
UNIVERSITAT POLITÈCNICA DE CATALUNYA
Departament de Llenguatges i Sistems Informàtics

Programa de Doctorat en Intel.ligència Artificial

TESI DOCTORAL

Case-Based Sequence
Analysis in Dynamic,

Imprecise, and Adversarial
Domains

Francisco J. Martin

2004

Memòria presentada per optar al tı́tol de
Doctor en Informàtica

El treball contingut en aquesta memòria ha estat realitzat a l’Institut d’Investigació en
Intel.ligència Artificial (IIIA) del Consell Superior d’Investigacions Cientı́fiques (CSIC)

sota la direcció del Dr. Enric Plaza i Cervera.

To Juan Cervera, Antonia and Felix Martin, and Jose Marı́a Torregrosa
"How I wish, how I wish you were here"[WG75]

To Alba, Andreu, Angie, and Cris
"It was pain, sunny days and rain, I knew you’d feel the same things"[Fol01]

Abstract

The central question addressed in this thesis is: "How can the CBR problem solving paradigm
be enhanced to support the analysis of unsegmented sequences of observational data stem-
ming from multiple coincidental sources?". To gain a deeper understanding of this question,
we investigate a new CBR model, called Ceaseless CBR, that considers problems that occur
simultaneously and whose descriptions (interleaved and without well-defined boundaries) are
partially obtained over time through a unique unsegmented sequence. We provide an instanti-
ation of this model sustained by four main innovations: (i) sequential cases represented using
actionable trees—a highly intuitive and machine learnable knowledge structure that models the
hierarchical structure of sequences and represents master parallel and serial cases as whole-
part structures; (ii) a dynamic sequence similarity—a new adaptable similarity based on a
subsumption scoring scheme that makes elastic comparisons between sequences and adapts to
data over time; (iii) a ceaseless CBR process that automates the discovery of sequential cases
and transforms huge volumes of unsegmented sequential data into explanations that can take
advantage of human cognitive processing to prioritize problems according to their urgency; and
(iv) a formal framework for the evaluation of alert triage systems that facilitates the construc-
tion of robust systems in imprecise environments. The model proposed has been satisfactory
evaluated in intrusion detection alert triage using real-world data and constitutes a contribution
to problems that involve temporally-evolving sequences of observational data such those that
arise in real-world domains (international event analysis, network-based sensor-driven moni-
toring, electric power-delivery supervision, intrusion detection, etc) where the on-line analysis
of observational data, disturbed by dynamic, imprecise, and adversarial conditions, is a must
in order to diagnose or predict undesired or exceptional situations (e.g. a collision, a conflict,
a fault, an intrusion, an outage, etc).

iii

Research Support

This research was carried out at the Artificial Intelligence Research Institute (IIIA) of
the Spanish Council for Scientific Research (CSIC) under supervision of Dr. Enric
Plaza. I also performed a three months stay at the University of Bath where I collabo-
rated with Dr. Julian Padget. The final document was polished while I was a visiting
researcher at the Oregon State University working with Dr. Thomas Dietterich. I was
supported partially by the Catalan Autonomous Government (DGR-CIRIT scholar-
ship FI-DT/96-8472) and iSOCO-Intelligent Software Components S.A.

v

Acknowledgments

My first and foremost thanks go to Enric Plaza, my advisor, who taught me to un-
derstand the difference between knowing the path and walking the path. Without
his support along my several PhD undertakings and interruptions, this work would
never have been finished. For more than three years, I was out running a start-up
company. When I came back, Enric had the ability to restore his prodigal student to
good standing.

Many thanks to Francesc Esteva and Ramon López de Màntaras for creating the
marvelous research environment at the Artificial Intelligence Research Institute (IIIA)
where I did most of my work. The IIIA perfectly accommodates good work, good peo-
ple, and good times. I would also like to thank all the good people I met at the IIIA who,
troughout the years, have shaped my way of thinking: Jaume Agustı́, Edgar Altami-
rano, Eva Armengol, Richard Benjamins, Piero Bonissone, Lola Cañamero,Thomas
Dietterich, Peyman Faratin, M. Carmen del Toro, Gonçal Escalada, Marc Esteva,
Pere Garcia, Lluı́s Godo, David Gutierrez, Joan Ricard Ibañez, Javier Larrosa, Jordy
Levy, Maite López, Felip Manyà, Miguel Mateos, Pedro Meseguer, Oscar Molina,
Pablo Noriega, Jordi Puigsegur, Josep Puyol, Jose Antonio Reyes, Ricardo Oscar
Rodrı́guez, Jordi Sabater, Marco Schorlemmer, Carles Sierra, Lluı́s Vila, and Adri-
ana Zapico. I am specially indebted to Josep LLuı́s Arcos for all his advice and
kindness. Along the way, I programmed NoosWeb, Noostoo, Plural, and Alba all of
them based on Noos. Josep Lluı́s always supported and helped me with Noos. On
a more personal note, I had the luck of finding three of my best friends ever at the
IIIA: Xavi Canals (the best person in the world), Noyda Matos (the best friend in
the world), and Juan Antonio Rodrı́guez (aka Jar, the best guy in the world). They

vii

viii

have always been there in the good and not so good moments inside and outside the
institute.

Outside of the IIIA, I wish to express my sincere appreciation to Ulises Cortes for
his advice and help throughout this PhD. I would like to express my gratitude to Julian
Padget and all the good people at the University of Bath where I spent three wonderful
months: Russell Bradford, Angela Cobban, Andreas Kind, Jeremy Leach, Andy
Morgan, and Rob Simmonds. I owe a great debt to Ignacio Ruiz (Dr Nax aka Datils)
for collecting data for one of our data-sets and nurturing me through the intricate path
between black hats, white hats, and every shade of grey hacks. I wish to acknowledge
both anonymous reviewers that provided me with valuable comments on a preliminary
version of this document and anonymous reviewers who helped substantially improve
various parts of this document when they were previously published. I owe thanks to
Vicente Botti who sparked my interest in Artificial Intelligence and Marı́a Angeles
Pastor who awoke my interest in research.

The completion of this thesis would have been impossible without the support of
my wife, Cris, whose love encouraged me in my efforts. My special thanks to my
mother-in-law Pilar Perales for taking care of our children wherever and whenever
needed. My lovely thanks to my aunt Maria Feliciana who took care of me during
my first days in Barcelona. Finally, I would like to thank my parents, Purificacion
and Salvador, for the tremendous effort and sacrifices for their children. They gave
us what they could never get:estudios.

Contents

Abstract iii

Research Support v

Acknowledgments vii

1 Introduction 1
1.1 Motivation and Objective 2

1.1.1 Case-Base Reasoning 3
1.1.2 The Problem 5
1.1.3 Objective 6

1.2 The Application Domain 7
1.2.1 Alert Triage 9
1.2.2 Some Alert Triage Issues 10
1.2.3 Alert Correlation 13
1.2.4 Alert Segmentation 14
1.2.5 Other Application Domains 15

1.3 Ceaseless Case-Based Reasoning 15
1.4 The Thesis 19
1.5 A Word about Notation 23

ix

x CONTENTS

2 State of the Art 25
2.1 Noisy Case Boundaries 26
2.2 Continuous Representation, Performance, Adaptation,

and Learning 27
2.3 Time-Extended Situations 31
2.4 Compositional Cases 34
2.5 Case-Based Sequence Analysis 37

2.5.1 Case-Based Sequence Generation 38
2.5.2 Case-Based Sequence Recognition 38
2.5.3 Case-Based Sequence Prediction 39
2.5.4 Case-Based Sequence Analysis Tasks 39

2.6 Case-Based Troubleshooting 41
2.6.1 Network Event Management 43
2.6.2 Case-Based Explanation 47
2.6.3 Decision Theoretic Case-Based Reasoning 51

2.7 Case-Based Intrusion Detection 53
2.7.1 Alert Correlation 54
2.7.2 Case-Based Reasoning for Intrusion Detection 61

2.8 Evaluation of Alert Triage 65
2.8.1 ROC Analysis in Intrusion Detection 65
2.8.2 ROC Alternatives 66

3 Sequential Cases 69
3.1 Hierarchical Knowledge Structures 69
3.2 Alert Model 74

3.2.1 Informational Order Among Alerts 77
3.2.2 Sequences of Alerts 77

3.3 Case Base Model 80
3.3.1 Part-Of Representation 80

3.4 Actionable Trees 81
3.4.1 Basics 82
3.4.2 Actionable Trees 84
3.4.3 Yields of An Actionable Tree 87
3.4.4 Predictive Actionable Trees 88

3.5 Window Model 96
3.6 Sequential Cases Recap 98

4 A Dynamic Sequence Similarity 99
4.1 Introduction 100

CONTENTS xi

4.2 Sequence Similarity 102
4.2.1 Edit Distances 103
4.2.2 Alignments 104

4.3 Dynamic Sequence Similarity 105
4.3.1 Dynamic Subsumption Scoring Scheme 105
4.3.2 Abduction 107
4.3.3 Neglection 107
4.3.4 Dynamic Programming Recurrence Equations 108

4.4 How it works 109
4.5 Costs and Scoring Dynamics 114

5 Ceaseless CBR 123
5.1 Introduction 123

5.1.1 Observational Data 124
5.1.2 Sequential Case Base 125
5.1.3 Case Activations 129

5.2 Ceaseless Retrieve 133
5.3 Ceaseless Reuse 135

5.3.1 Ranking Case Activations 137
5.3.2 Alert Urgency 139
5.3.3 Ranking Explanations 142

5.4 Ceaseless Revise 144
5.5 Ceaseless Retain 146
5.6 Ceaseless CBR Recap 147

6 Performance Evaluation 151
6.1 ROC Analysis 152

6.1.1 Non-parametric Detection Systems 152
6.1.2 Parametric Detection Systems 154

6.2 A Formal Framework for the Evaluation of Alert Triage 157
6.2.1 Ideal Alert Triage Environment 159
6.2.2 Cost-based Alert Triage Evaluation 162
6.2.3 Alert Triage Evaluation in Imprecise Environments 163

6.3 Experimental Results 165
6.3.1 Data-sets 166
6.3.2 Experimental Setting 167
6.3.3 Baseline 168
6.3.4 Evaluation 169

xii CONTENTS

6.3.5 Experiments 170
6.3.6 CCBR 171
6.3.7 UCCBR 190
6.3.8 Conclusions 194

7 Application 199
7.1 Alba Overview 199

7.1.1 Perception Layer 201
7.1.2 Recognition Layer 202
7.1.3 Planning Layer 202

7.2 The Inner IDS 202
7.2.1Snort 203
7.2.2 Alert Database 203
7.2.3 Sending Alerts toAlba 206

7.3 SOID 206
7.3.1 Purpose and Conceptualization 206
7.3.2 Networks 207
7.3.3 Incidents 207
7.3.4 Vulnerabilities 207
7.3.5 Alerts 208
7.3.6 Automatic, Up-to-date Model Keeping 209
7.3.7 TheNoos Representation Language 210

7.4 Alba, An Alert Barrage 212

8 Conclusion and Future Work 219
8.1 Contributions 220

8.1.1 Sequential Cases 221
8.1.2 Dynamic Similarity 223
8.1.3 Ceaseless CBR 224
8.1.4 Alert Triage Evaluation 225
8.1.5 Agent-Aided Intrusion Detection 227

8.2 Future Work 229
8.2.1 Adversarial Plan Recognition 229
8.2.2 Distributed Ceaseless CBR 232
8.2.3 Autonomous Problem Determination 233

