is built by a re�nement of the built-inmethod decreasing-preference. Preference method cheaper-pref builds anordering based on prices of computers, for the set of computers given in thefeature set, resulting in a partially ordered set where PCs are preferred fromcheaper to more expensive.(define (decreasing-preference cheaper-pref)(set PC-red PC-blue PC-white)(feature-name 'price-$))The preference obtained using this cheaper-pref method is shown in Fig-ure 3.17(a).Another preference method disk-pref is built by a re�nement of the built-inmethod increasing-preference that constructs a preference, in a similar way,

72 Chapter 3. The Noos Approach
PC-blue

><
PC-red

PC-white

PC-blue

>

<

PC-red

PC-white

(a) (c)

PC-blue

><

PC-red PC-white

(b)Figure 3.17. Graphical representation of three di�erent preferences overcomputers. (a) corresponds to cheaper-pref, (b) is built using disk-pref,and (c) is obtained with faster-pref.using the numeric feature disk-capacity-Gb.(define (increasing-preference disk-pref)(set PC-red PC-blue PC-white)(feature-name 'disk-capacity-Gb))Using this preference we are establishing an order where the preferred com-puters are those with a higher disk capacity (see Figure 3.17(b) for a graphrepresentation of the preference).Finally, we can de�ne the faster-pref preference method (also based onmethod increasing-preference) for feature freq-MHz providing a preferencefrom faster to slower computers using CPU clock rate as estimator (see Fig-ure 3.17(c) for a graph representation of the preference).(define (increasing-preference faster-pref)(set PC-red PC-blue PC-white)(feature-name 'freq-MHz))Noos provides other numerical and non-numerical preference methods. Ex-amples of non-numerical preference methods are equal-value-preferenceand subsumption-preference (the complete list of preference methods isexplained in Appendix D). For instance, using the preference methodequal-value-preference in the computers example we can establish a pref-erence over a speci�c kind of monitor (a preference for color-14 inch monitoror for color-15 inch monitor).Preference combinationThere are several ways to combine di�erent preference criteria|or, in otherwords, building new preferences from existing preferences. The Noos opera-tions dealing with preference combination are methods that create new partiallyordered sets from (a combination of) partially ordered sets|created either bypreference methods or by other preference combination methods. Examples of

3.4. Preferences 73preference combinations are operations such as inversion, preference union, andpreference intersection. In this section we will only describe some of them, butall preference combination operations are explained in Appendix D.Inversion takes a preference P and builds a new preference P 0 where all therelations a � b de�ned in P are inverted in P 0 (b � a). For instance, applyingthe inversion of an order obtained by the increasing-preference is equivalentto directly applying the decreasing-preference.Preference union takes two preferences and constructs a new preference per-forming a union of the sets and a transitive closure of the union of order relations.The transitive union method is called t-union in Noos. For instance, we expressa criterion of preferring either cheaper computers or computers with high diskcapacity, combining with t-union the preference based on prices of computerscheaper-pref and the preference based on disk capacities disk-pref as follows:(define (t-union cheaper&disk-pref)((poset1 (define (cheaper-pref))))((poset2 (define (disk-pref)))))The result obtained with this preference criterion is shown in Figure 3.18(a).Another possibility is to combine the preference based on pricescheaper-pref with the preference based on CPU clock rate faster-pref, ex-pressing a preference criterion of preferring either cheaper or faster computers:(define (t-union cheaper&faster-pref)((poset1 (define (cheaper-pref))))((poset2 (define (faster-pref)))))The result obtained with this preference criterion is shown in Figure 3.18(b).
PC-blue

<<

PC-red

PC-white

<

(b)

PC-blue

>
<

PC-red

PC-white

(a)

>Figure 3.18. Combining preferences.Taking the �rst combination cheaper&disk-pref (Figure 3.18(a)) we obtainthat the most preferred computer is PC-red and that PC-blue and PC-whiteare equally preferred|since PC-blue < PC-white and PC-white < PC-blue.The problem given with the second combination cheaper&faster-pref (Fig-ure 3.18(b)) is that CPU clock rate and prices introduce inverse preferencescausing a cycle where all the three computers are equally preferred. In otherwords, this situation causes an indeterminism of preferences. In order to avoidthis problem we have to use higher order preferences as will be explained in nextsection.

74 Chapter 3. The Noos ApproachHigher order preferencesAs we have shown, preference combination operations are modeled as methods.This uniform representation of Noos allows to model higher order preferences alsoas preference methods that build preferences from preferences over preferences.A higher order preference operation is the preference combination methodhierarchical union (called h-union in Noos). This combination preference isused when we have the knowledge that a preference is more important than(is preferred to) a second preference. This preference method|given a morepreferred poset in feature higher-poset and a less preferred poset in fea-ture lower-poset|constructs a preference order preserving the order �xed inhigher-poset and adding from lower-poset the order relations that are not inconict with higher-poset. For instance, considering the price as a preferencemore important than the CPU clock rate we can de�ne the following hierarchicalcombination of preferences:(define (h-union cheaper-faster-pref)((higher-poset (define (cheaper-pref))))((lower-poset (define (faster-pref)))))obtaining as a result the following preference total order:
PC-blue

>

<
PC-red

PC-whitewhere faster-pref preference is used to discriminate between computers withthe same cost (cheaper-pref). In this last example the most preferred computerwill be PC-blue.Notice that the uniform representation of Noos allows to have preferences overhigher order preferences, and potentially no limit of preferences over preferencescould be built.3.5 Inference in NoosIn Section 3.2.5 we have described the basic inference process of Noos. Now,we will complete the description of the Noos inference process incorporatingmetalevel reasoning and preference-based decision taking.As we have seen in Section 3.2.5, inference in Noos is on demand and startswhen the user poses a query to the system by means of a query expression thatengages a problem task F(D). We said then that, when neither a path referencenor a method is de�ned for a task F(D), an impasse occurs and the control ofthe inference is passed to the metalevel.Solving an impasse for a task F(D) involves three processes: (i) determin-ing a set of methods fMigF (D) applicable to task F(D), that can be partiallyordered with preferences, (ii) selecting a method from fMigF (D), according to

3.5. Inference in Noos 75
M

{M i} F(D)

impasse

Metalevel ML

select

Task F(D)

Task F(ML)

reflect

Baselevel DFigure 3.19. Solving and Impasse for a task F(D) in the metalevel ML of D.the preferences, and (iii) reecting down the selected method to task F(D) (seeFigure 3.19).Reection ensures that:1. when a method M is reected down to a task F(D), M is reinstantiated andcorrectly bound in the context of F(D);2. if method M fails in solving a task F(D), backtracking is engaged and oneof the remaining non-failed methods in fMigF (D) will be reected down;3. if there is a preference on the set of alternative methods fMigF (D), anymethod reected down is maximally preferred among the non-failed meth-ods in fMigF (D).Moreover, since a method M for F(D) can have subtasks, and each subtask mayhave several alternative methods to solve it, metalevel inference ensures that thepossible combinations of methods for each subtask are tried, following the localpreference orderings for each subtask, until a solution is found. Furthermore,metalevel inference ensures that all these combinations are tried before declaringthat a method M fails.3.5.1 Metalevel methodsWhen an impasse occurs in solving a task F(D), the �rst process involved is todetermine a set of methods fMigF (D) applicable to task F(D). Each feature Fin D has a corresponding feature with the same name F on the metalevel ML ofD (see Section 3.3). The value of this feature F at the metalevel has the set ofmethods fMigF (D) applicable to task F(D). This set of methods can be de�nedby name references, by a path reference, or by giving a (metalevel) method forinferring the methods. When an impasse occurs in solving a task F(D) and ametalevel method MM is de�ned for determining the set of methods applicable

76 Chapter 3. The Noos Approachto task F(D), a metalevel task F(ML) is engaged for evaluating the metalevelmethod MM.Notice that, since a metalevel task F(ML) is also a task, a new impasse mayoccur in solving task F(ML). When an impasse occurs at the metalevel, thecontrol of the inference is passed to the metalevel of the metalevel.3.5.2 CachingOnce the task F(D) of inferring the value for a feature F of a term D is achievedby a method M, the inferred value and method M are automatically stored in thetask term that rei�es task F(D) in the language (see Section 3.3.4). This cachingmechanism allows Noos to quickly answer future demands of already inferredfeature values.In order to maintain the consistency of values inferred in tasks and used indi�erent methods, only the method M' that �rst engages a task F(D) can performbacktracking on this task. We call such method the owner of task F(D) and wealso say that F(D) is engaged by M'.When the owner of a task forces backtracking and no other possible value canbe inferred for this task, the task is disengaged. After that, any other methodcan engage that task.3.5.3 BacktrackingThree kinds of backtracking are engaged by Noos inference involving backtrack-ing on tasks and on methods:1. Backtracking on tasks is engaged when a method M fails in solving a taskF(D). Then, the control of the inference is passed to the metalevel and oneof the remaining non-failed methods in fMigF (D) is selected. The selectedmethod is reected down and the inference is resumed in task F(D). Whenno more methods can be selected, we say that the task F(D) cannot beachieved.2. Backtracking on subtasks of methods is engaged when a subtask of amethod cannot be achieved. Let us assume that during the evaluationof a method M its subtasks F1(M), : : :, Fi(M) have been achieved and thattask Fi+1(M) cannot be achieved from the results of the previous achievedsubtasks. Then, backtracking is engaged for inferring another value forsubtask Fi(M). The value of subtask Fi(M) can be constant, inferred by apath reference, or inferred by a closed method. When the value of subtaskFi(M) is constant, backtracking is recursively engaged for inferring anothervalue for subtask Fi�1(M). When subtask Fi(M) has been achieved by aclosed method Mi|or a path reference|backtracking on Fi(M) will involverecursively backtracking on method Mi (see third kind of backtracking).Backtracking on method Mi may either succeed or fail: when it succeeds,the evaluation of method M is resumed at subtask Fi+1(M); when it fails,

3.5. Inference in Noos 77backtracking on task Fi(M) is engaged (see �rst kind of backtracking). Fi-nally, when backtracking on the �rst subtask F1(M) of a method M forsolving a task F(D) fails, we say that the method M fails in achieving F(D).3. Backtracking on a method M is engaged when a new value for the task F(D)that M solves is required. Let us assume that backtracking is engaged ina method M having subtasks F1(M), : : :, Fm(M) are achieved. Then, back-tracking is engaged for inferring another value for the last subtask Fm(M)and backtracking is resumed as described in previous kind. Thus, back-tracking on methods also involves backtracking on subtasks of a method.3.5.4 The Noos inference engineIn Section 3.2.5 the Noos inference engine was described using three basic pro-cesses: the Engage-Task process, involving the inference of feature values; theReduce-Path-Reference process, involving the reduction of a path reference; andthe Noos-Eval process, involving the evaluation of a method.Moreover, we have seen in Section 3.3.6 that path references can be rei�edas query-methods. Using this property, the Noos inference engine rei�es pathreferences as methods. Thus, the Reduce-Path-Reference process is consideredas a speci�c kind of Noos-Eval process and we will dispense of it in what follows.We will now complete the description of the Noos inference engine by in-cluding the inference process involved in solving an impasse and in backtrack-ing. Impasses engage a metalevel process that we will call No-Method-Impasse.Backtracking is engaged by three processes: Next-Value, involving backtrackingof inference of feature values; Failed-Method-Impasse, involving backtracking ofmetalevel inference; and Eval-Next, involving backtracking of the evaluation ofmethods.In summary, the Noos inference engine can be described using six basic pro-cesses: Engage-Task and Next-Value processes, involving the inference of fea-ture values; No-Method-Impasse and Failed-Method-Impasse processes, involv-ing metalevel reasoning; and Noos-Eval and Eval-Next processes, involving theevaluation of a method.Engage-TaskThe Engage-Task process is engaged by a problem task or by solving the subtasksof a method in the evaluation of that method. The goal of the Engage-Taskprocess is to infer the value of a feature. Engage-Task process involves threedi�erent actions according to the di�erent speci�cations of a feature value asfollows:Given a task F(D) engaged for determining the value of a feature F of afeature term D,1. When there is a constant value or a cached feature value C (see Section 3.5.2for an explanation of cached values) for feature F of D, the task F(D) isdirectly achieved yielding C.

78 Chapter 3. The Noos Approach2. When there is a closed method 7 M de�ned for feature F of D, the Noos-Evalprocess is engaged for method M. The task F(D) is achieved if the evalua-tion of method M succeeds, yielding the value inferred in that evaluation.Otherwise Engage-Task fails.3. When neither a value nor a method is de�ned for feature F of D, an impasseoccurs and the No-Method-Impasse process is engaged. If No-Method-Impasse reects down a method M, then the Noos-Eval process is engagedfor method M. Otherwise Engage-Task fails.(a) If the evaluation of method M succeeds, the task F(D) is achievedyielding the value inferred in that evaluation.(b) Otherwise another impasse occurs and the Failed-Method-Impasseprocess is engaged for reecting down another method M'. Then,Noos-Eval and Failed-Method-Impasse processes are iterated until theevaluation of a method succeeds or there are no more methods toreect down (Failed-Method-Impasse fails). If the evaluation of amethod succeeds, task F(D) is achieved yielding the value inferred inthat evaluation. Otherwise Engage-Task fails.No-Method-ImpasseThe No-Method-Impasse process is engaged when neither a value nor a methodis de�ned for a task F(D). Then, the control of the inference is passed to themetalevel. The goal of the No-Method-Impasse process is to select a method,from an alternative set of methods fMigF (D), for solving task F(D). Being MLthe metalevel of D, the set of methods fMigF (D) can be de�ned directly in themetalevel task F(ML) or can be inferred by engaging a metalevel method de�nedin F(ML). If No-Method-Impasse fails means that no method Mi, inferrable atthe metalevel ML, exists that can solve F(D) given current engagements.No-Method-Impasse involves four di�erent actions:Given an impasse generated in solving a task F(D), and being ML the meta-level term of D,1. First, the Engage-Task process is engaged for solving the metalevel taskF(ML).2. When metalevel task F(ML) is achieved it yields a set of partially ordered al-ternative methods fMigF (D) for solving task F(D). Otherwise F(ML) couldnot be achieved and the No-Method-Impasse process fails.3. Then, one of the methods M maximal in fMigF (D), according to the pref-erence, is selected.7Note that path references are rei�ed as methods. Thus, path references are also de�nedas a closed method for feature F of D.

3.5. Inference in Noos 794. Finally, the selected method M is reected down to task F(D). The re-ection process reinstantiates method M in the context of task F(D) (seeSection 3.3.7).After this impasse is resolved, the inference is resumed in the engage-taskprocess engaged for solving task F(D).Noos-EvalThe Noos-Eval process for a method M �rst engages a task for each required fea-ture of M and then performs a speci�c combination of the results of the subtasksaccording to the built-in method it is a re�nement of.Speci�cally, given a method M that is a re�nement of a built-in method Bwith required features F1, F2, : : :, Fn,1. tasks F1(M), F2(M), : : :, Fn(M) are consequently engaged by M, using theEngage-Task process. When a task Fi(M) (i > 1) cannot be achieved (as-suming F1(M) � � � Fi�1(M) have been achieved) backtracking is engaged intask Fi�1(M) using the Next-Value process. Backtracking on task Fi�1(M)can succeed or can fail: when it succeeds, the evaluation of method M isresumed at subtask Fi(M); when it fails, backtracking on task Fi�2(M) isrecursively engaged. Finally, when backtracking on the �rst subtask F1(M)fails, the evaluation of the method fails.2. When all tasks F1(M), F2(M), : : :, Fn(M) are achieved, a speci�c combina-tion of the results of the subtasks, according to the built-in de�nition ofB, is performed and the method yields this value.Next-ValueThe Next-Value process is engaged when backtracking is forced in a task F(D)because the value currently inferred for F(D) is not adequated for another task.The goal of the Next-Value process is to force backtracking and infer anotherpossible value of task F(D). If Next-Value fails, then no value can be inferred fortask F(D), given current engagements.Given a term T requesting a task F(D), Next-Value determines another pos-sible value for feature F of a feature term D involving two di�erent actions:1. When there is a constant feature value or task F(D) has an owner di�erentto term T, Next-Value fails.2. When there is a closed method M de�ned for task F(D), the Eval-Nextprocess is engaged for method M.Task F(D) is achieved if the evaluation of method M succeeds, yielding thevalue inferred in that evaluation.If the evaluation of method M fails, an impasse occurs and the Failed-Method-Impasse process is engaged for reecting down another method M'.

80 Chapter 3. The Noos ApproachThen, Noos-Eval and Failed-Method-Impasse processes are iterated untila method succeeds or there are no more methods to reect down. If theevaluation of a method succeeds, task F(D) is achieved yielding the valueinferred in that evaluation; otherwise Next-Value fails.Failed-Method-ImpasseThe Failed-Method-Impasse process is engaged when the evaluation of a methodM fails in solving a task F(D). Then, the control of the inference is passed tothe metalevel. Being ML the metalevel of D, and fMigF (D) the set of partiallyordered alternative methods for solving task F(D) already inferred by metaleveltask F(ML), the goal of the Failed-Method-Impasse process is to select a notpreviously selected method, from the alternative set of methods fMigF (D), forsolving task F(D).When all alternative methods have already been selected and have failed, theNext-Value process is engaged at the metalevel for the metalevel task F(ML) en-gaging backtracking in the metalevel method de�ned in F(ML). If Failed-Method-Impasse fails, then no method Mi, inferrable at the metalevel ML, that solvesF(D) given current engagements.Failed-Method-Impasse process involves two di�erent actions:Given an impasse generated in solving a task F(D), being ML the metalevelterm of D, and being fMigF (D) the set of partially ordered alternative methodsfor solving task F(D) already inferred by F(ML),1. When there are alternative methods not previously selected, a non-failedmethod M, maximal with respect to preference, is selected. Then, theselected method is reected down to task F(D) reinstantiating method Min the context of task F(D).2. When all alternative methods fMigF (D) have already been selected andhave failed, the Next-Value process is engaged for the metalevel task F(ML).(a) When metalevel task F(ML) is achieved, it yields a set of partially or-dered alternative methods fM 0igF (D) for solving task F(D). Otherwisethe Failed-Method-Impasse process fails.(b) Then, one of the maximal methods Mj , from fM 0igF (D), is selectedaccording to the preference.(c) Finally, the selected method Mj is reected down to task F(D) rein-stantiating Mj in the context of task F(D).After the impasse is resolved, object-level inference is resumed.Eval-NextThe Eval-Next process is engaged when backtracking is forced in the evaluationof method M. If Eval-Next fails no other value, resulting from the evaluation ofM, exists given current engagements.

3.5. Inference in Noos 81Speci�cally, given a method M that is a re�nement of a built-in method Bwith required features F1, F2, : : :, Fn and tasks F1(M), F2(M), : : :, Fn(M) engagedfor inferring the value of the required features,1. Backtracking is engaged in task Fn(M) using the Next-Value process.2. Backtracking on task Fn(M) can succeed or can fail: when it succeeds, theevaluation of method M is resumed to next step; when it fails, backtrackingon task Fn�1(M) is recursively engaged (see Noos-Eval process). Whenbacktracking on the �rst subtask F1(M) fails, the Eval-Next process fails.3. When all tasks F1(M), F2(M), : : :, Fn(M) are achieved, a speci�c combina-tion of the results of the subtasks, according to the built-in de�nition ofB, is performed and the method yields this value.The Eval-Next backtracking process assures that all the possible collectionsof values for tasks F1(M), F2(M), : : :, Fn(M) have been tried before determiningthe failure in the evaluation of a method.Moreover, at the end of the inference of an achieved problem task, the collec-tion of all successful methods in its tree of task/method decomposition will bemaximal with respect to the preference orders inferred by the metalevels tasksinvolved. Formally,De�nition 3.1 (Maximal solution) Given the set of achieved subtaskst1; t2 � � � tn, that form the task decomposition of a problem task F(D), given theset of partial orders �1; � � � �n over the alternative methods for these subtasks,and given the set of methods m1;m2 � � �mn engaged respectively to these sub-tasks, a solution of F(D) is maximal if there is no other combination of methodsm01 �1 m1, m02 �2 m2; � � �m0n �n mn (where at least one m0i 6= mi) that achievesa solution for F(D).The de�nition just given is indeterministic when the maximal is not unique,and corresponds to the formalization developed in Section 5.13. In order toavoid this indeterminism, the Noos inference engine implementation determinesa pre-established execution order among the subtasks of a method, and when nopreference order can be inferred between a set of alternative methods for solvinga speci�c task, the writing order is used for determining a total order.3.5.5 An example of inferenceLet us to show the Noos inference process using a short example. Suppose wede�ne a concept stuff with a feature kind determining whether a given stu� ismaterial or ideal using two methods as follows:

82 Chapter 3. The Noos Approach(define (any stuff)((kind (define (conditional)(condition (>> solid? made-of))(result material))(define (conditional)(condition (>> spiritual? made-of))(result ideal)))))Then, we de�ne a concept spiritual-stuff by re�nement of stuff as fol-lows: (define (stuff spiritual-stuff)(made-of (define (thing)(spiritual? true))))Next, using the following query expression(>> kind of spiritual-stuff)the Engage-Task process starts for problem task kind(spiritual-stuff). Fig-ure 3.20 shows the trace of the inference engaged in Noos in this short example.We will describe the inference steps below indicating the line number from thetrace given in Figure 3.20:(3) The Engage-Task process for problem task kind(spiritual-stuff) isengaged.(4) Since there is no method for feature kind speci�ed in spiritual-stuff,an impasse occurs and the control of the inference is passed to the No-Method-Impasse process.(6) The No-Method-Impasse process engages �rst a metalevel taskfor obtaining the set of alternative methods for solving taskkind(spiritual-stuff).(7) Two alternative methods, de�ned at the metalevel of stuff, and that wewill call conditional-1 and conditional-2 are yielded.(8) First conditional-1 is selected and reected down to the baselevelspiritual-stuff.(10) Next, the Noos-eval process is engaged for evaluating the method reecteddown (conditional-1').(12) The evaluation of the method performs �rst the subtask condition that, inturn, engages the evaluation of the path reference (>> solid? made-of)in the scope of spiritual-stuff.(16) Since the path reference cannot be reduced, Noos-eval process forconditional-1' fails.

3.5. Inference in Noos 83
(>> kind of spiritual-stuff)1 Eval: <Infer-value (>> kind of spiritual-stuff)>2 =)3 Task: kind(<spiritual-stuff>)4 Impasse: No-method5 =)6 Task: kind(<meta of spiritual-stuff>)7 Value: <set of <conditional-1> <conditional-2>>8 Select <conditional-1>9 (=10 Eval: <conditional-1'>11 =)12 Task: condition(<conditional-1'>)13 Eval: <Infer-value (>> solid? made-of)>14 %FAIL%15 (=16 %FAIL%17 Impasse: Failed-method18 =)19 Select <conditional-2>20 (=21 Eval: <conditional-2'>22 =)23 Task: condition(<conditional-2'>)24 Eval: <Infer-value (>> spiritual? made-of)>25 Value: <true>26 Task: result(<conditional-2'>)27 Value: <ideal>28 (=29 Value: <ideal>30 (=31 Value: <ideal><ideal> Figure 3.20. Inference trace.

84 Chapter 3. The Noos Approach(17) This failure engages a new impasse and the control of the inference ispassed to the Failed-Method-Impasse process.(19) Then, the next method conditional-2 is selected and reected down tospiritual-stuff.(21) Next, the the Noos-eval process is engaged for evaluating the methodreected down (conditional-2').(23) The evaluation of conditional-2' performs �rst the subtask conditionevaluating, in turn, the path reference (>> spiritual? made-of) in thescope of spiritual-stuff.(29) Since the result of the subtask condition is true, the result returned bythe method is the constant feature value de�ned in subtask result, thatis to say, ideal.Finally, ideal is returned as the solution for the query expression.3.6 SummaryIn this chapter we presented the di�erent elements of the Noos representationlanguage. Since we introduced many concepts of the language, now we willsummarize the main features of Noos.In the �rst section, we described the Noos modeling framework based on fourknowledge categories: domain knowledge, problem solving knowledge, episodicknowledge, and metalevel knowledge. Then, we presented how these four knowl-edge categories are represented in Noos introducing incrementally the di�erentelements of the Noos language.First, we described the basic elements of the language:� We presented descriptions, the syntax Noos uses for constructing featureterms. A description clusters together as a collection of features the rela-tions in which a concept is involved. Features are interpreted as functionsover sets. This view allows to de�ne several feature terms as the value ofa feature.� Next, we introduced re�nement, an operation for constructing featureterms that involves two distinct aspects: (1) code reuse (the construc-tion of a feature term by reusing another feature term) and, (2) subtyping(the de�nition of a domain-speci�c sort hierarchy).� Then, two forms of reference are presented: name reference and path ref-erence. Name references are used for de�ning feature values by referring tofeature terms de�ned elsewhere. Path references are used for designatingany feature term F by specifying a sequence of feature names that from afeature term F' leads to F. Path references de�ne path equalities between

3.6. Summary 85features that can be seen as constraints. Moreover, the usual interpreta-tion of path references is enlarged for allowing path references to deal withfeature values that are sets.� The last basic element of Noos are methods. Methods are represented asevaluable feature terms and are also constructed by descriptions. The set offeatures de�ned in a method description is interpreted either as a referenceto some knowledge source required by the method, or as a subtask requiredto be accomplished by the method. Noos provides a set of built-in methodsand new methods can be de�ned from them by re�nement.The uniform representation of methods in Noos allows to represent prob-lem solving knowledge in the same formalism. Thus, our approach pro-vides simpler representation constructs than other hybrid representationlanguages such as loom [MacGregor, 1994] [MacGregor, 1991] and carin[Levy and Rousset, 1996]. These systems combines a description logic represen-tation with a datalog like rule language for representing problem solving knowl-edge. A similar approach is taken in the classic system [Brachman et al., 1991]where forward-chaining rules are integrated with a description logic representa-tion as an added constructor.Next, we presented the reective capabilities of Noos introducing the re-mainder elements of Noos. Three metalevel components are de�ned in Noos forrepresenting the metalevel knowledge: metalevels, default metalevels, and tasks.All of them are represented uniformly as feature terms.� A metalevel contains knowledge about a concept, called referent, togetherwith the collection of methods that are applicable to each feature of itsreferent. Using metalevels, multiple methods can be de�ned to achieve atask. Metalevel methods can also be de�ned in the features of a metalevelfor dynamically computing a set of ordered methods for solving a tasktaking into account the information available in the current problem.� A default metalevel is a special kind of metalevel that contains a set ofmethods that can be applied to all the features of its referent.� Tasks reify the status of the inference in the language. Tasks embodyknowledge such as the method that has succeeded in achieving that taskand the result of the evaluation of the method.A collection of reective operations de�ned in Noos allows to access toand to inspect all the metalevel components (namely meta, default, task,current-task, and referent). As we will present in the next chapter, reectiveoperations are a basic component for the integration of learning and problemsolving in Noos.Another element introduced in this chapter is the notion of rei�cation. Rei�-cation allows to express the inference process involved in reducing path refer-ences as Noos methods. Path references are rei�ed as query-methods. Using

86 Chapter 3. The Noos Approachquery-methods, a set of four di�erent metalevel inference capabilities about fea-ture values is provided (namely infer-value, exists-value, known-value, andall-values). The inference process involved in the evaluation of methods isalso rei�ed as Noos methods. Analogously to path references, the rei�cationof the evaluation of methods provides a set of metalevel inference capabilitiesabout method evaluation (namely noos-eval, exists-eval, known-eval, andall-eval).The automatic reinstantiation mechanism of Noos was also presented. Rein-stantiation is a powerful mechanism for integrating learning that allows, as wewill show in the next chapter, to support derivational analogy reasoning in Noos.Then, we described preferences, a declarative mechanism for decision makingabout sets of alternatives. Preferences are a declarative control mechanism fordetermining the order in which a metalevel task chooses a method for a taskfrom a set of alternative methods. Furthermore, preferences are used in Noos asa symbolic representation of relevance in comparing a given current problem withproblems previously solved by the system. Speci�cally, preferences are used inthe retrieval and selection of precedent cases in case-based reasoning. Di�erentexamples of the use of preferences in Noos are given in Chapter 6.Finally, we described how inference is performed in Noos. We introduced thenotion of impasse and backtracking.When solving a task where neither a path reference nor a method is de�ned,an impasse occurs and the control of the inference is passed to its correspondingmetalevel task. Solving an impasse for a task F(D) involves three processes:(i) determining a set of methods fMigF (D) applicable to task F(D), that canbe partially ordered with preferences, (ii) selecting a method from fMigF (D),according to the preferences, and (iii) reecting down the selected method totask F(D).Backtracking is engaged when a method fails in solving a task. In that case,another remaining non-failed method in fMigF (D) will be selected and reecteddown. Moreover, since a method M can have subtasks, and each subtask mayhave several alternative methods to solve it, metalevel inference ensures thatbacktracking is engaged in M. Then, the possible combinations of methods foreach subtask are tried, following the local preference orderings for each subtask,until a solution is found.Next Chapter will discuss the role of experience and memory in Noos problemsolving and our proposal for integrating learning techniques in Noos. In thenext Chapter we will present the Noos elements concerning to the integration oflearning. The reader can �nd in Appendix A the rest of elements provided inthe Noos development environment.

Chapter 4Memory, Experience andLearningIt is clear the importance of experience's role in human problem solving. Ex-perience allows people to learn how to focus on relevant details of a prob-lem, to avoid decisions that have previously resulted in failure situations, etc.The incorporation of experience capabilities in knowledge systems also playsan important role in order to improve their behavior. As it was argued in[Kolodner and Riesbek, 1986], reasoning about the experience in problem solv-ing involves two main aspects:� a memory structure that stores the decisions taken by the system in thesolution of problems, and� the capability of inspecting, retrieving and reasoning about these decisions.Another important remark is that, because memory changes depending ofthe experience, the results of asking the system to solve a given task at twodi�erent times may be di�erent.We call the memory structure that stores the decisions taken by Noos inthe solution of problems episodic memory. The set of decisions stored in theepisodic memory form the episodic knowledge of the system (see Section 3.1).Episodic knowledge holds information and decisions used in solving particularepisodes (particular problems). This kind of knowledge requires the system tohave a model of certain aspects of itself (a self-model). The type of self-modelis determinant to the kind of learning that can be performed in the system.In this chapter we will present the components of the episodic knowledge thatconstitute the episodic memory of Noos. We will also present three mechanismsfor inspecting the episodic memory: access by path, that provides an access to theepisodic memory combining reective operations and path references; retrievalmethods, that provide a powerful mechanism for accessing to the episodic mem-ory contents; and perspectives, a mechanism to describe declarative biases forcase retrieval in structured representations of cases. Next, we will deal with the87

88 Chapter 4. Memory, Experience and Learningrole of learning and its integration into the Noos language. Finally, we will ex-plain how di�erent symbolic learning approaches|such as case-based reasoning,inductive learning, and analytical learning|are incorporated in Noos.4.1 Episodic knowledge in NoosEpisodic knowledge in Noos is represented as the set of tasks, methods, pref-erences, and problem data involved in solving problems. Episodic knowledgeis organized in episodic models. Each episodic model holds the rei�cation (theself-model) of the inference process engaged in Noos in solving a speci�c problemtask.Episodic modelAn episodic model is the explanation of the inference process engaged by Noosin solving a speci�c problem task. In computational terms, it could be said thatit is the trace of the program that solves a speci�c problem task.An episodic model holds the set of knowledge pieces used for solving a speci�cproblem task, how and where they were used, and the decisions taken for solvingthat problem. Speci�cally, the episodic model constructed by Noos for solving aspeci�c problem task F(D) holds the problem data, the solution for that problem,and the problem task engaged for solving that problem. This problem taskF(D) is rei�ed as a task feature term (see Section 3.3.4) and holds, in turn, thefollowing knowledge:� the name of the task (that is the name of the feature F),� the feature term to which the task is addressed (D),� the solution inferred by the task, and� the method M that has succeeded in achieving that task.The method M, in turn, holds:� the values inferred by its subtasks (the feature values of M's features),� the task feature terms of M (i.e. the rei�cation of the subtasks of M).When a task engaged in problem solving has no method or has multiplealternative methods for achieving that task, a metalevel task is engaged by Noos(see Section 3.5). These metalevel tasks are also tasks that are part of theepisodic model. A metalevel task MT is a task that has a name that is the samename as the name of the task T it solves, is addressed to the metalevel term towhich the task T is addressed, holds a metalevel method, and holds the solutioninferred by MT|a set of partially ordered alternative methods for solving thetask T.Summarizing, the episodic model constructed by Noos for solving a spe-ci�c problem task F(D) holds the problem data given for solving F(D) and the

4.1. Episodic knowledge in Noos 89task/method decomposition tree engaged in solving F(D); this tree, in turn,holds the methods succeeded in achieving each task, the rei�cation of subtasksengaged by each method, and the rei�cation of the metalevel tasks that havebeen engaged.Once a problem task is solved Noos automatically memorizes (stores andindexes) the episodic model that has been built.Let us introduce an example of the episodic model built in solving a speci�cproblem task. Given the following de�nition of a car:(define Bills-car(owner Bill)(gas-level-in-tank 2)((gas-gauge-reading (define (conditional)((condition (define (lower-than?)(is-lower (>> gas-level-in-tank))(than 5))))(result empty)(otherwise full))))((empty-level? (define (Identity?)(item1 empty)(item2 (>> gas-gauge-reading))))))and solving the problem task empty-level?(Bills-car), the identitymethodis evaluated requiring the value of feature gas-gauge-reading. In turn,the conditional method de�ned in the gas-gauge-reading feature and thelower-than? method de�ned in its condition subtask are evaluated yieldingempty as result (since the value of feature gas-level-in-tank is lower than 5).Finally, the solution yielded for the problem task is true.The episodic model built for that problem task holds a task with nameempty-level?, addressed to Bills-car feature term, with solution value true,and with an identity method with printname <identity? 109> as following:
The <identity? 109> method has, in turn, two subtasks (see Figure 4.1):item1 and item2 subtasks with their corresponding values. Task item1 has aconstant value empty. Task item2 holds an infer-value method that is the rei�ca-tion of the path reference (>> gas-gauge-reading) in the scope of Bills-car.This infer-value method has, in turn, three subtasks: feature, holding the con-stant value gas-gauge-reading; domain, holding the constant value Bills-car;and the task gas-gauge-reading(Bills-car) engaged for solving the featurevalue for feature gas-gauge-reading of Bills-car. This task holds the con-ditional method <conditional 110>. The <conditional 110> method has,in turn, two subtasks: condition, holding a numerical comparison method<lower-than? 112>; and result, holding the content value empty. The com-parison method has, in turn, two tasks: is-lower and than. Task is-lower

90 Chapter 4. Memory, Experience and Learning

Figure 4.1. A browser of the task/method decomposition from the episodicmodel of the empty-level?(Bills-car) problem task.has another infer-value method that is the rei�cation of the path reference(>> gas-level-in-tank) in the scope of Bills-car. Finally, task than hasthe constant value 5.All these are components of the episodic model of the problem taskempty-level?(Bills-car) and are accessible and inspectable as we willpresently explain.Episodic memoryEpisodic memory is the collection of the episodic models of the problem tasksthat the system has solved.Noos provides three ways of accessing and reusing episodic models for solvingnew problems. That is, three ways to examine the contents of episodic memory.The �rst one is an access by path. The second one is an access by contents. Thethird one are perspectives.Access by path is performed by combining reective operations and pathreferences (see Section 3.3.5). Access by path provides a way to access speci�cportions of the episodic memory. For instance, we can access to the methodthat solved the problem task empty-level?(Bills-car) using the followingcombination:(>> method of (task empty-level? of Bills-car))yielding <identity? 109>.