Appendix A Data sets 235

CONTENTS xiii

2 Acronyms 247

References 251

List of Figures

1.1 Challenges of Ceaseless Case-Based Reasoning. 7

2.1 Abductive Reasoning Pattern. 49

2.2 Aamodt’s Explanation Driven Model. 50

2.3 Mail Root CBIDS attack scenario. 63

2.4 Mail Root CBIDS interchangeable attack scenarios. 63

2.5 ROC Curves and DET Curves Comparison. 67

2.6 Three ROC points and their dual representation explicitly
representing expected cost. 68

3.1 Partial view of a taxonomic hierarchy forSnort alerts. 70

3.2 A compositional hierarchy for the well-known Kevin
Mitnick attack. 72

3.3 An example sequence, the wordthinking. 73

3.4 An example taxonomic hierarchy of letters. 73

3.5 An example abstraction of the wordthinking. 74

3.6 An example compositional hierarchy of the wordthinking. 74

xv

xvi LIST OF FIGURES

3.7 A compositional hierarchy for the digit 9 for a seven-
segment LED display emphasizing parallel lines. 75

3.8 A compositional hierarchy for the digit 9 for a seven-
segment LED display emphasizing reuse. 75

3.9 A compositional hierarchy for the digit 9 for a seven-
segment LED display emphasizing angles. 76

3.10MS-SQL Worm propagation alert represented using feature
terms. 78

3.11An actionable tree of aDoS attack and an parallel
actionable tree of aReconnaissance attack . 84

3.12An actionable tree of aBreak-In attack and an actionable
tree of aSteal attack. 85

3.13An actionable tree of aTheft attack. 88

3.14A deterministic actionable tree. 91

3.15A temporal actionable tree. 91

3.16A probabilistic actionable tree. 92

3.17A probabilistic-temporal actionable tree. 93

4.1 Illustrative taxonomic hierarchy of alerts. 110

4.2 Costs and subsumption scoring dynamics for alertA. 113

4.3 Costs and scoring dynamics for alertWEB-IIS cmd.exe
access. 115

4.4 Costs and scoring dynamics for alertWEB-IIS cmd.exe
access using a time-based window. 116

4.5 Costs and scoring dynamics for alertWEB-MISC http
directory traversal. 117

4.6 Costs and scoring dynamics for alertWEB-CGI campus
access. 118

4.7 Costs and scoring dynamics for alertSCAN SSH Version
map attempt. 119

4.8 Costs and scoring dynamics for alertWEB-IIS CodeRed v2
root.exe access in Huckleberry data-set. 119

4.9 Costs and scoring dynamics for alertWEB-IIS CodeRed v2
root.exe access in Rustoord data-set. 120

LIST OF FIGURES xvii

4.10Costs and scoring dynamics for alertMS-SQL Worm
propagation attempt in Naxpot data-set. 120

4.11Costs and scoring dynamics for alertMS-SQL Worm
propagation attempt in Huckleberry data-set. 121

5.1 Sequential case representation of aTheft attack using
feature terms. 126

6.1 A decision threshold establishes a balance between both
types of error. 154

6.2 Three illustrative Receiver Operating Characteristic curves.157

6.3 Three illustrative pairs of distribution to generate ROC
curves 158

6.4 ROC points and ranking corresponding to three alert
triage systems. 161

6.5 3 ROC points and 3 ROC curves representing 6 alert triage
systems. 164

6.6 ROC Convex Hull of ROC points and curves. 164

6.7 Iso-performance lines for different sets of conditions. 165

6.8 ROC curves and points for several Ceaseless CBR
configurations inRustoord data-set. 173

6.9 Convex hull forRustoord data-set. 174

6.10ROC curves and points for several Ceaseless CBR
configurations inNaxpot data-set. 175

6.11Convex hull forNaxpot data-set. 175

6.12Iso-performance lines forNaxpot data-set. 176

6.13ROC curves and points for several Ceaseless CBR
configurations inHuckleberry data-set. 176

6.14Convex hull forHuckleberry data-set. 177

6.15Cumulative number of sequential cases. 179

6.16Number of cases per number of alerts. 180

6.17Alerts in cases. 181

6.18Episodes in Cases. 181

6.19Number of occurrences of sequential cases. 182

xviii LIST OF FIGURES

6.20Elapsed time by Ceaseless CBR processes inRustoord
data-set. 185

6.21Elapsed time by Ceaseless CBR processes inNaxpot data-set.185

6.22Elapsed time by Ceaseless CBR processes inHuckleberry
data-set. 186

6.23Current alert load vs initial alert load inRustoord data-set. 188

6.24Current alert load vs initial alert load inNaxpot data-set. 189

6.25Current alert load vs initial alert load inHuckleberry
data-set. 190

6.26Alert load reduction inRustoord data-set. 191

6.27Alert load reduction inNaxpot data-set. 191

6.28Alert load reduction inHuckleberry data-set. 192

6.29ROC points for several CCBR and UCCBR configurations
in Rustoord data-set. 193

6.30ROC points for several CCBR and UCCBR configurations
in Naxpot data-set. 193

7.1 Alba placement. 200

7.2 Overview ofAlba multi-layered architecture. 201

7.3 Example ofSnort rules. 204

7.4 ACID console forRustoord dataset. 204

7.5 ACID console forNaxpot dataset. 205

7.6 ACID console forHuckleberry dataset. 205

7.7 SOID sub-ontologies: Networks, Incidents, Vulnerabilities,
and Alerts 207

7.8 NERD ontology represented inNoos. 208

7.9 Some of theSOID concepts represented inNoos. 209

7.10CodeRed Worm propagation attempt. 209

7.11Sorts for Snort Alerts 210

7.12Automatic, up-to-dateSOID models keeping. 211

7.13AlertWEB-IIS CodeRed v2 root.exe access represented in
Noos. 212

LIST OF FIGURES xix

7.14Alba interaction model overview. 213

7.15Alba inner processes. 214

7.16Alba panel inNoos 215

7.17SSO mailbox aspect. 216

A.1 Rustoord data set characteristics 236

A.2 Rustoord most frequent alerts 237

A.3 Naxpot data set characteristics 238

A.4 Naxpot most frequent alerts 239

A.5 Huckleberry data set characteristics 240

A.6 Huckleberry most frequent alerts 241

A.7 Scatter plot of alert signature identifier against time for
Rustoord data-set. 242

A.8 Scatter plot of alert signature identifier against time for
Naxpot data-set. 243

A.9 Scatter plot of alert signature identifier against time for
Hucklebery data-set. 244

A.10Scatter plot of alert signature identifier against time for
all data-sets. 245

A.11Checking Zipf ’s Law in Rustoord, Naxpot, and Huckleberry
data sets. 246

List of Tables

4.1 Illustrative sequence of alerts. 109

4.2 Dynamic Sequence Similarity walkthrough. 111

4.3 Dynamic Subsumption Scoring Scheme. 111

4.4 Trace of dynamic sequence similarity computation for a
window of 3 seconds and episodeEBD. 111

4.5 Trace of dynamic sequence similarity computation for a
window of 3 seconds and episodeABA. 112

4.6 Trace of dynamic sequence similarity computation between
episodeEBD and itself. 112

4.7 Trace of dynamic sequence similarity computation between
episodeABA and itself. 112

4.8 Costs and subsumption scoring dynamics for alertA. 113

4.9 Alerts Analyzed. 114

6.1 Four possible outcomes of a non-parametric detection
system. 152

6.2 Confusion matrices for three alert triage systems. 160

6.3 Accuracy measure results for alert triage systems. 160

xxi

xxii CONTENTS

6.4 Performance results for a simple baseline algorithm. 168

6.5 Performance measures for a simple baseline algorithm. 169

6.6 Experimental results for CCBR. 171

6.7 Performance measures for CCBR. 172

6.8 Sequential cases statistics for CCBR. 179

6.9 Window model characteristics for CCBR. 184

6.10Performance characteristics for CCBR. 184

6.11Predictive characteristics and weekly alert load reduction
for CCBR. 187

6.12Experimental results for UCCBR. 190

6.13Performance measures for UCCBR. 192

6.14Predictive characteristics and alert load reduction for
UCCBR. 194

xxiii

“Your daddy he’s an outlaw
And a wanderer by trade

He’ll teach you how to pick and choose
And how to throw the blade.

He oversees his kingdom
So no stranger does intrude

His voice it trembles as he calls out
For another plate of food”

[Dyl76]

1
Introduction

This thesis investigates a new Case-Based Reasoning (CBR) model for the analysis of
unsegmented sequences of observational data stemming from multiple coincidental
sources in complex multi-agent settings. This Chapter provides the reader with a
comprehensive overview of the thesis. We commence our exposition pointing out in
Section 1.1 the fundamentals that motivated this research and why this new model
is required. After a short introduction to Case-Based Reasoning, we expose the pro
and cons that this problem solving paradigm poses when dealing with problems that
require the on-line analysis of temporally-evolving sequences of observational data.
We also establish in this Section the primordial objective of this thesis: To enhance the
CBR paradigm to solve situations that are expressed by means of unsegmented, noisy
sequences of complex events that arrive continuously over time. In Section 1.2 we
describe the concrete application domain—alert triage in intrusion detection—where
we have conducted an exploratory analysis of the techniques proposed and evaluated
the performance of our contributions. We succinctly enumerate the problems that
this domain poses and specify in detail the problems that the model tackles: triage,
correlation, and segmentation. Section 1.3 briefly describes how we have approached
those problems given the reader a compact overview of the new CBR model proposed
that we have called Ceaseless CBR. The Chapter concludes with a formal overview
of the organization of this document and signaling some typographic conventions.

1

2 INTRODUCTION

1.1 MOTIVATION AND OBJECTIVE

There are a number of problems, whose ubiquity impulsed us to initiate this research,
that can best be addressed making use of their underlying sequential structure. These
problems arise in an ever-increasing diversity of domains such as discovery of black
holes in large-scale astrophysical data, forecasting conflicts in international event
analysis, fraud detection in cellular telephones, prevention of outages in electric
power-delivery systems, etc. In these problems, an approximate system’s state or
behavior can be modeled through continuous observations that can be represented as
sequences of symptom events over time. An observable symptom event1 is a com-
plex object made up of numeric, qualitative and structured features. By analyzing
those sequences and using past experience one can make a diagnosis about what
led to a current system’s exceptional state and try to predict likely future events and
therefore a future system’s state or behavior. Often, those sequences of symptom
events stem from automated real-time systems (e.g., IDSes, network sensors, BGP
routers, newswire services, etc) that collect and interpret data from multiple coin-
cidental sources. Each symptom event (alert, alarm, warning, announcement, etc)
is triggered based on an automated judgment on the presence of some condition of
interest in the present or the occurrence of an event in the future. However, a proper
mapping between each possible event or combination of events and the root cause
(or disorder) that triggered it is not always straightforward and commonly requires
a human (expert) operator to disambiguate possible conflicts. Often the presence
of a condition only can be indicated for sure after correlating several events (e.g., a
burst, asyn-flood attack, a multi-stage attack, a cascading failure, etc). From all
this it follows that such sequence analysis task requires continuous human oversight.
Automating this task, and therefore reducing manpower requirements, demands to
employ artificial intelligence techniques that go beyond simple rule-based systems—
if-then statements that compile an expert’s knowledge about the interdependence of
different events. The main drawbacks of rule-based systems are: (i) in complex do-
mains to list the complete set of rules beforehand is practically infeasible; (ii) they do
not easily adapt to changing circumstances; (iii) they require constant maintenance
what makes writing and keeping up to date rules a challenging, time-consuming and
error-prone process; and (iv) significant manpower is required to subsequently verify
their outcome [Lew95, HMP02]. In addition, the imprecise and adversarial condi-
tions that often surround the aforementioned domains and the fact that they usually
lack a strong theoretical foundation makes this endeavor particularly difficult.

Since its inception in the early 1980s and along the years, Case-Based Reasoning
(CBR) has been often qualified as the perfect substitute of rule-based systems in
complex domains. Nevertheless, as signaled below, most CBR systems commonly
presuppose individualized problem descriptions with well-specified boundaries that

1Throughout this document, we refer to a symptom event simply as an event, an alert, or a manifestation
indistinguishably to denote an observable event; and we refer to the origin of a problem as problem, root
cause, attack, or disorder also indistinguishably to denote the non-directly observable cause of an event.

MOTIVATION AND OBJECTIVE 3

encompass all the information needed to solve the current problem in only “one shot”.
This assumption makes impracticable their direct deployment in these domains.