4.2. Retrieval 91Since methods are feature terms, they are inspectable to external methods ina uniform manner to other feature terms. Parameters and subtasks of a methodare features. Thus, they can be accessed using a path. For instance, we canaccess the value of the item1 subtask of <identity? 109> method as follows,(>> item1 method of (task empty-level? of Bills-car))yielding empty, or the method of the item2 subtask of <identity? 109>methodas follows,(>> method of (task item2 of(>> method of (task empty-level? of Bills-car))))yielding method <infer-value (>> gas-gauge-reading)>.We can say thus that Noos methods are transparent. The transparent capa-bility of Noos methods allows to perform forms of inference that need to inspectand reason about methods and how they have been used to solve particulartasks.An example of using introspection over methods is analytical learning (seeSection 4.7). An analytical learning method builds more e�cient and compactmethods by examining the explanation (the episodic model) of the methods usedto solve a speci�c problem task.On the other side, access by contents is performed by retrieval methods.Retrieval methods provide a way to retrieve parts of the episodic memory usingthe notion of feature terms as partial descriptions and the subsumption orderingamong them.4.2 RetrievalNoos provides a set of basic retrieval methods. Retrieval methods allow to re-trieve previous relevant episodes from the episodic memory using relevance cri-teria. Relevance criteria are determined by speci�c domain knowledge about theimportance of di�erent features or by requirements of problem solving methods.Usually, the notion of similitude in case-based reasoning introduces a way toassess the relevance of precedent cases in solving a new case. Similarity measuresestimate a relevance order between precedent cases. Our approach is to workdirectly over relevance orders.Retrieval methods are based on the notion of feature terms as partial descrip-tions and the notion of subsumption among feature terms (see Chapter 5). Theintuitive meaning of subsumption is that a term t1 subsumes another term t2(t1 v t2) when all information in t1 is also contained in t2. Our approach is thata knowledge modeling analysis can determine the relevant aspects of problems;then, partial descriptions of the current problem can be built embodying theaspects considered as relevant. These partial descriptions are used as retrievalpatterns for searching similar cases in the episodic memory using subsumption.Thus, retrieval methods can be viewed as methods that search into the episodic

92 Chapter 4. Memory, Experience and Learningmemory the set of feature terms subsumed by a feature term, a pattern, em-bodying the relevant aspects of a problem data.For instance, in the diagnosis of car malfunctions domain, we could be inter-ested in solving the diagnosis task of a new car by means of looking to previoussolved diagnosed cars with the same symptoms as that of the new car. Thatis to say, retrieving feature terms of sort car, with same feature value for fea-ture symptom as the new car, and with feature value for feature diagnosisa feature term of sort malfunction. Given a speci�c car with feature valuedoes-not-start for the symptom feature, the feature term embodying this par-tial description can be de�ned as follows:(define (Car)(symptom does-not-start)(diagnosis malfunction))This retrieval mechanism is achieved by the retrieve-by-pattern built-in method. The retrieve-by-pattern built-in method has a required featurecalled pattern. The feature value of pattern is taken as the subsumer featureterm used for retrieval over the episodic memory. For instance, we may de�ne aretrieval method for the diagnosis of car malfunctions domain as follows:(define (retrieve-by-pattern Search-diag-cars)(symptom complaint)(pattern (define (Car)(symptom (>> symptom))(diagnosis malfunction)))where we are de�ning a retrieval method, called Search-diag-carsmethod, byre�nement of the retrieve-by-pattern method, and with a parameter calledsymptom.The evaluation of the Search-diag-cars method in a speci�c car with aspeci�c complaint performs a search into the episodic memory yielding as resultthe set of cars previously diagnosed by the system (i.e. that have some diagnosisof sort malfunction) and with that speci�c complaint as feature value of theirsymptom feature.As we have shown, since retrieval methods are methods like any other built-in method provided in Noos, new retrieval methods can be designed re�ning andcombining the existing ones from a knowledge modeling analysis of problems.Retrieval by contents is a powerful capability that allows to develop meth-ods based on analogical reasoning. For instance, analogy by determination[Russell, 1990] may be directly performed as a retrieve-by-pattern method. Theapproach of analogy by determination applied in solving a problem P (A), giventhe information that P (A) is determined by Q(A) and given an example of an-other solved problem P (B) such that Q(A) = Q(B), is that problem P (A) canbe resolved as P (A) = P (B).For instance, a classical example of an analogy justi�ed by a determinationis that the usual language spoken by a person is determined by the person'snationality. In Noos this can be easily performed by the following method:

4.3. Perspectives 93(define (decomposition Language-determination)(citizen person)((precedents (define (retrieve-by-pattern)(pattern (define (person)(national-of (>> national-of citizen)))))))(language (>> speaks precedents)))that can be used for solving the speaks feature of a person as follows:(define Person(national-of country)((speaks (define (language-determination)(citizen (>>))))))Then, given an example of a person called Janos that is Hungarian andspeaks Magyar,(define (Person Janos)(national-of Hungary)(speaks Magyar))and given the speaks task of another person that is also Hungarian,(define (Person Petia)(national-of Hungary))we can conclude that Petia speaks Magyar.In Section 4.5 we provide an example of the use of a retrieval method foracquiring methods in an analogical reasoning approach. In Appendix D wedescribe all built-in retrieval methods.4.3 PerspectivesPerspectives is a clear and exible mechanism to describe declarative biases forretrieval in the Noos episodic memory. Our approach is based on the observationthat, in complex tasks, the identi�cation of the relevant aspects for retrieval ina given situation may involve the use of knowledge intensive methods. Thisidenti�cation process requires dynamical decisions about the relevant aspects ofa problem and involves introspection.The view of feature terms as partial descriptions allows the representation ofdeclarative biases also as feature terms in a natural way. The declarative biasesare interpreted as syntactic patterns. Perspectives are the way to construct, fromthese syntactic patterns, partial descriptions of the current problem embodyingonly those aspects considered relevant. These partial descriptions may be usedlater for retrieval. Figure 4.2 shows the use of perspectives into a retrieval task.The formal description of perspectives is presented in Section 5.11.Perspectives are constructed in Noos using the perspective built-in method.The perspective built-in method has two required features called pattern andsource. The feature value of the pattern feature is taken as the syntactic

94 Chapter 4. Memory, Experience and Learning
Episodic memory

C

C1
C2

C 3
C4

C5
C6

C7

P1 Pn

S

Perspectives

declarative biases

Problem case

...

Identify

Search

Figure 4.2. Using perspectives in a retrieval task. First, given a problemcase C and using syntactic patterns S as declarative biases, the relevantaspects of C are determined and perspectives P1 � � �Pn are built. Later,these perspectives are used in retrieval methods to search precedent casesin the episodic memory.pattern that describes, as a declarative bias, the relevant aspects of a problemsituation (a feature term) given in the source feature. The perspectivemethodconstructs a new term extracting from the source term those aspects declaredin the syntactic pattern given in pattern.There are two possibilities for constructing perspectives. The �rst option isto use a syntactic pattern where the relevance of some feature values is declaredusing sorts. For instance, we will take an example from the Saxex musicalapplication (see Section 6.5 for a detailed description). Let as consider a noteNote1 de�ned as follows:(define (note Note1)(pitch C5)(position 0)(duration Q)(metrical-strength extremely-high)(belongs-to (define (P)(first-note (>>))(med-notes Note2)(last-note Note3)(direction down)))(next Note2))Moreover, let us consider as relevant aspects of a note its duration and itsmetrical strength on the melody. We can specify this knowledge by means of theuse of the following syntactic pattern in a perspective method P1 for constructinga perspective of note1 (de�ned before) as follows:

4.3. Perspectives 95(define (perspective P1)(source Note1)(pattern (define (note)(duration rhythm)(metrical-strength strength))))the following perspective will be constructed by P1,(define (note)(duration Q)(metrical-strength extremely-high))This term, in turn, can be used for retrieval obtaining, as a result, the set of\note precedents" from the episodic memory with duration Q (quarter duration)and a extremely-high metrical strength.The second way to build a perspective is to use a syntactic pattern wherethe relevance of some features is declared using variables of features. This al-ternative allows to identify the roles of features and terms in the structure. Forinstance, still in the Saxex application, let us to consider as a relevant aspectof a note the \role" that plays in the analysis structure of the musical phraseit belongs. Using the cognition model of musical understanding of Narmour'stheory (see Section 6.5 for more details) a phrase can be analyzed by groupingthe notes in a sequence of basic structures (that we model by re�ning the com-mon sort N-structure). A structure assigns a di�erent role to each note (thatwe represent with features) belonging to the structure. Since the feature namesdi�er, we can specify this knowledge by means of using variables of features; wecan use the following syntactic pattern, where feature variables are noted withthe $ symbol, in a perspective method P2 for constructing a perspective of note1as follows:(define (perspective P2)(source Note1)(pattern (define (note)(belongs-to (define (N-structure)($f (>> pattern)))))))Speci�cally, since Note1 is the first-note of a melodic P process structure(P is a kind of N-structure), according to Narmour's theory, the followingperspective will be constructed:(define (note)(belongs-to (define (P)(first-note (>>)))))Finally, using this perspective for retrieval we obtain, from the memory ofcases, all the notes playing the same role that Note1 (i.e. �rst notes of melodicprocess structures).Using a speci�c syntactic pattern multiple perspectives can be constructed.There are two factors that allow the construction of diverse perspectives: thespeci�cation of a variable of features and the speci�cation of sets in feature

96 Chapter 4. Memory, Experience and Learningvalues. The backtracking mechanism of the Noos inference engine allows toobtain all the perspectives consecutively.4.4 Reasoning and learningMachine Learning (ML) techniques have been used by knowledge modelingmethodologies as a way to acquire certain models in the knowledge acquisi-tion (KA) process conducive to building a knowledge system. Our interest isin developing knowledge systems with integrated learning capabilities: we areinterested in developing di�erent machine learning methods and integrate theminto the problem solving of knowledge systems. This option means essentiallythat certain knowledge acquisition tasks are delayed from the knowledge systemdesign and construction phase to the phase in which the knowledge system isactually used in the task environment. Since knowledge modeling methodologiesview KA as a process that basically build models, our approach means that somemodels are not built1 in the �rst phase, and their construction is delayed to thesecond phase where appropriate ML methods are appointed to generate thosemodels.This delay of KA tasks also implies the following:� Knowledge modeling of the implemented knowledge system has to includemodeling of KA goals� ML techniques have to be modeled inside the framework, in our case MLtechniques are modeled as methods� knowledge requirements of ML methods have to be addressed; in our frame-work episodic memory is used to model the speci�c requirement of mod-eling the \examples" or \cases" used by ML techniques.Moreover, our approach is that any time some knowledge is required by aproblem solving method, and that knowledge is not directly available, there isan opportunity for learning. Thus, our proposal is the use of learning methodswhose task is the acquisition of this lacking knowledge in some problem solvingprocess.Moreover, our proposal is that learning methods are methods with introspec-tion capabilities that can be analyzed also by means of a task/method decompo-sition. For instance, case-based reasoning methods require access to precedentlysolved similar problems (called cases), select some of them using some criteria,and �nally adapt the solutions from the cases to the current problem. Thisadaptation phase can be just to use the exactly same previous solutions, to re-instantiate the solutions in the new problem situation, or to construct a newsolution according the previous solutions and the current problem. As a secondexample, inductive learning methods need a set of examples in order to con-struct a new description that characterizes a target concept. Explanation-based1Or, in general, a preliminary model is built but needs to be improved.

4.4. Reasoning and learning 97learning methods analyze inference processes and construct new knowledge thatis incorporated as a new domain theory, or strategic knowledge that will be usedin the resolution of new problems.Integrated learning is modeled as a process with three main subtasks: Intro-spection, Construction, and Revision. This scheme allows us to model di�erentML methods and their integration into a general problem solving system bydeveloping speci�c methods for the three main subtasks. Let us consider thesetasks in turn:Introspection This task is the process by which past experience (episodic mem-ory of the system itself or provided by a teacher) is accessed, selected andretrieved for the purpose of solving new problems. In simple situations thistask may merely select a subset of examples in memory. In complex situ-ations the system may have to decide which (sub)parts of all the episodicmemory qualify as \examples", i.e. they are interesting to learn from (seeSection 4.3).Construction This task uses the relevant past experience (resulting from in-trospection) to generate some new model or body of knowledge. Eager andlazy ML methods (see below) di�er in the nature of what they construct.Revision This task decides whether and how the system knowledge is modi-�ed by the newly constructed model. In simple situations the new modeljust satis�es a knowledge requirement or substitutes an old model. Inmore complex cases, the task has to estimate whether the new model doesimprove the overall performance of the system (for instance preventingover�tting or \expensive" rules).Construction task involves methods that usually are called learning algo-rithms. This is because in o�-line learning the \introspection" task is simplydone by a human engineering the system, while revision is present only in in-cremental algorithms|and in interactive systems decisions about revision aretaken by the human engineering the system. These human-intensive processesare modeled in our framework as methods for the introspection and revisiontasks that may interact or not with the human expert/engineer.Before proceeding to review how di�erent ML methods are integrated intothe Noos framework, it is useful to distinguish between learning methods of eagerand lazy nature.Eager learning Past experience is used in toto to provide a new model or bodyof knowledge to be used for a speci�c problem solving method that willbe applied in all future problems (of a speci�c kind). The paradigmaticeager learning methods are inductive techniques that generate abstractknowledge from speci�c examples and teacher input. In non-incrementalapproaches, past experience (episodic models) can be disposed of when thenew model has been generated.

98 Chapter 4. Memory, Experience and Learning
Domain
Model

Episodic
Memory

Episodic
Model

Memorization

Eager
Learning

Lazy
Learning

Problem
Solving

Figure 4.3. Lazy and eager learning and the construction of domain modelsand episodic models.Lazy learning Past experience is accessed, selected and used in a problem-centered approach. The paradigmatic example is CBR, where for eachnew problem the system �lters out irrelevant past experiences, and focuseson the relevant part from which it extracts or generates new knowledgeto the extend needed for solving that particular new problem. We viewlazy learning as constructing an episodic model for the current problem|instead of constructing a generic model2.Lazy learning algorithms di�er from others in that they delay inference andthat they are problem-centered. Thus, they generally have low computationalcosts during training and high costs during testing. Another di�erence is thateager ML methods try to optimize on the average outcome for the future (unseen)problems based on the assumption that the past (seen) solved problems are arepresentative sample of the problems appearing in the task environment. LazyML methods may in principle incur on higher runtime costs|that should benonetheless practicable for the task environment|but can optimize performanceon a problem by problem basis.4.5 Case-Based ReasoningCase-based reasoning (CBR) forms a family of techniques and systems thatintegrate lazy learning with problem solving where domain-speci�c knowledgeand methods are used. We model CBR in Noos as case-based methods. Itis clear that case-based methods can be integrated in our framework becauseof the notion of memory: past problem solving episodes (episodic models) arestored in memory and can be recalled using the retrieval methods. These storedproblem solving episodes constitute the set of precedents (also called cases) for2The generic domain model is only needed for being used in constructing episodic modelswhile solving future problems.

4.5. Case-Based Reasoning 99

ranking
of precedents
using domain

knowledge
 criteria

Retrieve Reuse Revise Retain

Identify&search

CBR-method

SelectIdentify Search

recovery
of precedents

using similarity
criteria

determine
relevant
features

construct
a solution for

the new
problem

evaluate
solution

and repair
failures

memorize
new solved

case

Figure 4.4. Task/method decomposition of Case-based reasoning methods.case-based methods. Generally speaking, case-based methods are decomposedinto four subtasks [Aamodt and Plaza, 1994]: retrieve, reuse, revise, andretain (see Figure 4.4). Since there are several possible methods usable in eachsubtask, several CBR techniques can be integrated in this way. Next we willdescribe the goal of each CBR subtask indicating how can be achieved usingNoos methods:� Retrieve: the retrieve subtask requires a method that recovers previoussolved cases, from the episodic memory, \similar" to the current problem.A retrieval method is usually decomposed in three (sub)tasks: identify,search, and select tasks.{ Identify: the goal of the identify task is to determine a set ofrelevant aspects of the current problem using knowledge about theproblem to be solved. In Noos the identi�cation task is mainly per-formed using perspectives that determine relevance criteria.{ Search: the goal of the search task is to look for precedent cases inthe episodic memory using the relevance criteria constructed by anidenti�cation method. The search task is performed in Noos usingretrieval methods.{ Select: the goal of the select task is to rank the cases obtained inthe previous task according to domain criteria. The select task isperformed in Noos combining preference methods. The select taskcan choose the most relevant case or an ordered set (that can bepartial) of relevant cases.

100 Chapter 4. Memory, Experience and Learning� Reuse: given a set of relevant cases, the goal of the reuse task is to build asolution for the current problem adapting the solutions given in the cases.Usually in CBR the solution is built either taking the solution given in themost relevant precedent or constructing a new solution by adapting thesolution(s) of one or more precedents. An usual method for reuse sub-task is what Carbonell called derivational analogy [Carbonell, 1986] (seeSection 4.5.1). Another alternative is to use a set of transformation opera-tions. Transformation operations can be implemented providing methodsthat access to solutions used in precedents and constructs, using domainspeci�c knowledge, a new solution.� Revise: When the solution built by the reuse task is not correct, anopportunity for learning arises. The revise task usually involves two sub-tasks: the error detection task and the repair task. The error detectiontask is usually a task performed outside of the CBR system. A possibleway to implement it in Noos is asking to the user using the set of methodsprovided in Noos for interacting with users. The repair task is usuallyimplemented using causal knowledge for generating an explanation of whycertain parts of the solution case were not achieved. Repair methods canbe built in Noos as adapting methods in a similar way that methods con-structed for reuse task.� Retain: the goal of the retain task is to incorporate the new solved problemto the memory of cases in order to help the resolution of future problems.The incorporation of the new solved problem to the episodic memory isperformed automatically in Noos. All solved problems, in principle, may beavailable for the reasoning process in future problems. Noos programmingenvironment provides a way to explicitly determine which solved problemshave to be stored (see Appendix A).4.5.1 Derivational analogyDerivational analogy [Carbonell, 1986] is a powerful reasoning mechanism fortransferring knowledge from past episodic models to a new situation, based onpreserving decisions that apply in the new situation and replacing or modifyingthose that are no longer valid in the new situation.Derivational analogy is automatically supported by Noos using the reinstan-tiation mechanism (see Section 3.3.7). The reinstantiation mechanism is a meta-level mechanism that provides a way of automatically bind a method in the scopeof a new situation using re�nement.Given a current task F(D), and being MT the metalevel of D, derivationalanalogy in Noos consists of the following:1. Once a most relevant precedent case P is chosen by the retrieve task, themethod M used in the precedent to solve the same task F(P) the system isnow involved in is accessed.

4.5. Case-Based Reasoning 101(define Peters-car(complaint does-not-start)(battery-voltage low-voltage)(gas-level-in-tank full)((diagnosis (define (Causal-Explanation)((cause (define (Identity?)(item1 low-voltage)(item2 (>> battery-voltage)))))(effect low-battery-malfunction))))((empty-level? (define (Identity?)(item1 empty)(item2 (>> gas-level-in-tank))))))(define Carols-car(complaint does-not-start)(battery-voltage high-voltage)(gas-gauge-reading empty)((diagnosis (define (Causal-Explanation)(cause (>> empty-level?))(effect no-gas-malfunction))))((empty-level? (define (Identity?)(item1 empty)(item2 (>> gas-gauge-reading))))))Figure 4.5. Two precedents from the episodic memory of solved diagnosedcars.2. The method is re-instantiated to the current problem|i.e. method refer-ences are mapped from the past case P to the current case D and bound inthe scope of D.3. The new method is used to solve the current task F(D).Let us introduce a short example of a metalevel method calledbasic-analogy, a case-based method for learning methods that succeeded inachieving a given problem task in past precedents. The basic-analogymethodis decomposed in two subtasks, retrieve and reuse, as follows:(define (sequence basic-analogy)((retrieve (define (retrieve-by-task)(task-name (>> task-name of (current-task)))))(reuse (>> method of (task (>> task-name of (current-task)) of(>> precedents)))))The goal of the retrieve task is to search into the episodic memory theset of precedent cases that solved the same task the system is involved (thattask is accessed using the current-task reective operator). Given a set of

102 Chapter 4. Memory, Experience and Learningprecedents, the reuse subtask takes the methods applied in that precedents forsolving the current task. The Noos inference engine assures that all of them willbe re-instantiated successively to the current problem until one of them successin achieving the task.Note that the basic-analogy method is an introspective method that usesthe self-model of Noos for determining the task at hand and accesses to episodicmodel components, such as tasks and methods used in solving those tasks.The basic-analogy method can be used in the example of diagnosis of carmalfunctions we have already used in Chapter 3. Since the episodic memory ofeach problem task contains a causal explanation between its complaint and thediagnosis known for that case, an analogical method can retrieve those causalexplanations and apply them to a new problem to check which causal explanationalso holds in the new problem. For instance, we can de�ne a new problemKarls-car where their features, and speci�cally the diagnosis feature, can beachieved including the basic-analogy method in the default metalevel of themetalevel of karls-car as follows:(define Karls-car(complaint does-not-start)(battery-voltage high-voltage)(gas-level-in-tank empty))(define (Default (default meta of Karls-car))basic-analogy)The basic-analogy method retrieves from episodic memory the casesPeters-car and Carols-car (see Figure 4.5) and then takes the methods, fromtheir episodic models, applied in that precedents for solving the diagnosis task.Next, one of them is selected and re-instantiated to the current Karls-car prob-lem. Let us suppose that the system select the method applied in Peters-carproblem. The method retrieved from Peters-car fails since that causal expla-nation does not hold in karls-car (the battery-voltage is not low). Next,the system selects the method applied in Carols-car problem.This method engages in turn the empty-level? task. Since there is nomethod de�ned in Karls-car for that task, basic-analogy method is now ap-plied in empty-level? task for searching methods for empty-level? task on theepisodic memory. Peters-car and Carols-car cases also hold methods for thattask and they are retrieved (see Figure 4.5). These methods are reinstantiated inturn and only the method de�ned in Peters-car can be successfully applied toKarls-car. Then, the method retrieved from Carols-car for diagnosis taskis resumed and is �nally successful, yielding the no-gas-malfunction result.4.6 Inductive learningThe goal of an inductive method is to construct the general knowledge neededby a given problem solving method. Induction performs a generalization from

4.6. Inductive learning 103a set of problem solving episodes (usually called `examples' or `instances'). Ingeneral, the ML community de�nes induction as a process that constructs, froma set of positive examples and a set of negative examples, a general descriptionthat \generalizes" (in some sense that may vary3) the positive examples|anddoes not generalize the negative examples. Induction is also modeled in Noos bymethods.An example of the use of an inductive method is the generation of a classdescription for a category or concept from a set of examples. The acquiredknowledge will be used by an identi�cation method deciding whether or not newexamples pertain to a certain category.In general, inductive methods can be characterized as search methods thatfollow certain biases : constraints over the hypothesis space e�ectively searchedand strategies for searching certain subspaces before others. These bias of MLmethods are similar to assumptions for problem solving methods, e.g. a MLinductive method can be exhaustive (or complete|if it assures it will �nd ageneralization if it exists) or not exhaustive. However this comparison is left forfuture work.In our framework feature terms o�er a representation formalism that is asubset of �rst order logic. Inductive learning with feature terms is a relationallearning [Quinlan, 1990]. Systems that also perform relational learning are ILPsystems [Muggleton and De Raedt, 1994]|that uses horn clauses.Inductive methods currently developed in Noos are based on the antiuni-�cation and the subsumption operations of Noos [Plaza, 1995]. Subsumptionprovides a well de�ned and natural way for de�ning generalization relationships:a feature term is more general than another feature term 0 whenever that subsumes 0. The antiuni�cation of two feature terms gives that which iscommon to both (yielding the notion of generalization) and all that is commonto both (the most speci�c generalization).Formally, the antiuni�cation of a set of feature terms yields a greatest lowerbound with respect to subsumption ordering.De�nition 4.1 (Antiuni�cation)Given a set of feature terms fd1; d2; : : : ; dng their antiuni�cation is another fea-ture term D such that:1. feature terms fd1; d2; : : : ; dng are subsumed by D, and2. there is no feature term D0 such that subsumes fd1; d2; : : : ; dng and sub-sumes D.Inductive methods are designed in Noos using antiuni�cation and speci�cbiases. For instance, using relevance measures of attributes we can estab-lish a bias for the generation of disjunctive descriptions of concepts. Sev-eral inductive methods based on Noos have been designed, implemented and3Specially in ILP (induction of logic programs) several di�erent semantics have beenproposed for the notions of generalization and subsumption (see [Muggleton, 1992] and[Lavra�c and D�zeroski, 1994] for a detailed discussion).

104 Chapter 4. Memory, Experience and Learning

structure1

C-link
α β

C-link

β

α

U-lin
k

L-link

L-link

structure2 structure3

C-link
α β

β

α

U-lin
k

L-link

L-link

U
-l

in
k

C-link
α p

β

p

U-lin
k

L-link

L-link

antiunification

C-link
α α

C-link

β

β

U-lin
k

L-link
L-link

Figure 4.6. Induction example.tested by Eva Armengol [Armengol, 1997] at the IIIA, and are also described in[Plaza et al., 1996b] and in [Armengol and Plaza, 1997]. In Chapter 6 the useof inductive methods in applications developed in Noos is also presented.Let us present here a short example of antiuni�cation. Suppose we have a setof examples of chemical structures that are instances of a same chemical concept.Structures are represented as sets of particles of two types (alpha particles andbeta particles) connected among them with three di�erent kinds of features:U-link, C-link, and L-link. For instance, a structure called structure1 isdescribed as follows:(define (alpha :id structure1)(C-link (define (beta)(U-link (define (beta)(L-link (>> L-link C-link))))(L-link (define (alpha)(U-link (>> U-link C-link)))))))Taking the set of three structures given in Figure 4.6, their antiuni�cation isanother structure such that the sort of two particles is generalized (� and � aresubsorts of the general particle sort p) and only features common in all examplesare preserved.For the moment Noos inductive methods work only on descriptions and noton methods. What is yet future work is learning of programs (methods) fromexamples (as in inductive logic programming), although analytical learning ofmethods has been integrated in Noos as shown in the next section.4.7 Analytical learningThe goal of analytical learning techniques (or EBL-like learning) is to construct,from a domain theory and a rei�cation of the problem solving process of an

4.7. Analytical learning 105example solved using the domain theory, a new domain theory that obeys cer-tain restrictions. Analytical learning techniques are also modeled in Noos bymethods.Speci�cally, analytical learning is modeled in Noos by methods that given atraining example whose problem task T(E) has been solved by a problem solv-ing method M and given an operationality criterion, construct a new problemsolving method Mop for solving task T obeying the operationality criterion. Theoperationality criterion describes a sub-language of the domain model. An op-erational method will be a method requiring only the knowledge de�ned by thissub-language.This learning approach needs to inspect the episodic model built while solvingthe training example. In Noos the task/method decomposition instantiated inthe construction of the episodic model for solving a problem task constitutes theexplanation (or trace) of the solution. Analytical learning methods in Noos aremetalevel methods that given an episodic model for a task T(E) solved by a PSMM (1) inspect the methods that succeeded in each subtask of the task/methoddecomposition tree of M, and (2) construct a new PSM for task T according toan operational criterion.We have developed plec, an EBL-like learning method that constructs a newoperational problem solving method for a speci�c problem task from a trainingexample and according to a speci�c operational criterion. The operational crite-rion of plec is that the constructed method refers only to features with constantvalues in the training example (e.g. those present in Obj-1 in example below).The result of plec is the construction of a new method such that it will bedirectly applicable to the problem and skip intermediate inferences.plec is a built-in method with two required features: task-name, for speci-fying the name of the task; and source, for specifying a training example.For instance, let us consider a PSM that determines whether or not an objectis an example of the cup concept de�ned as follows:(define (conjunction Is-a-cup?)(source (define (object)))(item1 (>> stable? source))((item2 (define (conjunction)(item1 (>> liftable? source))(item2 (>> open-vessel? source))))))and let us have the following background knowledge about \cup-like" objects:(define (object)(stable? (>> flat? bottom))((liftable? (define (conjunction)(item1 (>> graspable?))(item2 (>> light?)))))(graspable? (>> handle?))(open-vessel? (>> upward-pointing? concavity)))Then, a training instance Obj1 can be de�ned using the Is-a-cup? method infeature cup? as follows:

106 Chapter 4. Memory, Experience and Learning(define (object Obj1)(owner Fred)(light? true)(color red)(handle? true)(bottom (define (part)(flat? true)(size small)))(concavity (define (part)(upward-pointing? true)))((cup? (define (Is-a-cup?)(source (>>))))))The resolution of the cup?(Obj1) problem task by the Is-a-cup? methodengages in turn other (sub)tasks for determining when a given object is stable?,liftable?, and open-vessel? (see in Figure 4.7 the task/method decompo-sition hold in the episodic model of the cup?(Obj1) problem task). Using theepisodic model built after a speci�c problem is solved, plec constructs a newoperational method for determining when an object is an example of a cup.Speci�cally, posing the following query-expression to Noos:(noos-eval (define (PLEC)(source Obj1)(task-name 'cup?)))The result yielded by plec is the following operational method, directly appli-cable to the problem and skipping intermediate inferences, for the cup? task:(define (conjunction Op-Is-a-cup?)(source (define (object)))((item1 (define (conjunction)(item1 (>> flat? bottom source))(item2 (>> handle? source)))))((item2 (define (conjunction)(item1 (>> light? source))(item2 (>> upward-pointing? concavity source))))))Notice that this new operational method built by plec has four path refer-ences to features flat?, handle?, light?, and upward-pointing? that haveconstant values in Obj1.4.8 SummaryThis chapter presented the components of the episodic knowledge that consti-tute the episodic memory of Noos. Episodic knowledge in Noos is organizedin episodic models. Each episodic model holds the rei�cation of the inferenceprocess engaged in Noos in solving a speci�c problem task. An episodic model isrepresented as the set of tasks, methods, preferences, and problem data involvedin solving that problem task.

4.8.Summary
107Figure 4.7. A browser of the Task/method decomposition for the cup? task of Obj1.

108 Chapter 4. Memory, Experience and LearningAll the components of an episodic model are accessible and inspectable.We described in this chapter three di�erent access mechanisms for inspectingepisodic models of the episodic memory of Noos: access by path, that providesan access to the episodic memory combining reective operations and path ref-erences; retrieval methods, that provide a content-based access to the episodicmemory; and perspectives, a mechanism to describe declarative biases for caseretrieval in structured representations of cases.Since knowledge in Noos is represented in a structured way, retrieval meth-ods have to deal with structured representations. Retrieval methods allow toretrieve previous relevant episodes from the episodic memory using relevance cri-teria. Relevance criteria are determined by speci�c domain knowledge about theimportance of di�erent features or by requirements of problem solving methods.Retrieval methods are based on the notion of feature terms as partial descriptionsand the notion of subsumption among feature termsOur approach is based on the observation that, in complex tasks, the identi-�cation of the relevant aspects for retrieval in a given situation may involve theuse of knowledge intensive-methods. This identi�cation process requires dynam-ical decisions about the relevant aspects of a problem and involves introspection.Perspectives provide Noos with a mechanism for specifying declarative biases.Declarative biases provide a clear and exible way to express retrieval patterns.We also presented the role of learning and its integration into the Noos lan-guage modeled as introspective methods that can be decomposed of three mainsubtasks: Introspection, Construction, and Revision.Finally, we described how three di�erent symbolic learning approaches canbe integrated to Noos:� Inductive learning methods are developed in Noos as search methods (thatfollow certain biases) over the space of feature terms. Inductive learningmethods are based on the feature term subsumption and antiuni�cationoperations of Noos. Subsumption provides a generalization relationshipover feature terms. The antiuni�cation of a set of feature terms buildsa new feature term that is a greatest lower bound with respect to thesubsumption ordering. Diverse strategies can be developed for constructinginductive learning methods that follow di�erent searching biases.� Case-based reasoning methods are developed in Noos as problem solvingmethods with lazy learning capabilities that search for previously solvedproblems in the Noos episodic memory. CBR methods are based on theretrieval and subsumption operations of Noos.Structured representations of cases o�er the capability of treating subpartsof cases as full-edged cases. That is to say, a new problem can be solvedusing subparts of multiple cases retrieved from the episodic memory.On the other hand, structured representations of cases increase the com-plexity of retrieval mechanisms. Noos provides elements|such as content-based retrieval and perspectives|for supporting the retrieval on thesecomplex representations of cases.

4.8. Summary 109Furthermore, derivational analogy is automatically supported by the Noosreinstantiation mechanism.� Analytical learning methods are developed in Noos as methods that given atraining example whose problem task has been solved by a problem solvingmethod M and given an operationality criterion, construct a new problemsolving method Mop for solving that task and obeying the operationalitycriterion. Analytical learning methods are based on the Noos introspec-tive capabilities for inspecting the episodic model built while solving thetraining example.Learning with feature terms is a relational learning. Systems that also per-form relational learning are ILP systems [Muggleton and De Raedt, 1994]|thatuse horn clauses.Learning in Noos can be performed either on descriptions or on methods.The di�erent learning methods incorporated to Noos perform di�erent kinds oflearning: inductive learning methods have been used for learning on descriptionsand not for learning on methods. CBR methods have been used for reusing andadapting both|descriptions and methods. Finally, analytical learning methodshas been used for acquiring new methods.In Chapter 6 we will show how several learning methods have been developedand integrated to di�erent applications built in Noos.