1.1.1 Case-Base Reasoning

Case-Based Reasoning (CBR) is a well-established automated reasoning paradigm
within the Artificial Intelligence (AI) field that provides computers with the abil-
ity to continuously improve their performance over time reusing past experience—
emulating one of the main hallmarks of human intelligence [SA77, RS89, Kol93,
Lea96, Wat97, Sch99]. Nowadays, CBR systems are widely extended in a diversity
of domains [Wat97]. In essence, a CBR system relies on storing problem-solving
experiences used facing past situations to subsequently retrieve and reuse them when
similar situations roll around. The ubiquitousness of CBR systems is, in part, due to
two so pervasive assumptions that make them well-suited for a wide-spectrum of real
world domains: (i) situations recur and (ii) similar situations require similar solutions.
Based on these assumptions many CBR systems have been developed following the
dominant mainstream CBR model that establishes four sequential processes for con-
fronting a new situation:retrieve, reuse, revise, andretain [AP94] (see below for
a succinct overview of each process). Furthermore, other great advantage of CBR
over a significant number of automated problem solving paradigms is its appropriate-
ness for dealing with weak-theory domains [Aam95]. That is, ill-structured problems
where uncertainty, ambiguity and missing data abound [Aam95, RTT96]. There is no
doubt that in domains where a strong theory doest not exist reusing past experience
constitutes the most valuable heuristic for handling intractable problems.

Now, let us suppose a case-based reasoner based on the mainstream CBR model that
maintains a repository of cases, case-base, or library where constantly stores solutions
(problem-solving expertise) deployed to solve old problems (situations) paired with
the corresponding problem descriptions that originated them. The process deployed
to solve a new situation by such system could briefly be described as follows.

New case acquisitionInitially, a new individual problem description with well-
defined boundaries is received passively (i.e., one by one).

Retrieve Subsequently, an individual problem description (or new case) is used to
retrieve one or more cases from the case base. The retrieved cases are similar
to the new case along some user-defined dimensions that are also used to rank
them.

Reuse Subsequently, the most similar case is reused, in some domain-specific way.
For example, in transformational adaptation the process may add, delete, substi-
tute, generalize, and specialize parts or aspects of the solution. In derivational
analogy [Car86], the solution process is reused, while in constructive adapta-
tion a new solution is built through a search-based technique guided by cases
[PA96]. See Wilke and Bergmann’s work for a continuum of adaptation models
[WB98].

4 INTRODUCTION

Revise Afterwards, the solution proposed is revised in one way or another commonly
employing user’s feedback that is usually concerned whith the correctness of
the solution.

Retain Finally, the revised solution and the problem description form a new case
(experience) that is retained by integrating it into the case-base according to pre-
determined indexing criteria (but without taking in consideration its sequential
relationship with other solved problems).

The fact of the matter is that most CBR systems are built on that model and devised
bearing in mind the following three interrelated assumptions.

Non-coincidental sourcesThere is only a problem occurring at a time. Said differ-
ently, problems are solved successively one after another without considering
problems that concur and whose origin could be related and could require a
joint solution.

Full-fledged problem descriptions A problem description is provided in only one
shot (instantaneous situations) with well-defined and clear limits—i.e., the
boundaries of each case are perfectly delimited2.

Individual cases independencyCases are manipulated (retrieved, reused, revised
or retained) in isolation without contemplating their sequential (spatial or tem-
poral) structure or (serial or parallel) relationship with other cases in the past.
That is, they assume (snapshot) cases that are independent of each other, and
therefore relations among cases (e.g., sequential relationships) are not taken
into account.

These assumptions make the model unsuitable for a number of challenging pro-
blems—mainly those that involve temporally-evolving sequences of observational
data. In other words, most CBR systems try to solve problems in one shot neglecting
the sequential behavior of most real world domains and the simultaneous occurrence
of interleaved problems proper to multi-agent settings. All the aforementioned as-
sumptions may well be true enough in many application domains. Even so, the
question arises of how far we can go with them. That is to say, those assumptions
restrict the number of real world scenarios in which CBR can be applied discouraging
its use in challenging problems such as those that arise in real-world domains (e.g.,
international event analysis, network management, intrusion detection, etc). In these
domains, the on-line analysis of observational data is a must in order to diagnose or
predict undesired situations. Thus the interest of investigating new techniques that

2Sometimes when only a partial problem description is provided, an interactive dialogue is engaged with
the user to better delimit and clarify the descriptions provided [AMB98]. Through this conversation with
the user, a complete and individual description is obtained in the end. In our approach notice that the
complete description could never arrive due to, for example, noise, an attacker interruption of his plans, a
malfunction of the own sensor, etc

MOTIVATION AND OBJECTIVE 5

allow one to alleviate such constraints and applying CBR in a variety of much more
complex domains.

Let us consider in the next Section some issues of the problem we cope with that
merit closer examination.

1.1.2 The Problem

As we have mentioned above, CBR practitioners are sometimes oblivious that there
often situations in the real world where problems occur simultaneously and whose de-
scriptions come interleaved or in continuous form—i.e., without well-defined bound-
aries between adjacent problem descriptions—and additionally require continuous
response to changing circumstances—i.e., a timely action once a proper solution has
been identified. We are often faced in daily life with multiple coincidental problems
that even overlap one another since they may be occurring at the same time origi-
nated by different agents. For example, in automated monitoring a watchful agent
constantly assesses the current situation in order to provide an early warning that fa-
cilitates a timely and convenient response, that in turn should impede an undesired or
exceptional situation (e.g., a collision, a conflict, a fault, an intrusion, an outage, etc).
Sometimes a unique problem (root cause or disorder) generates a series of events—
i.e., its problem description is broken up into small pieces that arrive at intervals.
Sometimes a combination of problems (one o more) may in turn cause other (one or
more) problems what can be interpreted as a big problem composed of small sub-
problems (e.g., cascading failures). Thereabout the granularity with which problems
are modeled, represented, composed, and analyzed is a primordial issue. Another
telling aspect that deserves consideration is the presence of noise. Often events are
transmitted through middling channels whose reliability cannot be guaranteed (e.g.,
SNMP, UDP, etc). This unreliability causes the presence of corrupted (lost and spu-
rious) events that seriously interfere the proper analysis of the real events. The fact
of the matter is that automated sensors in many different and important domains (in
addition to being noisy and imperfect) lack the intelligence to disambiguate (differ-
entiate and synthesize) the parts corresponding to distinct problems so they resort to
piecing all the sensed parts together into only one sequence (e.g., thesyslog event
logging system). That is, several problem descriptions corresponding to problems
occurring in parallel are serialized into a unique sequence without comprehensible
criteria for its further understanding. That sequence exhibits tremendous variability
what interferes its correct interpretation and requires continuous human oversight.
We say that such sequence is (i)sparse(i.e., only few segments are really meaningful
and appear disperse into countless irrelevant others [Esk02]); (ii)unsegmented(i.e.,
there is no clean mark that separates meaningful segments from other); and (iii)hides
n problems stemming froms different (and possibly recurrent) unknown sources. To
anticipate an undesired situation is crucial to quicken the recognition of the segments
along the sequence that conform a problem description that resemble unsought past
situations. Nonetheless, this is one of the most striking aspects of our undertaking,
since each problem description is composed of an undetermined number of parts
(one per event) that arrive at different intervals and are blurred together with other

6 INTRODUCTION

problems’ parts into a single on-line stream. Moreover, a problem cannot be solved
successfully based on a single part but on a number of correlated parts. Unfortunately,
determining how parts are correlated with each other and predicting or discovering
the number of parts are two intrinsic particularities of the problem itself. These se-
vere difficulties and the need of guaranteeing a rapid response make this problem
extremely difficult.

A further complication arises when we consider the specific domains in which
a situated monitoring agent might operate. Few will dispute the claim that in the
real world we are likely to confront open and weak domain theories rather than
complete and robust domain theories3. In this thesis we have considered highly
dynamic environments (e.g., computer networks with constantly software, hardware,
and configuration updates where in addition ad hoc networks are deployed, used,
and then dismantled). In such environments the pace at which changes arise and the
imperfection of the sensors force agents to reason in terms of incomplete and imprecise
information (e.g., what today is dangerous may tomorrow become innocuous, what
today is secure may tomorrow be vulnerable, who today is an ally may tomorrow be
an enemy, etc). Furthermore, sometimes we have to count on the presence of hostile
and skulking agents that hinder their actions in a sneaky manner trying to interfere
and delay our assessment of the situation so that we cannot recognize their stealthy
and malicious plans (intentions) promptly.

To put the whole matter in a nutshell, we cope here with problems that are much
more challenging than most of those solved by CBR practitioners before, given that
each problem description is composed of an undetermined number of parts that arrive
continuously over time and are blurred together with other problems’ parts into a
single on-line stream. Therefore, the most remarkable driver and motivation of this
thesis has been to answer the following question: how can a past situation be identified
when the current situation is specified in terms of an unsegmented, sparse sequence
of complex objects that arrive continuously over time? Said differently, how can
the CBR paradigm be enriched to support the analysis of unsegmented sequences of
observational data stemming from multiple coincidental sources?

1.1.3 Objective

Answering the latter question practically brings us directly to the objective of this
work: To enhance the CBR paradigm to support the analysis of unsegmented se-
quences of observational data stemming from multiple coincidental sources. Namely,
this thesis aims at establishing a first CBR model, that we have called Ceaseless CBR,
to solve situations that are expressed by means of unsegmented, noisy sequences of
complex events that arrive continuously over time. This endeavor entails to provide
a model that enables reasoning in terms of problem descriptions that are broken up
into small pieces that are mixed with other problems’ pieces and the possibility of

3An open problem is characterized by incompleteness and frequent changes whereas a weak domain theory
involves uncertain relationships between its concepts [Aam95].

THE APPLICATION DOMAIN 7

• How can the sequential structure of past experiences be conveniently represented?

• How can we measure the similarity between a sequential case and the sequence of
symptom events at hand in a noisy environment?

• How and when can we decide that a sequential case or set of sequential cases satisfactory
explains a sequence of observable symptom events?

• How can the discovery of new sequential cases be automated?

• How can we measure the performance of Ceaseless CBR?

Fig. 1.1 Challenges of Ceaseless Case-Based Reasoning.

combining a number of cases that best match the sequential structure of the problem at
hand. A number of key challenges arise from this objective, that we have decomposed
into five distinct sub-objectives.

1. First of all, we need to conveniently represent a case so that it encompasses
the sequential structure of a past problem and facilitates its recognition and
reconstruction—we call sequential cases to case representations that accom-
plish those requirements.

2. Secondly, we should devise a similarity measure able to compare a sequence of
events embodied by a sequential case with the noisy, sparse sequence of events
at hand.

3. Thirdly, a mechanism has to be provided such that given a sequence of events
corresponding to different intervening problems computes the best collection
of sequential cases that can completely explain that sequence considering the
risk and costs of different alternative combinations.

4. Fourthly, we should be able to automate the discovery of sequential cases so
that continuous human intervention can be avoided as much as possible.

5. Finally, we need to be able to evaluate the performance of the model proposed.

We have summarized these challenging objectives in Figure 1.1. Next, we briefly
overview an application domain with the above dynamic, imprecise, and adversarial
characteristics.

1.2 THE APPLICATION DOMAIN

The concrete application domain that we have selected for our exploratory analysis
is intrusion detection[ACF99] and concretelyalert triage—the rapid and approx-
imate prioritization for subsequent action of an Intrusion Detection System (IDS)
alert stream [MP03b]. This is a challenging domain where many issues still remain

8 INTRODUCTION

open and meets the features mentioned above [ACF99]. Next, we provide a brief
introduction to intrusion detection alert triage.