Chapter 5Noos FormalizationThe goal of this Chapter is to present a formal description of the Noos repre-sentation language. We will present the Noos formal syntax based on featureterms, its semantics, and the formal model of the Noos inference process.Our approach to formalize Noos syntax and semantics is re-lated to the research based on �N calculus [Dami, 1994], -terms[A��t-Kaci and Podelski, 1993] [Carpenter, 1992] [Backofen and Smolka, 1995],and extensible records [Cardelli and Mitchell, 1994] that propose formalisms tomodel object-oriented programming constructs.As we have stated in Chapter 3 the Noos representation language is basedon feature terms formalism. The intuition behind a feature term is that ofproviding a way to construct terms embodying partial information and amenableto extension. The proposal of feature terms is that these two properties can beachieved by building terms with parameters identi�ed by name (regardless oforder or position) and with no �xed number of parameters.More formally, while �rst order terms can be described by trees with animplicit ordering, feature terms can be seen as a generalization of them and canbe described by labeled graphs where nodes are labeled with sorts and edges arelabeled with named parameters (called features).The �N calculus formalism is an extension of �-calculus that introducesnamed parameters as arguments of lambda abstractions. In �N, a lambda ab-straction can have multiple arguments which can be bound separately and in anyorder. �N provides a clear way to model extensible and recursive records, andalso o�ers a clear mapping among functions and records. We use �N calculus toprovide a syntax for Noos feature terms. Moreover, �N calculus capabilities formodeling extensible knowledge are used for modeling the re�nemement mecha-nism of Noos. �N calculus lexical scoping is used for modeling path referencesand path equality.The -term formalism o�ers an alternative approach to model relationaland object-oriented programming. [A��t-Kaci and Podelski, 1993] presents a se-mantical interpretation for -terms that allows three equivalent representations:terms, clauses, and graphs. -term calculus is based on the notions of uni�cation111

112 Chapter 5. Noos Formalizationand subsumption. We adopt a related approach to the semantical interpreta-tion of -terms in order to provide a semantical interpretation of Noos featureterms. Following the -term formalism, feature terms are interpreted as partialdescriptions. This semantical interpretation of feature terms brings an orderingrelation among them. We call this ordering relation subsumption. The intuitivemeaning of subsumption is that of informational ordering. We say that a featureterm subsumes another feature term 0 (noted v 0) when all informationin is also contained in 0.Last elements of the Noos language are the metalevel relation among featureterms, reection, and the inference process involved in solving a speci�c problemtask. �N calculus and -terms are not the best suited formalisms for modelingthe Noos inference process. We formally describe the global inference processin our system using Descriptive Dynamic Logic [Sierra et al., 1996]. DescriptiveDynamic Logic (DDL) is a propositional dynamic logic (PDL) [Harel, 1984] thatprovides a general framework for describing and comparing reective knowledgesystems. DDL models knowledge systems as a set of units with initial local the-ories written in possibly di�erent languages. Each unit is also usually allowed tohave its own intra-unit deductive system. Moreover, the whole knowledge sys-tem is equipped with an additional set of deductive rules, called bridge rules, tocontrol the information ow among the di�erent units of the knowledge system.Thus, the DDL approach is very useful to model reective systems based onthe use of several units containing local theories (or meta-theories acting upontheories) that inuence and/or modify each other.Moreover, two speci�c elements of Noos have to be de�ned formally:preferences and perspectives. We presented in Section 3.4 a declarativemechanism for decision making about sets of alternatives we call preferences.Reasoning with preferences is modeled by partially ordered sets with a set ofoperations for constructing new preferences and combining them.Perspectives, explained in Section 4.3, are a mechanism to describe declar-ative biases for retrieval in the Noos episodic memory. Using feature terms,perspectives are formalized as second order feature terms that denote sets ofterms.The structure of this Chapter is as follows: Section 5.1 contains a brief intro-duction to �N calculus. Sections 5.2 to 5.9 present the syntax and semantics offeature terms. Section 5.10 describe the formal basis for reasoning with prefer-ences in Noos. Section 5.11 presents the formal principles on which perspectivesare based. Section 5.12 contains a brief introduction to DDL. Section 5.13 de-scribes the inference in Noos using the DDL formalism. Finally, Section 5.14summarizes our approach to formalize the Noos representation language.5.1 Basic notions of �N calculusThe lambda calculus with Names (�N calculus) is an extended �-calculus de-veloped by Laurent Dami [Dami, 1994] that introduces named parameters asarguments of lambda abstractions. �N uses Bruijn indices [de Bruijn, 1972] as

5.1. Basic notions of �N calculus 113the basis for the introduction of named parameters. In �N, a lambda abstrac-tion can have multiple arguments which can be bound separately and in anyorder. This feature brings what Dami calls the extensibility property : exist-ing software fragments can be augmented with new features while remainingcompatible with the original contexts in which they were used. The extensibil-ity property of �N calculus allows to model records, extensible datatypes, andobject-oriented programming constructs. Moreover, named parameters are in-troduced in �N without a�ecting the semantics of functions because names canbe totally dismissed in the Bruijn calculus. Thereby, �N formalism preservesresults of the standard lambda calculus such as conuence.The �N calculus is constructed from a set V of variables (or labels). Usingthis set of variables and extending the �-calculus syntax, the set of terms �N ofthe �N calculus is built from the following basic syntax1:a ::= �(x1 : : : xn)a j a(x! b) j a! j vv ::= x j nvFigure 5.1. Basic �N syntax.In �N notation, a lambda abstraction �(x1 : : : xn)a can have severalarguments|identi�ed by a named parameters and declared as a list of vari-ables x1 : : : xn inside two parentheses|which can be bound separately and inany order. As a consequence of this approach, the functional application oper-ation of �-calculus has to be split in two di�erent operations, called bind andclose operations. An expression of the form a(x ! b) (called bind expression)binds b to the parameter x in the abstraction a. An expression of the form a!(called close expression) ends a sequence of bind expressions.In the context of �N, the usual �-reduction rule of lambda calculus is splitin two lambda-bind and lambda-close rules:(�(x1 : : : xn)a)(xi ! b) �!� �(x1 : : : xn)a[xi := b] (5.1)(�(x1 : : : xn)a)! �!� a[x� := err] (5.2)where x� denotes any unbound variable. The err constant is represented in �N asa lambda abstraction that always reduces to itself|and that in object-orientedsystems corresponds to the \message not understood" error.The main di�erence with �-calculus is that the lambda-bind rule (5.1) per-forms a substitution without removing the outermost abstraction level (the `�'),while the lambda-close rule (5.2) removes the `�' and substitutes any remainingunbound variables by err (the constant representing run-time errors).Lexical scoping of variables is treated in the following way: a local declaration(a variable declared as a parameter of a lambda abstraction) takes precedence1Notation remark: we will use x to denote variables; and a; b; c; : : : to denote terms.

114 Chapter 5. Noos Formalizationover the declaration of a variable with the same name in outer lambda abstrac-tions. In case the same name is used at di�erent lambda abstraction levels,�N provides a scope escape operator `n' (backslash). The use of n occurrencesof this escape operator preceding a variable x speci�es that the correspondingdeclaration of x will be looked for ignoring the inner n abstraction levels. Forinstance, consider the expression�(xy)�(xz)x + y + z + nxand assume that in�x addition is part of the language; then x and nx are refer-ences to di�erent variables. The �rst x reference is bound to the x parameterde�ned in the inner lambda abstraction �(xz), while nx reference is bound tothe x parameter de�ned in the outer lambda abstraction �(xy).Recursion is de�ned in �N by means of a �xed point operation. Speci�cally, a�xed point operation over a functional �(x)a corresponds to the usual combina-tor Y in the pure lambda calculus. An expression with recursion over parameterx is written �(x)a and the translation T into de basic syntax is the following:T(�(x)a) = Yx(x! �(x)a)Yx = �(x)(�(x)nx(x ! x(x ! x)!)!)(x ! (�(x)nx(x ! x(x! x)!)!))Extensible recordsFrom the basic �N syntax, extensible records can be introduced in the �N formal-ism [Dami, 1994]. Extensible records are written with braces; �elds are writtenwith the := symbol; �eld selection uses the common dot notation. The syntax ofthese constructs and the translation T into the basic syntax is the following:T(fx1 := a1 : : : xn := ang) = �(sel)sel(x1 ! a1) : : : (xn ! an)T(a:x) = a(sel! �(x):x)!!A record is translated to a function which takes a selector sel and binds all�elds to corresponding named parameters in that selector. A selector for �eld xis just an identity function on that name, so a �eld selection operation simplybinds the appropriate selector to the sel argument of the record. Notice that the�eld selection operation is de�ned in basic syntax as an identity function plustwo close operations. The �rst close operation is used to close the bindings ofrecord a, while the second close operation binds the appropriate selector to thesel argument of the record.Next, a record concatenation operation `�' can be introduced providing anincremental mechanism of record construction. The a � b expression yields anew record from a concatenation of two records a and b in a right-preferentialorder. That is to say, �elds declared in b override the �elds also declared in a.The correspondent translation into the basic �N syntax is the following:T(a� b) = a(sel! T(b))!

5.2. Noos formal syntax 115For instance, the following expression:fx := 1 y := 2g � fx := 4 z := 5gyields a new record with three �elds x; y; z containing the values 4,2,5 respec-tively:fx := 4 y := 2 z := 5gRecursion can be used to de�ne recursive records. The syntax of records isenlarged for recursive records as follows:�(rec)fx1 := a1 : : : xn := angFor instance we can de�ne the following recursive recordSeasons = �(rec) f spring := fname := \spring" next := rec:summergsummer := fname := \summer" next := rec:autumngautumn := fname := \autumn" next := rec:wintergwinter := fname := \winter" next := rec:springggand, for example, Seasons:summer:next:next:name yields \winter".When we de�ne recursive records at di�erent levels, the `n' scope escapeoperator allows references to these di�erent levels. Using the `n' notation, wecan compact the syntax for describing recursive record structures by removingthe explicit reference to rec. For instance, the previous Seasons recursive recordcan be described using compact notation as follows:Seasons = f spring := fname := \spring" next := nnsummergsummer := fname := \summer" next := nnautumngautumn := fname := \autumn" next := nnwintergwinter := fname := \winter" next := nnspringggGiven the basic notions about �N calculus, next we describe the translationrules from Noos descriptions to �N calculus.5.2 Noos formal syntaxIn this section we will use the �N formalization of extensible records as a basis toformalize Noos descriptions as feature terms. The Noos re�nement mechanismwill be formalized by means of the record concatenation operation.There are two types of feature terms in Noos: constant feature terms andevaluable feature terms. Feature terms are de�ned on a signature � composedby a set of sort names, a set of method names, and a set of feature names.Formally,

116 Chapter 5. Noos FormalizationDe�nition 5.1 (Noos Signature)We de�ne the Noos signature as the tuple � = fhS;�si; hM;�mi;Fg such that:� S is a �nite set of sort symbols including ?s and �s is an order relationsuch that ?s is the smallest element.� M is a �nite set of method symbols including ?m and �m is an orderrelation such that ?m is the smallest element.� F is a �nite set of feature symbols;Given the Noos signature �, we de�ne the set � of feature terms as a unionof constant feature terms and evaluable feature terms:� = �c [�mIn the next section we will introduce Noos formal syntax for constant featureterm step to step. The complete description of the formal syntax of Noos isgiven in Figure 5.2. Evaluable feature terms will be introduced in Section 5.9.5.2.1 Constant feature termsGiven the signature �, we de�ne constant feature terms as follows2:De�nition 5.2 A constant feature term is an expression of the form: ::= [s f1 := fv1 � � � fn := fvn]where s is a sort in S, f1; � � � ; fn are pairwise distinct features in F , n � 0, andeach fvi is a feature value.A feature term is translated to �N syntax, using the translation rule T, as arecursive record as follows:T(s [f1 := fv1 � � � fn := fvn]) = ff1 := fv1 � � � fn := fvngThe sort of a feature term (noted �() = s) is a component not representedin the �N notation and will be explained in Section 5.2.2.Feature valuesThere are three kinds of feature values:fv ::= j 1 � � � nj refwhere the �rst one is a term; the second is a set of terms; and the third is apath reference (described in Section 5.2.3). We have shown in Section 3.2.4 thatfeature values can also be described using closed methods, and in Section 5.9 wewill extend the syntax for incorporating closed methods.2We use two equivalent notations for feature terms: the �rst one is as an horizontal enu-metarion of features (the notation used here). The second notation is the vertical enumerationof features (useful to represent feature terms inside feature terms).

5.2. Noos formal syntax 1175.2.2 The sort of a feature termFrom the set � of feature terms we de�ne a sorting function � : � ! S [M,assigning either a sort symbol or a method symbol to each feature term. Aconstant feature term has assigned a sort symbol. An evaluable feature termhas assigned a method symbol. Speci�cally, given a feature term de�ned asfollows, = [s f1 := fv1 � � � fn := fvn]the sorting function � for is de�ned as �() = s. We will say that the sort of is s.5.2.3 Path referencesA path reference has two components: a head and a path. A head is constructedusing the backslash notation (for instance, `nn') A path is constructed as aconcatenation of �eld selections using the dot notation (for instance `f1:f2').The formal syntax for path references is the following:ref ::= head j head pathhead ::= nhead j npath ::= f:path j fAn example of a path reference is nnf1:f2. A path reference may have onlya sequence of backslashes (for instance nn). Path references are used to providea formalization of Noos relative path references and a precise interpretation ofthe rules of scope and re�nement (see Section 5.3).Reference over setsSince feature values can be sets, path references have to deal with feature valuesthat are sets. The �eld selection operator over sets is de�ned as the pointwiseextension of the �N �eld selection operator. The result of a �eld selection overa set is a new set. Therefore, we de�ne the �eld selection operator over sets asfollows: S:f � [s2S s:f5.2.4 Re�nementFeature terms are always constructed in the Noos language by re�nement. Thede�nition of a feature term by re�nement of another feature term 0 will beformalized as a record concatenation as follows: ::= 0 � [s f1 := fv1 � � � fn := fvn]

118 Chapter 5. Noos Formalization ::= [s f1 := fv � � � fn := fv] ; feature termj � [s f1 := fv � � � fn := fv] ; re�nementfv ::= ; recordj 1 � � � n ; set of recordsj ref ; referenceref ::= head j head path ; path referencehead ::= nhead j n ; outer referencepath ::= f:path j f ; pathFigure 5.2. Formal syntax of Noos using the �N approach.�(desc) = �d(desc; 0)�d((define (const) = �(const)� [const �f (fdesc1; `)fdesc1 � � � fdescn); `) � � ��f (fdescn; `)]�f ((f desc); `) = f := �d(desc; `+ 1)�f ((f desc1 � � �descn); `) = f := �d(desc1; `+ 1) � � ��d(descn; `+ 1)�f ((f ref); `) = f := �r(ref; `+ 1)�r ((>> f1 � � � fn); `) = n � � � n| {z }` fn: � � � :f1Figure 5.3. Translation rules from Noos syntax to �N syntax.where is de�ned with sort s (�() = s) and by extending 0 with f1; : : : ; fnfeatures.Note that concatenation operation � is a right-preferential order operation.This means that all the de�nitions of features f1; : : : ; fn also de�ned in 0 over-ride the de�nitions given in 0.5.3 Translation rules from Noos to �NWe have introduced the formal syntax of Noos that is fully described in Fig-ure 5.2. Now, we will introduce the translation rules � from Noos syntax toNoos formal syntax. There are three kinds of translation rules: translation rulesfor descriptions �d, translation rules for features �f , and translation rules forreferences �r. We will explain these translation rules incrementally. A completedescription of translation rules is given in Figure 5.3.

5.3. Translation rules from Noos to �N 119The Noos language allows the use of names for describing feature values. InNoos formal syntax feature terms have no name. Therefore, before translating agiven description D to the formal syntax, we have to perform a preprocess whereeach name reference is substituted by either the description that it denotes or bya path reference to another feature with the same name reference as feature value.The speci�cation of the same name reference as the feature value of di�erentfeatures requires the satisfaction of the path equality property (see Section 3.2.3).In order to preserve this path equality only one occurrence of a name referencewill be translated to the description that it denotes. In the rest of occurrencesthe name reference will be translated to a path reference to the �rst occurrence.Translation rules have two parameters. The �rst parameter contains a de-scription (the text to be translated). The second parameter holds and integerindicating the depth level of the description according to the root description.The depth level will be used to translate path references.A Noos description desc is translated with a description rule starting withdepth level zero. �(desc) = �d(desc; 0)Since a feature term is built by re�nement of another feature term, a descrip-tion is translated as the concatenation of two records applying the following rule:�d((define (const) = �(const)� [const �f (fdesc1; `)fdesc1 � � �fdescn); `) � � ��f (fdescn; `)]where the feature term is built concatenating (re�ning) the feature term denotedby const (�(const)) with a record composed by the features de�ned in the bodyof the description translated using translation rules for features �f .Given the description fdesc of a feature as the pair (f v), translation rules�f de�ne a �eld of a record with name f and with value that obtained from thetranslation of v to formal syntax increasing the depth level by one. There is onetranslation rule �f for each kind of feature value:�f ((f desc); `) = f := �d(desc; `+ 1)�f ((f desc1 � � � descn); `) = f := �d(desc1; `+ 1) � � ��d(descn; `+ 1)�f ((f ref); `) = f := �r(ref; `+ 1)New (sub)descriptions are translated using �d rules. Path references aretranslated using the following �r rule:�r ((>> f1 � � � fn); `) = n � � � n| {z }` fn: � � � :f1Note that a Noos path reference such that (>> father mother) is built asa concatenation of �eld selections in reverse order, i.e. mother.father, andcontaining in the head as many backslashes as the depth level.Absolute path references are not allowed in the formal language. This meansthat they have to be translated to relative path references. There are two waysof translating absolute path references:

120 Chapter 5. Noos Formalization(define (Person :id Paul)(spouse Mary)(child (>> child of Mary)))(define (Person :id Mary)(spouse Paul)(child (define (person)(age 3))))(define (Person)(spouse (define (person)(spouse (>>))(child (define (person)(age 3)))))(child (>> child of (>> spouse))))Figure 5.4. Substitution of name references. Given two descriptions ofPaul and Mary, Paul description is translated to the last description wherethe name references to Mary are substituted by its description in featurespouse and by a relative path reference in the absolute path reference(>> child of Mary) in feature child.� A �rst case is when an absolute path reference (>> F of D) has a namereference D that it occurs as a feature value in another feature F'. In thiscase, the name reference D can be substituted to a relative path to the F'feature. Figure 5.4 shows an example of a substitution of an absolute pathreference.� A second is when an absolute path reference (>> F of D) has a namereference D that it does not occur as a feature value in another feature.In this situation, this name reference cannot be substituted by a pathreference. We can extend the description with a new feature that has thename reference as value. Consequently, the name reference in the absolutepath can now be substituted to a relative path to the new feature.We are now ready to show, using an example, how a description in Noossyntax is translated to Noos formal syntax. Taking as example the previousdescription of Peter:(define (person id: Peter)(age 28)(drives (define (Car)(owner (>>))(complaint does-not-start)(gas-level-in-tank full))))

5.3. Translation rules from Noos to �N 121where Peter is de�ned by re�nement of Person and the car that Peter is drivingis de�ned by re�nement of Car. Moreover, Car is de�ned as follows(define Car(owner (define (person)))(gas-level-in-tank level)(gas-gauge-reading (>> gas-level-in-tank)))and person, does-not-start, full, and level are de�ned with no features.Then, the feature term that represents Peter description is built from thetwo following concatenations3:
�(Peter) = �(Person)�26666664Personage := 28drives :=�(Car)�2664Carowner := nncomplaint := does-not-startgas-level-in-tank := full 377537777775Next, applying the operation of record concatenation to the description of thatcar we will obtain gas-gauge-reading? and empty-level? feature descriptionsfrom the feature term car. Thus, after the concatenation operation, and sinceperson is a feature term without features, we will obtain the following term:�(Peter) = 2666666664Personage := 28drives :=266664Carowner := nncomplaint := does-not-startgas-level-in-tank := fullgas-gauge-reading := ngas-level-in-tank377775

3777777775Notice that the reference in the owner feature is to Peter (two back-slashes), and the reference in feature gas-gauge-reading is to the featuregas-level-in-tank in car (one backslash).An additional notion that will be used later is the notion of subterm of afeature term:De�nition 5.3 (Subterm)A feature term i is a subterm of a feature term if i can be accessed from following a path f1: � � � :fn.For instance, in the previous example of Peter feature term the car featureterm is a subterm accessible from Peter by the path constituted by the drivesfeature.3We write the sort assigned to a feature term in the head of the term in sans serif font, likePerson or Car in the example.

122 Chapter 5. Noos Formalization5.4 Using variables in feature termsFeture terms can also be represented using variables instead of path refer-ences. Variables, as described in [A��t-Kaci and Podelski, 1993], provide a no-tation based on tags. The motivation of using this new representation for fea-ture terms is that variables provide a more adequate notation for de�ning thesemantical interpretation of feature terms.A feature term can be represented using variables by means of assigninga di�erent variable to each feature term and replacing path references by thevariable assigned to the referenced feature term. Speci�cally, a feature term,using variables, is de�ned as follows:De�nition 5.4 Given the signature � and a set V of variables, we de�ne afeature term as an expression of the form: ::= X : s [f1 := 	1 � � � fn := 	n]where X is a variable in V; s is a sort in S; f1; � � � ; fn are pairwise distinctfeatures in F ; n � 0; each 	i is a set of feature terms and variables; and atmost one occurrence of each variable is sorted.We call the variable X in the above feature term the root of (notedRoot() = X), and say that X is sorted by the sort s (noted �(X) = s).The set of variables and the set of features occurring in are noted respectivelyas V and F .The use of variables instead of path references in feature values implies thatpath equality will be represented as equalities of variables.For instance, the Peter feature term can be described using variables insteadof path references as follows:Peter = X : Person266664age := X1 : 28drives :=X2 : Car2664owner := Xcomplaing := X21 : does-not-startgas-level-in-tank := X22 : fullgas-gauge-reading := X22 3775377775Note that the Peter term has a path equality between featuresgas-level-in-tank and gas-gauge-reading and another path equality be-tween the owner feature and Peter (null path).5.5 SemanticsWe have presented the formal syntax for Noos and the set of translation rulesfrom descriptions syntax to feature terms syntax. Next, we will describe thesemantical interpretation of feature terms. We have argued our approach to

5.5. Semantics 123construct terms embodying partial information. In fact, we have said that fea-ture terms are interpreted as partial descriptions.The semantics of Noos is constructed to capture this notion of feature termsas partial descriptions denoting sets of individuals in a given domain. First ofall, we de�ne an interpretation I over the Noos signature �.De�nition 5.5 (Interpretation)We de�ne an interpretation I over the signature � = fhS;�si; hM;�mi;Fg asthe structure I = fS; F;M gsuch that:1. S is a non-empty set, called domain of I (or, universe);2. F is a set of total unary functions f : S 7! P(S);3. M is a set of total functions m : P(S)� � � � � P(S) 7! P(S);4. 8s 2 S : [[s]]I � S and 8s; s0 2 S : s � s0 , [[s]]I � [[s0]]I ;5. 8f 2 F : [[f]]I � F;6. 8m 2M : [[m]]I � M ;7. [[?s]]I = S; and8. [[?m]]I = M .From interpretation I, constant feature terms are interpreted as partial de-scriptions denoting sets of elements in the domain Sunder all possible valuationsof its variables V in S.Speci�cally, the interpretation of a feature term under a speci�c valuation �of its variables is given as:De�nition 5.6 (Denotation of a constant feature term under a valuation �)Given the interpretation I, the denotation [[]]I;� of a constant feature term ,under the valuation � : V ! S is de�ned by:Let = X : s[f1 := 	1 � � � fn := 	n][[]]I;� = � f�(X)g when �(X) 2 [[s]]I and 8i=1;:::;n : [[fi]]I(�(X)) 2 [[i]]I;�; otherwiseexpressing that the element assigned to the root variable X (noted �(X)) has tobelong to the set of elements denoted by its sort [[s]]I , and for each feature fi thevalue of the function that denotes [[fi]]I(�(X)) has to belong to the denotationof the corresponding subterm [[i]]I;� under the same valuation.Since feature values 	i are sets of feature terms, we have to de�ne the inter-pretation [[1 � � � m]]I;� of sets of feature terms. Sets are interpreted on P(S)as follows:

124 Chapter 5. Noos FormalizationDe�nition 5.7 (Semantics of sets)Given a set 	 = 1 : : : m, the denotation [[]]I;� under the valuation � is givenby:[[1 : : : m]]I;� = fw 2 P(S) j 9e1 2 w � � � 9em 2 w(8i=1;:::;m : ei 2 [[i]]I;� and8i;j=1;:::;m : i 6= j) ei 6= ej)gwhere for all i = X 2 V then [[X]]I;� = f�(X)gFinally, constant feature terms are interpreted as the union of domain ele-ments denoted by all the valuations of I (noted Val(I)), as follows:De�nition 5.8 (Semantics of a constant feature term)Given the interpretation I, the denotation [[]]I of a constant feature term isgiven by: [[]]I = [�2Val(I)[[]]I;�Using this semantical interpretation of feature terms, it is legitimate to es-tablish an order relation between terms. Given two terms and 0, we will beinterested in determine when [[]]I � [[0]]I . In other words, we want to deter-mine when a feature term is more speci�c (contains more information) thananother feature term 0.5.6 Term subsumptionWe have just seen that the semantical interpretation of feature terms allows tode�ne an ordering relation between feature descriptions. We call this orderingrelation subsumption. The intuitive meaning of subsumption is that of informa-tional ordering. We say that a feature term subsumes another feature term 0 (noted v 0) when all information in is also contained in 0. Formally,De�nition 5.9 (Subsumption)Given two feature terms and 0, subsumes 0, v 0, if there is a totalmapping function � : V ! V 0 such that :1. �(Root()) = Root(0),and 8x 2 V 2. �(x) � �(�(x)),3. for every fi 2 F such that x:fi := 	i is de�ned, then �(x):fi := 	0i is alsode�ned, and(a) 8 k 2 	i either 9 0k 2 	0i such that �(Root(k)) = Root(0k)or 9x0 2 	0i such that �(Root(k)) = x0,

5.6. Term subsumption 125(b) 8x 2 	i either 9 0k 2 	0i such that �(x) = Root(0k)or 9x0 2 	0i such that �(x) = x0,(c) 8 k; 0k 2 	i (k 6= 0k) �(Root(k)) 6= �(Root(0k))),(d) 8x; 0k 2 	i (�(x) 6= �(Root(0k))),(e) 8x; y 2 	i (x 6= y) �(x) 6= �(y)).For instance, given the following two feature terms:T1 = X : Person2664name :=X1 : Name��rst := X11 : Michaellast := X12 : Smith �lives-at :=X2 : Address�city := X21 : NYCity�father :=X3 : Person�name :=X31 : Name�last := X12��3775T2 = Y : Person�name :=Y1 : Name�last := Y11 : family-name�father :=Y2 : Person�name :=Y21 : Name�last := Y11���where Smith is a kind of family-name (family-name � Smith), we have thatT2 v T1 since T1 contains all the information given in T2 (including the factthat the last name of a person is a family-name and is the same that the lastname of her father). Moreover, T1 specializes T2 specifying a partial descriptionof her home address, specifying her �rst name and a speci�c family-name.Notice that de�nition 5.9 of subsumption provides a concrete interpretationof the subsumption between two sets: given two sets of feature terms 	;	0 wesay that 	 v 	0 if the terms provided in 	 are extended and re�ned in 	0;formally,De�nition 5.10 (Set subsumption)Given two sets of feature terms 	;	0 we say that 	 v 	0 if for each 2 	,there is a di�erent 0 2 	0 such that v 0.From the de�nition of subsumption of two feature terms and 0, it can beeasily proved that each subterm i of also subsumes its corresponent 0i of 0.Formally,Lemma 5.1 Given two feature terms and 0, such that subsumes 0, if :f1 � � � fn is de�ned then: :f1 � � � fn v 0:f1 � � � fnProof: Let � a total mapping function satisfying the subsumption require-ments for v 0 and :f1 � � � fn = 	; since V	 � V we can take the samemapping function restricted to V	 to prove the result.

126 Chapter 5. Noos FormalizationThe subsumption operation captures the notion of informational ordering. Infact, using subsumption we want to capture the notion of semantical inclusion.When we say that a feature term subsumes another feature term 0 (v 0),we understand that the denotation of ([[]]I) includes the denotation of 0([[0]]I). Formally,Theorem 5.1 v 0 =) [[]]I � [[0]]IProof:Since v 0 we have that exists a mapping function � : V ! V 0 satisfyingthe subsumption requirements.Then, for all non empty valuation �0 of 0 we can construct a non emptyvaluation � of as follows: �(x) = �0(�(x))having that for all x 2 V , and using De�nition 5.9.2, �(x) � �(�(x)).Then, De�nition 5.5.4 assures that [[�(x)]]I;� � [[�(�(x))]]I;�; In particular,we have that �(Root()) 2 [[�(Root())]]I;�.Next,1. if has not features we have that [[]]I � [[0]]I and the theorem is proved.2. otherwise for all f such that :f := 	 is de�ned, using De�nition 5.9.3,we have that 0:f := 	0 is also de�ned.Finally, since Lemma 5.1 assures that 	 v 	0, we have by induction thatfI(�(Root())) 2 [[]]I;� and the the theorem is also proved.From the notion of subsumption we de�ne following additional notion ofequivalence:De�nition 5.11 (Equivalence)Given two feature terms and 0, we say that they are syntactic variants if andonly if v 0 and 0 v .The intuition about the notion of equivalence is that two feature terms areequivalent when contain the same information.5.7 Representing feature terms as labeledgraphsFeature terms can have an equivalent form of representation as la-beled directed graphs [Carpenter, 1992] [A��t-Kaci and Podelski, 1993][Backofen and Smolka, 1995]. This representation is interesting because ito�ers an intuitive and visual syntax.

5.7. Representing feature terms as labeled graphs 127A feature term can be represented as a labeled directed graph that has, foreach variable X : s, a node q labeled with sort s, and having an arc from q toanother node q0 labeled by f , written q f�! q0, for each feature f de�ned in qwith feature value q0.For instance, the graph representation of the feature term of Peter fromSection 5.4 is the following:
Peter = person

age

car

does-not-start

28

complaint

drives

full

gas-level-in-tank

owner

gas-gauge-readingFormally, given the signature �, having a set of sort symbols S and a set offeature symbols F we de�ne a feature term as a labeled graph as follows:De�nition 5.12 (Labeled graph representation of feature terms)A feature term is a tuple =< Q; �q; �; � > where:� Q : is a �nite set of nodes rooted at �q� �q : is the root node� � : Q ! S : a total node typing function.� � : F �Q! 2Q : is a partial feature value functionwhere � determines the labels of nodes, and �(f; q) = q0 implies that there is anarc labeled by f from q to another node q0.In this labeled graph representation path references are de�ned as follows:De�nition 5.13 (Paths)A path � is composed of a sequence of features. Let � the empty path, we extend� to paths as follows:� �(�; q) = q� �(f�; q) = �(�; �(f; q))That is to say, if � = f1 : : : fn then �(�; q0) = qn if q0 f1�! q1 f2�! q2 � � � fn�! qn.The set f�(�; q)j� is a pathg is the set of nodes reachable from q by some path.The root of a feature term is a node �q that satis�es Q = f�(�; �q)j� is a pathg,i.e. the node from which all nodes in Q are reachable.We say that there is a path equality when two di�erent paths �1 and �2 leadfrom a same node q to the same node q0 (�(�1; q) = q0 = �(�2; q)).Labeled graph representation of feature terms has been the basis for develop-ing graphical browsers for the Noos development environment (see Appendix A).

128 Chapter 5. Noos Formalization5.8 Understanding feature terms as clausesFeature terms can be also understood as conjunctions of clauses[A��t-Kaci and Podelski, 1993]. This clausal representation is useful andmore usual for understanding learning methods. There are two kinds of atomicclauses: sort clauses (X : s) and feature clauses (f(X;Y)). A given feature canbe represented also as a conjunction of these two kind of atomic clauses.Thus, we associate each feature term = X : s[f1 := 1 � � � fn := n] with aclause �() as follows:�() = X : s ^ f1(X;Y1) ^ �(1) ^ � � � ^ fn(X;Yn) ^ �(n)where Y1; � � � ; Yn are roots of 1; � � � ; n respectively.For instance, the Peter's feature term can be represented as a clause in thefollowing way:X : Person ^ age(X; 28)^ drives(X;Y) ^ Y : Car ^ owner(Y;X)^ complaint(Y; Z) ^ Z : does-not-start^ gas-level-in-tank(Y;W) ^ W : full^ gas-gauge-reading(Y;W)5.9 Evaluable feature termsNoos methods are de�ned as evaluable feature terms. Evaluable feature terms,like constant feature terms, are formalized as recursive records.Given the signature � = fhS;�si; hM;�mi;Fg we de�ne evaluable featureterms as follows:De�nition 5.14 An evaluable feature term is an expression of the form: ::= [m f1 := 	1 � � � fn := 	n]where m is a sort in M, f1; � � � ; fn are pairwise distinct features in F , n � 0,and each 	i is a set of feature terms and variables.Notice that we said the feature value can be (any) feature term; in particularit can be a constant feature term or an evaluable feature term.Below, we will describe how Noos built-in methods are formalizated as evalu-able feature terms. Then, we will show how new methods are built by re�nement.Built-in methodsThe set of Noos built-in methods is formalized as a collection of prede�nedevaluable feature terms. A built-in method is modelled as a recursive extensiblerecord linked to a lambda abstraction. We call \required" features of the evalu-able feature term those feature labels de�ned as the parameters of the lambda

5.9. Evaluable feature terms 129abstraction. For instance, the subtract built-in method is de�ned as a recursiveextensible record linked to the subtractdef lambda abstraction with two namedparameters (called amount and minus) that encodes the usual subtraction oper-ation of two numbers:subtract = [subtract amount := number minus := number]subtractdef = �(amount minus) amount�minusDe�ning methodsNew methods can be de�ned by re�nement of built-in methods (or other meth-ods). Re�nement is modelled as record concatenation. For instance, we cande�ne the method minus-one by re�nement of the subtract method as thefollowing record concatenation:minus-one = subtract� [subtract minus := 1]Then, we can de�ne another method by re�nement of minus-one, bindingthe remaining amount parameter with a speci�c value obtaining a closed methodamenable to be evaluated.The complete list of built-in methods with their parameter names is describedin Appendix D.5.9.1 De�ning methods in featuresClosed methods can be evaluated to infer feature values. The evaluation of amethod m in a feature f to infer its feature value is indicated with the `#' tokenusing the following syntax: f := m#The syntax m# is translated to basic �N syntax using the translation rule T asfollows: T(m#) = m(sel! �def)!!where �def is the lambda abstraction linked to the built-in method b such thatb �m m. That is to say, the evaluation of a method m is translated as thefunctional application of �def taking as values for the arguments of �def thefeature values of the features with same name de�ned in m.For instance, the following expression[subtract amount := 7 minus := 3]#is translated by the translation rule T to �N basic syntax as follows�(sel)sel(amount! 7)(minus! 3)(�(amount minus) amount�minus)!!that is reduced after a �rst step to�(amount minus) amount�minus (amount! 7)(minus! 3)!and eventually yields 4 as result.

130 Chapter 5. Noos FormalizationWe say that a feature is reduced when the method incorporated to infer itsfeature value has been evaluated.Using the notion of reduced features we introduce the notion of normal formfor feature terms:De�nition 5.15 (Normal feature term)A feature term is in normal form when all their features (F) are reduced(there is no feature with a method not yet evaluated).5.9.2 Semantics of evaluable feature termsEvaluable feature terms are interpreted, under an interpretation I = hS; F;M i,as partial descriptions denoting sets of functions in M . Analogously to constantfeature terms, the interpretation of an evaluable feature term is given as theunion of functions denoted by all the valuations of I (Val(I)) as follows:De�nition 5.16 (Semantics of an evaluable feature term)Given the interpretation I, the denotation [[]]I of an evaluable feature term is given by: [[]]I = [�2Val(I)[[]]I;�and for each valuation � in Val(I) its interpretation is given as follows:De�nition 5.17 (Denotation of an evaluable feature term under a valuation �)Given the interpretation I, the denotation [[]]I;� of an evaluable feature term , under a valuation � : V ! M [S is inductively given by:Let = X : m[f1 := 1 � � � fn := n][[]]I;� = � f�(X)g when �(X) 2 [[m]]I and 8i=1;:::;n : [[fi]]I(�(X)) 2 [[i]]I;�; otherwise5.10 PreferencesPreferences are modeled by partially ordered sets (also called posets). A partiallyordered set is a pair hS;�i composed by a set of elements S and a binary relation� de�ned on S. We demand � to satisfy the reexive and transitive properties.In fact, we are asking hS;�i to form a pre-order. Formally,De�nition 5.18 (Preference)A preference is a pair hS;�i, where S is a set of alternatives and � is a binaryrelation over S such that it is reexive (a � a) and transitive (a � c when a � band b � c). When a � b we say that a is preferred to b, and when both a � band b � a we say that a and b are equally preferred4.4We will note (ai; aj) the pairs such that ai � aj .