Security managers4 responsibilities include, among other perimeter defense tasks,
prevention, detection and response to computer security incidents. Nowadays, In-
trusion Detection Systems (IDSes) [ACF99] have become common tools (eTrust,
eSafe, IntruShield, RealSecure, etc) deployed by security managers to combat
unauthorized use of computer systems. First research oncomputer-aided intrusion
detection(or simply intrusion detection) goes back to the 80’s [And80]. The main
task of IDSes can be generalized as the real-time monitoring ofcomputer activities
searching for deviations from normal behavior ornonintrusivebehavior. Computer
activities can be monitored at different level of detail: system calls traces, operat-
ing system logs, audit trail records, resources usage, network connections, etc. An
intrusion is defined as any set of actions that attempt to compromise the integrity, con-
fidentiality, or availability of a resource disregarding the success or failure of those
actions [SZ00]. Whenever an intrusion (or suspicious activity) is detected an IDS
notifies to the proper authority evokingalerts. Commonly, alerts take the form of
emails, database or log entries, etc and their format and content vary according to the
particular IDS. An IDS alert stream merges alerts stemming from an undetermined
number of sources that, broadly speaking, may be classified into: network entities’
malfunctions or misconfigurations (including the own IDS), innocuous attacks, and
malicious attacks.

The fact of the matter is that current IDSes generate an unmanageable number of
false positive alerts5 which in turn increases the difficulties for the proper identifica-
tion of real and malicious attacks. Security managers are so overwhelmed that they
frequently disable the alert device due to the consistent assumption that nothing is
wrong reinforced by the fact that the alert device “cried wolf” too often [Swe96].
There are those who even postulate that current IDSes not only have failed to provide
an additional layer of security but have also added complexity to the security manage-
ment task. Therefore, there is a compelling need for developing a new generation of
tools that help to automate security management tasks such as alert triage. It should
be stressed that as long as the number of networked organizations proliferates and
the number of computer security threats increases this need accentuates. To make the
aforementioned tasks more manageable we envisage a new generation of intrusion
detection tools under the heading ofagent-aided intrusion detection. The different
techniques devised throughout this work have been embodied within a long-lived au-
tonomous agent—calledAlba (Alert Barrage)—that could be cataloged as a striking
example of this tendency [MP03e]. Chapter 7 of the thesis describes how we have
developed such first prototype.

4Also known as SSO-Site Security Officers.
5Alerts signaled when there is a manifest absence of intrusive behavior.

THE APPLICATION DOMAIN 9

1.2.1 Alert Triage

The objective of alert triage is to minimize the number of recurrent false and innocuous
alerts that security managers receive and improve the chances of anticipating or at
least signaling malicious attacks6. Alert triage produces a rapid and approximate
prioritization for subsequent action of an IDS alert stream [MP01]7. Alert triage is
the main task to be performed by IDS modules that have been named differently in
the literature such as alert correlators [NC02], d-boxes [SS98], analyzers [WE02],
ACCs [DW01], assistants [MP03e], etc. In our case alert triage can be seen as a
classification task that takes as input the alerts generated by a number of intrusion
detection probes or sensors (e.g.,Snort [Roe99] see Chapter 7 of the thesis for further
details) and classifies them producing a tag indicating its malignancy (degree of threat)
for each alert. Such tags prioritize alerts according to their malignancy. Depending on
its priorization each alert will require an automatic response, notification, or manual
response from the site security officer (SSO). The tag assigned to alerts can be a (fuzzy)
label (e.g.malicious, innocuous, falsepositive, etc) or it can be a continuous value.
Alert triage can be explained in terms of the following priority formulation [PFV02]
wheremissionis defined in terms of the critical and sensitive assets of the target
network (i.e., the system under surveillance):

Problem 1 (Priority Formulation) Given an alert stream where each alert is de-
fined according to a pre-established alert model (see Section 3.2) return a subset of
high-impact alerts such that the threat that represents each alert in such subset is
above a pre-specified decision threshold.

Examining such formulation it can be said that the decision threshold will discern
between two (apparently) disjoint classes of alerts (i.e those alerts that require no-
tification to the SSO and those alerts that do not). Thus, we suppose that once the
alerts have been prioritized there will be only two possible responses (notification
and¬notification). Therefore, without loosing generality, we will proceed in our
evaluation as if alert triage was a detection task. Chapter 6 of the thesis is devoted
to throughly describe the framework that we have introduced to formally analyze the
performance of alert triage systems in different environments.

Ceaseless CBR aims at enabling the triage of alert streams that are subject to the
bothersome characteristics that we expose in the next Section.

6When limited resources come into play, determining how to most efficiently use them becomes paramount.
This is the foundation for triage. Triage comes from French verb “trier” that means to sort. For example,
prehospital triage in mass casualty incidents (MCI) aims at maximizing the number of patients who will
survive an incident when there are more patients than available resources [BKS96, Str98].
7In information systems, triage is usually deployed by information retrieval systems that prioritize a number
of documents before a human reader receive them and can be extended to domains where automated
processes produce a huge amount of data that needs a preliminary pre-process [MP01].

10 INTRODUCTION

1.2.2 Some Alert Triage Issues

This Section describes some particular issues, most of them introduced generally in
Section 1.1.2, that poses alert triage in intrusion detection such aspartially-ordered
plans, deception, multiple-goals, etc The objective here is to pinpoint some of the
differences that entail this domain with respect triage in other domains and to give
the reader a collection of running examples that we use throughout this document.

Relative Environment-DependencyAlerts should have different priority depend-
ing on the specific environment where they are raised. That is to say, the
importance of an alert varies according to the network under surveillance and
its actual security policy and mission. Said differently, an alert can be classified
as malicious or innocuous depending on whether the destination is really sus-
ceptible or not to that attack. Nonetheless, innocuous alerts cannot be complete
ignored. A common example is the following.

Example 1 Imagine aCode-Red Worm8 attack against aLinux site. It makes
no sense to directly notify the security manager for such attack since it has not
impact in the system9. However neither makes it sense to completely ignore it,
since it could come from a trusted machine that from now on we should have
to consider that it is compromised.

Thus, the solution often suggested to mitigate the elevate number of environment-
dependent alerts (i.e., to instruct the IDS sensor to not evoke this kind of alerts)
is debatable. Although this solution could reduce the number of false positives
in the beginning, it could also increase the number of false negatives in the
end10.

Multi-stage Attacks There are intrusions that require only a single action (hit-and-
run intrusions) to cause a malign effect (e.g. thePing of Death attack [Nor99]).
Other intrusions, on the contrary, are sophisticated multi-stage attacks where
each intruder’s action is a step intended to result in a change of state of the target
computer system that prepares it to accept the next intruder’s action (e.g., the
Mitnick attack that we explain below [Nor99, SM96, MS02]). Normally, an
isolated alert (per se) cannot be correctly classified as malicious or innocuous.
Imagine the following example:

8This worm uses a known buffer overflow vulnerability contained in the fileIdq.dll (ISAPI extension)
and affectsIIS 4.0 and5.0 web servers runing onMicrosoft Windows NT 4.0 andWindows 2000 (see
CVE-2001-0500 andCVE-2001-0506 for further information). Notice that if aWindows machine
with a listeningIIS androot.exe exists then full-system level access is possible.
9Except for minor irritation that comes from the large (irritating) number of alerts that generates.
10Thus, usually, alerts are stored for subsequent post-mortem analyses independently of whether they were
dismissed or not and correctly prioritized to be notified to the proper authority.

THE APPLICATION DOMAIN 11

Example 2 Anattempted-recon alert11 coming from an unknownIP has been
received. This alert can correspond to an attacker performing a reconnaissance
or on the contrary it could really correspond to one of our engineers checking
at our customer’s office that one of our web services is up12.

Therefore, alerts cannot be classified separately but considering their relation-
ship with other alerts. Then, we need to provide a form ofcollective classi-
fication [TAK02]. That is, correlating several alerts and then deciding on the
priority of all of the alerts together. Often we need to compile more evidence
before going further and assigning the correct priority or initiating a considered
response (e.g., creating a new rule in a firewall). Furthermore, some single ac-
tions cause multiple effects [GG01]. For example, an attacker could launch a
massive and indiscriminate reconnaissance attack (using a port scanner) against
a network causing a denial of services but in turn he or she is compiling in-
formation for further attacks. Thus, we also say that attackers have multiple
goals.

Multiple Goals Properly determining the priority of an alert (or group of alerts in the
case of multi-stage attacks) does not only require identifying the attack but also
to infer the goals of the the attacker. Take the case of the following example
[GG01].

Example 3 We have just received an alert indicating asynflood attack13. The
goal of this attack could be (i) denial of services—just to put down the flooded
target—or (ii) access to a third system that trust the flooded target—i.e., to
impede that the flooded target resets a forged connection during aMitnick
attack. The proper response in each case varies. In the first case, to prevent it
we only need to modify the firewall to limit the number of connections from the
attacking source. In the second case, the firewall needs to be updated to reject
any connection that trusts the flooded computer.

Executing one or other countermeasure causes different disruption in our system
or could even not impede an attack. If we are wrong and respond thinking that
the goal is a denial of services then the attack will surely be completed. On

11This sort of alerts corresponds to automated actions carried out by port scanners such asnmap (Network
Mapper) [Fyo97, Hil01] that try to obtain relevant information (security loopholes) from the target computer
for subsequent attacks.
12What is quite certain is that usually instructed attackers would use astealthy nmap that often help us
to differentiate between both.
13This a denial of service attack that explodes a flaw in manyTCP/IP implementations. This attack never
completes the three-way handshake needed to establish aTCP connection sending out an unmanageable
number of forgedSYN packets (the first hand of the 3-way handshake) that flood the target. EachSYN
packet received causes a buffer to be allocated by the target until the internal limits of thelisten() call
are reached. This is one of the stage of the multi-stage attack originally attributed to Kevin Mitnick
[SM96, MS02].

12 INTRODUCTION

the other hand, if we are wrong again and respond as it was an access to
the system then we could interrupt some external and perhaps mission-critical
connections to our network. Thus, determining the goal of the attacker is
crucial (i.e., recognizing plans). Although combining multiple reports and
information to identify an attacker’s goals have been proposed, current IDSes
are far away from this functionality [GG01]. Moreover, an attacker could have
multiple concurrent goals. A single, but striking, example is the following.
After accessing to the system and stealing some confidential information the
attacker could use the compromised computer to initiate subsequent attacks
against other systems. A further complication is that the sequence of actions
(plans) executed by attackers are very flexible (partially ordered) and varied in
terms of time and actions. For example, the same sequence of actions executed
in only five minutes or temporally distributed along several days could cause
the same malign effect.

Multiple sources In addition to an attacker performing a multi-stage attack with
multiple possible goals we also contemplate the possibility of multiple attackers
(human, artificial, or a combination of both) at a time. As a matter of fact,
while our networks are continuously random-chosen and bombarded with worm
propagation attacks, new a more dangerous attacks constantly appear that could
also randomly choose our network as a target. As a consequence, our alert
streams present a continuous overlapping of different unpredictable sources
with more predictable sources that consciously selected our network as a target
(e.g., old or current annoyed employees).

SparsenessOnly a few elements of the alert stream are meaningful. The alerts pro-
viding evidence that an attack is undergoing are dispersed into the alert stream
among countless irrelevant (false positive) alerts [Esk02]. For this reason, we
say that we look for situations that arehiddenin the alert stream.

Deception We are facing an adversarial domain where the opponent is a hostile agent
that not only tries to hinder his actions (i.e., masquerading his identity) but also
tries to delude our analysis (i.e., denying the service of the sensors). See [Pta98]
for a report on eluding network intrusion detection. Hence, to overcome this
hindrance it is required to be able to infer hindered actions from other observed
actions and from observation of state change [GG01].

Large Alphabets The alphabets that conform the sequences under consideration are
very large compared to other domains (e.g., 4 in the case of DNA sequences
{Adenine (A), Cytosine (C), Guanine (G) andThymine (T)}). In our case
the alphabet is composed by the identifiers corresponding to the IDS alerts
(around 1800 usingSnort as of writing this document [Roe99]).

Complex Objects Alerts are complex object made up of numeric, qualitative and
structured features. When comparing two simple objects (such as numbers or
symbols) it is easy to determine a perfect match (e.g.,Cytosine is different
from Guanine). However, when comparing complex objects, as in our case,

THE APPLICATION DOMAIN 13

a similarity relationship has to be established to determine how similar they
are or simply whether they are similar or not. As a consequence of this, most
techniques for sequence analysis such as discrete sequence analysis or time-
series prediction algorithms cannot be directly applied since they are based on
sequences of numerical values, usually real numbers, equidistant over time.