5.10. Preferences 131As we have shown in Section 3.4, there are two kinds of basic operationsover preferences in Noos: preference methods, that take a set of source elementsand an ordering criterion and build a preference (a partially ordered set), andpreference combination methods, that take two preferences and a combinationcriterion and build a new preference.Before to present the formalization of the preference operations we will in-troduce some preliminary de�nitions. Then, we will present preference methods,preference combination methods, and �nally we show a set of properties aboutthese methods useful for implementing applications in Noos.Preliminary de�nitionsDe�nition 5.19 (Restriction)Given a preference de�ned by the pair hA;�i and the set B � A, we de�ne thepreference restricted to the set B ashA;�ijB = hB;� \fB �BgiDe�nition 5.20 (Extension)Given a preference de�ned by the pair hA;�i and A � B, we de�ne the preferenceextension to B as hA;�iextB = hB;� [fb� bgiDe�nition 5.21 (Transitive Closure)Given a binary relation � de�ned on a set A we de�ne its transitive closure �as � = f(ai; aj)j9a1; : : : ; an 2 A : ai � a1 � � � �an � ajg5.10.1 Preference methodsA preference method takes a set of source elements and an ordering crite-rion and builds a preference. There are several built-in preference methodsin Noos. Each preference method implements a di�erent ordering criteria. Thecomplete list of preference methods is provided in Appendix D. Below, wewill describe two preference methods as example: increasing-preference andsubsumption-preference.The increasing-preference method can be described as a method thatgiven a feature name f and a set of source elements S builds a preference hS;�isuch that: �= f(si; sj)jsi:f := vi; sj :f := vj ; vi > vjgThe subsumption-preference method can be described as a method thatgiven a set of source elements S builds a preference hS;�i such that:�= f(si; sj)jsi v sj ; sj 6v sig

132 Chapter 5. Noos Formalization5.10.2 Preference combination methodsA preference combination method takes one or two preferences (created eitherby preference methods or by other preference combination methods) and buildsa new preference combining them in a speci�c manner. There are �ve preferencecombination methods in Noos: inversion, T-intersection, C-intersection,T-union, and C-union.The inversionmethod takes a preference hA;�i and builds a new preferenceon the same set A inverting the order relations as follows:De�nition 5.22 (Inversion)Given a preference de�ned by the pair hA;�i we de�ne its preference inversionas hA;�i�1 = hA; f(ai; aj)j(aj ; ai) 2�giThe other four preference combination methods take two preferences hA;�1iand hB;�2i and build a new preference hS;�i combining them. Since sets A andB can be di�erent, we will de�ne �rst two basic combination operations frompreferences on the same set of elements. Then, we will explain how combinationmethods extend these two operations for combining preferences on di�erent sets.We de�ne two basic operations for combining two preferences hA;�1i andhA;�2i, de�ned on the same set A. The �rst one builds a new preference man-taining only the pairs a � b common to both �1 and �2 as follows5:De�nition 5.23 (Basic intersection)Given two preferences hA;�1i; hA;�2i de�ned on the same set A we de�ne theirintersection preference ashA;�1i \ hA;�2i = hA;�1 \ �2iThe second basic operation builds a new preference gathering all the pairsa � b from either �1 or �2, and performing a transitive closure as follows6:De�nition 5.24 (Basic Transitive Union)Given two preferences hA;�1i; hA;�2i de�ned on the same set A we de�ne theirtransitive union preference ashA;�1i] hA;�2i = hA;�1 [�2iGiven two preferences P1 = hA;�1i and P2 = hB;�2i de�ned on two di�er-ent sets A and B, we have considered two alternatives in order to be able to usethe basic combination operations. The �rst one is by extending the preferencesP1 and P2 to the union set A [B. The second alternative considered is torestrict the preferences P1 and P2 to the intersection set A \ B (assumingthat A \ B 6= ;). Since we have two alternatives and two basic combinationoperations, we have developed four combination methods.5Note that the intersection of two pre-orders is also a pre-order.6Transitive closure is performed because of the union of two orders is not always an order.

5.10. Preferences 133The T-intersection method combines two preferences by restricting pref-erences to the elements of the intersection and, then, performing the transitiveunion operation on the resulting preferences as follows:De�nition 5.25 (T-Intersection)Given two preferences hA;�1i, hB;�2i we de�ne their t-intersection \ usingde�nitions (5.19) and (5.24) ashA;�1i\hB;�2i = hA;�1ijA\B] hB;�2ijA\BThe C-intersection method combines two preferences by restricting pref-erences to the elements of the intersection and, then, performing the intersectionoperation on the resulting preferences as follows:De�nition 5.26 (C-Intersection)Given two preferences hA;�1i, hB;�2i we de�ne their c-intersection \ usingde�nitions (5.19) and (5.23) ashA;�1i\hB;�2i = hA;�1ijA\B \ hB;�2ijA\BThe T-union method combines two preferences by extending preferences tothe elements of the union and, then, performing the transitive union operationon the resulting preferences as follows:De�nition 5.27 (T-union)Given two preferences hA;�1i, hB;�2i we de�ne their t-union] using de�ni-tions (5.20) and (5.24) ashA;�1i]hB;�2i = hA;�1iExtA[B] hB;�2iExtA[BFinally, the C-union method combines two preferences by extending prefer-ences to the elements of the union and, then, performing the intersection oper-ation on the resulting preferences as follows:De�nition 5.28 (C-union)Given two preferences hA;�1i, hB;�2i we de�ne their c-union] using de�ni-tions (5.20) and (5.23) ashA;�1i]hB;�2i = hA;�1iExtA[B \ hB;�2iExtA[B5.10.3 Higher order preferencesHigher order preferences are preference combination methods that build pref-erences from preferences over preferences. In the current version of Noos wehave developed one higher order preference method called H-union (hierarchicalunion). H-union takes two preferences P1 and P2, and constructs a new pref-erence preserving all the set of order relations speci�ed in P1 and adding thesubset of order relations from P2 that are not in conict with P1.

134 Chapter 5. Noos FormalizationIn a similar way to combination methods, we will �rst de�ne a basic hierar-chical union operation from preferences on the same set of elements. Then, wewill explain how H-union extends the basic operation for combining preferenceson di�erent sets.De�nition 5.29 (Basic Hierarchical Union)Given two preferences hA;�1i; hA;�2i de�ned on the same set A we de�ne theirbasic hierarchical union preference ashA;�1i � hA;�2i = hA;�1 [f(ai; aj) 2�2 j(aj ; ai) =2 �1 [�2giThe H-union method combines two preferences by extending preferences tothe union of sets as follows:De�nition 5.30 (Hierarchical Union)Given two preferences hA;�1i, hB;�2i we de�ne their hierarchical union usingde�nitions (5.20) and (5.29) ashA;�1i � hB;�2i = hA;�1iExtA[B � hB;�2iExtA[B5.10.4 PropertiesBelow we present some properties of preference combination operations that areuseful in the development of Noos applications. Particularly, we are interestedin properties regarding combinations of preferences|such as commutativity andassociativity.1. The inversion of the inversion of a given preference A yields itself:(A�1)�1 = A2. Inversion is a morphism with respect to the intersection (A \ B)�1 =A�1 \ B�1 and to the union (A] B)�1 = A�1] B�1.3.] and \ operations are associative and commutative.4. Given two ordersA;B (being reexive, transitive, and antisymmetric) theirtransitive union A] B is not always an order (may be only a pre-order).5. Given two orders hA;�1i; hA;�2i, hA;�1i � hA;�2i has �ner granularitythan hA;�1i.6. Given two orders hA;�1i; hA;�2i such that hA;�1i has �ner granularitythan hA;�2i,hA;�1i � hA;�2i = hA;�2i � hA;�1i = hA;�1i7. Hierarchical union method (5.29) is not commutative.Example: given A = fa; bghA; a � bi � hA; b � ai = hA; a � bi 6= hA; b � ai = hA; b � ai � hA; a � bi

5.11. Perspectives 1358. Hierarchical union method (5.29) is not associative.Example: given A = fa; b; cg(hA; a � bi � hA; b � ci) � hA; c � ai = hA; a � b � ci � hA; c � ai == hA; a � b � ci 6= hA; a � bi == hA; a � bi � hA; b � c � ai = hA; a � bi � (hA; b � ci � hA; c � ai)5.11 PerspectivesPerspectives is a mechanism to describe declarative biases for retrieval in theNoos episodic memory. Given a source problem situation expressed by a featureterm, and given a syntactic pattern, the perspective method constructs a newfeature term that is a partial description of the problem describing the relevantaspects of the problem situation. Perspectives are constructed in Noos using theperspective built-in method (see Section 4.3).Formally, the signature of syntactic patterns �ext is an extension of thesignature � of feature terms that incorporates a set of feature variables L asfollows: �ext = fhS;�si; hM;�mi;F [LgUsing this extension of the signature �ext and a set V of variables, we de�nesyntactic patterns as second order feature terms as follows:De�nition 5.31 A syntactic pattern ! is an expression of the form:! ::= X : s [f1 :=
1 � � � fn :=
n]where X is a variable in V, s is a sort in S, f1; � � � ; fn are pairwise features inF [L, n � 0, and each
i is a set of syntactic patterns and variables.Given the previous de�nition of syntactic patterns, we de�ne formally a per-spective P as follows,De�nition 5.32 (Perspective)Given a problem case C and a declarative bias de�ned by means of a syntacticpattern S, a S-perspective of C is de�ned as a feature term P such that there isa total bijective function � : VP ! VS, a total mapping function � : VS ! VC ,and an instantiation function � : FS ! FP satisfying:1. �(f) = f 8f 2 F2. �(Root(P)) = Root(S), �(Root(S)) = Root(C)and 8x 2 VP3. Sort(�(x)) � Sort(�(�(x))),4. Sort(x) = Sort(�(�(x))),5. for every fi 2 F such that x:fi := 	i is de�ned, we have that

136 Chapter 5. Noos Formalization(a) 9fj 2 FS : �(fj) = fi,(b) both �(x):fj := 	0i and �(�(x)):fi := 	00i have to be de�ned,and 8 k 2 	i :(c) 9 0k 2 	0i such that �(Root(k)) = Root(0k)(d) 9 00k 2 	00i such that �(�(Root(k))) = Root(00k).Remark that a perspective P is constructed as a partial description of aproblem case C. In other words, this implies that P v C. Another importantremark is that several perspectives satisfying the de�nition can be obtained. Thisimplies that the implementation of the perspective mechanism has to providea way to obtain all of them (for instance, by providing a backtracking basedmechanism).5.12 Descriptive Dynamic LogicThe goal of Descriptive Dynamic Logic (DDL) [Sierra et al., 1996] is to providea common logical framework to describe and identify the formal characteristicsof Multi-Language Architectures (MLA). In this way, DDL can be understoodas a formal basis to describe and compare di�erent multi-language architectures.In general, a MLA allows to build knowledge systems as a set of units withinitial local theories written in possibly di�erent languages. Each unit is alsousually allowed to have its own intra-unit deductive system. Moreover, the wholeknowledge system is equipped with an additional set of deductive rules, calledbridge rules, to control the information ow among the di�erent units of theknowledge system. Thus, the DDL approach is very useful to model reectivesystems based on the use of several units containing local theories (or meta-theories acting upon theories) that inuence and/or modify each other.In order to model knowledge systems using DDL two levels have to be consid-ered: At the �rst level theMulti-Language Logical Architecture (MLA) is de�nedas the concept representing the most general characteristics of target systems.In this level languages, inference rules, and allowed topologies are described.At the second level a particular knowledge system is represented. Particulartheories are built determining a subset of unit identi�ers, the languages andinference rules used in each unit, the set of interconnections among units andtheir corresponding bridge rules, concrete signatures, and �nally initial theoriesfor each unit.For a full description of DDL see [Sierra et al., 1996]. Here we only presentsome basic de�nitions of DDL in order to make easier understanding the Noosformalization.De�nition 5.33 A Multi-Language Logical Architecture is a 4-tuple MLA =(L;�; S; T), where:1. L = fLjgj2J is a set of logical languages,

5.12. Descriptive Dynamic Logic 1372. � = f�j1;j2gj1;j22J is a set of (instances of) inference rules between pairsof languages, i.e. �j1;j2 � 2Lj1 � Lj2 . In particular, when j1 = j2, �j1 ;j2denotes a set of inference rules of the corresponding language; otherwise itdenotes a set of bridge rules between two di�erent languages,3. S is a �nite set of symbols for unit identi�ers,4. T is the set of possible topologies. Each topology is determined by a set ofdirected links between symbols from S, i.e. T is a subset of 2S�S.Notice that DDL is focused only on �nite languages as it is the usual case inknowledge systems where some limitative rules are imposed on the generationof formulas.De�nition 5.34 A Multi-Language Knowledge System MKS for a given MLAis a 7-tuple MKS = (MLA;U;ML;M�; B;M�;M
) where:1. MLA is a Multi-Language Logical Architecture,2. U is a set of unit identi�ers, i.e. U is a subset of S,3. ML assigns a language to each unit identi�er, i.e. ML �! L,4. M� assigns a set of inference rules to each unit identi�er, i.eM� : U �! [i2J 2�ii such that if ML(u) = Lj , for some j 2 J , thenM�(u) � �jj ,5. B is a mapping that assigns a set of directed bridge rules to pairs of dif-ferent units, i.e. B : U � U �! [i;j2J 2�ij , in accordance with the allowedtopologies in MLA,6. M� assigns a concrete signature to each unit identi�er,7. M
 assigns a set of formulas (initial local theory) to each unit identi�er,i.e. M
 : U �! [i2J 2Li such that if ML(u) = Lk then M
(u) � Lk.De�nition 5.35 The set �0 of atomic formulas of DDL will be de�ned as theset of \quoted" formulas from the languages L in MLA, indexed by the unitidenti�ers in U . �0 = fu : d'eju 2 U;' 2ML(u)gDe�nition 5.36 The set �0 of atomic programs of DDL is de�ned as the unionof intra-unit inference rules �Intra0 and the inter-unit rules �Inter0�0 = [k2K�Intra0kk ! [0@ [k 6=j2K �Inter0kl 1A

138 Chapter 5. Noos Formalizationbeing �Intra0kk the set of all quoted deduction steps allowed according the unitlanguage ML(uk) and the inference rules determined by M�(uk)and �Inter0kl the set of all quoted deduction steps allowed according the unitlanguages ML(uk) and ML(ul) and the inference rules determined byB(uk; ul).Given the set �0 of atomic formulas and the set �0 of atomic programs, theset � of compound formulas and the set � of compound programs is constructedfollowing the propositional dynamic logic composition rules de�ned as:1. true 2 �, false 2 �, �0 � �,2. if '; 2 � then :' 2 � and (' _) 2 �,3. if ' 2 � and � 2 � then h�i' 2 �, denoting the possibility that after theexecution of � the formula ' to be true.4. �0 � �,5. if �; � 2 � then the sequential concatenation (�;�) 2 �,6. if �; � 2 � then the indeterministic union (� [�) 2 �,7. if � 2 � then the self-iteration �� 2 �,8. if ' 2 � then '? 2 �, denoting the program that evaluates whether agiven formula ' is true.[�]' is the usual modal abbreviation for :h�i:'. Also ^, ! and $ areabbreviations with the standard meaning.De�nition 5.37 The DDL semantics, following the PDL semantics, is de�nedrelative to a structure M of the form M = (W; �; �), where W is a set of states,� a mapping � : �! 2W assigning to each formula ' the set of states in which' is true, and � a mapping � : �! 2W�W which assigns to each program a setof pairs (s; t) representing transitions between states.After introducing the basic concepts of DDL, we are ready to formalize themetalevel inference in Noos.5.13 Modeling Noos inference using DDLIn order to model Noos inference in DDL we have to de�ne the set of unit lan-guages, the set of inta-unit and inter-unit inference rules, the possible topologies,and �nally, the inference process as a set of compound programs;

5.13. Modeling Noos inference using DDL 1395.13.1 Noos unit languagesFormally, every feature term is represented as a DDL unit. Every unit has adi�erent identi�er. There are three kinds of unit languages: concept languages,method languages and metalevel languages. Concept languages pertain to unitsrepresenting concepts (called concept units). Method languages pertain to unitsrepresenting methods (called method units) and are an extension of conceptlanguages. Metalevel languages pertain to units representing metalevels (calledmetalevel units) and are also an extension of concept languages.Unit languages are built from the set of feature names F and the set of unitidenti�ers U . We note Um the subset of method unit identi�ers from U .Before presenting Noos unit languages we will de�ne a notational equivalencethat simpli�es their de�nition:De�nition 5.38 A feature value c is considered equivalent to the singleton setthat contains as element this feature value c.c � fcgGiven the de�nition above, we describe feature values and the set of inferencerules for query-methods directly working on sets.The language Lc of a concept unit c representing a feature term containsformulas describing the feature values pertaining to each feature of and formu-las describing the method pertaining to each feature of . Since we have shownin Section 3.3.6 that path references can be also viewed as query-methods, wewill represent all the path references as query-methods in order to simplify theDDL model of Noos. Speci�cally, the set of formulas �c of a given concept unitc is described as: f 2 F ; u 2 2U ;m 2 Um : f := u 2 �cf := m# 2 �cThe language L� of a metalevel unit � is a concept unit language extendedwith formulas describing the set of formulas about features contained in itsreferent unit. Thus, the set of formulas �� of a metalevel unit � contains, inaddition, formulas describing for each feature in the referent unit the methodand value (referent) pertaining to the feature as follows:f 2 F ;m 2 Um : method(f) := m 2 ��f 2 F ; u 2 2U : referent(f) := u 2 ��The languageLm of a method unitm contains a set of formulas �m describingfeature values and feature methods like concept units. Moreover, �m contains aset of formulas describing the result of the method evaluation. These formulasare described as follows:

140 Chapter 5. Noos Formalizationu 2 2U : result(m) := u 2 �mAs we have shown, query-methods are a special kind of methods that providemetalevel capabilities of reasoning about feature values. Query-methods are alsorepresented as DDL units. Their languages are method languages enriched withformulas containing the feature values of features in other units. Thus, the setof formulas �m of a given query-method unit m is enriched byf 2 F ; ci 2 U; u 2 2U : ci:f := u 2 �mAnother special kind of methods are eval-methods. Their languages aremethod languages enriched with formulas containing the evaluation results ofother methods. mi 2 Um; u 2 2U : result(mi) := u5.13.2 Inference rulesThe elementary inference inference steps in DDL are represented as a collectionof inference rules. There are two kinds of inference rules: intra-unit inferencerules for modeling the inference within a unit, and inter-unit inference rules formodeling the communication among the di�erent units. Only methods and meta-level units have intra-unit inference rules. Inter-unit inference rules may connecta unit with any other unit following the Noos topology (see Section 5.13.3).Intra-Unit Inference RulesOnly methods and metalevel units have intra-unit inference rules. Inferencerules in metalevel units select one method for a given feature f from a set ofalternative methods S; reection rules (represented as inter-unit rules) will addthis selected method to its referent unit. The inference rule for method selectionis the following: �selectf = f := Sm 2 Smethod(f) := mInference rules in methods code the built-in de�nition of the evaluation of themethod. There is one inference rule for each type of built-in method provided byNoos. We have only to translate the previously de�ned �N lambda abstractionsto the DDL syntax. For instance, the inference rule for a subtract method mpreviously de�ned assubtractdef = �(amount minus) amount�minusis translated to

5.13. Modeling Noos inference using DDL 141
�subsm = amount := c1minus := c2\c0 = c1 � c2"result(m) := c0where a new formula result(m) := c0 is added with the result of the di�erencebetween the feature values given in amount and minus.A more interesting inference rule is the inference rule for query-methods thatallows to reason about feature values of other units. The inference rule �ivm for aquery-method unit m is de�ned as

�ivm = feature := fdomain := fc1 � � � cngc1:f := s1� � �cn:f := snresult(m) := [siAnother important inference rule is the rule for eval-methods that allows toreason about method units. The inference rule �nem for an Eval-method unit mis de�ned as
�nem = methods := fm1 � � �mngresult(m1) := s1� � �result(mn) := snresult(m) := [siInter-Unit Inference RulesThere are four kinds of inter-unit inference rules: Rei�cation rules, Reectionrules, Reduction rules, and Translation rules. Rei�cation rules specify the rep-resentation that a metalevel unit has about its corresponding base-level unit.Reection rules specify the changes that a metalevel unit may perform uponits corresponding base-level unit. Reduction rules add to a unit the result ofthe evaluation of one of its methods. Finally, Translation rules specify howformulas may be transported from a unit to another one. The collection ofinter-unit inference rules are determined by the allowed topologies in Noos (seeSection 5.13.3).Rei�cation rules �upc� add to the metalevel unit � the set formulas about thefeature values known in the unit c�upc� = f := ureferent(f) := uReection rules �down�cf add to the base-level unit c a formula about the featuremethod selected by the metalevel unit �

142 Chapter 5. Noos Formalization�down�cf = method(f) := mf := #mReduction rules �redmcf add to a unit c the formula for a feature f with theresult of the evaluation of one method unit m.�redmcf = result(m) := uf := uTranslation rules �tquerycmf add from a unit c to a query-method unit m theformula for a feature f �tquerycmf = f := uc:f := uTranslation rules �tevalm1m2 add from a method unit m1 to a method unit m2 aformula with the evaluation result of m1�tevalm1m2 = result(m1) := uresult(m1) := u5.13.3 TopologyThe set of possible topologies in Noos is formed by three kinds of relations amongunits: reference relations, feature method relations and metalevel relations. Theset of reference relations of a unit c with other units c0 is determined by theset of formulas f := c0 contained in c. The set of feature method relations of aunit c with other method units m is determined by the set of formulas f := m#contained in c. Metalevel relations are determined by explicit meta relationsfrom Noos descriptions. Metalevel relations are exclusive relations: one unit canbe the metalevel of only another unit (called referent), one unit can only haveone metalevel unit, and cycles are forbidden. Note that a metalevel unit can bethe referent of another (meta)metalevel unit. Figure 5.5 shows an example of aspeci�c Noos topology.5.13.4 ProgramsInference in Noos is modelled by means of four kinds of programs: task pro-grams formalizing the inference of feature values, metalevel programs formaliz-ing the metalevel inference, query programs formalizing the inference performedby query methods, and eval programs formalizing the inference performed byeval-methods.The formalization of the Noos inference is presented without taking intoaccount preferences. Then, we will extend the formalization for incorporatingpreferences.

5.13. Modeling Noos inference using DDL 143
Umeta

U

Umeta'

U'

M

U''

reference relations

metalevel relations
method relationsFigure 5.5. An example of an allowed topology.Task programsEvery unit c has a set �Intrac of task programs �c:f for features f de�ned in c.Speci�cally, �Intrac = [f2F �c:fwhere �c:f is de�ned as follows�c:f = (��c:f [true?); [m2Um �(f := m#)?;�m; �redmcf�The task program �c:f for a feature f of unit c is de�ned as the sequentialconcatenation of three programs: (i) the metalevel inference program ��c:f ; (ii)the evaluation program �m of the methodm; and (iii) the inference rule �redmcf thatadds a new formula with the result of the method evaluation. The indeterministicunion ��c:f [true? expresses the possibility to skip the metalevel inference stepwhen there is a method de�ned in the unit c.Metalevel inference programsMetalevel inference ��c:f for a feature f of a unit c is de�ned as the followingsequential concatenation:��c:f = �upc ;��:f ; �selectf ; �down�cfThe metalevel inference program ��c:f starts with a rei�cation inference rule�upc , then engages the task program ��:f for a feature f at the metalevel unit �,

144 Chapter 5. Noos Formalizationselects one of the methods obtained in the previous step (�selectf), and reectsdown this selected method to the referent unit (�down�cf).Evaluation programsEvaluation of methods in Noos are also formalized as DDL programs having thefollowing scheme: �m = �m:f1 ; � � � ;�m:fn ; �mThe evaluation program �m of a method m is composed by the sequence oftask programs to infer the values for their required subtasks (f1; � � � ; fn) followedby the intra-unit inference rule of m that combines the values of subtasks into a�nal value. For instance, the evaluation program �subm of a subtraction methodm is the sequence of task programs to compute the operands and the intra-unitrule �subm that combines them.�subm = �m:amount;�m:minus; �submQuery-methodsQuery-methods have also their own evaluation programs. The evaluationprogram of a query-method is the rei�cation of inference in Noos. A query-method m involves the subtask feature (for obtaining a feature name f); thesubtask domain (for obtaining a unit or a set of units s); and the tasks ofinferring the feature value of feature f of all units in s. We use s as a shorthandof fc1 � � � cng.The �rst query-method is Infer-value method. The compound program �ivmfor an infer-value method is the following:�ivm = �m:feature;�m:domain; [s;f2Lm(Rivm; �ivm)whereRivm = ((feature := f) ^ (domain := fc1 � � � cng))?;�c1:f ; �tqueryc1mf ; � � � ;�cn:f ; �tquerycnmfThe evaluation program �ivm of an Infer-value method m �rst engages thecomputation of a feature name f (�m:feature), next computes a unit or set ofunits s (�m:domain), and �nally the task f is performed to all units in s (Rivm)and the results are combined by �ivm .The evaluation program �evm of an Exists-value method m determines if anysolution to a task f for a set of units in s exists, and returns a boolean valueaccordingly: �evm = ifh�ivmi? then �truem else �falsem

5.13. Modeling Noos inference using DDL 145where �truem and �falsem are just intra-unit inference rules assigning true and falserespectively.The evaluation program �kvm of a Known-value method m determines if thesolution to a task f for a set of units in s have already been computed, andreturns a boolean value accordingly:�kvm = �m:feature;�m:domain; [s;f2LmRkvmwhere Rkvm = ((feature := f) ^ (domain := fc1 � � � cng))?;if (�tquerymc1f ; � � � ; �tquerymcnf)? then �truem else �falsemNotice that the Rkvm program is composed only by translation rules. Thus,the evaluation of Known-value methods will yield true only when all featurevalues have been already inferred.Finally, evaluation program �avm of an All-values method m determines theset of all inferrable values to a task f for a set of units in s:�avm = �m:feature;�m:domain; [s;f2Lm(Ravm ; �avm)where Ravm = ((feature := f) ^ (domain := fc1 � � � cng))?;(�c1:f ; �tquerymc1f)c; � � � ; (�cn:f ; �tquerymcnf)cand where �c represents the closure of program �|that is, this program willlead to a state in which no di�erent state is reachable by another application ofprogram �. Speci�cally, a closure (�ci:f ; �tquerymcif)c produces all possible values oftask program �ci:f . Next �avm rule puts together all the values.Query methods deal with the methods of a speci�c task and determine whichof the four kinds of inference is engaged by that task. In order to deal with aspeci�c method unit, Noos uses four kinds of eval-methods.Eval-methodsThe evaluation program of an eval-method m involves the subtask methodsthat engages in the computation of the methods to be evaluated. Next, theevaluation programs of these methods are performed.The �rst eval-method is Noos-eval. The evaluation program �nem of a Noos-eval method m is the following:�nem = �m:methods; [s2Lm(Rnem ; �nem)where

146 Chapter 5. Noos FormalizationRnem = (methods := fm1 � � �mng)?;�m1 ; �nem1m; � � � ;�mn ; �nemnmThe evaluation program �nem of an eval-method m �rst engages the computa-tion of the methods to be evaluated (�m:methods), next performs the evaluationprograms of these methods (Rnem), and �nally the results are combined (�nem).The evaluation program of an Exists-eval method m checks whether anysolution to evaluation exists, and returns a boolean accordingly:�eem = ifh�nem i? then �truem else �falsemThe evaluation program of a Known-eval method m is analogous to theprevious evaluation program for determining that methods have already beenevaluated: �kem = �m:methods; [s2LmRkemwhereRkem = (methods := fm1 � � �mng)?; if (�nem1m; � � � ; �nemnm)? then �truem else �falsemFinally, the evaluation program of a All-eval method m infers all the possiblevalues: �aem = �m:methods; [s2Lm(Raem ; �aem)where Raem = (methods := fm1 � � �mng)?; (�m1 ; �nem1m)c; � � � ; (�mn ; �nemnm)cand �aem rule puts together all the values.Inference in Noos starts when the user poses a query to the system by meansof a query expression. There are two kinds of query expressions: path referencesand eval expressions. A path reference (>> f of d) will start the task program�d:f . An eval expression (noos-eval m) will start the eval program �m.5.13.5 Adding preferencesSeveral alternative solutions can be yielded in solving a problem task T, sinceseveral methods can be de�ned for solving a subtask of T. The DDL-based for-malism for modeling Noos inference presented in previous section yields a so-lution for a problem task T in an indeterministic way. Preferences are used inNoos for specifying a preference order on the set of alternative methods de�ned

5.14. Summary 147for solving a task. This preference order between methods implicitly de�ne apreference order on the values inferred by methods. Thus, preferences de�ne apreference order on solution values for a problem task T.Preferences can be added to the previous presented formalism as a postcon-dition constraining the results yielded for a problem task. Speci�cally, given aproblem task f(d) we can de�ne the task program ��d:f taking into account thepreference information as the following contatenation:��d:f = �d:f ; (Maximal Solution)?where �rst �d:f engages the indeterministic task program for inferring a solutionvalue; and Maximal Solution is a conjunction of DDL formulas that ensuresthat the solution is maximal with respect to preferences.The DDL expression for Maximal Solution is a conjunction of formulassatisfying the following de�nition:De�nition 5.39 (Maximal solution)Given the set of achieved subtasks t1; t2 � � � tn, that form the task decompositionof a problem task T , given the set of partial orders �1; � � � �n over the alternativemethods for these subtasks, and given the set of methods m1;m2 � � �mn engagedrespectively to these subtasks, a solution of T is maximal if there is no othercombination of methods m01 �1 m1, m02 �2 m2; � � �m0n �n mn (where at leastone m0i 6= mi) that achieves a solution for T .5.14 SummaryThis chapter presented the formal description of the Noos language. We pre-sented the Noos formal syntax based on feature terms, its semantics, and theformal model of the Noos inference process.We used �N calculus to provide a syntax for Noos feature terms. Moreover,�N calculus capabilities for modeling extensible knowledge are used for modelingthe re�nemement mechanism of Noos. �N calculus lexical scoping is used formodeling path references and path equality.We adopted a related approach to the semantical interpretation of -termsin order to provide a semantical interpretation of Noos feature terms. Followingthe -term formalism, feature terms are interpreted as partial descriptions. Thissemantical interpretation of feature terms brings an ordering relation amongthem. We call this ordering relation subsumption. -terms allows three equivalent representations: terms, clauses, and graphs.We presented a graph representation of feature terms. The graph representationis the basis for developing graphical browsers for the Noos development environ-ment (see Appendix A). We also presented the clausal representation. clausalrepresentation is useful for comparing Noos learning methods with other existinglearning methods.We follow the work on -terms for providing a formalism for Noos.Nevertheless, other formalisms such as description logics [Nebel, 1990] (also

148 Chapter 5. Noos Formalizationknown as terminological logics) are also close to -terms. Examples of lan-guages based on description logics are loom [MacGregor, 1991] and classic[Brachman et al., 1991].We used Descriptive Dynamic Logic to describe the inference process involvedin solving a speci�c problem task. The DDL model of Noos is de�ned by meansof a collection of units with three kinds of unit languages: concept languages,method languages and metalevel languages. Every feature term is represented asa DDL unit. The elementary inference inference steps in Noos are represented asa collection of inference rules. There are two kinds of inference rules: intra-unitinference rules for modeling the inference within a unit, and inter-unit inferencerules for modeling the communication among the di�erent units. Only methodsand metalevel units have intra-unit inference rules. Inter-unit inference rulesmay connect a unit with any other unit following the Noos topology. Then,combining the inference rules, inference in Noos is modeled by means of fourkinds of programs: task programs formalizing the inference of feature values,metalevel programs formalizing the metalevel inference, query programs formal-izing the inference performed by query methods, and eval programs formalizingthe inference performed by eval-methods.Finally, we de�ned formally two speci�c elements of Noos: preferences andperspectives. Preferences are a declarative mechanism for decision making aboutsets of alternatives. Reasoning with preferences is modeled by partially orderedsets with a set of operations for constructing new preferences and combiningthem.Perspectives are a mechanism to describe declarative biases for retrieval inthe Noos episodic memory. Using feature terms, perspectives are formalized assecond order feature terms that denote sets of terms.

Chapter 6ApplicationsThe purpose of this chapter is to provide a set of examples of how diverse appli-cations have been developed using Noos by several persons at the IIIA.All these applications are described in detail in other publications. The goalof this chapter is to describe their main characteristics. Following this purpose,and after a brief introduction of the task that the application solves, we willfocus on three aspects of the applications: how the domain knowledge requiredfor problem solving methods is modeled using Noos representation capabilities,which problem solving methods are developed to perform the task, and whichlearning methods are incorporated for solving the task.In this chapter we will present six applications developed using Noos:chroma, spin, sham, gymel, Saxex, and NoosWeb.chroma is a system for recommending a plan for the puri�cation of proteinsfrom tissues and cultures using chromatographic techniques developed by EvaArmengol [Armengol and Plaza, 1994] [Armengol, 1997].spin is a sponge identi�cation system for a class of marine sponge species(the family of Geodiidae) also developed by Eva Armengol [Armengol, 1997].sham is a tool to help a non expert musician to harmonize melodies usingbackground musical knowledge developed by Mart�� Cabr�e [Cabr�e, 1996].gymel is also a system for harmonization of melodies. Nevertheless, gymelharmonize melodies using a case-based reasoning approach. gymel has beendeveloped by Jordi Sabater [Sabater, 1997].Saxex is a case-based reasoning system for generating expressive perfor-mances of melodies based on examples of human performances that are rep-resented as structured cases. I have developed Saxex in the context of myM.Sc.Thesis in Computer Music [Arcos, 1996] [Arcos et al., 1997b].Finally, NoosWeb is a WWW interface to Noos applications supporting thesame interaction capabilities provided in the Noos window-based graphical inter-face developed for Apple computers. NoosWeb is not exactly an application suchas other applications presented in this chapter. We have included NoosWeb forpresenting the accessibility facilities of Noos and for describing the set of smallimprovements performed in Noos to support remote calls. NoosWeb has beendeveloped by Francisco Mart��n [Mart��n, 1996].149

150 Chapter 6. Applications6.1 CHROMANoos has been used to implement chroma [Armengol and Plaza, 1994][Armengol, 1997], a system for recommending a plan for the puri�cation of pro-teins from tissues and cultures using chromatographic techniques. Puri�cation isan essential process in the analysis of the properties of molecules from biologicalorigin and widely used in industry and research. Proteins are a type of biologicalmacromolecules that are puri�ed by a sequence of laboratory operations. Themost used operations for protein puri�cation are chromatographic techniques.Puri�cation plans of chroma incorporate di�erent chromatographic techniquessuch as:� Ion-exchange: process based on the Coulomb's law,� Hydrophobic Interaction: process based on the Van der Vaals law,� Gel Filtration: process that separates the molecules according its size, and� A�nity : process that exploits the existence of speci�c unions betweencertain types of molecules.Moreover, chroma incorporates di�erent techniques such as precipitationand clari�cation, previous to the chromatographic process.A plan to purify a molecule can be composed by several steps involving achromatographic technique, that can be di�erent, in each step. There is nounique way to purify a given protein. To choose an adequate puri�cation planinvolves reasoning about di�erent aspects such as, for instance, the protein topurify, the sample origin (culture, tissue, etc), and the future use of the puri�edmolecule. Protein puri�cation requires the experience of an expert. Usually,a human expert �rst carries out a focused search in the literature in order toobtain a set of puri�cation plans used in \similar" problems. Then, the expertanalyzes the set of collected precedents and chooses the most appropriate.The goal design of chroma was to build a system that, using a memory ofpuri�cated cases, was capable to �nd precedent cases useful for solving new ex-periments in an expert-comparable way. chroma learns from experience usingtwo learning methods: CBR learning and induction. Four problem solving meth-ods have been developed for recommending puri�cation plans. One of them isa classi�cation method that uses the induced knowledge. Moreover, a metalevelmethod is able to decide, for a particular problem, which problem solving methodis more likely to succeed. The reective capabilities of Noos allow chroma toanalyze and decompose problem solving and learning methods in a uniform way,and also to combine them in a simple and e�cient way.We will give here a brief description of chroma's components. The readermay consult [Armengol and Plaza, 1994] and [Armengol, 1997] for a more de-tailed description of chroma.

6.1. CHROMA 151

Figure 6.1. A Noos browser of an experiment from chroma's case-base.An experiment is composed of two features: the sample from which theprotein has to be extracted and the puri�cation plan. In this experimentpuri�cation plan is formed by three steps precipitation, ion-exchange,and affinity.6.1.1 Modeling domain knowledgeThe domain ontology of chroma is composed of concepts such as experiments,samples, puri�cation plans, proteins, species, tissues, and chromatographic tech-niques.Experiments have two features: the description feature, embodying a de-scription of the protein to be puri�cated and of the sample from which theprotein has to be extracted, and the purification feature, embodying the pu-ri�cation plan to be performed (see Figure 6.1). A description is a featureterm with two features: the protein to purify and the sample. A sample isdescribed, in turn, by two features: the species where the sample comes from,and the source of the sample (such as an animal or vegetal tissue, or a culture).Puri�cation plans are composed of a variable number of chromatographicsteps represented as features of the plan (called step1, step2, etc) embodyingthe step. Each step has two main features: the name feature, containing aspeci�c chromatographic technique (Affinity, ion-exchange, etc), and eitherthe reagent or the resin feature containing the substance used to purify theprotein. Other complementary features such as the PH feature are also de�ned.chroma has available an episodic memory of about one hundred solved pu-ri�cations. Moreover, the system has been tested using twenty-�ve new prob-lems.