On-line Analysis and Learning Several sequence analysis algorithms require the
whole sequence to be available beforehand. In our case, only a prefix of the
sequence is available over time. Although a number of intrusion detection
techniques are devised for post-mortem analysis, we aim at developing tech-
niques able to consume and analyze sequences incrementally in quasi-real-time
to conveniently assist security managers. Our model should allow an agent to
learn new experiences while interacting with the environment (on-line learning
[MCM83, Pfl02]) as well as introspecting (off-line earning).

From all this it follows that this domain requires to efficiently and incrementally
recognize hidden partially ordered plans from multiple concurrent attackers that are
represented by large alphabets of complex objects overlapped into an on-line sparse
stream [GG01]. Assigning the correct priority to alerts demands the ability to recog-
nize subtle relationships between alerts so that they can be conveniently correlated
and prioritized together. We will briefly discuss alert correlation in the next Section.

1.2.3 Alert Correlation

An effective triage implies to be able to predict the malignancy, the innocuousness
or the falsehood of alerts. As we have seen above, in spite of the fact that a number
of individual alerts can be classified univocally (e.g.,Ping of Death), other alerts
require to be pieced together before they can be correctly triaged. This task of piecing
alerts together that are related in one sense or another is called correlation. Alert
correlation aims at avoiding poor judgments that try to find an explanation for each
alert in isolation without considering the bigger picture [Lew95]. Additionally, alert
correlation helps to form a more concise vision of the alert stream providing security
managers with a better understanding of current attacks. Correctly correlating alerts is
a critical challenge for network security that often implies comparing network events
that are sequentially distributed in time and space [JC]. Although simple and obvious
methods are useful they are subject to deception (see above). For example, the most
naive method to correlate alerts in intrusion detection is considering their source and
destinationIP addresses as well asTCP ports. This method is most times unreliable
due to the ability of attackers to forge (spoof) their source addresses14. Therefore
more sophisticated and efficient algorithms are required. For instance, capturing the
logical steps or strategies behind attacks and correlating alerts using the necessary

14The only current valid method against forgery or spoofing is obligating computers to work constantly
in paranoiac mode (i.e., doing both forward and reverse DNS lookups each time a new connection is
established).

14 INTRODUCTION

conditions for an attack to be successful (prerequisites) and its possible consequences
[NC02]. That is to say, correlating the alert(s) of two attacks when the consequences
of the first match the prerequisites of the second [NC02]. In Section 2.6.1 and 2.7.1
we examine further issues of alert correlation in network management and intrusion
detection respectively.

An effective triage requires to correlate and find the best explanation for each
particular alert or group of alerts received so far. Finding the best explanation for
a sequence of events can be modeled as a segmentation problem as we see in next
Section.

1.2.4 Alert Segmentation

We suppose that a sequence under observation,~S, is an interleaving of subsequences
of alerts (segments or subdivisions) resulting from multiple sources (disorders or prob-
lems). The subsequences of alerts due to coincidental sources may overlap as shown
in the following example. Imagine that there are three disorders that respectively
cause the following sequences of events[aϕ1 , bϕ1 , cϕ1] , [cϕ2 , cϕ2], and[dϕ3 , cϕ3].
Then the sequence finally observed could be[cϕ2 , dϕ3 , cϕ3 , aϕ1 , bϕ1 , cϕ2 , cϕ1] or
[aϕ1 , cϕ2 , dϕ3 , bϕ1 , cϕ2 , cϕ3 , cϕ1] or whatever other sequence permuting the order
of each source but always maintaining the total ordering for each subsequence. Let
us assume that a given point in time there is in the system a prefix of~S composed
of exactlyp alerts. We suppose that there areh + 1 hidden sources and that each
segment was caused by only one source. More precisely, each alert was originated
by one and only one disorder (malfunction, fault, attack, etc). For the sake of brevity
we ignore the presence of noise in this discussion and postpone it for Chapter 5 of
the thesis. If we consider the setΥ made up of all possible sources (where we denote
all possible unknown sources byϕ0). A sequence~S, made up ofn ≥ p alerts, can
be seen as a concatenation ofm segments~S1, ~S2, · · · , ~Sm stemming from a set of
h′ ≤ h+ 1 possible sources. We define the best explanation of a sequence of alerts
as follows15:

Problem 2 (Best Explanation) Given a set of possible sourcesΥ, and let ~S be a
sequence ofn alerts where each alert is defined according to a pre-established alert
model (see Section 3.2) such that only a prefix of lengthp ≤ n is available find: a
subsetΥ′ ⊆ Υ that maximizes the probability that all sources inΥ′ intervene and
each alert in~S[1..p] is explained by a source fromΥ′

This problem has been shown to be NP-complete elsewhere, demonstrating that
it is a generalization of the NP-complete set cover problem [KS95]. This problem
appears with different guises in the literature. For example, Kauz and Allen proposed
to recognize plans computing the minimum set cover of the plan graphs [KA86].

15This formulation is in effect very close to the one exposed by Gionis and Mannila [GM03]. But our
problem differ clearly in three aspects. First, we do not have the complete sequence beforehand only a
prefix. Second, the segments are made up of complex objects, and, third, we consider noisy sequences.

CEASELESS CASE-BASED REASONING 15

Their work laid the groundwork of most of the subsequent plan recognition systems
that we will mention in Chapter 8 of the thesis. As we view respectively in Sections
2.6.1 and 2.6.2, Katzela and Schwartz designed a collection of fault localization
algorithms to find the best explanation of a set of alerts [KS95]; and Peng and Reggia
introduced a formal theory of diagnostic inference namedparsimonious covering
theory[PR90] both based on the samecoveringconcept. Depending on the number
of sources allowed, the computation and therefore complexity of the solution to the
best explanation problem above varies. When the number of sources is restricted to be
minor than the number of segments then problem is NP-hard as recently demonstrated
[GM03]. This problem has received unbalanced attention in the literature with respect
to when the number of sources is permitted to be equivalent to the number of segments
[Chu89, GM03]. There are number of works that have discussed the last problem
mainly for genome sequences [KCH04]. However, in these works the result does not
considered the relationship between different segments within the sequence. Said
differently, the sources assigned to each segment are independent each other and
therefore the number of sources is equal to the number of segments. A further
complication is that we deal with sequences of complex objects and not merely with
sequences of points inRd : d > 1 [GM03]. As we will see in Chapter 5 of the thesis,
the Ceaseless CBR model provides a heuristic approach to the intractability of these
problems. These problems arise in a number of domains as succinctly we describe in
the following Section.

1.2.5 Other Application Domains

Finally, in spite of the fact that we have placed particular emphasis on intrusion
detection alert triage, there are many other domains that exhibit similar characteristics
that constitute fertile fields for the application of our approach such as: forecasting
conflicts in international event analysis [Sch95], fault identification in communication
networks [KS95, RH95], BGP misconfigurations in network management [MWA02,
ZPW02], telecommunications alert management [Kle99], and autonomous robotic
navigation [RS93a], etc.

Next Section provides a first overview of our new CBR model that we develop in
more detail in subsequent Chapters of the thesis.

1.3 CEASELESS CASE-BASED REASONING

The goal of this Section is twofold. Firstly, to give the reader a compact overview of
our approach. Secondly, to provide a summary of our contributions. Ceaseless CBR,
the novel CBR model proposed in this work is characterized by the following salient
features:

Sequential casesA sequential case is acompositional casewhere additionally a
temporal order has been established among all the parts that comprise it. A
compositional case (the whole) is an assemblage of several cases (the parts).

16 INTRODUCTION

The parts of a compositional case lay in a hierarchical structure. Sequen-
tial cases can be understood asPredictive Compositional Hierarchies(PCH)
[Pfl02, Lam00]. Therefore when a sequential case is partially-matched it en-
ables the prediction of the whole based on the matched parts (sub-cases). We
introduceactionable treesas a knowledge structure that enables the representa-
tion of sequential cases. An actionable tree is a multi-rooted tree-like structure
with the semantics that roots symbolize observable symptom events, interme-
diate nodes (in the trunk and crown) embody composite cases, and the arcs
represent part-whole relationships as well as the likelihood of occurrence of
the whole given its parts. Moreover, an intermediate node specifies constraints
among the distinct sub-cases that compound it. An actionable tree has a direct
map with a context-free grammar that allows one to compute the set of yields
that the actionable tree represents. Each yield denotes a possible succession
of symptom events that could be caused by the same problem or disorder that
the sequential case represents. We use a semi-ring structure to define a general
likelihood framework over actionable trees that facilitates the independence
between their compositional structure and the model used to compute their
evidence (deterministic, probabilistic, Dempster-Shafer, etc) [BMR97]. The
composition of sequential cases is based on the operations provided by the
semi-ring. Sequential cases provide two clear advantages. On the one hand,
they enable part-whole reasoning within an object-centered language [Lam00].
On the other hand, they allow an object-centered language based on termino-
logical knowledge to express uncertainty about the presence of individuals
and compositions [KLP97]. Moreover, sequential cases can be automatically
discovered by means of the Ceaseless CBR method that we explain below.

Dynamic Sequence Similarity A dynamic similarity between two sequences of com-
plex objects based on the following components.

1. A dynamic subsumption scoring scheme that establishes the similarity
between two individual alerts according to their probability of occurrence
and their level of abstraction in a taxonomic hierarchy. This scoring
scheme, based on the reciprocal of theOdds, assigns a high score to
rare alerts that are subsumed by sequential cases whereas frequent alerts
receive a low score. The subsumption scoring scheme is continuously
updated upon the arrival of new alerts.

2. A semi-global alignment obtained by insertion of a number of fictitious
elements such that both sequences have the same length and in the indi-
vidual alignment of the elements at least one of the two elements is not
fictitious.

3. Two operations,abductionandneglection, based on thealpha-rarity of
each alert that alter a sequence so that corresponding elements in both
sequences can be comparable. The abduction operation injects an alert
in the alert stream at a given position whereas the neglection operation

CEASELESS CASE-BASED REASONING 17

ignores an alert in the alert stream. These operations are useful for dealing
respectively with lost and spurious symptom events.

4. A dynamic programming algorithm that computes the score of the optimal
alignment according to the following policy: the rarer the sequence of
alerts the higher the score of the alignment. In Chapter 5 we see how this
similarity has been normalized to provide an upper bound that allows us
establish a decision threshold for retrieval purposes.

As we see in Chapter 4, the main advantage of our dynamic sequence similar-
ity is the capability of retrieving sequential cases contemplating not only the
present but also the past and the future to compute the perceived similarity of
sequences in dynamic situations [KS01].

Ceaseless CBR processA constructive situation awareness process governed cease-
lessly by: (i) observational data and (ii) the sequential case base. The sequence
of alerts received so far pushes towards a situation (exceptional or not) whereas
the sequential case base pulls towards the best explanation expressed in terms
of partially-matched sequential cases (case activations). We have broken up
this process into four sub-processes:

Ceaseless RetrieveUsing the above dynamic sequence similarity and a pre-
specified window model (see Section 3.5), this process continuously com-
pares the sequence of alerts with the sequential cases in the case base.
For each sequential case that is similar above a pre-established threshold
acase activationis created. A case activation represents a hypothesis that
could explain part of the current sequence of alerts. Case activations that
fulfill the constraints specified by sequential cases can be pieced together
over time. This reduces the number of elements to compound overall
explanationsand facilitates the discovery of new sequential cases. As a
matter of fact, Ceaseless CBR operationalizes the discovery of new actual
sequential cases in only one pass over the alert stream. This turns out to
be an additional advantage of our approach since it does not require to be
provided with an initial sequential case-base.

Ceaseless ReuseThis process combines case activations to formexplanations.
Explanations are ensembles of case activations that explain the whole se-
quence of alerts at hand. A belief function determines when each expla-
nation is susceptible of being used to prioritize the corresponding alerts.
However, if this process prioritizes alerts too soon, that is, without being
completely sure of the presence of a (possible) exceptional situation the
number of false positives will be high and the ultimate objective (to triage
the alert stream) will not be achieved. On the contrary, if it prioritizes too
late and an exceptional situation is really occurring then the time to enable
a prompt response is reduced. Thus we take a decision-theoretic approach
that maximizes the overall utility of each complete explanation and define
a measure of urgency that guides the decisions of this process over time.

18 INTRODUCTION

That utility takes into account the distinct costs that could be incurred
after each prioritization as well as the possible damage costs. The utility
values assigned to each explanation under consideration are estimated
based on the success of similar decisions in previous situations. As we
will see in Chapter 5 of the thesis this process facilitates the segmentation
of the sequence of alerts seen so far providing the best (sub-)explanation
for each segment.

Ceaseless ReviseThis process continuously provides a human (expert) op-
erator with the set of most likely explanations given the alerts received
so far (instead of presenting a solution periodically). The operator can
define a threshold such that individual explanations whose likelihood is
above it produce an automatic triage of the corresponding alerts. The op-
erator’s feedback may create a completely new sequential case or update
a past sequential case (adding, deleting or altering observable events or
constraints among them), altering its risk (threat, exposure, or cost) or
the corresponding prioritization. The operator’s feedback produces a set
of revised solutions that in turn produces the triage of the corresponding
alerts and initiates a back-propagation process that automatically updates
the current case activations. Operator’s feedback can be substituted by
a model of the system under surveillance what allows us to completely
automate the whole process. Keeping up-to-date such model becomes
paramount as we will see in Chapter 7.

Ceaseless RetainOnce a solution has been revised by the user, the retain
process updates the sequential case base, specifically: the probability of
occurrence of each sequential case is updated as well as the probability of
occurrence of each alert in the sequential cases that have been used in the
solution. Those sequential cases whose probability of occurring together
is above the probability of occurring separately are merged together in a
new sequential case. Other features of intervening sequential cases such
as risk or cost can also be updated in this process.

Moreover, we have introduced a formal framework for the evaluation of alert triage
that allows us to adjust the different knobs and switches provided by our model and
make practical choices when assessing different components of alert triage. This
framework allows us to measure the performance of alert triage in ideal, cost-based,
and imprecise environments. Ideal environments do not contemplate misclassification
costs and are valid at design time when we want to check new triage techniques
and fix some kind of requirement (such as the maximum number of false positives
allowable). In cost-based environments correct decision outcomes have associated a
benefit whereas incorrect decision outcomes have associated a cost. These scenarios
are valid to test alert triage systems in simulated environments and to determine their
optimal decision threshold. Finally, in imprecise environments, misdetection costs
not only will be unknown a priori but also will vary over time. These scenarios are
useful for the evaluation of systems for real-world deployment.

THE THESIS 19

In Chapter 7 of the thesis we describe a research prototype where we have in-
stantiated the Ceaseless CBR model. Concretely, a first version of an agent-aided
intrusion detection tool calledAlba (Alert Barrage) that assists a network adminis-
trator’s decision making [MP03a]. As we will see in Chapter 8 of the thesis, part of
our future work is to operationalize the techniques proposed into a agent capable of
long-term cumulative learning and entrusted with mission-critical decision-making
tasks in dynamic, imprecise, and adversarial environments [MPR00a, Pfl02].

1.4 THE THESIS

Conceptually, this thesis is divided into three parts: (i) context; (ii) fundamentals and
contributions; and (iii) conclusion and future work. Chapters 1 and 2 respectively
introduce our approach and situate the thesis within the state of the art pinpointing
the novelty and contributions of the work developed. Chapters 3, 4, and 5 discuss our
contribution and are devoted, in this order, to explain Sequential Cases, Dynamic Se-
quence Similarity, and Ceaseless CBR. Chapter 6 explains the evaluation framework
developed to measure the performance of our techniques which have been coded into
a first prototype presented in Chapter 7. Chapter 8 concludes the thesis not without
first pointing out future lines of work.

The thesis contains the following Chapters and Appendices.

Chapter 1 provided the reader with a comprehensive overview of the thesis. We
first described the fundamentals that motivated this research and why this new
model is required after a short introduction to Case-Based Reasoning and its pro
and cons to deal with problems that require the on-line analysis of temporally-
evolving sequences of observational data. Then, we established the main ob-
jective of this thesis: To enhance the CBR paradigm to solve situations that are
expressed by means of unsegmented, noisy sequences of complex events that
arrive continuously over time. In Section 1.2 we described the concrete appli-
cation domain—alert triage in intrusion detection—where we have conducted
an exploratory analysis of the techniques proposed and evaluated our contri-
butions. We succinctly enumerated the problems that this domain poses and
specified in detail the problems that the thesis tackles: triage, correlation, and
segmentation. We briefly described how we have approached those problems
given an overview of our new CBR model that we have called Ceaseless CBR.
The Chapter concludes with a roadmap of how this document is organized.

Chapter 2 puts the work covered by the thesis into perspective. Firstly, we overview
four of the main and unusual CBR issues that we deal with in this thesis and that
were partially opened, most of them early in the 90s, by separate seminal works
[BM88, Sha90, Red90, RS93a, Jac97]: problem descriptions without well-
defined boundaries [Sha90] in Section 2.1, continuous performance [RS93a] in
Section 2.2, representing time-extended situations [Jac97] in Section 2.3, and
combining relevant pieces of multiple cases [BM88, Red90] in Section 2.4.

20 INTRODUCTION

Then we provide background on some relevant issues for the fully comprehen-
sion of this document and review in summary form some additional works. In
Section 2.5 we examine issues related with different case-based sequence anal-
ysis tasks: sequence generation, sequence recognition, sequence prediction,
and sequence learning. In Section 2.6 we see how traditional knowledge-based
troubleshooting techniques such those used by rule-based systems or model-
based systems cannot precisely capture the dynamic complexity of large sys-
tems, and how CBR emerges as a suitable paradigm to do so [Lew93, Gup98].
We also overview some previous case-based explanation models that lay the
groundwork of Ceaseless CBR. In Section 2.7 we review much of the relevant
alert triage approaches in intrusion detection, the two unique case-based rea-
soning models for intrusion detection in the literature that we are aware of, and
finally, in Section 2.8, we point out the lack of literature on the evaluation of
alert triage systems and briefly overview two ROC analysis alternatives.

Chapter 3 introduces the knowledge structures and techniques that sustain sequen-
tial cases. We commence our exposition in Section 3.1 pointing out the rele-
vance of hierachical knowledge structures, the unbalanced attention that com-
positional hierarchies have received with respect to taxonomic hierarchies in
the AI literature, and the importance of partonomic knowledge for properly
reasoning on composite or aggregated objects. In Section 3.2 we introduce
the alert model that makes our approach independent of the alert device and
define most of the terms needed through the rest of the thesis. In Section 3.4
we throughly describe the so-calledactionable trees. Actionable trees are pre-
dictive compositional hierarchies that are useful for dealing with sequences of
complex objects and reasoning in terms of partial sequences that continuously
arrive over time. Finally, in Section 3.5 we overview several window models
to compute aggregates of interest over a sequence of alerts.

Chapter 4 introduces a similarity measure to compare the sequences of alerts yielded
by actionable trees (yields or episodes) against the current window of alerts in
the alert stream. Our simple but powerful similarity measure has two outstand-
ing characteristics: continuously adaption to data seen so far and promotion
of rareness. We first overview in Section 4.1 some concepts about similar-
ity. Then, we introduce in Section 4.2 the notion of sequence similarity and
overview two approaches for its computation—edit distancesandalignments.
Then, in Section 4.3 we formally define our dynamic sequence similarity as a
semi-global alignment and describe several of its components: (i) a dynamic
subsumption scoring scheme based on the reciprocal ofOddsthat uses a tax-
onomic hierarchy to properly compute the score given to each pair of alerts;
(ii) an operation of abduction that automatically injects an alert in arbitrary
positions of the alert stream; (iii) a operation of neglection that ignores an
alert at an arbitrary position in the alert stream; and (iv) a system of dynamic
programming recurrence equations that returns the score of the optimal align-
ment between a suffix and a prefix of the respective sequences being compared.
These two operations allow us to deal respectively with lost and spurious alerts

THE THESIS 21

in the alert stream. Section 4.4 illustrates how our dynamic sequence similarity
works using a simple example. Finally, in Section 4.5 we show how those
components behave over time using our real-world data-sets.

Chapter 5 throughly describes Ceaseless CBR. Ceaseless CBR can be seen as a con-
structive situation awareness process governed ceaselessly byobservational
data, asequential case base, andcase activations. Such concepts are first de-
scribed in Section 5.1. Then, Section 5.2 explains how Ceaseless Retrieve uses
dynamic sequence similarity to retrieve similar sequential cases that subsume
the sequence of alerts at hand and createcase activationsthat anticipate as much
as possible all the situations that might likely occur. Section 5.3 describes how
Ceaseless Reuse construct explanations—combinations of case activations that
completely explain the sequence of alerts at hand—and provides a likelihood
assessment for each explanation considering its likely consequences. We also
see how to tradeoff risk versus efficiency estimating a degree ofurgencythat
finally determines when the prioritization of each alert has to be done. Section
5.4 explains how Ceaseless Revise allows users to supervise the explanations
provided by Ceaseless Reuse and guide its search towards the best explanations.
Finally, Section 5.5 describes how Ceaseless Retain constantly updates the se-
quential case base with the revised sequential cases and with the frequencies
of alerts seen so far.

Chapter 6 is devoted to evaluation of the techniques proposed throughout the thesis.
We will describe our experimental setting and evaluate Ceaseless CBR along
five different dimensions: (i) performance using a new formal framework for
the evaluation of alert triage (ii) capability of discovering new sequential cases;
(iii) CPU time requirements; (iv) capability of predicting future alerts (or pre-
emptive ratio); and last but not least important, alert load reduction achieved.
This Chapter is divided into three sections. Section 6.1 overviews ROC analy-
sis and exposes some well-known concepts in the context of detection systems.
Section 6.2 describes the construction of a decision-theoretic framework for the
evaluation of alert triage that is based on a combination of ROC analysis and
computational geometry. We show how this framework not only allows one to
select the best alert triage system but also to make practical choices when as-
sessing different components of alert triage. We introducet-areaa new measure
for computing the performance of non-parametric systems in ROC spaces. The
performance of alert triage depends on the environment where the evaluation is
carried out (i.e., whether misdetection costs are considered or not and whether
are known beforehand or not). We contemplate three possible environments
(scenarios) in increased order of uncertainty and therefore of complexity:ideal
environments, cost-based environments, andimprecise environments. Finally,
Section 6.3 explains the set of experiments that we have conducted using the
data-sets described in Appendix A and draws some interesting conclusions on
the performance achieved. Our evaluations demonstrate how a Ceaseless CBR-
enhaced IDS system provides improvement in both the number of alerts that
could be managed by a SSO and the speed with which they could be triaged.

22 INTRODUCTION

Chapter 7 brings the discussion down to earth, describing the architecture of a first
prototype of an autonomous agent calledAlba tasked with alert triage that
employs the new methods proposed throughout the thesis to assist a network
administrator’s decision making. Initially, Section 7.1 provides a big picture
of Alba architecture. The underlying network sensors as well as the rest of
the IDS machinery needed to supportAlba is explained in Section 7.2.Alba’s
architecture is sustained by two main components. First, a domain-specific
language calledSOID (Simple Ontology for Intrusion Detection) that facilitates
the representation of the environment and contextual information in which the
IDS operates and enables the use of the automated problem solving paradigms
proposed. Indeed,SOID constitutes an instantiation of the formal alert model
proposed in Chapter 3 on top of theNoos knowledge representation language
[AP96]. SOID is described in Section 7.3. Second, an overlay management
system that wraps a conventional IDS up with the knowledge and reasoning
capabilities to properly evaluate the extent of threats. We explain the different
knobs and switches of this system and the technology used to construct it in
Section 7.4.