152 Chapter 6. Applications6.1.2 Solving the puri�cation taskThe main task of the chroma application is the puri�cation task. Given anew experiment containing only the sample, the goal of the puri�cation taskis to determine a puri�cation plan using domain knowledge and the episodicmemory of puri�cated cases. The puri�cation task uses four methods for rec-ommending puri�cation plans: equal-sample, analogy-by-determination,classify-by-prototype, and default-plan.Equal-Sample methodThe equal-sample method detects if there is an experiment in the episodicmemory having the same sample as our current experiment.Speci�cally, the equal-samplemethod is a CBR method decomposed in twosubtasks: retrieve and reuse subtasks.The retrieve subtask is achieved by a method de�ned by re�nement of theretrieve-by-pattern built-in method. The retrieval method takes the sampleof the current experiment problem as a pattern to perform a search for precedentsinto the episodic memory. The reuse task is achieved by reinstantiating thepuri�cation plan given in the precedent found to the current problem.The equal-sample method is useful to solve routine puri�cations with com-monly occurring samples and proteins assuring a correct solution for these cases.Analogy-by-determination methodThe analogy-by-determinationmethod is a case-based method based on ana-logical determinations [Russell, 1990]. Determinations are functional dependen-cies used as justi�cations in analogical reasoning (see an example in Section 4.2).The analogy-by-determination method is a method decomposed in threesubtasks: retrieve, select, and reuse subtasks.The retrieve task is achieved by a retrieval method that searches for exper-iments from the episodic memory purifying the same protein than the currentexperiment problem|that is to say, stating that the puri�cation plan dependson the protein.When the retrieval method �nds several precedents, the method de�ned forthe select task ranks the precedents according to domain speci�c criteria suchas similarity of species or source. When domain criteria are not su�cient todetermine a most preferred precedent, the precedents are presented to the userwho must choose one of them.Finally, the reuse subtask is achieved by reinstantiating the puri�cation plangiven in the most preferred precedent, according to the inference performed bythe select subtask, to the current problem.Classify-by-prototype methodThe classify-by-prototypemethod is a classi�cation method. This method isdecomposed in four subtasks: obtain-classes, plausible-classes, select,and reuse.

6.1. CHROMA 153The obtain-classes task is achieved by a method that obtains the set ofsolution classes in which a new experiment can be classi�ed. This set of solutionclasses is generated using inductive learning by the induce-prototype method(see next method). Solution classes are de�ned as feature terms embodying apuri�cation plan and a prototype that is a partial description of an experimentdescription generalizing the set of experiments that has been solved using thispuri�cation plan.The plausible-classes task selects, using a method based on subsumption,the subset of solution classes which description subsumes the new experiment.When more than one solution class is chosen, the select task has de�nedan user-interface method that presents their associated puri�cation plans to theuser and asks to the user to select the best of them (the user required to behimself the responsible instead of automating further the process).As in all chroma methods, the reuse subtask is achieved by reinstantiatingthe puri�cation plan given in the most preferred precedent, according to theinference performed by the select subtask, to the current problem.Induce-prototype methodThe induce-prototypemethod is an inductive method based on antiuni�cation(see Section 4.6). The goal of the induce-prototype method is to construct aset of puri�cation prototypes of experiments that share the same puri�cationplan. These set of prototypes are used by the classify-by-prototypemethod.The induce-prototype method is decomposed in three subtasks:build-partitions, select-representative-sets, and generate-prototype.The �rst subtask divides the base of cases into sets containing experimentspuri�ed following the same puri�cation plan.Because of some of the formed sets may have few elements and it is not desir-able to make induction with these small sets, the select-representative-setstask, de�ned by a �lter method, rejects those sets having a number of elementslower than a threshold.Finally, the generate-prototype subtask constructs, using methods basedon antiuni�cation such as indie (a bottom-up induction method) or disc (atop-down induction method) [Armengol, 1997], a puri�cation prototype for eachrepresentative set.Default-plan methodThe default-plan method is a domain method based on a statistical analysisof puri�cation experiments. This method is used when there is no experimentin the episodic memory purifying the protein we are interested in and othermethods are failed.The default-plan method is based on the observation that when an expertdoesn't �nd similar precedents in the literature for solving a given problem, theexpert uses generally valid default plans. These default plans are less e�cient butnonetheless appropriate for puri�cation. The default-plan method captures

154 Chapter 6. Applicationsthis observation recommending a plan obtained from a statistical analysis ofpuri�cation experiments.Con�guration of methodschroma is provided by a metalevel reasoning method to decide, on a case-by-case basis, the applicability of the chroma methods and the order in whichthey are attempted. The metalevel method analyzes the current problem inorder to determine the subset of applicable methods and an order for attemptingmethods. An empirical assessment has shown that this approach is better for thisdomain than the usual �xed sequence of methods attempted until one succeeds.The implementation of the chroma metalevel reasoning method illustratesthe powerful capabilities of Noos to implement, combine and experimentallyevaluate the quality and e�ciency of methods and method-combinations, andtailor the system to the task requirements in an application domain.6.2 SPINspin [Armengol, 1997] is another system developed using Noos at the IIIA. spinis a sponge identi�cation system for a class of marine sponge species (the familyof Geodiidae). spin currently integrates a bottom-up induction method, a top-down induction method, a CBR method based on an entropy measure, and amethod that combines lazy induction and CBR.The identi�cation of marine sponge specimens is a specially complex task thatrequires an expert due to the genetic diversity and the morphological plasticityof marine sponges. Moreover, in some sponge phylums, such as the Poriferaphylum, is not clear how the di�erent taxa are characterized.spin knowledge base has been constructed from a subset of the specimensused to test the spongia system [Domingo, 1995], a knowledge based systemimplemented at our Institute using milord-ii [Puyol-Gruart, 1995]. An impor-tant remark is that a speci�c sponge specimen is described in spin using onlythe set of features used by spongia in its identi�cation.A specimen can be identi�ed as belonging to �ve di�erent taxonomic levels(class, order, family, genus, and species). Currently, spin knowledge base con-tains only specimens from the Geodiidae family. This implies that spin can onlyidentify specimens at genus and species levels. Nevertheless, incorporating spec-imens from other taxa, spin could perform identi�cation at the �ve taxonomiclevels.Analogously to the description of chroma, we will give here a brief descrip-tion of spin components. The reader can consult [Armengol, 1997] for a moredetailed description.

6.2. SPIN 155

Figure 6.2. A Noos browser of a sponge problem from spin's case-base. Asponge problem is composed of two features: the description of a spongespecimen and its classi�cation into the �ve taxonomic levels.6.2.1 Modeling domain knowledgeThe domain ontology of spin is composed of concepts such as specimen descrip-tions, skeleton characteristics, and taxa.Cases are described by re�nement of a sponge-problem. A sponge-problemis a feature term holding two features: description and solution features(see Figure 6.2). The feature value of a description feature is a feature termdescribing the speci�c information of a sponge specimen. The feature value ofa solution feature embodies a feature term describing the classi�cation of thesponge specimen into the �ve taxonomic levels.6.2.2 Solving the identi�cation taskThe main task of the spin application is the identi�cation task. Given a newsponge specimen, the goal of the identi�cation task is to determine the taxa(genus and species) to which this new sponge specimen belongs1. There are twoalternative ways to proceed in order to identify specimens: (1) analyzing whethera new specimen has the features characteristic of some taxa, or (2) looking forsimilar specimens into the episodic memory and classifying the new specimenaccording to the taxa of the most similar precedents.1They are all of the Geodiidae family, so there is no need of identi�cation at family orhigher levels

156 Chapter 6. ApplicationsThe identi�cation task can be achieved using three di�erent meth-ods: identify-by-subsumption, CRASS, and LID. Moreover, theidentify-by-subsumption method may use domain knowledge built bytwo inductive learning methods: either by indie or disc.Identify-by-subsumption methodThe identify-by-subsumptionmethod is a classi�cation method based on do-main knowledge acquired by means of an inductive learning method. The goal ofidentify-by-subsumptionmethod is to classify a new sponge specimen from aset of concept descriptions of the taxa in which the new specimen can be classi-�ed. Concept descriptions are acquired using either indie or disc. The decisionof which inductive method to use is made dynamically by the user.The identify-by-subsumption method is a method decomposed in foursubtasks in a similar way of classify-by-prototype method developed inchroma.CRASScrass is a domain independent case-based method that uses an entropy-basedassessment of similitude importance [Plaza et al., 1996b]. The goal of crass isto classify a new case, from a set of solution classes and a set of precedent cases,estimating its similarity to precedent cases.The crass method is decomposed in two subtasks: build-similarity--terms and select tasks.The goal of the build-similarity-terms terms subtask is to build a setof similarity terms from the new case N and each precedent case Pi. A sim-ilarity term is a partial description, built using antiuni�cation, containing thecommonalities between N and Pi.Once the set of similitude terms are generated, the goal of the select case isto choose the precedent most similar to the new case using similitude terms.Speci�cally, the select subtask is performed by a method decomposed, inturn, in two subtasks: entropy-assessment and weight subtasks. The �rstentropy-assessment subtask estimates the importance of a similitude term Sby measuring the entropy of the set of precedents subsuming S with respectto solution classes. This estimation is performed by a method based on Shan-non entropy. The second weight subtask uses an aggregation-based method forweighting the entropy measure of each solution class with respect to the cardi-nality of the set of precedents belonging to this class. The solution class selectedis that of with higher weight.LIDlid is a domain independent method that combines top-down lazy induction andcase-based reasoning. The goal of lid is also to classify a new case, from a setof solution classes and a set of precedent cases.

6.3. SHAM 157The lid method is decomposed in two subtasks: build-description andidentify tasks.The goal of the �rst build-description task is to construct a partial de-scription of the new problem. The partial description is constructed incremen-tally, from an empty description, by adding one feature (the most discriminatingone) to the description. The task is performed by a method that combines an-tiuni�cation and a discriminant measure of features' relevance based on L�opezde M�antaras distance [L�opez de M�antaras, 1991].The goal of the identify task is to discriminate the new problem, using thepartial description constructed by the build-description task, with respectto precedent cases. The method developed to perform such task is based onsubsumption and on Shannon entropy.Build-description and identify subtasks are reiterated until the partialdescription constructed by the build-description task discriminates the newproblem with respect to all precedent cases and it classi�es it in a solution class,or there is no more discriminant features. In the �rst option, lid yields thatsolution class. In the second option, lid yields a set of ranked possible solutionclasses.6.3 SHAMsham [Cabr�e, 1996] is also a system developed using Noos. The main goal ofsham was to develop a tool to help a non expert musician to harmonize melodiesusing background musical knowledge.Musical knowledge is described by means of (1) PSMs that characterize lo-cal situations (for instance notes with speci�c weight in a metre), (2) PSMsthat propose chords for these local situations, and (3) PSMs that combine thealternatives constructing a complete chord sequence.Currently, sham takes a MIDI �le2 containing a melody line, translates theinformation to Noos descriptions, and starts an inference cycle of Noos obtaininga chord sequence and a bass line described in Noos. Finally, sham generates anew MIDI �le containing the melody line plus the chord sequence and the bassline3.The user is not required to know neither Noos nor the internal musical rep-resentation of the system. sham is provided with a window-based interface thatallows to choose an input MIDI �le, specify musical information not providedin the MIDI �le such as the key and the metre, and choose a set of alterna-tive parameters stating the harmonization style. These set of harmonizationparameters determine the set of used chords (e.g. not taking into account sev-enths in chords and the maximum number of chord inversions) and the degreeof complexity of the �nal chord sequence.2MIDI �les are the standard format for representing musical scores and can be generatedby all computer music editors.3The reader can visit our web site at <http://www.iiia.csic.es/Projects/music/> for soundexamples.

158 Chapter 6. Applications

Figure 6.3. A Noos browser of the song `El noi de la mare' from sham.A problem to be solved in sham is described as a work with two features:parts describing the hierarchical decomposition of a musical piece in termsof bars and notes, and harm-type describing the user preferences for har-monization.An interesting feature of sham is that di�erent runs may result in di�erentharmonizations depending on that several parameters and on a random compo-nent giving, therefore, the possibility to explore and combine di�erent results.sham is being applied to harmonize catalan folk songs and sometimes shows agood degree of creativity.6.3.1 Modeling musical knowledgeThe domain ontology of sham is composed of concepts analyzing musical piecesin a hierarchical way (see Figure 6.3): a piece is represented as a work decom-posed in several parts. Each part is able to have a di�erent key. Moreover, apart is decomposed in several bars. Finally, every bar holds a set of notes anda set of chords.Speci�cally, a work is a feature term with �ve features: parts, holding the setof parts of the work; harm-type, holding the harmonization parameters chosenby the user; selected-chords, holding the subset of applicable chords following

6.3. SHAM 159the hamonization style speci�ed in harm-type; chord-sequence, holding the�nal chord sequence inferred by sham; and bass-line, holding the �nal baseline inferred by sham.Feature values of features parts and harm-type are determined by using aninput graphical interface. Feature selected-chords is de�ned using a �lteringmethod that infers a subset of chords from the set of all de�ned chords and theset of user preferences de�ned in feature harm-type. Features chord-sequenceand bass-line specify a possible harmonization of the piece and are inferredusing problem solving methods de�ned for the harmonization task (see nextsubsection).A part is a feature term with �ve features: from-work, that is a referenceto the work it belongs; order, holding a reference number identifying the part;key, holding the key of the part; mode, holding the key mode (major or minor4);and bars, holding the set of bars of the part.A bar is a feature term with two kinds of features: features given as prob-lem data (such as from-part, order, metre, and notes) and features inferred,using background musical knowledge, while selecting the chord sequence (suchas vertical-choose, horizontal-choose, final-chords, and final-bass).Feature from-part is a reference to the part it belongs. Feature order holds areference number identifying the bar. Feature metre holds the metre of the bar.Feature notes holds the set of notes contained in the bar. Inferred features willbe described in next section.A note is a feature term with six features: from-bar, that is a reference tothe bar it belongs; pitch, holding the pitch relative to the current key (e.g. pitchC in key C is represented as p1); onset, holding the delay from the start of the barto the start of the note; duration, holding the note's duration; octave, holdingthe note's octave (only used for MIDI interface); and chord-note?, stating if thenote is important enough to have a chord. Feature chord-note? is de�ned bymeans of a method that estimates the importance of the note from its durationand its onset.A chord is a feature term with �ve features: from-bar, that is a reference tothe bar it belongs; name, holding the kind of chord (e.g. Imaj7); onset, holdingthe delay from the start of the bar to the start of the chord; duration, holdingthe chord's duration; and weight, stating the appropriateness of the chord inthe bar. Feature weight is de�ned by means of a method that estimates thesuitability of the chord taking into account the notes of the bar it belongs. shamdeals with more than one hundred di�erent chords.6.3.2 Solving the harmonization taskThe main task of sham is the harmonization task. Given the melody of a musicalpiece, the goal of the harmonization task is to �nd a sequence of chords and abass line for this piece. The chord sequence is built taking into account user4currently sham supports only major modes since there are no harmonization methodsdealing with minor modes. Nevertheless, adding new harmonization methods minor modescould be harmonizated.

160 Chapter 6. Applicationspreferences and background musical knowledge expressed as methods. The bassline is built using background musical knowledge and according to the chordsequence.The selection of a chord sequence is more complex than the selection of anappropriate bass line. Here we only sketch the problem solving method developedby selecting chord sequences. The reader can consult [Cabr�e, 1996] for a detaileddescription of the harmonization process in sham.The main reasoning in selecting chords is performed in the context of a bar.sham can choose one chord covering a whole bar, two chords covering eachof them half a bar, a chord covering half a bar (the beginning or the end),or a rest (a bar without chords). The inference process engaged for each baris decomposed in four subtasks: (1) �rst the set of chords available accordingto the user preference is taken from the work feature selected-chords, (2)then task vertical-choose is engaged in order to �lter the subset of feasiblechords according to the notes of the bar, (3) next task horizontal-chooseestimates the appropriateness of chords according to neighbor bars, (4) �nallytask final-chords selects a chord (or a set of chords) for the bar taking intoaccount the weight of chords and a random factor.6.4 GYMELgymel [Sabater, 1997] is also a system developed in Noos for harmonization ofmelodies. The main goal of gymel was to develop a tool to help a non expertmusician to harmonize melodies using a case-based reasoning approach. More-over, gymel incorporates background musical knowledge for solving isolatedsituations not covered by existing cases.The approach taken in gymel is quite di�erent to sham's approach. shamis based on a hierarchical decomposition of a piece, given as input, from whichthe selection of possible chords is performed. On the other side, gymel startsfrom a melody line (a sequence of notes) constructing an analysis structure overthat melody line that is the basis for retrieval of similar precedents.gymel, as sham does, takes a MIDI �le containing a melody line, translatesthe information to Noos descriptions, starts an inference cycle of Noos obtain-ing a chord sequence described in Noos, and �nally generates a new MIDI �lecontaining the melody line plus the chord sequence.gymel suggests di�erent harmonizations for a given musical phrase. Theuser can select some of them to be incorporated into the episodic memory. Theseharmonizations will then be used in solving new phrases.6.4.1 Modeling musical knowledgeThe domain ontology of gymel is composed of concepts such as phrases, keys,notes, chords, and nodes.A musical piece is described as a phrase. A phrase is a feature term withsix features: key, holding the key of the piece; mode, holding the key mode

6.4. GYMEL 161

Figure 6.4. A Noos browser of a musical phrase from gymel's case-base.A Case is represented as a feature term with six features: key, mode, andmetre describe general knowledge of the phrase; melody holds a sequence ofnotes; structure holds a sequence of nodes; and harmony holds a sequenceof chords.(major or minor); metre, holding the metre of the piece; melody, holding themelody line as a sequence of notes; structure, holding the analysis structureof the piece as a sequence of nodes; and harmony, holding a sequence of chords.Figure 6.4 shows a browser of a phrase structure.A note is a feature term with six features: value, holding the correspondingMIDI number of the note (used by the MIDI interface); name, holding the nameof the note (e.g. C4); pitch, holding the pitch relative to the current key (assame as sham); dur-rel, holding the time distance from the beginning of thephrase to the note; duration, holding the note's duration; and next, holding areference to the following note in the phrase.A chord is a feature term with four features: kind, holding the kind of thechord (e.g. IIminor7); dur-rel, holding the time distance from the beginningof the phrase to the chord; duration, holding the chord's duration; and next,holding a reference to the following chord in the phrase.The analysis structure is composed of a sequence of nodes grouping sets of

162 Chapter 6. Applicationsconsecutive notes in the phrase. Each note will belong to a unique node, andfor each node one chord will be selected. A node is a feature term with sixfeatures: notes, holding a group of consecutive notes; main-note, holding themost important note of the group; metre, holding a reference to the metre ofthe phrase; chord, holding the chord to be played at same time than the groupof notes; next, holding a reference to the following node; and prev, holding areference to the previous node.6.4.2 Solving the harmonization taskThe main task of gymel is the harmonization task. Given the melody of amusical phrase, the goal of the harmonization task is to �nd a sequence of chordsfor this phrase. The harmonization task is performed by a method decomposedin two subtasks: build-analysis-structure and propose-harmony.The goal of task build-analysis-structure is to analyze the phrase and toconstruct a structure grouping subphrases candidates to share the same chord.This grouping structure is built using background musical knowledge. A struc-ture is composed by a sequence of nodes. For each node a collection of notesforming a subphrase and a main note is selected.After the construction of the analysis structure, the harmonization processstarts properly. The propose-harmony task is performed by a case-based methodthat proposes a chord for each node of the analysis structure. Moreover, whenthe case-based method is not able to �nd precedents for a given node, gymeluses a method for proposing a chord based on background musical knowledge.The case-based method is decomposed in two subtasks: retrieve and reuse.The retrieve task is performed, in turn, by a method decomposed followingthe usual retrieval subtasks: identify, search, and select subtasks.The identify task is performed by a method, called build-node--perspective, based on perspectives (see Section 4.3). The build-node--perspectivemethod builds a retrieval pattern based on the analysis structureof the phrase. Given a node, the method builds a perspective of that node tak-ing into account the main note of the node and the selected chords of its twoprevious nodes. Speci�cally, the build-node-perspective method is de�nedas follows:(define (perspective build-node-perspective)(node)(pattern (define (node)(main-note (define (note)(pitch (define (relative-pitch)))))(prev (define (node)(chord (define (chord)(kind (define (chord-kind)))))(prev (define (node)(chord (define (chord)(kind (define (chord-kind))))))))))))For instance, the application of that method to a node with a main note with

6.5. Saxex 163pitch P4 and with two previous nodes with selected chords IImin7 and Imaj,yields the following pattern:(define (node)(main-note (define (note)(pitch P4)))(prev (define (node)(chord (define (chord)(kind IImin7)))(prev (define (node)(chord (define (chord)(kind Imaj))))))))The search task is performed by a method based on the retrieve-by--pattern built-in method. This method retrieves, using the pattern constructedby perspectives, nodes sharing the same main note and the same chord progres-sion of the two previous nodes than the node problem.The select task performs a random selection. The Noos backtracking mech-anism assures that all precedents will be attempted.The goal of the reuse task is to access to the chord of the selected precedentnode and propose a new chord, with same kind of the precedent chord, for thecurrent node. The other features are determined from the features of the currentnode and background musical knowledge.The gymel's problem solving method is exhaustive: all alternative solutionsthat it can be built are shown to the user. Then, the user chooses some of themto be stored into the episodic memory, and thus to be used in solving futureproblems.6.5 SaxexSaxex [Arcos, 1996] [Arcos et al., 1997b] is a case-based reasoning system forgenerating expressive performances of melodies based on examples of humanperformances that are represented as structured cases. Saxex has been developedusing sound analysis and synthesis techniques of the sms environment (SpectralModeling Synthesis) [Serra, 1997] and the Noos language.An input for Saxex is a musical phrase described by means of a musical score(a MIDI �le) and a sound �le. The score contains the melodic and the harmonicinformation of the musical phrase. The sound �le contains the recording of aninexpressive interpretation of the musical phrase played by a musician. Theoutput of the system is a new sound �le, obtained by transformations of theoriginal sound �le, containing an expressive performance of the same phrase.Solving a problem in Saxex involves three phases: the analysis phase, thereasoning phase, and the synthesis phase (see Figure 6.5).Analysis and synthesis phases are implemented using sms sound analysisand synthesis techniques, based on spectrum models, that are useful for theextraction of high level parameters from real sounds, their transformation andthe synthesis of a modi�ed version of the original sound. Saxex uses sms in order

164 Chapter 6. Applications

Noos

Sms

analysis synthesis

Score

Cases
methods

model

.snd.snd.mid

Inexpressive
phrase Expressive phrase

Input Output

.sms .sco

Figure 6.5. General view of Saxex components. Analysis and synthesisphases are performed in sms. Reasoning phase is performed in Noos.
to extract basic information related to several expressiveness parameters suchas dynamics, rubato, vibrato, and articulation. The sms synthesis procedureallows Saxex the generation of new expressive interpretations (new sound �les).The reasoning phase is performed using case-based techniques and is im-plemented in Noos. This phase of Saxex incorporates background musicalknowledge based on Narmour's Implication/Realization model [Narmour, 1990]and Lerdahl and Jackendo�'s Generative Theory of Tonal Music (GTTM)[Lerdahl and Jackendo�, 1993]. These theories of musical perception and musi-cal understanding are the basis of the computational model of musical knowl-edge of the system: using Noos perspectives methods with background musicalknowledge, Saxex takes dynamical decisions about the relevant aspects of a givenproblem. That is to say, the background musical knowledge is used by Saxex asa set of declarative biases for retrieval.Problems to be solved by Saxex are represented as complex structured casesembodying knowledge about the score of the phrase, knowledge about musicalunderstanding of the phrase, and knowledge about the expressive performanceof the phrase.

6.5. Saxex 165

Figure 6.6. A Noos browser of the score for the `All of me' ballad. Featuresare represented as thin boxes, dots indicate not expanded terms, and grayboxes express references to existing terms.6.5.1 Modeling musical knowledgeThe domain ontology of Saxex is composed of concepts representing three di�er-ent types of musical knowledge: (1) concepts related to the score of the phrasesuch as notes and chords, (2) concepts related to background musical theo-ries such as implication/realization structures and GTTM's time-span reduc-tion nodes, and (3) concepts related to the performance of musical phrases. ASaxex case is represented as a feature term with three features: the score, thestructure, and the performance.The scoreA score (see Figure 6.6) is represented embodying a musical phrase. A phraseis a feature term with two features: the melody feature, embodying a sequenceof notes, and the harmony feature, embodying a sequence of chords (see Fig-ure 6.6). Each note holds in turn a set of features such as the pitch of thenote (C5, G4, etc), its position with respect to the beginning of the phrase,its duration (using CommonMusic notation [Taube, 1991][Taube, 1996]), a ref-erence to its underlying-harmony, and a reference to the next note of thephrase. Moreover, a note holds the metrical-strength feature, inferred us-ing GTTM theory, expressing the note's relative metrical importance into thephrase. Chords have also a set of features such as the name of the chord (Cmaj7,E7, etc), their position, their duration, and a reference to the next chord.

166 Chapter 6. Applications

Figure 6.7. A Noos browser of the prolongational reduction structure forthe `All of me' ballad.The musical structureThe musical structure embodies the musical analysis of the phrase built usingthe background musical knowledge. Narmour's implication/realization model(IR) proposes a theory of cognition of melodies based on eight basic structures.These structures characterize patterns of melodic implications that constitutethe basic units of the listener's perception. Other parameters such as metric,duration, and rhythmic patterns emphasize or inhibit the perception of thesemelodic implications. The use of the IR model provides a musical analysis basedon the structure of the melodic surface.On the other hand, Lerdahl and Jackendo�'s generative theory of tonal music(GTTM) o�ers an alternative approach to understanding melodies based on ahierarchical structure of musical cognition. GTTM proposes four types of hierar-chical structures associated with a piece. This structural approach provides thesystem with a complementary view for determining relevant aspects of melodies.The musical analysis builds a set of structures over the musical phrase.It is represented by the analysis feature term with three features:prolongational-reduction, time-span-reduction, and process-structure.The prolongational-reduction feature embodies a hierarchical structure de-scribing tension-relaxation relationships among groups of notes. Tension-relaxation relationships are represented in Noos as trees (see Figure 6.7). Thetime-span-reduction feature embodies another hierarchical structure that de-scribes the relative structural importance of notes within the heard rhythmicunits of a phrase. These structural relationships are also represented in Noos

6.5. Saxex 167

Figure 6.8. A Noos browser of the musical performance structure for the`All of me' ballad.as trees. Finally, feature process-structure embodies a sequence of implica-tion/reduction (IR) Narmour's structures. There are eight types of IR struc-tures. Each IR structure has a set of features representing the di�erent rolesthat can play the notes in the structure (such as first-note, med-notes, andlast-note) and characteristics speci�c of each IR structure such as the melodicdirection.The musical performanceA musical performance is represented as a sequence of events (see Figure 6.8).There is an event for each note within the phrase embodying knowledge aboutexpressive parameters applied to that note. Speci�cally, an event has featuresrepresenting expressive parameters of notes such as dynamics, rubato, vibratolevel, articulation, and attack. Expressive parameters are described usingqualitative labels as follows:Changes on dynamics are described relative to the average loudness of thephrase by means of a set of �ve ordered labels. The middle label representsaverage loudness and lower and upper labels represent respectively, increasingor decreasing degrees of loudness.Changes on rubato are described relative to the average tempo, also by meansof a set of �ve ordered labels. Analogously to dynamics, qualitative labels about

168 Chapter 6. Applications
Saxex-CBR

Retrieve Reuse

Identify Select

Construct
perspectives

Retrieve
using

perspectives

Rank
cases

Propose
expressive
parameters

Memorize
new solved

case

Retain

Search

Identify&Select

Figure 6.9. Task decomposition of the Saxex CBR method.rubato cover the range from a strong accelerando to a strong ritardando.The vibrato level is described using two parameters: the frequency vibratolevel and the amplitude vibrato level. Both parameters are described using �vequalitative labels from no-vibrato to highest-vibrato.The articulation between notes is described using again a set of �ve orderedlabels covering the range from legato to staccato.Finally, Saxex distinguishes two transformations over a note attack: (1)reaching the pitch of a note starting from a lower pitch, and (2) increasing thenoise component of the sound. These two transformations were chosen becausethey are characteristic of saxophone playing but other transformations can beintroduced without altering the system.6.5.2 The Saxex taskGiven a musical phrase, Saxex infers a speci�c set of expressive transformationsto be applied to every note in the phrase. These sets of transformations areinferred note by note. For each note in the phrase the same problem solvingmethod is performed.The problem solving method developed in Saxex for this purpose follows theusual subtask decomposition of CBR methods described in Section 4.5: retrieve,reuse, and retain (see Figure 6.9). Given a current note problem of a problemphrase, the overall picture of the subtask decomposition of Saxex method is thefollowing:� Retrieve: The goal of the retrieve task is to choose the set of notes (cases)

6.5. Saxex 169most similar to the current note problem. This task is decomposed in threesubtasks:{ Identify : The goal of this task is to build retrieval perspectives us-ing two alternative biases. A �rst bias based on Narmour's impli-cation/realization model, and a second bias based on Lerdahl andJackendo�'s generative theory.{ Search: The goal of this second task is to search cases in the casememory using Noos retrieval methods and previously constructed per-spectives.{ Select : The goal of the select task is to rank the retrieved cases us-ing Noos preference methods. The preference methods use criteriasuch as similarity in duration of notes, harmonic stability, or melodicdirections.� Reuse: the goal of the reuse task is to choose a set of expressive transfor-mations to be applied to the current problem from the set of more similarcases. The �rst criterion used is to adapt the transformations of the mostsimilar case. When several cases are considered equally similar, transfor-mations are selected according to the majority rule. Finally, when previouscriteria are not su�cient, all the cases are considered equally possible al-ternatives and one of them is selected randomly.� Retain: the incorporation of the new solved problem to the memory ofcases is performed automatically in Noos. All solved problems will beavailable for the reasoning process in future problems.After describing the task decomposition of Saxex problem solving method,we will introduce a simpli�ed example to help its understanding. Let us supposethat Saxex has to infer a set of expressive transformations for the following notewithin a phrase5:(define (note Note1)(pitch A4)(position 17)(duration Q.)(metrical-strength extremely-high)(belongs-to (define (P)(first-note (>>))(med-notes Note2)(last-note Note3)(direction down)))(next Note2))The �rst task engaged is the retrieve task. The retrieve task engagesin turn the identify subtask. Taking as example the following bias based onNarmour's model:5The right side presents a picture of the note in musical notation.

170 Chapter 6. Applications(define (note P1)(pitch C5)(position 0)(duration Q)(metrical-strength extremely-high)(belongs-to (define (Process)(first-note (>>))(med-notes Note102)(last-note Note103)(direction down)))(next Note102))(define (note P2)(pitch E4)(position 25)(duration Q)(metrical-strength extremely-high)(belongs-to (define (Process)(first-note (>>))(med-notes Note21)(last-note Note22)(direction up)))(next Note21))Figure 6.10. Two precedent cases retrieved by Saxex Problem solvingmethod.Determine as relevant the role that a given note plays in a impli-cation/realization structure.described as a Noos description as follows:(define (note)(belongs-to (define (N-structure)($f (>>)))))We obtain the following constructed perspective of Note1:(define (note)(belongs-to (define (P)(first-note (>>)))))that is, the �rst note of a P process.Then, the search task is engaged in order to �nd similar situations amongthe precedent cases. Let us assume that the search task �nds the following twonotes (called P1 and P2) as precedent cases (see Figure 6.10).Next, the select task is engaged for ranking the precedents. Taking aspreference criterion the melodic direction, precedent P1 is considered as the mostrelevant precedent (since it belongs to a process with descending direction likeNote1).

6.5. Saxex 171
A-7 D7 Gmaj7 Cmaj7 F#-7 B7 E-Figure 6.11. First phrase from the `Autumn Leaves' theme.After choosing precedent P1 as the most relevant precedent, the reuse task isengaged. For this simpli�ed example, since we only have selected one precedent,the set of expressive transformations to be applied to Note1 are the same wereapplied to precedent P1 and that are stored as part of precedent case P1.6.5.3 ExperimentsWe have studied the issue of musical expression in the context of tenor saxo-phone interpretations. We have done several recordings of a tenor sax performerplaying several Jazz standard ballads (\All of me", \Autumn leaves", \Misty",and \My one and only love") with di�erent degrees of expressiveness, includ-ing an (almost) inexpressive interpretation of each piece. These recordings areanalyzed, using the sms spectral modeling techniques, in order to extract basicinformation determining the expressive parameters. The set of extracted pa-rameters together with the scores of the pieces constitute the set of structuredcases of the case-based system. From this set of cases and using similarity crite-ria based on background musical knowledge, the system infers a set of possibleexpressive transformations for a given piece. Finally, using the set of inferredtransformations and the sms synthesis procedure, Saxex generates a new sound�le containing expressive performances of the jazz ballads.We have performed two sets of experiments combining the di�erent Jazzballads recordered. The �rst set of experiments consisted in using examples ofexpressive performances of some phrases of a piece in order to generate newexpressive performances of another phrase of the same piece. More concretely,we have worked with three di�erent expressive performances of two phrases ofa piece, having about twenty notes, in order to generate new expressive per-formances of another phrase of the same piece. This group of experiments hasrevealed that Saxex identi�es clearly the relevant cases even though the newphrase introduces small variations with respect to the phrases existing in thememory of cases.The second set of experiments consisted in using examples of expressive per-formances of some pieces in order to generate expressive performances of otherpieces. More concretely, we have worked with three di�erent expressive per-formances of pieces having about �fty notes in order to generate expressiveperformances of new twenty note phrases. This second group of experimentshas revealed that the use of perspectives allows to identify situations such aslong notes, ascending or descending melodic lines, etc. Such situations are also

172 Chapter 6. Applicationsusually identi�ed by a human performer.Let us describe briey some of the expressive transformations applied to the�rst phrase of the `Autumn Leaves' theme (see the score in Figure 6.11) basedon precedent cases of similar phrases. Concerning to changes of dynamics, theascending melodic progressions are performed using crescendo. For instance,the �rst note of the theme (E) starts piano and the dynamics is successivelyincreased yielding a forte in the fourth note (C). Concerning rubato, after thefourth note (C) the attack of the �fth note (D) is delayed and brought closer tothe next note, then the duration of sixth note (E) is expanded, and �nally theduration of the next note (F) is reduced. Vibrato is applied over notes with longduration combined with a dynamics decay (for instance, over fourth note). Inascending melodic progressions, articulation is also transformed by decreasingthe interruption between notes (i.e. playing closer to legato than to staccato).Finally, the transformation of the attack consisted in reaching the eighth andninth notes (B and B) starting from a lower pitch 6.6.6 NoosWebThe goal of the development of NoosWeb [Mart��n, 1996] was to provide a WWWuser interface to Noos applications supporting the same interaction capabilitiesprovided in the Nooswindow-based graphical user interface developed for MacOScomputers (see Appendix A).In order to provide full access to the Noos facilities, NoosWeb was designedto support, at least, (i) a Noos listener and (ii) a graph browsing facility. TheNoos listener permits the evaluation of any valid Noos expression. The graphbrowsing facility emulates Noos browsers generating HTML documents.The WWW interface to Noos is a sequence of dynamically-generated HTMLdocuments that include forms (for engaging actions) and tables (for graph brows-ing). The user sees a standard NoosWeb interface document displaying a set offorms implementing valid actions (such as browsing and evaluating an expres-sion from the listener) and displaying the answers of the last action performed.Although the user can view past actions using the NoosWeb client-cached doc-uments, in order to avoid time-traveling problems, the user can only perform anew action from the current (the last) document. Actions requested from cacheddocuments are detected and dismissed. Nevertheless, NoosWeb incorporates indocuments the list of browsers displayed in the session allowing to redisplay anyof them at any time.NoosWeb is accessible at <http://www.iiia.csic.es/Inter�cies/NoosWeb>.6.6.1 The NoosWeb architectureThe NoosWeb architecture is composed of two elements: a collection of clientsconnected through the network to a server (see Figure 6.13). The server side6The reader can visit our web site at <http://www.iiia.csic.es/Projects/music/Saxex> forsound examples.

6.6. NoosWeb 173

Figure 6.12. A NoosWeb browser of a sponge-problem from the spin sys-tem.

174 Chapter 6. Applications

Figure 6.13. The NoosWeb architecture (from [Mart��n, 1996]).maintains the state for each user (client) involved in a session. The server checkseach client request against the current state. The server connects one or severalNoos applications. Each Noos application only supports one user session overthe WWW. A standard HTTP daemon uses CGI to process requests by means ofa script called NoosWebCGI. NoosWebCGI dispatches requests to several Noosapplications by TCP/IP. Each Noos application keeps contact with a Common-Lisp program called NoosWebCL that receives the requests, asks Noos whennecessary, and returns an answer generating an adequate HTML document.NoosWebCGINoosWebCGI is a CGI script implemented in the C language. NoosWebCGIis a dispatcher that distributes incoming requests to the appropriate Noos ap-plication by means of BSD sockets. NoosWebCGI is generic since it forwardsall the request contents to the Noos application without any pre-processing andit also returns answers without any post-processing. NoosWebCGI maintainsinformation about active Noos applications and current client sessions. When auser initiates a session, NoosWebCGI allocates a session number for an user anda Noos application. For each client request the script checks that the sessionidenti�er is valid. A request is valid if no time limit has been exceeded. Thereare time limits for session (1 hour) and for under-using (5 minutes without anyrequest from a client). User sessions declared invalid are deallocated.NoosWebCLNoosWebCL is implemented in Common Lisp and is composed of four mod-ules: PassiveTCP, Parser-URL-encode, NoosWeb-obj, and Noos-to-HTML mod-ules. The module PassiveTCP waits to receive requests by means of TCP fromNoosWebCGI. Received requests are parsed by the Parser-URL-encode mod-ule that determines which functionality of Noos is invoked (browsing a featureterm, asking a speci�c query expression, evaluating a Noos description, etc).The Parser-URL-encode module engages Noos using the set of remote Noos

6.7. Summary 175functions. The result of the requested action is translated and stored into theNoosWeb-obj module structures. Finally, the Noos-to-HTML module generatesan adequate HTML document that is returned to NoosWebCGI.Changes to NoosNoos has not been changed for allowingWWW interface. Only two new functionshas been developed in order to provide an interface to remote calls. The �rstfunction is the remote-browse function that returns a Noos browsing structurein a list syntax. The second function is the remote-eval function that checks itis a legal Noos expression (a description of a query expression) and evaluates theexpression returning the result of the evaluation.6.7 SummaryThis chapter presented a set of diverse applications developed using Noos byseveral persons at the IIIA. The purpose was to provide examples of how appli-cations can be developed using Noos. In this chapter our description has focusedon three aspects of the applications: how the domain knowledge required in eachapplication is modeled using Noos representation capabilities, which problemsolving methods are developed, and which learning methods are incorporated.Speci�cally we presented,� how diverse domain speci�c case-based reasoning techniques are developedin Noos. Case-based reasoning is modeled by domain speci�c methods froma knowledge modeling analysis of an application. These methods incorpo-rate domain-knowledge into Noos retrieval built-in methods. Examplesof applications incorporating case-based reasoning methods are chroma,spin, gymel, and Saxex.� how preferences are used for ranking precedents in case-based reasoningmodeling di�erent domain speci�c criteria in applications such as chromaand Saxex. The development and combination of diverse domain speci�cpreferences provide a mechanism for the assessment of complex structuredcases.� how diverse inductive learning methods such as indie, disc, and lid aredeveloped in Noos. These methods are based on a search in the space offeature terms. Di�erent methods perform several search strategies usingthe subsumption ordering in the feature terms space.� how several alternative problem solving methods can be de�ned for solvingthe same task. We described how chroma uses four di�erent methods forrecommending puri�cation plans in the puri�cation task, and how spinuses three di�erent methods for achieving the identi�cation task.

176 Chapter 6. Applications� how chroma is provided by a metalevel reasoning method to decide, on acase-by-case basis, the applicability of the problem solving methods de�nedfor solving the puri�cation task and the order in which they are attempted.� how case-based reasoning and inductive learning have been integrated inchroma and spin applications. The knowledge modeling analysis of aspeci�c application determine how di�erent learning methods can be inte-grated in di�erent subtasks. Then, metalevel reasoning capabilities and theepisodic memory of Noos allows to e�ectively implement this integration.� how to use domain knowledge intensively. For instance, sham makes anintensive use of background musical knowledge for harmonizing melodies.sham models musical knowledge by means of (1) PSMs that identify whichnotes are important in the melody, (2) PSMs that propose alternative setsof feasible chords according to these notes, and (3) PSMs that combine thealternatives constructing a complete chord sequence.� how the structured representation of cases o�ers the capability of treatingsubparts of cases as full-edged cases. For instance, in gymel and Saxexapplications the solution for a new problem is built by combining andadapting subparts of solutions from several precedent cases.� how two complex musical theories for musical perception and musical un-derstanding are modeled in Saxex and are then used for analyzing musicalphrases and assessing their similitude with respect to other phrases.� how perspectives are used as a mechanism to describe declarative biasesfor case retrieval in structured representations of cases. For instance, per-spectives provide to gymel and Saxex applications a exible way to dy-namically construct partial descriptions for retrieval.Finally, we presented NoosWeb, a WWW interface to Noos applications sup-porting the same interaction capabilities provided in the Noos window-basedgraphical interface developed for MacOs computers. A set of small improve-ments has been performed in Noos to support remote calls.

Chapter 7Conclusions and FutureWorkThis thesis addressed the design and implementation of a representation lan-guage for developing knowledge systems that integrate problem solving andlearning.We have developed Noos, a reective object-centered representation languagefor integrating inference and learning components in a uniform representation.7.1 The Noos language and feature termsNoos is a representation language close to knowledge modeling frameworks, basedon the task/method decomposition principle and the analysis of models requiredand models constructed by problem solving methods. This capability allowsNoos to take advantage of the KA methodologies and libraries developed in KMframeworks.The Noos modeling framework is based on four knowledge categories: do-main knowledge, problem solving knowledge, episodic knowledge, and metalevelknowledge:� Domain knowledge speci�es a set of concepts, a set of relations amongconcepts, and problem data that are relevant for an application. Conceptsand relations de�ne the domain ontology of an application.� Problem solving in Noos is considered as the construction of the episodicmodel of a problem. This model is obtained from transformations of prob-lem data performed by problem solving knowledge. Episodic models builtin solving problem tasks constitute the episodic knowledge of the system.� Problem solving knowledge speci�es a set of tasks and methods that con-struct a model of a problem (solve a problem). For a given subtask theremay be multiple alternative methods that may be capable of solving that177

178 Chapter 7. Conclusions and Future Worksubtask in di�erent situations. A method can be decomposed into subtasksthat may be achieved by other methods.� Metalevel knowledge speci�es knowledge about domain knowledge, prob-lem solving knowledge, and episodic knowledge. These models are formedby metalevel concepts, metalevel relations, metalevel tasks, and metalevelmethods. Moreover, metalevel knowledge includes preferences to modeldecision making about sets of alternatives present in domain knowledgeand problem solving knowledge.Noos is an object-centered representation language based on feature terms.Feature terms are related to the research based on �N calculus [Dami, 1994]and -terms [A��t-Kaci and Podelski, 1993] that propose formalisms to modelrelational and object-oriented programming constructs. Adapting the theoreti-cal results of these formalisms to our purpose, feature terms provide a naturalway to describe partial knowledge amenable to extension. Feature terms are in-terpreted as partial descriptions denoting sets of individuals in a given domain.This semantical interpretation of feature terms brings about an ordering relationamong them. We call this ordering relation subsumption. The intuitive meaningof subsumption is that of informational ordering. We say that a feature term subsumes another feature term 0 when all information in is also contained in 0|or in other words, is more general than 0.Noos incorporates a declarative mechanism for decision making about sets ofalternatives called preferences. For instance, preferences are used as a declarativecontrol mechanism for determining the order in which a metalevel task choosesa method for a task from a set of alternative methods.Furthermore, preferences are also used in Noos as a symbolic representation ofrelevance in comparing a given current problem with problems previously solvedby the system. Speci�cally, preferences are used in the retrieval and selection ofprecedent cases in case-based reasoning methods in applications such as chromaand Saxex.Inference starts in Noos when the user poses a query to the system by meansof a query expression. A query expression engages a task F(D) to be solved byits corresponding method. When solving a task where neither a path referencenor a method is de�ned, an impasse occurs and the control of the inference ispassed to its corresponding metalevel task. Solving an impasse for a task F(D)involves three processes: (i) determining a set of methods fMigF (D) applicableto task F(D), that can be partially ordered with preferences, (ii) selecting amethod from fMigF (D), according to the preferences, and (iii) reecting downthe selected method to task F(D).Backtracking is engaged when a method fails in solving a task. In that case,another remaining non-failed method in fMigF (D) will be selected and reecteddown. Moreover, since a method M can have subtasks, and each subtask mayhave several alternative methods to solve it, metalevel inference ensures thatbacktracking is engaged in M. Then, the possible combinations of methods for

7.2. Memory and learning 179each subtask are tried, following the local preference orderings for each subtask,until a solution is found.Methods in Noos can be view as functions with named parameters and back-tracking. We formally described the global inference process in our system usingDescriptive Dynamic Logic [Sierra et al., 1996], a propositional dynamic logicthat provides a general framework for describing and comparing reective knowl-edge systems.7.2 Memory and learningOur goal has been to provide a representation language for developing knowledgesystems with learning capabilities. This goal required that machine learningtechniques had to be modeled inside our language. Our proposal is that learningmethods are methods (in the sense of knowledge modeling PSM) that can beanalyzed also by means of a task/method decomposition and a set of modelsrequired models constructed by learning methods.Both problem solving methods and learning methods perform inference(viewed in Noos as constructing episodic models). Learning methods di�er fromPSMs in that they use episodic models (i.e. past solved problems). Di�erentkinds of learning methods use episodic models in di�erent ways (see below thedi�erent approach of induction versus lazy learning approaches). These solvedproblems can be provided by a teacher or can be problems previously solvedby the system itself. For learning methods to be able to reason from problemssolved by the system, part of the behavior of the system has to be rei�ed andstored in the system. In Noos, the episodic memory stores this representationof part of the behavior of the system. Moreover, we have incorporated a collec-tion of reective operations for accessing to and inspecting the episodic memorycontents.Episodic memory: Problems solved in Noos are automatically memorized(stored and indexed) in the episodic memory and are amenable to be accessedand reused in solving new problems. The problem solving behavior is repre-sented in Noos in terms of tasks, methods, metalevels, and preferences. Episodicmemory is organized in episodic models. An episodic model is the explanationof the inference process engaged by Noos in solving a speci�c problem task. Anepisodic model holds the set of knowledge pieces used for solving a speci�c prob-lem task, how and where they were used, and the decisions taken for solvingthat problem task. Introspective capabilities form the basis that allows Noosprograms to reason about the system behavior.Integrated problem solving and learning: Our approach to integrate prob-lem solving and learning is based on the following: whenever some knowledge isrequired by a problem solving method, and that knowledge is not directly avail-able, there is an opportunity for learning. We call those opportunities impassesand the integration of learning is realized by learning methods that are capableof solving these impasses.

180 Chapter 7. Conclusions and Future WorkWe have modeled the integration of di�erent symbolic learning techniques asmethods that can be decomposed in three main common subtasks: Introspection,Construction, and Revision. This common scheme allows us to model di�erentML methods and their integration into a general problem solving system bydeveloping speci�c methods for the three main subtasks. Speci�cally:� The introspection task is the process by which past experience (episodicmemory of the system itself or provided by a teacher) is accessed, selectedand retrieved for the purpose of solving new problems. In simple situ-ations this task may merely select a subset of examples in memory. Incomplex situations the system may have to decide which (sub)parts ofall the episodic memory qualify as \examples" (precedents), i.e. they areinteresting to learn from.� The construction task uses the relevant past experience (resulting fromintrospection) to generate some new model or body of knowledge.Eager learning methods construct a new model to be used for a speci�cproblem solving method (that will be applied to future problems). Ex-amples of eager learning methods are induction and analytical learningmethods.Lazy learning methods follow a problem-centered approach|i.e. directlybuilding the episodic model of a current problem from episodic model(s)of (some) retrieved precedent(s). Examples of lazy learning methods areCBR methods.� The revision task decides whether and how the system's knowledge is mod-i�ed by the newly constructed model. In simple situations the new modelreplaces the old model. In more complex situations, the task has to esti-mate whether the new model does improve the overall performance of thesystem.Feature terms provide a structured representation of knowledge. A problemto be solved by the system is represented as a collection of concepts with manyrelationships among them. This structured representation of precedents o�erthe capability of treating subparts of them as full-edged cases. That is to say, anew problem can be solved using subparts of multiple precedents retrieved fromthe episodic memory. This requires that new introspective mechanisms haveto be provided. We have developed three introspective mechanisms to accessthe episodic memory: access by path, that provides an access to the episodicmemory combining reective operations and path references; retrieval methods,that provide a mechanism for content-based access to the episodic memory; andperspectives, a mechanism to describe declarative biases for case retrieval in thestructured representation of cases.Content-based retrieval: Since knowledge in Noos is represented in a struc-tured way, retrieval methods have to deal with structured representations. Re-trieval methods allow to retrieve previous relevant episodes from the episodicmemory using relevance criteria. Relevance criteria are determined by speci�c

7.3. Methods and applications 181domain knowledge about the importance of di�erent features or by requirementsof problem solving methods. Several domain-speci�c retrieval methods have beendeveloped in Noos applications for solving the introspection task.Perspectives: In complex tasks, the identi�cation of the relevant aspects forretrieval in a given situation may involve the use of knowledge-intensive meth-ods. This identi�cation process requires dynamical decisions about the relevantaspects of a problem. Perspectives provide Noos with a mechanism for dynami-cally constructing retrieval patterns that specify the relevant aspects of a givenproblem. For instance, perspectives provide to gymel and Saxex applicationsa exible way to dynamically construct partial descriptions for retrieval.7.3 Methods and applicationsUsing the representation capabilities of Noos for modeling domain knowledge,problem solving knowledge, and learning, several PSMs and learning methodshave been developed and integrated in several applications.Based on the task/method decomposition principle, problem solving methodsthat use domain knowledge intensively can be designed and implemented. Forinstance, in the sham application several PSMs have been developed making anintensive use of background musical knowledge for harmonizing melodies. shammodels musical knowledge by means of (1) PSMs that identify which notes areimportant in the melody, (2) PSMs that propose alternative sets of feasiblechords according to these notes, and (3) PSMs that combine the alternativesconstructing a complete chord sequence.Furthermore, two complex musical theories for musical perception and musi-cal understanding are modeled in Saxex and are then used for analyzing musicalphrases and assessing their similitude with respect to other phrases in episodicmemory.Noos provides a collection of basic mechanisms allowing the developmentof di�erent symbolic learning methods such as inductive learning, CBR, andanalytical learning:� Inductive learning methods in Noos are search methods (that follow cer-tain biases) over the space of feature terms. Inductive learning methodsare based on the feature term subsumption and antiuni�cation operationsof Noos. Subsumption provides a generalization relationship over featureterms. The antiuni�cation of a set of feature terms builds a new featureterm that is a greatest lower bound with respect to the subsumption or-dering. Several strategies have been developed for constructing inductivelearning methods that follow di�erent searching biases.� Case-based reasoning methods in Noos are problem solving methods withlazy learning capabilities that search for previously solved problems in theNoos episodic memory. CBR methods are based on the retrieval and sub-sumption operations of Noos.

182 Chapter 7. Conclusions and Future WorkStructured representations of cases o�er the capability of treating subpartsof cases as full-edged cases. That is to say, a new problem can be solvedusing subparts of multiple cases retrieved from the episodic memory.On the other hand, structured representations of cases increase the com-plexity of retrieval mechanisms. Noos provides elements|such as content-based retrieval and perspectives|for supporting the retrieval on thesecomplex representations of cases.Furthermore, derivational analogy is automatically supported by the Noosreinstantiation mechanism.� Analytical learning methods in Noos are methods that given (1) a trainingexample whose problem task has been solved by a problem solving methodM and (2) an operationality criterion, they construct a new problem solvingmethod Mop for solving that task and obeying the operationality criterion.Analytical learning methods are based on the Noos introspective capa-bilities for inspecting the methods used in subtasks of M for solving thetraining example.Several persons at the IIIA have developed learning methods and integratedthem to applications. For instance, several domain speci�c case-based reasoningmethods have been developed in Noos and integrated to applications such aschroma, spin, gymel, and Saxex. Moreover, several inductive learning meth-ods such as indie, disc, and a lazy learning method (called lid) have beendeveloped by Eva Armengol in Noos and also integrated to chroma and spinapplications. Finally, an analytical method called plec has been also developedand presented in this thesis.We also presented how di�erent learning methods can be designed and in-tegrated in a problem solving system. Speci�cally, the research work realizedin [Armengol, 1997] provides examples of knowledge systems developed in Noosthat integrate di�erent learning methods such as case-based reasoning and in-ductive learning methods.Noos has been implemented using Common Lisp and currently is running onseveral platforms|including a window-based graphical interface for the Macin-tosh version of Noos.Finally, we want to remark that Noos has been used, and is also currentlyused, by several persons at the IIIA and by other people with collaboration withthe IIIA to develop di�erent applications that integrate several problem solv-ing methods and several learning methods. Speci�cally, we have described �veapplications developed using Noos and a WWW interface to Noos applicationssupporting the same interaction capabilities provided in the Noos window-basedgraphical interface developed for MacOS computers:� chroma, a system for recommending a plan for the puri�cation of proteinsfrom tissues and cultures using chromatographic techniques (developed byEva Armengol);

7.4. Future work 183� spin, a system for identifying specimens of Geodiidae marine sponge family(developed by Eva Armengol);� sham, a system for assisting a non expert musician to harmonize melodiesusing background musical knowledge (developed by Mart�� Cabr�e);� gymel, another system for assisting the harmonization of melodies thatuses a case-based reasoning approach (developed by Jordi Sabater);� Saxex, a case-based reasoning system for generating expressive perfor-mances of melodies based on examples of human performances that I havedeveloped in the context of my M.Sc.Thesis in Computer Music (this appli-cation has been awarded with the \Swets & Zeitlinger Distinguished PaperAward" at the 1997 International Computer Music Conference); and� NoosWeb, a WWW interface to Noos applications (developed by FranciscoMart��n).7.4 Future workFrom the work realized in this thesis several research lines appear to be su�-ciently interesting to pursue. Some of them have already started with a prelim-inary results.� A �rst research line is to extend the basic retrieval and subsumption mech-anisms provided in Noos enriching the comparison on numbers and strings.The work of G. Kamp [Kamp, 1997] on the admissibility of concrete do-mains can be adapted to Noos for this purpose.� Another extension of Noos is to provide an agent-based environment forthe cooperation between di�erent Noos applications and on an hetero-geneous environment. We have already started the study of how di�erentcase-based reasoning agents can cooperate in solving problems. We are de-veloping two modes of cooperation among CBR agents: Distributed Case-based Reasoning (DistCBR) and Collective Case-based Reasoning (Col-CBR). Intuitively, in DistCBR cooperation mode an agent Ai delegates itsauthority to another peer agent Aj to solve a problem|for instance whenAi is unable to solve it adequately. In contrast, ColCBR cooperation modemaintains the authority of the originating agent: an agent Ai can transmita mobile method to another agent Aj to be executed there. That is to say,Ai uses the experience accumulated by other peer agents while maintainingthe control on how the problem is solved. These preliminary results hasbeen presented on [Plaza et al., 1997] [Plaza et al., 1996a].� A third research line is to explore and extend the Noos capabilities forlearning from failure. The episodic model built in solving a problem taskstores the collection of preference orders between alternative methods for

184 Chapter 7. Conclusions and Future Worksolving a speci�c subtask and the method that has been e�ectively usedin that subtask. Using this information we can infer the set of methodsthat has been failed in achieving the task. Nevertheless, Noos does notmaintain the inference processes involved in the evaluation of these failedmethods. This kind of knowledge could be useful for detecting situationswhere a PSM is not able to �nd a solution and then, to avoid failures infuture problems.� Another research line already started is focused on the study of the degra-dation of the system performance when the cost of searching for relatedknowledge outweighs the bene�t of applying this knowledge. This prob-lem is called the utility problem in [Tambe et al., 1990] and [Minton, 1990].Di�erent strategies have been proposed for solving this problem andcould be useful also to Noos applications. Speci�cally, the researchon deletion strategies in the context of case-based reasoning such as in[Smyth and Keane, 1995] is a promising direction to follow.� Finally, a �fth research line already started is focused on developing newlearning methods. Speci�cally, we are exploring inductive methods foracquiring methods from examples (as in inductive logic programming).

Appendix AThe Noos DevelopmentEnvironmentThis Appendix describes the Noos development environment. The Noos languageis implemented using Common Lisp [Steele, 1990] and currently is running inseveral platforms. The main development platform is the MacOS (using MCL[Digitool, 1996]), but it is also available for Unix machines and PCs (both usingClisp1).The purpose of this Appendix is to show some of the tools implemented in theNoos development environment for assisting the modeling and constructing ofapplications in Noos. Our purpose is not to provide a user manual for developingapplications in Noos.A.1 De�ning feature terms in NoosThere are two ways of adding new terms in Noos: by de�ning descriptions in a�le and then loading the �le into the Noos environment2 or by directly typingdescriptions on the Noos listener. For instance, if we type the person's descrip-tion on the listener (as shown in Figure A.1) the returned value is <Person>,which is the \print-name" of the person feature term.Lazy evaluationLazy (on demand) evaluation means that no expression is evaluated unless itis needed for some computation. A description can thus refer to the name ofanother description even if it is de�ned later|on the listener or on the �lebeing loaded or on another �le. However, re�nement appearing on the root of adescription do require the constituent to be already de�ned. The reason is that1Clisp is a public domain Lisp available at <ftp://ma2s2.mathematik.uni-karlsruhe.de/pub/lisp/clisp>.2Files can be loaded by using the load Lisp function in the Listener.185

186 Appendix A. The Noos Development Environment

Figure A.1. De�ning a new feature term on the Noos listener.the outmost define in a description (the root) is evaluated when loading a �le ortyping on the listener. Anonymous descriptions appearing inside a descriptionare not evaluated until needed. For this reason subdescriptions can re�ne adescription that is de�ned later|or the same description being de�ned (seeFigure A.1 where father and mother features of person are de�ned recursivelyby re�nement of person).Compact descriptionsIn order to provide a more compact notation for the de�nition of closed methodsin features, the syntax of Noos is extended. Using this extended syntax, aclosed method de�ned by re�nement of a built-in method can be de�ned usinga position-based notation for specifying all of its required feature values.The syntax used for specifying compact descriptions is the following:(built-in-name param1 � � � paramn)where built-in-name is the name of a built-in method, and each param1, : : :,paramn is a feature value, a path reference, or a compact description. Compactdescriptions only can be used for specifying feature values.The order of the required features is �xed by Noos. Appendix C describes thenames of the built-in methods that accept compact descriptions and the orderof speci�cation of their required features.For instance, the compact notation for the identity?, the conditional,and the lower-than? built-in methods is the following:(identity? item1 item2)(if condition result otherwise)(< is-lower than)

A.1. De�ning feature terms in Noos 187where the names of the parameters indicate the speci�cation order for the re-quired features of each built-in method.Using the compact notation, the following two closed methods de�ned infeatures gas-gauge-reading and empty-level?:(define Bills-car(owner Bill)(gas-level-in-tank 2)((gas-gauge-reading (define (conditional)((condition (define (lower-than?)(is-lower (>> gas-level-in-tank))(than 5))))(result empty)(otherwise full))))((empty-level? (define (Identity?)(item1 empty)(item2 (>> gas-gauge-reading))))))can be equivalently speci�ed using the compact notation as follows:(define Bills-car(owner Bill)(gas-level-in-tank 2)(gas-gauge-reading (if (< (>> gas-level-in-tank) 5)emptyfull))(empty-level? (Identity? empty (>> gas-gauge-reading))))Note that the use of this compact notation requires that all required featureshave to be speci�ed and that no other features can be speci�ed. A second remarkis that compact descriptions are speci�ed using a single parenthesis in the sameway as path references. Another remark is that using the compact notation wecan only use compact descriptions for de�ning methods in the features|usingthe compact notation we can only de�ne feature values using either constantvalues, path references, or compact descriptions. Moreover, since the name ofthe features are not speci�ed, the position of the parameters determines thefeature that a parameter is referred to.The use of the compact notation allows also to de�ne compositions of thesame built-in method|such as arithmetic methods and methods for manipulat-ing sets|in a easy way. For instance, since the addition built-in method hastwo required features, the sum of three numbers a, b, and c, using the compactsyntax, has to be speci�ed as the following composition:(+ a (+ b c))This compact syntax is extended for de�ning compositions as follows:(+ a b c)For instance, we can de�ne the earnings of a speci�c company comp as thesum of the earnings of its three production-lines as follows:

188 Appendix A. The Noos Development Environment(define (Company Comp)(line-1 (define (production-line)(line-name cosmetics)(earnings 12000)))(line-2 (define (production-line)(line-name toys)(earnings 23000)))(line-3 (define (production-line)(line-name nourishment)(earnings 8000)))(earnings (+ (>> earnings line-1)(>> earnings line-2)(>> earnings line-3))))Multiple path referencesAnother language extension is to allow speci�cations of multiple path referencesin a feature. These multiple path references are interpreted using the unionbuilt-in method. In fact, the following description:(define Person(uncles (>> brothers of mother)(>> brother of father)))is a short syntax equivalent to the following description:(define Person((uncles (define (union)(item1 (>> brothers of mother))(item2 (>> brother of father)))))Engaging inferenceWhen a user types a path reference or an eval expression in the Listener, it isinterpreted as a query-expression to be answered by the system. The Listener,however, does not accept relative path references. The reason is that a relativepath reference only can be bound in the scope of a description. An alternativeway to engage the inference is directly using the pop-up menus provided in thebrowsers (see Section A.4).We have seen in Section 3.3.5 that, since reective operations are referencesto feature terms, path references and reective operations can be combined.These combined expressions are extended query-expressions that can be posedto the system in the listener. For instance, the following query-expression:(meta (>> father of Tom))asks for the metalevel of the person that is the father of Tom.Whenever Noos yields a solution value for a problem task, the user can forcebacktracking to the Noos inference engine to search for another solution valuefor the task using the force-backtracking command.

A.2. The prede�ned sort hierarchy of Noos 189For instance, let us assume that the following two descriptions have beenadded to Noos:(define (person professional)((phone-number (reify (>> phone-number spouse))(reify (>> phone-number home))(reify (>> phone-number works-in)))))(define (professional Carol)(spouse (define (person)(phone-number 3344)))(works-in (define (company)(phone-number 8766))))Then, we can pose the following query-expression to the listener:(>> phone-number of Carol)The answer yielded by Noos will be 3344. Next, forcing the backtrackingwith the force-backtracking command as follows:(force-backtracking)the inference is resumed in Noos yielding 8766. If we force backtracking oncemore, the value yielded by Noos will be Fail|the token that Noos yields forindicating that no more values can be inferred.A.2 The prede�ned sort hierarchy of NoosNoos provides an initial set of sorts with an order relation among them. Thereis a top sort called any. Any represents the minimum information and all theother sorts are more speci�c than any (for each sort S we have that any � S).Prede�ned sorts are (see Figure A.2):� all numbers and the sort number, with the order relations number � n forall numbers n,� all strings and the sort string, with the order relations string � s for allstrings s,� all symbols and the sort symbol, with the order relations symbol � s forall symbols s,� sorts boolean, true, and false with the order relations boolean � trueand boolean � false,� sorts set and empty-set with the order relation set � empty-set,� all built-in methods and the sort method, with the order relations method� m for all built-in methods m,

190 Appendix A. The Noos Development Environment

Figure A.2. The prede�ned sort hierarchy of Noos.

A.3. Episodic memory 191� sorts metalevel, default, and task.The complete set of prede�ned built-in methods is described in Appendix D.From this set of initial sorts new sorts can be de�ned, using re�nement, forspecifying the sort hierarchy for a given domain.A.3 Episodic memoryWhenever a problem task is solved by Noos, the user can decide to incorporatethe episodic model built to the Noos episodic memory using the freeze com-mand. For instance, after solving the phone-number of Carol we can type thefollowing command:(freeze Carol)that will incorporate the episodic model built in solving phone-number(Carol)problem task into the episodic memory.When an episodic model is incorporated to the episodic memory, no moreinference can be engaged on this episodic model.After solving a problem task, the user can decide not to incorporate theepisodic model built in solving the task. For this situation, the Noos environ-ment provides the forget! command. Specifying the forget! command overa feature term, the term is removed and will become inaccessible|and conse-quently no more inference can be engaged on this term.Noos provides a way to explicitly determine that a speci�c feature term hasnot to be incorporated to the episodic model using the :ephemeral token asfollowing:(define (constituent name) :ephemeral body)Speci�cally, the freeze command incorporates into the episodic memory allthe feature terms belonging to an episodic model, excepting those explicitelyspeci�ed as :ephemeral. For instance, the :ephemeral token is frequently usedin retrieval patterns because a retrieval pattern is a term that is only constructedfor retrieval purposes and it should not be retrieved in next problems.Customizing Episodic memorySince there are applications developed in Noos that will not require all the ca-pabilities provided by the episodic memory of Noos, episodic memory can becustomized for increasing the e�ciency of the system.A �rst option is to deactivate the episodic memory when the application doesnot use it. For instance, the sham application described in Section 6.3 solvesproblem tasks only using problem solving methods modeling background musicalknowledge. Thus, episodic memory capabilities are deactivated in sham sincethey are not used.Episodic memory can be deactivated using the exclude command with the:all token as follows:

192 Appendix A. The Noos Development Environment(exclude :all)Another option is to specify that some kind of terms are not to be incor-porated into the episodic memory. For instance, there are applications thatonly require the retrieval of feature values and do not reason about the meth-ods used in a speci�c task. These applications (such as Saxex chroma, spin,and gymel) do not require to introspect tasks, methods, and metalevels. Theexclude command can also be used for this purpose, as follows:(exclude task method metalevel)The exclude command accepts any combination of some of the three di�erentcategories speci�ed in the example: task, method, and metalevel. For instance,another legal option is the following:(exclude task metalevel)Finally, a third option is to specify that methods used in solving tasks canbe removed after their evaluation. This option requires methods to be excludedto the episodic memory. The advantage of this option is that the Noos memoryrequired by an application is lower. The disadvantage is that neither reectiveoperations nor browsers over the methods can be applied. The compact-methodscommand can be used for activate and deactivate this option using the followingsyntax respectively:(compact-methods t)(compact-methods nil)A.4 BrowsingThe Noos development environment provides four types of graphical browsingfacilities: a feature term browser, a task/method decomposition browser, a taskstructure browser, and a re�nement hierarchy browser.There are two possibilities for browsing: using a text-based browser thatcan display into the listener or into a �le, or using a window-based graphicalinterface. The �rst option is available for all the implementations of Noos. Thewindow-based browsers are only available on the MCL implementation.Text-based browsers and window-based browsers can be displayed typingspeci�c browsing commands on the listener. Window-based browsers can bealso displayed using the Noos menu developed for the MCL version.A.4.1 Feature term browserThe feature term browser provides a graphical representation of a feature term.The browse command can be used to start a feature term browser using thefollowing syntax:(browse name [depth])

A.4. Browsing 193

Figure A.3. A browser of the score of `Autumn Leaves' ballad from Saxexapplication. A pop-up menu has been activated by clicking the P 157 node.where name is an identi�er of a feature term and depth is an optional integernumber indicating the depth level of the term to be displayed. The default valuefor the depth level for all the Noos browsers is 3.For instance, a browser of the �rst phrase of the `Autumn Leaves' balladfrom Saxex application (described in Section 6.5) can be started by the followingcommand:(browse Autumn-A-Score)obtaining the browser window of Figure A.3. Note that terms are displayedas graphs with nodes representing their identi�ers as thick boxes; features arerepresented as thin boxes; ellipsis (three dots) indicate nodes amenable to beexpanded; and gray boxes express references to existing nodes|nodes expandedin another place in the window.Using the default value for the depth parameter (3), a feature term browserdisplays a root node (depth 1) and their features: the feature names (depth 2)and the feature values (depth 3). All feature values amenable to be expandedare indicated with ellipsis.