Chapter 8 concludes by summarizing the contributions of the thesis, benefits of this
research, limitations of the proposed approach, and speculates about profitable
directions for future research. In Section 8.1 we will review the five major
directions along which our research has evolved: (i) development of a repre-
sentational structure of sequential cases that support part-of and temporal de-
pendencies; (ii) specification of a dynamic sequence similarity; (iii) an efficient
CBR inference that exploits sequential cases and probabilities; (iv) a validation
framework for alert triage; and (v) a novel agent-aided intrusion detection tool.
In Section 8.2, we succinctly describe three of the main lines for future work.
Firstly, the extension of the basic components offered by our model to facilitate
more elaborate problem solving tasks such adversarial plan recognition. Sec-
ondly, the evolution of our model to contemplate automated monitoring agents
able to communicate and coordinate with each other, enabling in turn higher-
level collaboration. That is to say, a multi-agent approach where Ceaseless
CBR agents cooperate each other to solve more complex problems (e.g., prob-
lems that are inherently distributed) or to improve its individual competence
and performance. Ceaseless CBR agents could share information at differ-
ent levels: ranging from observational data or case activations to explanations
and sequential cases. We have previously investigated techniques and mecha-
nisms that lay the groundwork of this future line. For example, DistCBR and
ColCBR [PAM96, PAM97, MPA99], conversation protocols [MPR00b], inter-
agents [MPR98, MPR00a], etc. Thirdly, we will investigate how completely
delegate problem determination tasks to the own computer system. That is to
say, how to evolve our techniques to become part of autonomic problem deter-
mination tools with self-healing capabilities.Specifically, Ceaseless CBR could
be suitable to perform the analysis of sensed event data within an autonomic

A WORD ABOUT NOTATION 23

manager control loop architecture as well as a symptom service able to compile
cases that indicate problems and their possible causes and remedies.

Appendix A describes theRustoord, Naxpot, andHuckleberry data-sets that we
created to evaluate the performance of our techniques. In total we compiled
almost 500000 alerts in more than 15 months of continuous observation in three
different real scenarios. We also show the results of some interesting tests over
the data-sets such as checking that they fit Zipf’s Law.

Appendix B gives a listing of the most common acronyms used throughout the thesis.

1.5 A WORD ABOUT NOTATION

Throughout this document we use the following typographic conventions:

Italic is used for terms that will be defined later on.
Sanserif is used for domain application specific names or

application names
~x represents multi-attribute or complex objects.
~S is used for representing sequences.
[· · · , · · ·] sequences are also represented using square-bracketed

lists of comma-separated elements.
~Sj denotes thejth of sequence~S.

~S[j] also denotes thejth of sequence~S.
{· · · , · · · } sets are denoted by a comma-separated list of elements

between bracets.
〈, 〉 tuples are denoted by angle-bracketed lists of

comma-separated elements. Specific elements of a tuple
are denoted using dots "." (e.g., A.f denotes element f in
tuple A).

|A| denotes the length of A, if A is a sequence or its
cardinality, if it is a set.

The purpose of this introductory Chapter was to provide the reader with an extended
overview of the work developed. Next Chapter of the thesis will place our contribution
within the context of related work.

2
State of the Art

This Chapter puts the work covered by the thesis into perspective. We divide the anal-
ysis of previous works around eight categories:noisy case boundaries, continuous
performance, time-extended situations, compositional cases, case-based sequence
analysis, case-based troubleshooting, andintrusion detection.

Firstly, we overview four of the main and unusual CBR issues that we deal with in
this thesis and that were partially opened, most of them early in the 90s, by separate
seminal works [BM88, Sha90, Red90, RS93a, Jac97]: problem descriptions without
well-defined boundaries [Sha90] in Section 2.1, continuous performance [RS93a] in
Section 2.2, representing time-extended situations [Jac97] in Section 2.3, and combin-
ing relevant pieces of multiple cases [BM88, Red90] in Section 2.4. Then we provide
background on some relevant issues for the fully comprehension of this document
and review in summary form some additional works. In Section 2.5 we examine
issues related with different case-based sequence analysis tasks: sequence genera-
tion, sequence recognition, sequence prediction, and sequence learning. Our problem
domain, intrusion detection, can be considered as a special case for troubleshooting
systems where the cause of the problems are due to the confluence of two factors:
the presence of a number of vulnerabilities or exposures in a computer network and
the presence of an external agent (human, artificial or a combination of both) with
malign intentions that exploit such vulnerabilities or exposures. Thus, in Section 2.6
we see how traditional knowledge-based troubleshooting techniques such those used
by rule-based systems or model-based systems cannot precisely capture the dynamic
complexity of large systems, and how CBR emerges as a suitable paradigm to do so
[Lew93, Gup98]. We also overview some previous case-based explanation models
and see how Ceaseless CBR can also be seen as a reminding-based explanation model
that facilitates the generation of plausible explanations in dynamic, imprecise, and

25

26 STATE OF THE ART

adversarial environments when situations are given by unsegmented sequences of
observational data stemming from multiple coincidental sources [Lea95]. In Section
2.7 we review much of the relevant alert triage approaches in intrusion detection and
the two unique case-based reasoning models for intrusion detection in the literature
that we are aware of. Finally, in Section 2.8 we point out the lack of literature on the
evaluation of alert triage systems and briefly overview two ROC analysis alternatives.
ROC analysis lays the groundwork of the formal framework that we introduce in
Chapter 6 for the evaluation of these systems.

2.1 NOISY CASE BOUNDARIES

Shavlik was the first to notice that most CBR systems usually presupposewell-defined
current situations—situations where the boundaries of the current case are cleanly de-
fined [Sha90]. Shavlik proposed a case-based approach to gene finding that worked in
the presence of noisy boundaries in DNA sequences which have no absolute START
codon1. When the case at hand is not well-delimited, traditional partial matching
algorithms for gene finding used to fail to recover previous cases. Thus, Shavlik in-
troduced a robust algorithm, FIND-IT, based on the BLAST similarity-search program
[MMA90] that was able to produce multiple, partial matches and then combining a
selection of them into a consistent whole after detecting and correcting errors. This
process coincides, generally speaking, with the process performed by Ceaseless CBR
to find out the best explanation. FIND-IT was robust in the presence of errors in
the input data as well as in the case library. Gene finding has four particularities
that alleviate some of the complexities that we are dealing with in intrusion detection
alert triage. First, the presence of end-markers known as STOP codons2 facilitates, in
some sense, the segmentation of whatever sequence—i.e., given a sequence of DNA
all the open-reading frames (ORFs)3 in the sequence can be collected. Second, a
reduced reading frame—i.e., there are only three possible reading frames for each
nucleotide in a sequence. Third, the alphabet to conform sequences is really small—
i.e., four nucleotides and 20 amino acids. Forth, each element in the sequence is a
simple symbol, and, fifth, the complete sequence to analyze is available beforehand.
In intrusion detection there no exists an alert that indicates the end of an attack. The
duration of an attack is undefined and therefore an attack can result in a number of
alerts that are detected with minutes, hours, or even days of separation. Furthermore
there are interfering alerts in between stemming from other attacks, malfunctions,
etc. Moreover, in our case, the elements that compound a sequence are only partially
available given that they are collected over time. For these reasons, we have to op-
erate incrementally and choose a convenient window model—i.e., landmark, sliding,
damped, etc—for aggregate monitoring. Finally, the alphabet we deal with is pretty

1Three-letter strings from the alphabet of nucleotids{A,G,T,C}.
2A STOP codon tells the cell to stop translating the DNA.
3An ORF is the segment of DNA between two consecutive STOP codons.

CONTINUOUS REPRESENTATION, PERFORMANCE, ADAPTATION, AND LEARNING 27

much larger (e.g., theSNORT IDS had around 1700 possible alerts as of our first
prototype was done) and each element in the sequence is a complex object made up
of qualitative, quantitative, and structured data.

Other CBR approaches are able to handle partial problem descriptions. Conversa-
tional CBR, which has been successfully applied to interactive help-desk, [AMB98,
ABM01] also assumes partial rather than complete problem descriptions. A conver-
sational CBR system engages an interactive dialogue with the user to complete the
problem description. Problem descriptions are provided in natural language text and
cases provide a text to be matched against problem descriptions and a collection of
questions. Conversational CBR constantly elicits refinements of this description and
suggests solutions based on a interactive dialogue with the user using the collection
of questions of the best matched cases. In our approach, however, descriptions are
provided by automate processes therefore instead of dialoguing with the user (or au-
tonomously gathering information to continue inference [CYA99]) we have to wait
until new events (evidence) occur.

2.2 CONTINUOUS REPRESENTATION, PERFORMANCE,
ADAPTATION, AND LEARNING

Ram and Santamarı́a observed with much truth that CBR is mostly deployed as a
high-level problem solving paradigm where situations are represented using discrete
and static symbolic representations [RAM92, RS93a, RS93b]. They investigated the
use of CBR in problem domains that required a continuous representation as well
as continuous on-line performance such as autonomous robotic navigation systems.
As we see below, our problem domain does not require a continuous representation
but we are obligated to provide continuous performance, adaptation and learning. In
robotic navigation systems, a navigation module is responsible for moving a robot
through an intricate path among physical objects. In order to attain its objective
the robot has to go from a starting location to a desired place avoiding such obsta-
cles. The robot uses a schema-based reactive control module [Ark89] composed of
a collection of parameterizable schemas that represent individual motor behaviors.
The navigation module can instantiate and combine those schemas to provide more
elaborate behaviors. The objective of CBR is to guide the reactive control module
over time. This implies the on-line selection and modification of the schema pa-
rameters based on the current environment. They proposed a novel problem-solving
and learning method that operates continuously (without stopping and thinking) and
allowed the robot to adapt to novel environments and to learn from its experience.
Basically, in these systems perception and action are used to explore the environment
and detect regularities while learning generalizes those regularities into cases that are
adapted to provide recommendations on the future consequences of actions. Ram
and Santamarı́a proposed to perform both tasks concurrently and that case represen-
tations were updated incrementally through experiences The so-called Continuous

28 STATE OF THE ART

CBR method was characterized by combining three "continuous" aspects within an
integrated framework:

Continuous RepresentationsBoth situations and cases are described using a time-
varying series of real values. As noted above, in our approach we do not have a
continuous representation instead the input is a temporally-evolving sequence
of complex objects.

Continuous Performance The method constantly executes the best short-term ac-
tions available and continuously evaluate their outcome. This capability is
essential to handle problem domains that demand continuous actions such as
driving a car. In Ceaseless CBR we also require continuous performance how-
ever we only provide an explanation when a measure of urgency requires so.

Continuous Adaptation and Learning The method provides on-line adaptation and
learning from experiences. This allows a robot to incrementally compile new
knowledge to conveniently adapt its actions to new environments. This is re-
quired given the variety and difficulty of environments which a robot could
cope with. Likewise, Ceaseless CBR constantly updates its sequential case
base. Moreover, an additional off-line process allows Ceaseless CBR to com-
pound and synthesize sequential cases that recur.

In Continuous CBR, cases are high-level representations of system-environment in-
teractions from low-level sensory motor representations. A case is pair composed of
a sensory input vectorof analog values that represents the environment andsensory
output vectorof analog values that represents the actions taken. A sensory vector is
a time history of real parametric values of perceptual or control parameters. Thus a
case embodies a behavioral situation that reflects the interaction of the system with
a particular environment. Said differently, cases represent observed regularities be-
tween particular environmental configurations and the outcomes of different actions.
Cases are used to predict future consequences of actions and to consequently pre-
scribe the values of the schema parameters within the reactive control module. In
Ceaseless CBR a case is made up of the a set of sequences of alerts structured in a
compositional hierarchy and the priority assigned to such alerts. Although we could
easily have automated some basic responses, our first prototype (see Chapter 7 of the
thesis) does not performs actions by itself, it only suggests them. The system admin-
istrator is who takes charge of performing the actions to solve the current situation. In
Ceaseless CBR, sequential cases also aim at predicting future actions of an attacker
and therefore to anticipate undesired situations.

Ram et al devised a self-improving navigation method that used reactive control
augmented with Continuous CBR and developed two systems using that method
[RAM92, RS93a, RS93b]. We briefly overview both methods in the following.