194 Appendix A. The Noos Development EnvironmentMany browsers can be open at the same time. Each browser is displayed in adi�erent window. Browsers can be dynamically expanded using pop-up menus.Speci�cally, there are two kinds of pop-up menus: one for nodes and another forfeatures (in Figure A.3 a pop-up menu for terms is shown).The pop-up menu unfolded when the user clicks on a node box has thefollowing ten commands:� Expand : the expand command allows to expand a node's term displayingits features. The features are displayed without engaging the inference oftheir values (i.e. only computed and constant values are shown). When afeature value is neither a constant value nor it has been inferred, a nodewith label Unknown is displayed. The expand command performed on thisunknown node will engage the inference of that feature value. The resultyielded is a node with the value, if it can be inferred, or, otherwise, a nodewith the FAIL label.� Hide: the hide command is the converse command to expand: the featuresof a node are hidden and ellipsis are displayed for indicating that the nodeis amenable to be expanded.� Metalevel : the metalevel command starts a new browser displaying themetalevel term of the selected node. When the metalevel has not beende�ned, no new browser is started.� Default metalevel : the default metalevel command starts a new browserdisplaying the default metalevel term of the selected node. When thedefault metalevel is not de�ned, no new browser is started.� Referent : the referent command is the converse command to the metalevelcommand. The referent command starts a new browser displaying thereferent term of the selected node. When the referent does not exist, nonew browser is started.� Inspect : the inspect command starts the inspector of Lisp. We have ex-tended the Lisp inspector for displaying Noos terms.� New browser : the new browser command starts a new browser displayingthe selected node. This command is not allowed over the root node. Ifthere is another browser where the selected node is the root, this browserwindow is activated and no new browser is started.� Browse RH : the browse RH command starts a re�nement hierarchybrowser with the sort of the selected node as root (see Section A.4.4).� Complete features : Following the lazy approach of inference in Noos, inde�nitions by re�nement, features de�ned in the constituent are only in-corporated to the re�ned term when they are needed for any computation.This means that when a term is expanded in a browser only features de-�ned in the term and features inferred in some problem task will be dis-played. The complete features command forces to display all the features

A.4. Browsing 195de�ned. This option only displays features without engaging the inferencefor their values. Next, the user can use the expand command for engagingthe inference in a speci�c feature.� Query : �nally, the query command on a node allows to engage the inferenceon any feature for that node by means of specifying a feature name.The pop-up menu unfolded when the user clicks on a feature box has thefollowing six options:� Expand : the expand command, analogously to the previous pop-up menu,allows to expand a feature displaying its value. The value is displayedwithout engaging inference. When the feature value is neither a constantvalue nor it has been inferred, a node with label Unknown is displayed.� Hide: the hide command is the converse command to expand: the featurevalue of a feature is hidden.� Task : the task command starts a new browser displaying the task term ofthe selected feature.� Method : the method command starts a new browser displaying the methodterm de�ned for the selected feature. When no method is de�ned, no newbrowser is started.� Task structure: the task structure command starts a task structure browserdisplaying the episodic model constructed for inferring the value of thefeature (see Section A.4.3).� Task decomposition: the task decomposition command starts a browserdisplaying the task/method decomposition de�ned for the selected feature(see Section A.4.2).The text-based version of a feature term browser can be obtained using thetbrowse command. For instance, the score shown in Figure A.3 yielded by thefollowing command:(tbrowse Autumn-A-Score 5)obtaining the text-based browser presented in Figure A.4.A.4.2 Task/method decomposition browserThe task/method decomposition browser provides a graphical representationof the recursive decomposition of a task into subtasks by means of methods.That is to say, this kind of browser provides a graphical representation for theproblem solving knowledge (See Section 3.1). The browse-task command andthe browse-method command can be used, respectively, to start a browser fora speci�c task or a browser for a speci�c method using the following syntaxrespectively:

196 Appendix A. The Noos Development EnvironmentfAutumn-A-Score(Melody fNote 155(Pitch E4)(Position -3)(Duration Q)(Metrical-Strength fMediumg)(Underlying-Harmony fChord 154g)(Belongs-To P 157)(Next fNote 156g)g)(Harmony fChord 154(Name Cmaj7)(Position 0)(Duration W)(Next fChord 155g)g)gFigure A.4. A text-based feature term browser of the score of `AutumnLeaves' ballad from Saxex application.(browse-task task-name term-name [depth])(browse-method method-name [depth])For instance, a browser of the task/method decomposition ofgeneral-diagnosis method following [Benjamins, 1993] can be startedby the following command:(browse-method general-diagnosis)obtaining the browser window of Figure A.5. Tasks are drawn with thick boxes;methods are drawn with thin boxes; and ellipsis indicate the nodes amenable tobe expanded.Note that a method can be displayed using a feature term browser and usinga task/method decomposition browser. Nevertheless, the information displayedin each browser is di�erent. The �rst one shows the method's (sub)tasks andtheir values; the task/method decomposition browser shows the method's tasksand their (sub)methods.Many task/method decomposition browsers can be open at the same timeand each browsing is displayed in a di�erent window. Browsers can also bedynamically expanded using pop-up menus. Similarly to feature term browsers,there are two kinds of pop-up menus: one pop-up menu for methods and anotherfor tasks.The set of commands allowed in methods are the same as before, excludingthe query command: expand, hide, metalevel, default metalevel, referent, inspect,new browser, browse RH, and complete features.The set of commands allowed in tasks are the following: expand, hide, refer-ent, inspect, and new browser.

A.4. Browsing 197

Figure A.5. A browser of the task/method decomposition for the generaldiagnosis method.The text-based version of a task/method decomposition browser can be ob-tained using the tbrowse-task and the tbrowse-method commands. For in-stance, the task/method decomposition for the general diagnosis method shownin Figure A.5 yielded by the following command:(tbrowse-method General-Diagnosis 3)will be the following:fGeneral-Diagnosis(Detect-Complaint fAsk-UsergfClassifygfCompareg)(Generate-Hypothesis fModel-Based-Hypothesis-GenerationgfEmpirical-Hypothesis-Generationg)(Discriminate-Hypothesis fDiscriminationg)gA.4.3 Task structure browserThe task structure browser provides a graphical representation of the part ofthe episodic model concerning the methods and subtasks e�ectively involved in

198 Appendix A. The Noos Development Environment

Figure A.6. A task structure browser from the episodic model of problemtask empty-level?(Bills-car).solving a speci�c problem task. The browse-stask command can be used tostart a browser for a speci�c task using the following syntax:(browse-stask feature-name term-name [depth])For instance, a task structure browser from the episodic model of problemtask empty-level?(Bills-car) can be started by the following command:(browse-stask empty-level? Bills-car)obtaining the browser window of Figure A.6. Each node in the browser shows atask and the method that has solved that task. The upper part shows the taskname and the lower part shows the method printname.Note that only the subtasks e�ectively involved in solving a speci�c methodare displayed. For instance, the subtask decomposition of the conditional 110method of Figure A.6 is only composed of the condition task and the resulttask since the result of the condition task is true.Another example of a task structure browser built after solving thecup?(Obj1) problem task can be found in Section 4.7.Task structure browsers can also be dynamically expanded using pop-upmenus. The pop-up menus have the following �ve commands: expand, hide,referent, inspect, and new browser.Note that the referent of a task is the result value inferred by the evaluationof its method (see Section 3.3.5).The text-based version of a task structure browser can be obtained using thetbrowse-stask command. For instance, the task structure from the episodic

A.4. Browsing 199fSaxex-sortgfSaxex-ProblemgfScore-elementgfPhrasegfNotegfChordgfAnalysis-ElementgfPhrase-AnalysisgfNstructuregfTime-Span-NodegfProl-Reduc-NodegfPerformance-ElementgfPhrase-PerformancegfEventgfLabelgFigure A.7. A text-based feature re�nement hirerarchy browser of the Saxexapplication.model of problem task empty-level?(Bills-car) shown in Figure A.6 yieldedby the following command:(tbrowse-stask empty-level? Bills-car 8)will be the following:(Empty-Level?(Bills-Car)fIdentity? 109(Item1 fEmptyg)(Item2 fInfer-value (>> Gas-Gauge-Reading)(Feature 'Gas-Gauge-Reading)(Domain fBills-Carg)(Gas-Gauge-Reading(Bills-Car)fConditional 110(Condition fLower-Than 112g)(Result fTrueg)g)g)g)A.4.4 Re�nement hierarchy browserFinally, the re�nement hierarchy browser provides a graphical representation ofthe sort hierarchy de�ned in developing a speci�c application re�ning the built-insort hierarchy of Noos. The browse-RH command can be used to start a browserfrom a speci�c sort using the following syntax:(browse-RH sort-name [depth])For instance, the re�nement hierarchy browser de�ned for the Saxex appli-cation can be started by the following command:

200 Appendix A. The Noos Development Environment

Figure A.8. A re�nement hierarchy browser from the Saxex application.

A.5. Tracing 201(browse-RH Saxex-sort)obtaining the browser window of Figure A.8.This kind of browsers can also be dynamically expanded using pop-up menus.The pop-up menus have the following four commands: expand, hide, inspect, andnew browser.The text-based version of a re�nement hierarchy browser can be obtainedusing the tbrowse-rh command. For instance, the re�nement hierarchy browserde�ned for the Saxex application shown in Figure A.8 yielded by the followingcommand:(tbrowse-rh Saxex-sort 3)obtaining the text-based browser presented in Figure A.7.A.5 TracingThe Noos development environment provides two commands for tracing the in-ference: usual-trace and trace-feature.The usual-trace command enables a complete trace of the inference. Thetrace can be disabled using the no-trace command. Examples of Noos traceshave already shown in Section 3.2.5 and in Section 3.5.Figure A.9 shows the trace generated in solving theempty-level?(bills-car) problem task that has the episodic model dis-played in Figure A.6.The trace-feature command enables a selective trace on a set of featurenames speci�ed by the user. Since the complete trace generated in solving acomplex problem task may be too large, the trace-feature trace option allowsto trace only the representative features.The trace-feature command is disabled using the disable-trace com-mand. Both commands usual-trace and trace-feature can be used simulta-neously.For instance, the inference trace generated in solving problem taskempty-level?(bills-car) with three features selected for trace as follows:(trace-feature empty-level? gas-gauge-reading gas-level-in-tank)will be the following trace:(>> empty-level? of bills-car)1 Query: empty-level?(<bills-car>)2 Query: gas-gauge-reading(<bills-car>)3 Query: gas-level-in-tank(<bills-car>)4 Result: 25 Result: <empty>6 Result: <true><true>

202 Appendix A. The Noos Development Environment(>> empty-level? of bills-car)1 Eval: <Infer-value (>> empty-level? of bills-car)>2 =)3 Task: empty-level?(<bills-car>)4 Eval: <identity? 109>5 =)6 Task: item1(<identity? 109>)7 Value: <true>8 Task: item2(<identity? 109>)9 Eval: <Infer-value (>> gas-gauge-reading)>10 =)11 Task: feature(<Infer-value (>> gas-gauge-reading)>)12 Value: 'gas-gauge-reading13 Task: domain(<Infer-value (>> gas-gauge-reading)>)14 Value: <bills-car>15 Task: gas-gauge-reading(<bills-car>)16 Eval: <conditional 110>17 =)18 Task: condition(<conditional 110>)19 Eval: <lower-than? 112>20 =)21 Task: is-lower(<lower-than? 112>)22 Eval: <Infer-value (>> gas-level-in-tank)>23 Value: 224 Task: than(<lower-than? 112>)25 Value: 526 (=27 Value: <true>28 Task: result(<conditional 110>)29 Value: <empty>30 (=31 Value: <Empty>32 (=33 Value: <Empty>34 (=35 Value: <true>36 (=37 Value: <true><true>Figure A.9. The trace generated in solving the empty-level?(bills-car)problem task.

A.6. Extending built-in methods 203A.6 Extending built-in methodsNoos provides a collection of basic built-in methods. Nevertheless, some applica-tions may require speci�c elementary methods that are not provided. Noos allowsa simple way to incorporate new built-in methods using the Define-Built-Inmacro and Lisp expressions. This macro allows to de�ne a new built-in methodby means of specifying a name for the method, the set of required features ofthe method, and a Lisp expression performing a speci�c combination of requiredfeatures. The syntax is the following:(define-built-in name (param1 : : : paramn) lisp-expression)where name is the name of the new built-in method we are de�ning; param1: : : paramn are the names of the required features for the built-in; and lisp-expression is the expression that implements the built-in method. Inside thelisp expression values of required features can be accessed by using the namesof required features as variables.For instance, the subtract built-in method is de�ned as follows:(Define-Built-In Subtract (amount minus) (- amount minus))Moreover, we have to specify the new description of the method in Noosde�ning the subtract term as follows:(define (method Subtract)(amount)(minus))The de�nition of a new built-in method can be speci�ed in a �le and thenloaded into the Noos environment.

Appendix BGlossaryThe purpose of this appendix is to provide a collection of de�nitions about theset of di�erent concepts involved in Noos language as well as a reference to thesection of the memory in which are de�ned.In this glossary, terms appearing in boldface indicate they are de�ned inthe glossary. Often we will use term as a shorthand for feature term (and willnot appear in boldface).Anonymous terms | A term that has no identi�er, it can be ref-erenced only by its position (as a subterm of other terms). Forinstance, in (define (person Jack) (girlfriend (define (girl))))the girlfriend of Jack is anonymous and can only be referenced by(>> girlfriend of Jack). (x 3.2.2).Antiuni�cation | A basic operation de�ned in Noos that given two termsconstructs another term holding which is common to both (yielding thenotion of generalization) and all that is common to both (the most speci�cgeneralization). Formally, the antiuni�cation of a set of terms yields agreatest lower bound with respect to subsumption ordering. (x 4.6).Any | The highest sort in the Noos re�nement hierarchy. Any represents theminimum information and all the other sorts are more speci�c than any.See also single description. (x 3.2.2).Built-in method | A Noos prede�ned method. Examples of Noos built-inmethods are arithmetic operations, set operations, logic operations, op-erations for comparing feature terms, and other basic constructs such asconditional or sequencing. (x 3.2.4, x D).Domain knowledge | Speci�es a set of concepts, a set of relations amongconcepts, and problem data that are relevant for an application. Conceptsand relations de�ne the domain ontology of an application. (x 3.1).Constant term | A feature term that is not amethod{i.e. is not evaluable.(x 5.2). 205

206 Appendix B. GlossaryConstituent | The constituent of a term T is the identi�er of a term T' fromwhich T has been constructed by re�nement. (x 3.2.2).Current-task | A reective operation that allows to refer to the task inwhich a method is involved. (x 3.3.5).Default | Reective operator that allows to refer to the default metalevelterm of a term. x 3.3.5.Default metalevel | A special kind of metalevel that applies to all thefeatures of its referent. In a default metalevel we can specify a method(or a set of methods) for any feature of a referent. (x 3.3.2).Description | The syntax Noos uses for constructing feature terms. Thedescription syntax is based on lists (like Lisp) starting with token define.For instance, (define (person man)). (x 3.2.1).Episodic knowledge | The rei�cation of part of the behavior of the sys-tem represented in Noos. Episodic knowledge is is organized in episodicmodels and stored in the episodic memory. (x 3.1, x 4.1).Episodic memory | Episodic memory is the (accessible and retrievable)collection of the episodic models of the problems that a system has solved.(x 4.1).Episodic model | The explanation of the inference process engaged by Noosin solving a speci�c problem task. An episodic model holds the set ofknowledge pieces used for solving a speci�c problem task, how and wherethey were used, and the decisions taken for solving that problem. (x 4.1).Ephemeral term | A term that is not memorized|and thus, it is notamenable to retrieval. (x A).Evaluable term | A kind of feature term that models Noosmethods. Evalu-able feature terms are interpreted as functions. (x 5.9).Failure | In a speci�c subtask, a failure occurs when no value for that taskcan be inferred|and causes backtracking at that point. When a globalfailure occurs, the token fail is returned. (x 3.5).Feature term | The basic data structure of Noos. They can be seen as ageneralization of �rst order terms and lambda terms. They are extend-able records organized in a subsumption hierarchy. Feature terms areconstructed by means of descriptions and the re�nement constructor.(x 5.2, x 5.6).Identi�er | An identi�er is a symbol denoting a term. Terms that havean identi�er are named terms, otherwise they are anonymous terms.(x 3.2.2).

207Introspection | In Noos, the capability of accessing to and reasoning aboutthe episodic memory.Labeled graph representation | A term can be represented as a labeleddirected graph that has, for each variable X : s, a node q labeled with sorts, and has an arc from q to another node q0 labeled by f , for each featuref de�ned in q with feature value q0. (x 5.7).Matching | See subsumption.Memorization | The property of permanent terms to be stored inepisodic memory and be amenable to retrieval. (x 4.1).Meta | Reective operator that allows to access to the metalevel term of aterm. (x 3.3.5).Metalevel | A feature term in a metalevel relationship with a referent termB. The features of the referent B have a corresponding feature with thesame name on the metalevel. A feature f of the metalevel has as featurevalue the set of methods methods that are applicable to the feature f ofthe referent B. (x 3.3.1).Metalevel knowledge | Knowledge about domain knowledge, problemsolving knowledge, and episodic knowledge. Metalevel knowledgeis formed by metalevel concepts, metalevel relations, metalevel tasks, andmetalevel methods. Moreover, metalevel knowledge includes preferences.(x 3.1, x 3.3).Method | An evaluable feature term. Formally, a function that receivesparameters by feature names. A method term is closed when it possess allrequired parameters. Methods are de�ned by re�nement. (x 3.2.4).Named Term | A term with an identi�er. A named term can be referencedby its identi�er using (>> of NamedTerm) although syntactic sugar allowsin some places to write only NamedTerm. (x 3.2.2).Node | See labeled graph representation.Path reference | A list that starts with the >> token. There are two kindsof path references: absolute and relative path references. An example ofan absolute path reference is (>> symptom of car). An example of arelative path reference is (>> price model). (x 3.2.3).Permanent terms | Feature terms that are memorized (see memoriza-tion) and, thus, amenable to retrieval. (x A).Perspective | A mechanism for describing declarative biases for Noos re-trieval. (x 4.3).

208 Appendix B. GlossaryPreferences | Model decision making about sets of alternatives present indomain knowledge and problem solving knowledge. Furthermore,preferences are used in Noos as a symbolic representation of relevance incomparing a given current problem with problems previously solved by thesystem. (x 3.4).Problem solving knowledge | Problem solving knowledge speci�es a setof tasks and methods that construct a model of a problem (solve a prob-lem). For a given subtask there may be multiple alternative methods thatmay be capable of solving that subtask in di�erent situations. A methodcan be decomposed into subtasks that may be achieved by other methods.(x 3.1).Problem task | A task engaged by a query expression. A problem taskF(D) engages the inference to determine the feature value for feature F offeature term D. (x 3.2.5).Query expression | A question that is posed to the system. Usu-ally, a query expression is asking for a feature value, as in(>> diagnosis of patient-33). Since evaluation in Noos is lazy, no fea-ture values are inferred until a query is performed|and only those featurevalues needed will be computed. (x 3.2.5).Reference | See identi�er and path reference.Referent | The referent of a metalevel is that term it is metalevel of. Thereferent of a task is the result value of that task. Furthermore, the referentreective operator allows to access to the referent|if it exists|of a term.(x 3.3.1, x 3.3.5).Re�nement | A constructor operation that builds a term from another (al-ready de�ned) term. Re�nement involves two distinct aspects: (1) codereuse (the construction of a term by reusing another term) and, (2) sub-typing (the de�nition of a domain-speci�c sort hierarchy). (x 3.2.2).Reective operator | An operation that allows to access and to inspectthe metalevel knowledge (see operations namely meta, default, task,current-task, and referent). (x 3.3.5).Rei�cation | The process by which a Noos expression is converted into anobject (a feature term). Rei�cation is performed by the reify construct.(x 3.3.6).Reify | A construct that takes a path reference or a compact description andbuilds an method that rei�es it.Retrieval | A mechanism for content-based access to the episodic memory.Noos provide a set of basic retrieval methods. Retrieval methods allowto retrieve previous relevant episodes from the episodic memory usingrelevance criteria. (x 4.2).

209Root | The root node of a feature term is the outmost node in adescription. For instance, the root in the following description(define (person :id Jack) (girlfriend (define (girl)))) is thenode of sort person with identi�er Jack. (x 3.2.2).Single description | Compact syntax for de�ning feature terms by re�ne-ment of the top sort any. A description such as (define foo) is just ashort syntax equivalent to (define (any foo)). (x 3.2.2).Sort | A symbol that denotes a set of the individuals of a domain. Sortsform a collection of partially ordered symbols. A set of prede�ned sortsare de�ned in Noos. New sorts are de�ned using re�nement. In Noos thetop sort is called any. (x 3.2.2, x 5.2.2, x A).Subsumption | Informational ordering among feature terms. We say thata feature term subsumes another feature term 0 when all informationin is also contained in 0|or in other words, is more general than 0.(x 5.6).Symbol | See identi�er.Task | Tasks reify the status of the inference in the language. A given taskrei�es the inference status for a feature of a term. Tasks embody episodicknowledge such as the method that has succeeded in achieving that task(the method used to infer the feature value of the feature) and the resultof the evaluation of the method (the feature value). (x 3.3.4).Transparent methods | Noos methods are transparent. The transparentcapability of Noos methods allows to perform forms of inference that needto inspect and reason about methods and how they have been used to solveparticular tasks. This capability of Noos methods is used, for instance, inanalytical learning methods. (x 4.1).

Appendix CThe Noos SyntaxThis Appendix describes the syntax of Noos using BNF notation. We writeprede�ned terminal symbols, that are part of the Noos language, in typewriterfont. We write user-de�ned identi�ers in italic font. We write non-terminalsymbols in normal type face. Symbols ::=, [,] j, *, + are part of the BNFformalism as follows:L ::= R de�nes the syntax of L as R[X] de�nes an optional itemX j Y de�nes two alternative options X and YX+ de�nes one or more occurrences of XX* de�nes zero or more occurrences of Xtop-level-expression ::= descriptionj query-expressiondescription ::= single-descriptionj named-descriptionj anonymous-descriptionj set-descriptionj named-metalevel-descriptionj anonymous-metalevel-descriptionj named-default-descriptionj anonymous-default-descriptionsingle-description ::= (define name [:ephemeral]feature-description*)named-description ::= (define (constituent [:id] name) [:ephemeral]feature-description*)211

212 Appendix C. The Noos Syntaxanonymous-description ::= (define (constituent) [:ephemeral]feature-description*)set-description ::= (define (set name)[name j anonymous-description]*)named-metalevel-description ::= (define (metalevel name) [:ephemeral]feature-description*)anonymous-metalevel-description::= (define (metalevel (meta+ of name))[:ephemeral]feature-description*)named-default-description ::= (define (default name)[name j anonymous-description]*)anonymous-default-description ::= (define (default (default meta* of name))[name j anonymous-description]*)feature-description ::= (feature-name v-expression*)j ((feature-name v-expression+))v-expression ::= namej 'symbol j string j numberj anonymous-descriptionj path-referencej eval-expressionj compact-methodj rei�cationj metalevel-operationquery-expression ::= path-referencej eval-expressionj metalevel-operationpath-reference ::= (>> v-expression* [of v-expression])j (!>> v-expression* [of v-expression])j (?>> v-expression* [of v-expression])j (*>> v-expression* [of v-expression])eval-expression ::= (noos-eval [v-expression])j (known-eval [v-expression])j (exists-eval [v-expression])j (all-eval [v-expression])

C.1. Compact syntax for closed methods 213compact-method ::= (name v-expression*)rei�cation ::= (reify v-expression)metalevel-operation ::= (meta [v-expression])j (default [v-expression])j (referent [v-expression])j (current-task [v-expression])j (task v-expression [of v-expression])C.1 Compact syntax for closed methodsCompact methods allows the de�ntion of closed methods by position insteadof by name. Since de�nition by position assumes that required features of abuilt-in method are speci�ed in a particular order, we introduce here, for eachbuilt-in method, the name of the method in compact syntax (using typewriterfont) and the assumed order of parameters (inside angles). Parameters can beany v-expression such as a feature value.When we use the compact syntax we have to specify a value for all therequired features and only the required features can be speci�ed. Otherwise anerror is produced.Compact syntax for built-in methods such as conjunction, disjunction,union, intersection, add, mult, max, and min allows the de�nition of n ar-guments. In fact, these de�nitions are translated as a composition of compactexpressions. For instance, the following compact expression:(max 1 3 5 4 2)is translated to the following compact expression:(max 1 (max 3 (max 5 (max 4 2))))Compact syntax for Noos built-in methods is the following:conditional ::= (if <condition> <result> [<otherwise>])not ::= (not <item>)conjunction ::= (and <item1> <item2> � � � <itemn>)disjunction ::= (or <item1> <item2> � � � <itemn>)di�erence ::= (difference <set1> <set2>)member ::= (member <element> <set> [<test>])union ::= (union <set1> <set2> � � � <setn>)

214 Appendix C. The Noos Syntaxintersection ::= (intersection <set1> <set2> � � � <setn>)empty-set? ::= (empty-set? <set>)cardinal ::= (cardinal <set>)add ::= (+ <item1> <item2> � � � <itemn>)subtract ::= (- <amount> <minus>)mult ::= (* <item1> <item2> � � � <itemn>)div ::= (/ <item1> <item2>)max ::= (max <item1> <item2> � � � <itemn>)min ::= (min <item1> <item2> � � � <itemn>)higher-than? ::= (> <is-higher> <than>)higher-equal-than? ::= (>= <is-higher> <than>)lower-than? ::= (< <is-lower> <than>)lower-equal-than? ::= (<= <is-lower> <than>)identity? ::= (identity? <item1> <item2>)subsumption ::= (subsumes? <pattern> <source>)equivalence ::= (equivalent? <item1> <item2>)

Appendix DBuilt-in MethodsThis Appendix describes the collection of all Noos built-in methods. The goal ofthis Appendix is to specify the inference involved in the evaluation of each built-in method. We will not provide examples of their use in Noos. Each built-inmethod is described in three parts:1. First, we will describe its required features indicating the least required sortfor each feature, and the least sort of the value yielded in the evaluationof the method. We will use the following format:method-name[par1 := s1 � � � parn := sn] �! swhere method-name is the name of the built-in method; par1; : : : ; parnare the names of the required features for the method; s1; : : : ; sn are theleast required sorts of values for each required feature; and s is the leastsort of the value yielded in the evaluation of the method.When least required sorts for feature values are not preserved, an error isproduced.2. Then, a brief description of the evaluation of the method will be provided.We will talk about feature values using their pari names. For instance,item1<item2 means that value of feature item1 is lower to value of featureitem2.3. Finally, the corresponding inference rule, using DDL notation, will be in-troduced.D.1 GeneralConditional[condition := boolean result := fanyg otherwise := fanyg] �! fanyg215

216 Appendix D. Built-in MethodsThe conditional method performs �rst the subtask condition and de-pending on its result being true or false, either the result subtask or theotherwise subtask is performed, and its result is the value yielded by con-ditional method.Inference rules �condm performing the evaluation of a conditional methodm are the following:�condm = condition := trueresult := c0result(m) := c0 ; �condm = condition := falseotherwise := c0result(m) := c0Sequence [] �! fanygThe sequence method allows the de�nition of a sequential chaining ofsubtasks (relatively to the writing order) and its result is the value yieldedby the last subtask. Sequence has no required features but, at least, onesubtask has to be de�ned. The names of the subtasks can be any featurename.Since the name of the subtasks are not predetermined, given a speci�c se-quence method m with subtasks t1; : : : ; tn, the evaluation of m is formal-ized as the sequence of task programs �m:t1; : : : ;�m:tn (see Section 5.13.4)followed by an inference rule �seqm as follows:�seqm = tn := cresult(m) := cD.2 Comparison methodsNoos provides three di�erent comparison methods for testing equality and in-clusion relationships between of two feature terms. The identity? methodis the most speci�c, the subsumption method is the most general, and theequivalence method is more general than identity? and more speci�c thansubsumption.Identity? [item1 := any item2 := any] �! booleanThe identity? method compares if the values of features item1 and item2are the same yielding as result true when are the same and false otherwise.Inference rules �id?m performing the evaluation of an identity? method mare the following:�id?m = item1 := c1item2 := c1result(m) := true ; �id?m = item1 := c1item2 := c2result(m) := false

D.3. Filter methods 217Subsumption [source := fanyg pattern := any] �! booleanThe subsumption method checks if pattern subsumes source yielding asresult true when pattern subsumes source and false otherwise (see Sec-tion 5.6).Inference rules �subsumm performing the evaluation of a subsumptionmethod m are the following:
�subsumm = source := c1pattern := c2\c1 v c2"result(m) := true ; �subsumm = source := c1pattern := c2\c1 6v c2"result(m) := falseEquivalence [item1 := any item2 := any] �! booleanThe equivalence method checks if item1 subsumes item2 and item2 sub-sumes item1 yielding as result true when this is the case and false other-wise.Inference rules �equivm performing the evaluation of an equivalencemethodm are the following:
�equivm = source := c1pattern := c2\c1 v c2 ^ c2 v c1"result(m) := true ; �equivm = source := c1pattern := c2\c1 6v c2 _ c2 6v c1"result(m) := falseD.3 Filter methodsSubsumption-matching [pattern := any sources := fanyg] �! anyThe subsumption-matching method yields an element of the set infeature sources such that is subsumed by pattern. Backtracking on asubsumption-matching method yields, consecutively, all other elementsfrom sources also subsumed by pattern (see next).Filter-by-subsumption [pattern := any sources := fanyg] �! fanygThe �lter-by-subsumption method yields the subset of elements ofsources such that are subsumed by pattern.The �lter-by-subsumption method is de�ned using the subsumption-matching method and by re�nement of the all-eval method as follows:(define (All-Eval Filter-By-Subsumption)(pattern)(sources)(methods (define (Subsumption-Matching)(pattern (>> pattern))(sources (>> sources))))

218 Appendix D. Built-in MethodsD.4 Arithmetic methodsAll the arithmetic methods require that the values of their required featuresbe numbers. A non-number value in a feature produces an error. Moreover,each method works on all types of numbers and automatically performs anyrequired coercions when parameters are of di�erent types in the same way thatCommonLisp.Add [item1 := number item2 := number] �! numberThe add method yields the sum of item1 and item2.The inference rule �addm performing the evaluation of an add method m isthe following: �addm = item1 := c1item2 := c2\c0 = c1 + c2"result(m) := c0Subtract [amount := number minus := number] �! numberThe subtract method yields the subtraction of amount and minus.The inference rule �subm performing the evaluation of a subtract methodm is the following: �subm = amount := c1minus := c2\c0 = c1 � c2"result(m) := c0Mult [item1 := number item2 := number] �! numberThe mult method yields the product of item1 and item2.The inference rule �multm performing the evaluation of a mult method mis the following: �multm = item1 := c1item2 := c2\c0 = c1 � c2"result(m) := c0Div [item1 := number item2 := number] �! numberThe div method yields the division of item1 by item2.The inference rule �divm performing the evaluation of a div method m isthe following:

D.4. Arithmetic methods 219
�divm = item1 := c1item2 := c2\c0 = c1=c2"result(m) := c0Max [item1 := number item2 := number] �! numberThe max method yields the greatest number of item1 and item2.Inference rules �maxm performing the evaluation of a max method m arethe following:�maxm = item1 := c1item2 := c2\c1 > c2"result(m) := c1 ; �maxm = item1 := c1item2 := c2\c1 � c2"result(m) := c2Min [item1 := number item2 := number] �! numberThe min method yields the least number between item1 and item2.Inference rule �minm performing the evaluation of a min method m are thefollowing:�maxm = item1 := c1item2 := c2\c1 < c2"result(m) := c1 ; �maxm = item1 := c1item2 := c2\c1 � c2"result(m) := c2D.4.1 Numeric comparisonsHigher-than? [is-higher := number than := number] �! booleanThe higher-than? method yields true if is-higher is higher than than.Otherwise yields false.Inference rules �>m performing the evaluation of a higher-than? methodm are the following:�>m = is-higher := c1than := c2\c1 > c2"result(m) := true ; �>m = is-higher := c1than := c2\c1 � c2"result(m) := falseHigher-equal-than? [is-higher := number than := number] �! booleanThe higher-equal-than? method yields true if is-higher is higher orequal than than. Otherwise yields false.

220 Appendix D. Built-in MethodsInference rules ��m performing the evaluation of a higher-equal-than?method m are the following:��m = is-higher := c1than := c2\c1 � c2"result(m) := true ; ��m = is-higher := c1than := c2\c1 < c2"result(m) := falseLower-than? [is-lower := number than := number] �! booleanThe lower-than? method yields true if is-lower is lower than than. Oth-erwise yields false.Inference rules �<m performing the evaluation of a lower-than? methodm are the following:�<m = is-lower := c1than := c2\c1 < c2"result(m) := true ; �<m = is-lower := c1than := c2\c1 � c2"result(m) := falseLower-equal-than? [is-lower := number than := number] �! booleanThe lower-equal-than? method yields true if is-lower is lower or equalthan than. Otherwise yields false.Inference rules ��m performing the evaluation of a lower-equal-than?method m are the following:��m = is-lower := c1than := c2\c1 � c2"result(m) := true ; ��m = is-lower := c1than := c2\c1 > c2"result(m) := falseD.5 Methods on setsAll the methods on sets require that the values of their required features be setsof elements. If one of them is a singleton is considered as a set with one element.Empty-set? [set := fanyg] �! booleanThe empty-set? method yields true if set is empty-set and false other-wise.Inference rules �emp?m performing the evaluation of an empty-set? methodm are the following:�emp?m = set := empty-setresult(m) := true ; �emp?m = set := fc1 � � � cngresult(m) := false

D.5. Methods on sets 221Cardinal [set := fanyg] �! numberThe cardinal method yields the number of elements in set.The inference rule �cardm performing the evaluation of a cardinal methodm is the following: �cardm = set := fc1 � � � cngresult(m) := nUnion [set1 := fanyg set2 := fanyg] �! fanygThe union method yields the union of sets set1 and set2.The inference rule �unionm performing the evaluation of a union method mis the following:�unionm = set1 := fc1 � � � cngset2 := fc01 � � � c0mg\S = fc1 � � � cng [fc01 � � � c0mg"result(m) := SIntersection [set1 := fanyg set2 := fanyg] �! fanygThe intersection method yields the intersection of sets set1 and set2.The inference rule �interm performing the evaluation of an intersectionmethod m is the following:�interm = set1 := fc1 � � � cngset2 := fc01 � � � c0mg\S = fc1 � � � cng \ fc01 � � � c0mg"result(m) := SDi�erence [set1 := fanyg set2 := fanyg] �! fanygThe di�erence method yields the set di�erence of set1 and set2.The inference rule �di�m performing the evaluation of a di�erence methodm is the following:�di�m = set1 := fc1 � � � cngset2 := fc01 � � � c0mg\S = fc1 � � � cng n fc01 � � � c0mg"result(m) := SMember [set := fanyg item := any test := symbol] �! booleanThe member method yields true if item is found in set using the com-parison criterion test. Otherwise yields false. Three comparison criteria

222 Appendix D. Built-in Methodscan be used: identity, subsumption, and equivalence corresponding to thecomparison methods described before (see Section D.2).Inference rules �memberm performing the evaluation of a member methodm with identity comparison criterion are the following:
�memberm = set := fc1 � � � cngelement := citest := 'identity\ci 2 fc1 � � � cng"result(m) := true �memberm = set := fc1 � � � cngelement := citest := 'identity\ci =2 fc1 � � � cng"result(m) := trueInference rules �memberm performing the evaluation of a member methodm with subsumption comparison criterion are the following:

�memberm = set := Selement := citest := 'subsumption\9cj 2 S : ci v cj"result(m) := true ; �memberm = set := Selement := citest := 'subsumption\@cj 2 S : ci v cj"result(m) := trueInference rules �memberm performing the evaluation of a member methodm with equivalence comparison criterion are the following:
�memberm = set := Selement := citest := 'equivalence\9cj 2 S : cj v ci v cj"result(m) := true ; �memberm = set := Selement := citest := 'equivalence\@cj 2 S : cj v ci v cj"result(m) := trueD.6 Logic methodsAll the logic methods require that the values of their required features beboolean. A non-boolean value in a feature produces an error.Not [item := boolean] �! booleanThe not method yields the negation of item.Inference rules �notm performing the evaluation of a not method m are thefollowing:�notm = item := falseresult(m) := true ; �notm = item := trueresult(m) := false

D.7. Retrieval methods 223Conjunction [item1 := boolean item2 := boolean] �! booleanThe conjunction method yields true if item1 and item2 are both trueand false otherwise.The inference rule �conjm performing the evaluation of a conjunctionmethod m is the following:�conjm = item1 := b1item2 := b2\b = b1 ^ b2"result(m) := bDisjunction [item1 := boolean item2 := boolean] �! booleanThe disjunction method yields true if either item1 or item2 is true andfalse if both are false.The inference rule �disjm performing the evaluation of a disjunctionmethod m is the following:�disjm = item1 := falseitem2 := false\b = b1 _ b2"result(m) := bD.7 Retrieval methodsRetrieval methods provide a powerful mechanism for accessing to the episodicmemory contents. There are three built-in methods for retrieval de�ned in Noos:retrieve-by-pattern, retrieve-by-task, and retrieve-by-feature-value.Retrieve-by-pattern [pattern := any] �! fanygThe retrieve-by-pattern method yields the collection of terms, from theepisodic memory, subsuming the pattern.The inference rule �rbpm performing the evaluation of a retrieve-by-pattern method m on the episodic memory U is the following:�rbpm = pattern := cS = fci 2 U jc v cigresult(m) := SRetrieve-by-task [task-name := symbol] �! fanygThe retrieve-by-task method yields the collection of terms, from theepisodic memory, that have solved the task task-name.The inference rule �rbtm performing the evaluation of a retrieve-by-taskmethod m on the episodic memory U is the following:

224 Appendix D. Built-in Methods
�rbtm = task-name := 'fS = fci 2 U jci:f is de�nedgresult(m) := SRetrieve-by-feature-value [task-name := symbol value := any] �! fanygThe retrieve-by-feature-value method yields the collection of terms,from the episodic memory, that have value in task-name.The inference rule �rbfvm performing the evaluation of a retrieve-by-feature-value method m on the episodic memory U is the following:�rbfvm = task-name := 'fvalue := cS = fci 2 U jci:f := cgresult(m) := SD.8 PreferencesWe have described preferences in Section 3.4. Now we will briey describe prefer-ence methods indicating their required features and their corresponding inferencerules using the de�nitions of preference operations given in Section 5.10. Thereader can consult Section 3.4 for examples of the use of preferences in Noos.We have explained that a preference method takes a set of source elementsand builds a preference taking into account an ordering criterion. In fact, built-inpreference methods are more powerful: when the set of source elements is alreadya partially ordered set, the new preference is added using the hierarchical unionoperator. Since all preference methods performs a hierarchical union, for thesake of clarity we will �rst describe a preference method without the hierarchicalunion and then, we will present its inference rule incorporating the hierarchicalunion.Increasing-order-preference [poset := poset feature := symbol] �! posetThe increasing-order-preference method takes the set of elements in poset,the feature name feature of a feature with numeric value, and yields a newpreference where the most preferred elements are those with a higher valuein the speci�ed feature. If any value for feature is not numeric an error isproduced.The inference rule �incpm performing the evaluation of a increasing-order-preference method m is the following:

�incpm = poset := hS;�ifeature := 'f"\ �0= f(ci; cj)jci; cj 2 S; ci:f > cj :fg\p0 = hS;�i � hS;�0i"result(m) := p0

D.8. Preferences 225Decreasing-order-preference [poset := poset feature := symbol] �! posetThe decreasing-order-preference method takes the set of elements in poset,the feature name feature of a feature with numeric value, and yields a newpreference where the most preferred elements are those with a lesser valuein the speci�ed feature. If any value for feature is not numeric an error isproduced.The inference rule �decpm performing the evaluation of a decreasing-order-preference method m is the following:
�decpm = poset := hS;�ifeature := 'f\ �0= f(ci; cj)jci; cj 2 S; ci:f < cj :fg"\p0 = hS;�i � hS;�0i"result(m) := p0Higher-threshold-preference[poset := poset feature := symbol threshold := number] �! posetThe higher-threshold-preference method takes the set of elements in poset,the feature name feature of a feature with numeric value, a threshold, andyields a new preference where the elements with a higher value than valuein feature are preferred to elements with lower or equal value than value.If any value for feature is not numeric an error is produced.The inference rule �htpm performing the evaluation of a higher-threshold-preference method m is the following:

�htpm = poset := hS;�ifeature := 'fthreshold := c\ �0= f(ci; cj)jci; cj 2 S; ci:f > c; cj :f � cg"\p0 = hS;�i � hS;�0i"result(m) := p0Lower-threshold-preference[poset := poset feature := symbol threshold := number] �! posetThe lower-threshold-preference method takes the set of elements in poset,the feature name feature of a feature with numeric value, a threshold, andyields a new preference where the elements with a lower value than valuein feature are preferred to elements with higher or equal value than value.If any value for feature is not numeric an error is produced.The inference rule �ltpm performing the evaluation of a lower-threshold-preference method m is the following:

226 Appendix D. Built-in Methods
�ltpm = poset := hS;�ifeature := 'fthreshold := c\ �0= f(ci; cj)jci; cj 2 S; ci:f < c; cj :f � cg"\p0 = hS;�i � hS;�0i"result(m) := p0Subsumption-preference [poset := poset pattern := any] �! posetThe subsumption-preference method takes the set of elements in poset, theterm pattern, and yields a new preference where the preferred elements arethose pattern subsumes.The inference rule �subpm performing the evaluation of a subsumption-preference method m is the following:
�subpm = poset := hS;�ipattern := c\ �0= f(ci; cj)jci; cj 2 S; ci:f v c; cj :f 6v cg"\p0 = hS;�i � hS;�0i"result(m) := p0Equal-value-preference[poset := poset feature := symbol value := number] �! posetThe equal-value-preference method takes the set of elements in poset, thefeature name feature of a feature with numeric value, a value, and yieldsa new preference where the elements with value in feature are preferred toothers.The inference rule �evpm performing the evaluation of a equal-value-preference method m is the following:
�evpm = poset := hS;�ifeature := 'fvalue := c\ �0= f(ci; cj)jci; cj 2 S; ci:f = c; cj :f 6= cg"\p0 = hS;�i � hS;�0i"result(m) := p0User-preference [poset := poset] �! posetThe user-preference method takes the set of elements in poset and yieldsa new preference according to the answer provided by the user using awindow interface.

D.8. Preferences 227Inversion [poset := poset] �! posetThe inversion method yields a new preference, inversion of preferenceposet.The inference rule �inverm performing the evaluation of a inversion methodm is the following: �inverm = poset := p\p0 = p�1"result(m) := p0T-intersection [poset1 := poset poset2 := poset] �! posetThe t-intersection method yields a new preference by restricting prefer-ences poset1 and poset2 to the elements of their intersection and, then, per-forming a transitive union on the resulting preferences (see De�nition 5.25in Section 5.10).The inference rule �\m performing the evaluation of a t-intersection methodm is the following: �\m = poset1 := p1poset2 := p2\p = p1\p2"result(m) := pC-intersection [poset1 := poset poset2 := poset] �! posetThe c-intersection method yields a new preference by restricting prefer-ences poset1 and poset2 to the elements of their intersection and, then,performing an intersection on the resulting preferences (see De�nition 5.26in Section 5.10).The inference rule �\m performing the evaluation of a c-intersection methodm is the following: �\m = poset1 := p1poset2 := p2\p = p1\p2"result(m) := pT-union [poset1 := poset poset2 := poset] �! posetThe t-union method yields a new preference by extending preferencesposet1 and poset2 to the elements of their union and, then, performinga transitive union on the resulting preferences (see De�nition 5.27 in Sec-tion 5.10).The inference rule �]m performing the evaluation of a t-union method m isthe following:

228 Appendix D. Built-in Methods
�]m = poset1 := p1poset2 := p2\p = p1]p2"result(m) := pC-union [poset1 := poset poset2 := poset] �! posetThe c-union method yields a new preference by extending preferencesposet1 and poset2 to the elements of their union and, then, performingan intersection on the resulting preferences (see De�nition 5.28 in Sec-tion 5.10).The inference rule �]m performing the evaluation of a c-union method m isthe following: �]m = poset1 := p1poset2 := p2\p = p1]p2"result(m) := pH-union [higher � poset := poset lower � poset := poset] �! posetThe h-union method yields a new preference by extending preferenceshigher-poset and lower-poset to the elements of their union and, then,performing a hierarchical union on the resulting preferences (see De�ni-tion 5.30 in Section 5.10).The inference rule ��m performing the evaluation of a h-union method mis the following: ��m = higher � poset := p1poset2 := p2\p = p1 � p2"result(m) := pD.9 Methods for interactionThese kind of methods allow user interaction within the inference process. Thesemethods are commonly used for dynamically choosing among alternatives andfor introducing new values for features.We will describe the two built-in methods provided by Noos without intro-ducing inference rules.Ask-option-to-user [question := string options := set] �! setThe ask-option-to-user method shows question and options to the userand yields the subset of elements of options chosed by the user.

D.10. Query methods 229Ask-value-to-user [question := string] �! fanygThe ask-value-to-user method shows question and request a value to theuser. The value can be any feature term already de�ned. Otherwise anerror is produced.D.10 Query methodsWe have described query-methods in Section 3.3.6. Now we will briey describequery-methods indicating their required features. Inference rules and DDL pro-grams formalizing inference of query-methods are given in Section 5.13. Thereader can consult Section 3.3.6 for examples of the use of query-methods inNoos.Infer-value [feature := symbol domain := fanyg] �! fanygThe infer-value method takes a feature name f in feature; a unit or a setof units S in domain; performs tasks f(si) for all units in S; and yields asresult the union of the values inferred in those tasks.Known-value [feature := symbol domain := fanyg] �! fanygThe known-value method takes a feature name f in feature; a unit or aset of units S in domain; and determines if a solution to a task f for the setof units in S have already been computed, yielding a boolean accordingly.Exists-value [feature := symbol domain := fanyg] �! fanygThe exists-value method takes a feature name f in feature; a unit or aset of units S in domain; and determines if any solution to a task f forthe set of units in S exists, yielding a boolean accordingly.All-values [feature := symbol domain := fanyg] �! fanygThe all-values method takes a feature name f in feature; a unit or a setof units S in domain; determines the set of all inferrable values of tasksf(si) for all units in S; and yields as result the union of all those values.D.11 Eval methodsEval-methods have been described in Section 3.3.6. Now we will briey de-scribe eval-methods indicating their required features. Inference rules and DDLprograms formalizing inference of eval-methods are given in Section 5.13.Noos-eval [methods := fmethodg] �! fanygThe noos-eval method takes a method or a set of methodsM in methods ;performs their evaluation; and yields as result the union of the valuesinferred in the evaluation of those methods.

230 Appendix D. Built-in MethodsKnown-eval [methods := fmethodg] �! fanygThe known-evalmethod takes a method or a set of methodsM inmethodsand determines if a solution for methods inM have already been computed,yielding a boolean accordingly.Exists-eval [methods := fmethodg] �! fanygThe exists-eval method takes a method or a set of methodsM in methodsand determines if exists a solution for methods in M , yielding a booleanaccordingly.All-eval [methods := fmethodg] �! fanygThe all-eval method takes a method or a set of methods M in methods ;determines the set of all inferrable values in their evaluations; and yieldsas result the union of all those values.D.12 Reective operationsWe have described reective operations in Section 3.3.5. Reective operationsare also rei�ed as methods. Now we will briey describe these methods indicatingtheir required features and no inference rules will be provided. The reader canconsult Section 3.3.5 for examples of the use of reective operations.Meta [object := any] �! anyThe meta method performs the subtask object and then, yields the meta-level of object as result.Default [object := any] �! anyThe default method performs the subtask object and then, yields thedefault metalevel of object as result.Referent [object := any] �! anyThe referent method performs the subtask object and then, yields thereferent of object as result.Constituent [object := any] �! anyThe constituent method performs the subtask object and then, yields theconstituent of object as result.Task [task-name := symbol domain := any] �! taskThe task method performs subtasks task-name and domain obtaining re-spectively a task name F and a term D. Then, yields the task term thatrei�es the inference F(D) as result.

D.12. Reective operations 231Current-task [method := method] �! taskThe current-task method performs the subtask method, obtaining amethod M, and then yields as result the task term that rei�es the taskM is solving.

References[Aamodt, 1991] Aamodt, A. (1991). A Knowledge-Intensive, Integrated Ap-proach to Problem Solving and Sustained Learning. PhD thesis, Universityof Trondheim.[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-based rea-soning: Foundational issues, methodological variations, and system ap-proaches. Arti�cial Intelligence Communications, 7(1):39{59. online at<url:http://www.iiia.csic.es/People/enric/AICom ToC.html>.[A��t-Kaci and Podelski, 1993] A��t-Kaci, H. and Podelski, A. (1993). Towards ameaning of LIFE. J. Logic Programming, 16:195{234.[Akkermans et al., 1993] Akkermans, H., van Harmelen, F., Schreiber, G., andWielinga, B. (1993). A formalisation of knowledge-level model for knowledgeacquisition. Int Journal of Intelligent Systems, 8:169{208.[Angele et al., 1994] Angele, J., Fensel, D., and Studer, R. (1994). The modelof expertise in KARL. In Proceedings of the 2nd world congress on ExpertSystems.[Arcos, 1995] Arcos, J. L. (1995). Con�guraci�o de problemes de plani�caci�o enNoos. In Trobada de Joves Investigadors.[Arcos, 1996] Arcos, J. L. (1996). Saxex: un sistema de raonament basat encasos per a l'expressivitat musical. Master's thesis, Institut Universitari del'Audiovisual. Universitat Pompeu Fabra.[Arcos and L�opez de M�antaras, 1997] Arcos, J. L. and L�opez de M�antaras, R.(1997). Perspectives: a declarative bias mechanism for case retrieval. InLeake, D. and Plaza, E., editors, Case-Based Reasoning. Research and Devel-opment, number 1266 in Lecture Notes in Arti�cial Intelligence, pages 279{290. Springer-Verlag.[Arcos et al., 1997a] Arcos, J. L., L�opez de M�antaras, R., and Serra, X. (1997a).Generating expressive musical performances with Saxex. In Internationalworkshop Kansei Technology of Emotion (AIMI'97).233

234 References[Arcos et al., 1997b] Arcos, J. L., L�opez de M�antaras, R., and Serra, X. (1997b).Saxex : a case-based reasoning system for generating expressive musical per-formances. In International Computer Music Conference (ICMC'97).[Arcos and Plaza, 1993] Arcos, J. L. and Plaza, E. (1993). A reective architec-ture for integrated memory-based learning and reasoning. In Wess, S., Altho�,K., and Richter, M., editors, Topics in Case-Based Reasoning, number 837 inLecture Notes in Arti�cial Intelligence, pages 289{300. Springer-Verlag.[Arcos and Plaza, 1994] Arcos, J. L. and Plaza, E. (1994). Integration of learn-ing into a knowledge modelling framework. In Steels, L., Schreiber, G., andVan de Velde, W., editors, A Future for Knowledge Acquisition, number 867in Lecture Notes in Arti�cial Intelligence, pages 355{373. Springer-Verlag.[Arcos and Plaza, 1995] Arcos, J. L. and Plaza, E. (1995). Reection in Noos:An object-centered representation language for knowledge modelling. InIJCAI-95 Workshop on Reection and Meta-Level Architectures and their Ap-plications in AI.[Arcos and Plaza, 1996] Arcos, J. L. and Plaza, E. (1996). Inference and reec-tion in the object-centered representation language Noos. Journal of FutureGeneration Computer Systems, 12:173{188.[Arcos and Plaza, 1997] Arcos, J. L. and Plaza, E. (1997). Noos: an integratedframework for problem solving and learning. InKnowledge Engineering: Meth-ods and Languages.[Armengol, 1997] Armengol, E. (1997). A Framework for Integrating Learningand Problem Solving. PhD thesis, Universitat Polit�ecnica de Catalunya.[Armengol and Plaza, 1994] Armengol, E. and Plaza, E. (1994). Integratinginduction in a case-based reasoner. In Haton, J. P., Keane, M., and Manago,M., editors, Advances in Case-Based Reasoning, number 984 in Lecture Notesin Arti�cial Intelligence, pages 3{17. Springer-Verlag.[Armengol and Plaza, 1997] Armengol, E. and Plaza, E. (1997). Induction offeature terms with indie. In van Someren, M. and Widmer, G., editors, Ma-chine Learning: ECML-97, Lecture Notes in Arti�cial Intelligence. Springer-Verlag.[Backofen and Smolka, 1995] Backofen, R. and Smolka, G. (1995). A completeand recursive feature theory. Theoretical Computer Science, 146(1{2):243{268.[Benjamins, 1993] Benjamins, R. (1993). Problem Solving Methods for Diagno-sis. PhD thesis, University of Amsterdam.[Benjamins, 1994] Benjamins, R. (1994). On a role of problem solving methodsin knowledge acquisition - experiments with diagnostic strategies. In Steels,L., Schreiber, G., and Van de Velde, W., editors, A Future for KnowledgeAcquisition, number 867 in Lecture Notes in Arti�cial Intelligence. Springer-Verlag.

References 235[Brachman et al., 1991] Brachman, R. J., McGuinness, D. L., Patel-Schneider,P. F., Resnick, L. A., and Borgida, A. (1991). Living with CLASSIC: whenand how to use a KL-ONE-like language. In Sowa, J., editor, Principles ofSemantic Networks: Explorations in the representation of knowledge, pages401{456. Morgan-Kaufmann.[Cabr�e, 1996] Cabr�e, M. (1996). SHAM. sistema harmonitzador autom�aticde melodies. Master's thesis, Facultat de Ci�encies, secci�o d'Enginyeria In-form�atica. Universitat Aut�onoma de Barcelona.[Carbonell, 1986] Carbonell, J. (1986). Derivational analogy: A theory of re-constructive problem solving and expertise acquisition. In Michalski, R. S.,Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning, volume 2,pages 371{392. Morgan Kaufmann.[Carbonell et al., 1995] Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock,C., Minton, S., and Veloso, M. (1995). Planning and learning in PRODIGY:Overview of an integrated architecture. In Ram, A. and Leake, D. B., editors,Goal-driven Learning. MIT press.[Carbonell et al., 1991] Carbonell, J., Knoblock, C. A., and Minton, S. (1991).Prodigy: An integrated architecture for planning and learning. In VanLehn,K., editor, Architectures for Intelligence. Lawrence Erlaum Associates.[Carbonell, 1989] Carbonell, J. G. (1989). Special issue on machine learning.Arti�cial intelligence, 1{3(40).[Cardelli and Mitchell, 1994] Cardelli, L. and Mitchell, J. (1994). Operarionson records. In Gunter, C. A. and Mitchell, J. C., editors, Theoretical as-pects of object-oriented programming: types, semantics and language design,Foundations of computing series, pages 295{350. MIT Press.[Carpenter, 1992] Carpenter, B. (1992). The Logic of typed Feature Structures.Tracts in theoretical Computer Science. Cambridge University Press, Cam-bridge, UK.[Chandrasekaran, 1986] Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning: High-level building blocks for expert system design. IIIEexpert, 1:23{30.[Chandrasekaran, 1989] Chandrasekaran, B. (1989). Task structures, knowledgeacquisition and machine learning. Machine Learning, 2:341{347.[Dami, 1994] Dami, L. (1994). Software Composition: Towards an Integrationof Functional and Object-Oriented Approaches. PhD thesis, University ofGeneva.[de Bruijn, 1972] de Bruijn, N. (1972). Lambda calculus notation with namelessdummies, a tool for automatic formula manipulation. Indag. Mat., 34:381{392.

236 References[Digitool, 1996] Digitool (1996). Macintosh Common Lisp Reference. Digitool.[Domingo, 1995] Domingo, M. (1995). An Expert System Architecture for Iden-ti�cation in Biology, volume 4 of Monogra�es del IIIA. IIIA{CSIC.[Etzioni, 1988] Etzioni, O. (1988). Hypothesis �ltering: a practical approach toreliable learning. In Proceedings of Fifth International Conference on MachineLearning, pages 416{429. San Mateo, CA: Morgan-Kaufmann.[Fensel, 1995a] Fensel, D. (1995a). Formal speci�cation languages in knowledgeand software engineering. The Knowledge Engineering Review, 10(4):361{404.[Fensel, 1995b] Fensel, D. (1995b). The Knowledge Acquisition and Representa-tion Language KARL. Kluwer.[Fensel and Benjamins, 1996] Fensel, D. and Benjamins, R. (1996). Assump-tions in model-based diagnosis. In Gaines, B. and Musen, M., editors, Proceed-ings of the 10th Ban� Knowledge Acquisition for Knowledge Based SystemsWorkshop. SRDG Publications, University of Calgary.[Gennari et al., 1994] Gennari, J. H., Tu, S. W., Rothenuh, T. E., and Musen,M. A. (1994). Mapping domains to methods in support of reuse. InternationalJournal of Human-Computer Studies, 41:399{424.[Giunchilia and Traverso, 1990] Giunchilia, F. and Traverso, P. (1990). Planformation and execution in an architecture of declarative metatheories. InMETA-90: 2nd Workshop of Metaprogramming in Logic Programming. MITPress.[Greiner and Lenat, 1980] Greiner, R. and Lenat, D. (1980). RLL-1: A rep-resentation language language. Technical Report HPP-80-9, Comp. Sciencedept., Stanford University. Expanded version of the same paper in Proc. FirstAAAI Conference.[Haase, 1987] Haase, K. (1987). Why representation languages are no good.Technical Report 943, MIT AI Memo.[Harel, 1984] Harel, D. (1984). Dynamic logic. In Gabbay, D. M. and Guenth-ner, F., editors, Handbook of Phylosophical Logic, volume 2, pages 497{604.Kluwer.[Jonckers et al., 1992] Jonckers, V., Geldof, S., and Devroede, K. (1992). theCOMMET methodology and workbench in practice. In Proceedings of the 5thInternational Symposium on Arti�cial Intelligence, pages 341{348.[Kamp, 1997] Kamp, G. (1997). On the admissibility of concrete domains forCBR based on description logics. In Leake, D. and Plaza, E., editors, Case-Based Reasoning. Research and Development, number 1266 in Lecture Notesin Arti�cial Intelligence, pages 223{234. Springer-Verlag.

References 237[Karbach et al., 1991] Karbach, W., Voss, A., Schukey, R., and Drouwen, U.(1991). Model-K: Prototyping at the knowledge level. In Proceedings Expertsystems-91, pages 501{512.[Kiczales et al., 1991] Kiczales, G., Des Rivi�eres, J., and Bobrow, D. G. (1991).The Art of the Metaobject Protocol. The MIT Press: Cambridge.[Kolodner and Riesbek, 1986] Kolodner, J. L. and Riesbek, C. K., editors(1986). Experience, Memory, and Reasoning. Lawrence Erlbaum Associates.[Koton, 1989] Koton (1989). Using experience in learning and problem solving.Technical Report 90/2, MIT/LCS.[Laird et al., 1987] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar:an architecture for general intelligence. Arti�cial Intelligence, 33:1{64.[Laird et al., 1986] Laird, J. E., Rosenbloom, P. S., and Newell, A. (1986). Uni-versal Subgoaling and Chunking. Kluwer Academic Publishers.[Langley, 1989] Langley, P. (1989). Toward a uni�ed science of machine learning.Machine Learning, 11(2{3):111{152.[Lavra�c and D�zeroski, 1994] Lavra�c, N. and D�zeroski, S. (1994). Inductive LogicProgramming. Techniques and Applications. Ellis Horwood.[Lenat, 1983] Lenat, D. B. (1983). Eurisko: A program which learns new heuris-tics and domain concepts. Arti�cial Intelligence, 21.[Lerdahl and Jackendo�, 1993] Lerdahl, F. and Jackendo�, R. (1993). Anoverview of hierarchical structure in music. In Schwanaver, S. M. and Levitt,D. A., editors, Machine Models of Music, pages 289{312. The MIT Press.Reproduced from Music Perception.[Levy and Rousset, 1996] Levy, A. Y. and Rousset, M.-C. (1996). CARIN:A representation language combining horn rules and description logics. InWahlster, W., editor, Proceedings of the 12th European Conference on AI(ECAI-96), pages 323{327.[L�opez and Plaza, 1993] L�opez, B. and Plaza, E. (1993). Case-based planningfor medical diagnosis. In Ras, Z., editor,Methodologies for Intelligent Systems,volume 689 of Lecture Notes in Arti�cial Intelligence, pages 96{105. SpringerVerlag.[L�opez de M�antaras, 1991] L�opez de M�antaras, R. (1991). A distance-based at-tribute selection measure for decision tree induction. Machine Learning, 6:81{92.[MacGregor, 1991] MacGregor, R. M. (1991). Using a description classi�er toenhace deductive inference. In Proceedings Seventh IEEE-91 Conference onAI Applications.

238 References[MacGregor, 1994] MacGregor, R. M. (1994). A description classi�er for thepredicate calculus. In Proceedings AAAI-94 National Conference.[Maes, 1988] Maes, P. (1988). Issues in computational reection. In Maes, P.and Nardi, D., editors, Meta-level architectures and reection. North-Holland.[Mart��n, 1996] Mart��n, F. J. (1996). NoosWeb: una inter�cie en la World-Wide Web para Noos. Master's thesis, Facultat d'Inform�atica. UniversitatPolit�ecnica de Val�encia.[McDermott, 1988] McDermott, J. (1988). A taxonomy of problem-solvingmethods. In Marcus, S., editor, Automating Knowledge Acquisition. Kluwer.[Michalski, 1993] Michalski, R. (1993). Inferential theory of learning as a con-ceptual basis for multistrategy learning. Machine Learning, 11(2{3):111{152.[Minton, 1990] Minton, S. (1990). Qualitative results concerning the utility ofexplanation-based learning. Arti�cial Intelligence, 42:363{391.[Mitchell et al., 1991] Mitchell, T., Allen, J., Chalasani, P., Cheng, J., Etzioni,O., Ringuette, M., and Schlimmer, J. (1991). THEO: A framework for self-improving systems. In VanLehn, K., editor, Architectures for Intelligence,pages 323{356. Lawrence Erlaum Associates.[Moreno et al., 1994] Moreno, A. et al. (1994). Aprendizaje Autom�atico. Edi-cions UPC.[Muggleton, 1992] Muggleton, S., editor (1992). Inductive Logic Programming.Academic Press.[Muggleton and De Raedt, 1994] Muggleton, S. and De Raedt, L. (1994). Induc-tive logic programming: Theory and methods. Journal of Logic Programming,19{20:629{679.[Narmour, 1990] Narmour, E. (1990). The Analysis and cognition of basicmelodic structures : the implication-realization model. University of ChicagoPress.[Nebel, 1990] Nebel, B. (1990). Reasoning and Revision in Hybrid Representa-tion Systems, volume 422 of Lecture Notes in Arti�cial Intelligence. SpringerVerlag.[Newell, 1982] Newell, A. (1982). The knowledge level. Arti�cial Intelligence,18:87{127.[Newell, 1990] Newell, A. (1990). Uni�ed Theories of Cognition. CambridgeMA: Harvard University Press.[Pierret-Golbreich and Hugonnard, 1994] Pierret-Golbreich, C. and Hugonnard,E. (1994). Organization and use of generic models based on the TASK lan-guage. In EKAW'94.

References 239[Plaza, 1995] Plaza, E. (1995). Cases as terms: A feature term approach to thestructured representation of cases. In Veloso, M. and Aamodt, A., editors,Case-Based Reasoning, ICCBR-95, number 1010 in Lecture Notes in Arti�cialIntelligence, pages 265{276. Springer-Verlag.[Plaza et al., 1993] Plaza, E., Aamodt, A., Ram, A., Van de Velde, W., and vanSomeren, M. (1993). Integrated learning architectures. In Brazdil, P. V., edi-tor, Machine Learning: ECML-93, number 667 in Lecture Notes in Arti�cialIntelligence, pages 429{441. Springer-Verlag.[Plaza and Arcos, 1993a] Plaza, E. and Arcos, J. L. (1993a). Explicit inferencemethods in Noos. Technical Report 15, IIIA.[Plaza and Arcos, 1993b] Plaza, E. and Arcos, J. L. (1993b). Flexible integra-tion of multiple learning methods into a problem solving architecture. Tech-nical Report 16, IIIA. extended version of the paper presented at ECML-94.[Plaza and Arcos, 1993c] Plaza, E. and Arcos, J. L. (1993c). Reection andanalogy in memory-based learning. InMultistrategy Learning Workshop MSL-93.[Plaza and Arcos, 1993d] Plaza, E. and Arcos, J. L. (1993d). Reection memoryand learning. Technical Report 2, IIIA.[Plaza and Arcos, 1993e] Plaza, E. and Arcos, J. L. (1993e). Using reectionprinciples in the integration of learning and problem solving. Technical Re-port 11, IIIA. extended version of the paper presented at Integrated LearningArchitectures Workshop ECML-93.[Plaza and Arcos, 1993f] Plaza, E. and Arcos, J. L. (1993f). Using reectionprinciples in the integration of learning and problem solving. In IntegratedLearning Architectures Workshop ECML-93.[Plaza and Arcos, 1994] Plaza, E. and Arcos, J. L. (1994). Flexible integration ofmultiple learning methods into a problem solving architecture. In Bergadano,F. and de Raedt, L., editors, Machine Learning: ECML-94, number 784 inLecture Notes in Arti�cial Intelligence, pages 403{406. Springer-Verlag.[Plaza et al., 1996a] Plaza, E., Arcos, J. L., and Mart��n, F. (1996a). Coopera-tion modes among case-based reasoning agents. In Proc. ECAI'96 Workshopon Learning in Distributed Arti�cial Intelligence Systems.[Plaza et al., 1997] Plaza, E., Arcos, J. L., and Mart��n, F. (1997). Coopera-tive case-based reasoning. In Weiss, G., editor, Distributed Arti�cial Intelli-gence Meets Machine Learning. Learning in Multi-Agent Environments, num-ber 1221 in Lecture Notes in Arti�cial Intelligence, pages 180{201. Springer-Verlag.

240 References[Plaza et al., 1996b] Plaza, E., L�opez de M�antaras, R., and Armengol, E.(1996b). On the importance of similitude: An entropy-based assess-ment. In Smith, I. and Saltings, B., editors, Advances in Case-based reasoning. Third European Workshop EWCBR-96, number 1168 inLecture Notes in Arti�cial Intelligence, pages 324{338. Springer-Verlag.Longer version is available as Research report IIIA-RR-96-14 online at<http://www.iiia.csic.es/Reports/1996/IIIA-RR-96.html>.[Puerta et al., 1992] Puerta, A., Egar, J., Tu, S. W., and Musen, M. A. (1992).A multiple-method knowledge acquisition shell for the automatic generationof knowledge acquisition tools. Knowledge Acquisition, 4:171{196.[Puyol-Gruart, 1995] Puyol-Gruart, J. (1995). MILORD II: A Language forKnowledge{Based Systems, volume 1 of Monogra�es del IIIA. IIIA{CSIC.[Quinlan, 1990] Quinlan, J. R. (1990). Learning logical de�nitions from rela-tions. Machine Learning, 5:239{266.[Rademakers, 1988] Rademakers, P. (1988). Implementing reective architec-tures in object-oriented languages. Technical report, Arti�cial IntelligenceLaboratory. Vrije Universiteit Brussel. AI MEMO 88-14.[Ram et al., 1992] Ram, A., Cox, M. T., and Narayanan, S. (1992). An archi-tecture for integrated introspective learning. In ML'92 Workshop on Compu-tational Architectures for Machine Learning and Knowledge Acquisition.[Rosenbloom et al., 1991] Rosenbloom, P. S., Newell, A., and Laird, J. E. (1991).Toward the knowledge level in Soar: The role of the architecture in the useof knowledge. In VanLehn, K., editor, Architectures for Intelligence, pages75{111. Lawrence Erlaum Associates.[Russell, 1990] Russell, S. (1990). The use of knowledge in Analogy and Induc-tion. Morgan Kaufmann.[Sabater, 1997] Sabater, J. (1997). GYMEL. Sistema d'harmonitzaci�o demelodies utilitzant raonament basat en casos. Master's thesis, Facul-tat de Ci�encies, secci�o d'Enginyeria Inform�atica. Universitat Aut�onoma deBarcelona.[Salvi�a, 1997] Salvi�a, M. (1997). GeNoos: programaci�o gen�etica en el llen-guatge Noos. Master's thesis, Facultat d'Inform�atica de Barcelona. UniversitatPolit�ecnica de Catalunya.[Schreiber et al., 1993] Schreiber, G., Wielinga, B., and Breuker, J., editors(1993). KADS: A Principled Approach to Knowledge-based System Devel-opment, volume 11 of Knowledge-based systems book series. Academic Press.[Schreiber et al., 1994] Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H.,and Van de Velde, W. (1994). Commonkads: A comprehensive methodologyfor kbs development. IEEE Expert, 4(1):28{37.

References 241[Serra, 1997] Serra, X. (1997). Musical sound modelling with sinusoids plusnoise. In Roads, C., Pope, S. T., Picialli, A., and De Poli, G., editors, MusicalSignal Processing. Swets and Zeitlinger Publishers.[Sierra et al., 1996] Sierra, C., Godo, L., L�opez de M�antaras, R., and Manzano,M. (1996). Descriptive Dynamic Logic and its application to reective archi-tectures. Future Generation Computer Systems, 12:157{171.[Slodzian, 1994a] Slodzian, A. (1994a). Con�guring decision tree learning algo-rithms with KresT. In Knowledge level models of machine learning Workshoppreprints. ML-Net Familiarization workshops, Catania.[Slodzian, 1994b] Slodzian, A. (1994b). Knowledge level reection. Master'sthesis, Vrije Universiteit Brussel.[Smith, 1985] Smith, B. C. (1985). Reection and semantics in a procedural lan-guage. In Brachman, R. J. and Levesque, H. J., editors, Readings in KnowledgeRepresentation, pages 31{40. Morgan Kaufmann, California.[Smyth and Keane, 1995] Smyth, B. and Keane, M. T. (1995). Remenbering toforget: A competence-preserving case delection policy for case-based reasoningsystems. In Proceedings of IJCAI-95, pages 377{382.[Steele, 1990] Steele, G. L. (1990). Common Lisp, the language. Second edition.Digital Press.[Steels, 1990] Steels, L. (1990). Components of expertise. AI Magazine,11(2):28{49.[Studer et al., 1996] Studer, R., Eriksson, H., Gennari, J., Tu, S., Fensel, D., andMusen, M. (1996). Ontologies and the con�guration of problem-solving meth-ods. In Tenth Knowledge Acquisition for Knowledge-Based Systems Workshop.[Tambe et al., 1990] Tambe, N., Newell, A., and Rosenbloom, P. (1990). Theproblem of expensive chuncks and its solution by restricting expressiveness.Machine Learning, 5:299{349.[Taube, 1991] Taube, H. (1991). Common Music: a music composition languagein Common Lisp and CLOS. Computer Music Journal, 15(2):21{32.[Taube, 1996] Taube, H. (1996). Common Music. Technical report,School of Music, University of Illinois. online at <http://ccrma-www.stanford.edu/CCRMA/Software/cm/cm.html>.[Treur, 1991] Treur, J. (1991). On the use of reection principles in modellingcomplex reasoning. Int. J. Intelligent Systems, 6:277{294.[Van de Velde, 1994a] Van de Velde, W. (1994a). An overview of com-monKADS. In Breuker, J. and Van de Velde, W., editors, CommonKADSlibrary for expertise modelling. IOS Press.

242 References[Van de Velde, 1994b] Van de Velde, W. (1994b). Towards knowledge level mod-els of learning systems. In Knowledge level models of machine learning Work-shop preprints. ML-Net Familiarization workshops, Catania.[van Harmelen and Balder, 1992] van Harmelen, F. and Balder, J. R. (1992).(ML)2: A formal language for KADS models of expertise. Knowledge Adqui-sition, 4(1). Special Issue `The KADS approach to knowledge engineering'.[van Marcke, 1987] van Marcke, K. (1987). KRS: An object-oriented represen-tation language. Revue d'Intelligence Arti�cielle, 1(4):43{68.[van Marcke, 1988] van Marcke, K. (1988). The use and implementation of therepresentation language KRS. PhD thesis, Vrije Universiteit Brussel.[Veloso, 1992] Veloso, M. (1992). Learning by analogical reasoning in generalproblem solving. PhD thesis, Carnegie Mellon University.[Veloso and Carbonell, 1993] Veloso, M. and Carbonell, J. (1993). Towardscaling up machine learning: A case study with derivational analogy inPRODIGY. In Minton, S., editor, Machine Learning Methods for Planning,pages 233{272. Morgan Kaufmann.[Weyhrauch, 1980] Weyhrauch, R. (1980). Prolegomena to a theory of mecha-nized formal reasoning. Arti�cial Intelligence, 13:133{170.[Wielinga et al., 1992] Wielinga, B., Schreiber, G., and Breuker, J. (1992).KADS: A modelling approach to knowledge engineering. Knowledge Acquisi-tion, 4(1):5{54. Special Issue `The KADS approach to knowledge engineering'.[Wielinga et al., 1993] Wielinga, B., Van de Velde, W., Schreiber, G., andAkkermans, H. (1993). Towards a uni�cation of knowledge modelling ap-proaches. In David, J. M., Krivine, J. P., and Simmons, R., editors, SecondGeneration Expert Systems, pages 299{335. Springer Verlag.[Wray et al., 1995] Wray, R., Chong, R., Philips, J., Rogers, S., and Walsh,B. (1995). A survey of cognitive and agent architectures. Technical report,University of Michigan. <url:http://ai.eecs.umich.edu:80/cogarch0/>.

	06-0.pdf
	06-1.pdf
	06-2.pdf
	06-3.pdf
	06-4.pdf
	06-5.pdf
	06-6.pdf
	06-7.pdf
	06-8.pdf