ACBARRS (A Case-Based Reactive Robotic System) The first system was endowed
with a collection of hand-crafted cases and the ability to adapt them [RAM92].
Cases representedbehavior assemblages. That is to say, collection of coop-
erating behaviors for standard complex environments that can be adapted to

CONTINUOUS REPRESENTATION, PERFORMANCE, ADAPTATION, AND LEARNING 29

guide the robot in novel situations. Moreover, a noticeable novelty of their
approach was that cases were not only used to propose the behavior(s) but also
a set ofbehavior adaptations(i.e., they not only propose a solution but also
determine how the solution have to be adapted). The system was able to modify
its behavior according to the most recent past experience (behavior adaptation)
or select new assemblages of behaviors based on the current environment (be-
havior switching or selection). Behavior adaptation implied to perform global
modifications on the reactive control module and radically adapt to new sud-
den changes in the environment whereas behavior adaptation only implied local
modifications. In Ceaseless CBR, sequential cases also modify the behavior of
the system since they are reused to compute the urgency with which the system
has to provide an explanation. Their experiments shown that ACBARRS was
very robust and with a good performance in unknown environments [RAM92].
However, using a fixed library of hand-coded cases impeded the system to
improve its behavior through experience.

SINS (Self-Improving Navigation System) The second system in addition was able
to autonomously construct representational structures using a hybrid CBR and
reinforcement learning method [RS93b]. SINS has the same components and
properties that ACBARRS except for that it relies on learnt cases rather than
on hand-crafted cases. In other words, SINS was able to learn and modify its
own cases over time using experience. In both systems, each new situation is
constantly matched against cases to determine the most similar case that is sub-
sequently adapted to be used to guide navigaton. Nevertheless, SINS improved
its performance over time learning how and when to tune the reactive control
discerning between different environments and the adaptations requires by each
of them. In order to do that SINS combined CBR and reinforcement learning
(RL) [SSR96, TD97]. CBR facilitated on-line parameter adaptation whilst
RL enabled on-line case learning and adapation. The outcomes of the system
were continuously monitored what allowed the learning sub-module to update
incrementally case representations through experience. The learning module
monitored the system and incrementally modified the case representations to
accommodate the changes (see [RS93b] for further details).

Ceaseless CBR is closely-related to Continuous CBR. Both methods need to pro-
vide a timely response to a time-varying situation (i.e., continuous on-line perfor-
mance). While Continuous CBR practically operates in real-time Ceaseless CBR
only aspires to work on a quasi-real time basis. This is due to the fact that we have to
evaluate time-evolving sequences of complex objects as opposed to only vectors of
analog values as Continuous CBR does. The input of Ceaseless CBR are unsegmented
sequences of events dispersed over time and the task is to segment the sequence to
provide the best explanation of the current situation and suggest an action. In Contin-
uous CBR the current situation is given by a series of equally time-spaced real values
and the task is to directly execute the actions. This allows a robot to explore all possi-
ble actions given an situation and to learn the best action for using it in future similar
situations. In Continuous CBR an action is executed without considering its associ-

30 STATE OF THE ART

ated cost. In our problem domain, we simply cannot afford to explore all possible
actions4 and have to select the best explanation considering the associated costs. A
drawback of Continuous CBR is that continuous cases are neither easily-interpretable
by a human nor easy-to-integrate with higher-level reasoning and learning methods.
In Ceaseless CBR cases are more intuitive and explanations could be easily used by
higher-level reasoning methods or shared among distributed Ceaseless CBR agents
as we will point out in Chapter 8 of the thesis.

An important issue to address in continuous domains that provide a flux of cases
is how store and manage them efficiently. We did not mention above but Continuous
CBR storedabstract casesrather than the entire time history of the parameters of
each schema for each situation that the robot solves. Abstract cases are likesequen-
tial master casesin Ceaseless CBR. Sequential master cases are able to efficiently
summarize a set of similar situations. When a new experience is ready to be stored
into the sequential case base, it is incorporated into a sequential master case (if it
exists) [Lew93, Lew95, DV95]. We only store sequential master cases and conti-
nously update their probabilities since it would not be feasible to store the whole
sequence of complex objects. The same occurs in Continuous CBR where it is al-
most impossible to store the complete time series of real values over time. As we
see below, our approach additionally provides other level of abstraction to cope with
unknown situations. Some other works have summarized similar solutions using
scripts [SHP96, Jac97]. The problem of the inefficiencies (in case-base space and
retrieval time) caused by the huge number of cases that arise in continuous domains
was also studied by Sánchez-Marrè et al [SCR99] in the domain of waste-water treat-
ment plants [CMC00]. They proposed a measure of relevance based on L’Eixample
distance [SCR98] in terms of which only relevant cases (represented by tables of
attributes) were learnt and a lazy learning algorithm that dictated how new cases were
stored. See Bergmann’s work for a study of the influence of abstraction in CBR
[BW96].

A number of works have also used case-base reasoning for continuous performance
as part of a autonomous robot navigation system. For example, Kopeikina et al
also represented cases that evolve over time to deal with time-constrained processes
[KBL88]. Likhachev and Arkin [LA01] used a similar approach to Continuous CBR
for the selection and modification of behavioral assemblage parameters in real-time.
Langley and Pfleger developed a case-based approach to recognize and learn places
[LP95]. They used a case base library to retain place descriptions (spatial knowledge)
for a physical agent. They assumed a case-base scheme that allowed a physical agent
to incrementally learn new place knowledge as long as it was sensing its environment
[LP95].

As a conclusion of this Section we could say that Ram and Santamarı́a placed a
number of questions having crucial relevance to our work such as "When are two ex-
periences different enough to warrant consideration as independent cases?" or "What

4Imagine the above robot carrying nitroglycerin, it could have some trouble to explore every possible
action if it needs to crash against each possible obstacle. Surely, it will be unlikely to finish its task.

TIME-EXTENDED SITUATIONS 31

is the scope of a single case?". We try to answer these questions in Chapter 3. In
next Section we consider a number of approaches in other problem domains that have
represented situations using continuous cases or at least have used representations
that go beyond singlesnapshot casesas most of current CBR systems [JAS02].

2.3 TIME-EXTENDED SITUATIONS

Jacynski observed that most CBR approaches only cope withinstantaneous sit-
uations5 [Jac97] and only few CBR systems deal withtime-extended situations6

[RS93a, Nak94, Rou94, BC96, SHP96]. An instantaneous situation is a finite set
of data that represents the state of the world at a particular point in time whereas a
time-extend situation reflects the evolution of the world either through a continuum
of instantaneous situations along a specific time line or through a sequence of events
like Ceaseless CBR. Jacynski investigated time-extended situtations in the context
of knowledge-management and was the first proposing a general framework for the
management (representation and retrieval) of time-extended situations instead of a
doman-specific solution [RS93a, BC96, SHP96]. Jacynski modeled the process un-
der control by a number of variables whose evolving-values were represented by a
collection of time series with incomplete and noisy data. The use of a channel for
each different source under observation lies a major difference with our approach
since we only consider a unique stream of data and part of the problem is precisely to
discern the values that correspond to separate sources. He considered both equally-
time spaced observations (sampled data) as well as event-driven observations. As we
will experimentally show in Chapter 6, Ceaseless CBR is also resilient to different
window models. Jacynski proposed an object-centered representation model with
two well-separated knowledge structures:recordsandcases. Records are composed
of the time series of all variables between an interval of time whereas cases refers
to time-extended situations that define when the case is relevant. A time-extended
situation is composed of a behavioral part and an optional instantaneous part. Behav-
ioral parts refer in turn to a record at a precise reference date, define a collection of
elementary behaviors and a set of temporal constraints among behaviors. Elementary
behaviors have a starting and ending date expressed in terms of Allen’s theory of
temporal intervals [All83]. Instantaneous parts store the record context.

Jacynski distinguished three types of cases:abstract, potential, and concrete.
Abstract cases are crafted by a human expert or constructed through automatic gen-
eralization. Abstract cases correspond tosequential master casesin Ceaseless CBR
[DV95]. Potential cases represent templates made up of temporal constraints that
guide the search of new possible cases. Potential cases correspond toabstract cases
in Ceaseless CBR. Concrete cases represent an elementary experience in a time-
extended situation. Concrete cases correspond tocase activationsin Ceaseless CBR

5Also known as snapshot cases [JAS02].
6Also known as time-dependent situations [JAS02].

32 STATE OF THE ART

as we see below. Jacynski proposed a case retrieval strategy based on those types of
cases and on the following heuristic. It is more preferable to retrieve abstract cases
than concrete cases that in turn are more preferable than potential cases. The reasons
for this are (i) that an abstract case stems from domain knowledge; and (ii) that a
concrete case has been reused at least once. This strategy clearly differ from our
retrieval strategy as we noted below. This reusable framework, developed on top of
the CBR*Tools library [JT97a] was applied to plan nutrition control assitance [Jac97]
and to the prediction of user behavior for web navigation reusing past navigations of
a group of users [JT97b, TJK99, Tro00]. Likewise, we provide an implementation
of the Ceaseless CBR model on top of an object-centered language—Noos in our
approach [AP96]. However, we do not separate the observation data (records) from
knowledge represented in cases instead we divide the knowledge into a taxonomic
hierarchy and a compositional hierarchy. The taxonomic hierarchy, developed on
top of Noos, represents all the concepts that conform the knowledge domain. The
compositional hierarchy is made up of all sequential cases that reflect and constrain
how different alerts can be compounded together indicating the temporal (parallel
or serial) relationships among them. Moreover, a likelihood model expresses for
each sequential case how likely is it to occur completely given some of its parts.
As mentioned above, we distinguish two kind of cases:sequential master casesand
sequential abstract cases. Sequential master cases group together cases that can be
represented using the sameactionable treeand therefore are stored only once but
constantly updated with the statistics that reflect their different activations and how
likely they are to occur. Sequential abstract cases are constructed based on the in-
formational order provided by the taxonomic hierarchy used to represent the alerts
(symptom events) at the roots of the actionable tree. Sequential abstract cases are used
as a back-up for the explanation of a group of unknown alerts and allow Ceaseless
CBR to discover new sequential cases. Sequential abstract cases offer an explanation
to unknown situations. Thus, when Ceaseless CBR can retrieve a sequential abstract
case means that the current case-base cannot properly define the current situation and
new sequential case has to be created. The priority associated to this new sequential
case requires the operator’s oversight. Thus, in our approach is preferable to retrieve
sequential master cases rather than sequential abstract cases. In Ceaseless CBR a
case activation is a sequential case that has been partially matched and represents a
plausible hypothesis on the occurrence of the complete sequential case given the se-
quence of events observed so far. Case activations that have been partially abstracted
can be seen as Jaczynski’s potential cases.

Only a few additional CBR works have dealt with time-extended situations [JT97b,
SU98, TJK99, JAS02] or considered dynamic situations [KS01]. The most notice-
able being the work due to Jaere et al [JAS02] who introducedtemporal casesas
a method for representing time-dependent situations within a knowledge-intensive
CBR framework. They provided a theoretical foundation for this method based on
Allen’s theory of temporal intervals [All83]. They extended the CREEK CBR system
[Aam91] (see Section 2.6.2) with temporal cases for the prediction of faulty situa-
tions in oil well drilling (e.g., a drill string getting stuck in the drill-hole interrupting
the drilling process). The system was able to either alerting or alarming depending

TIME-EXTENDED SITUATIONS 33

respectively on whether a predicted undesired situation could be avoided or not. Pre-
viously, Bichindaritz had also proposed MNAOMIA [BC96], a CBR system that also
integrated Allen’s formalism and organized its memory around hierarchies of trends
learnt by incremental concept learning from cases. MNAOMIA was applied to the
control (diagnosis, treatment planning, etc) of disorders in psychiatry. A significant
difference of our approach is that we do consider only the order of occurrence be-
tween events rather than the exact time of occurrence of the events. This allows us to
avoid the complexity of a ever-increasing number of temporal restrictions [JAS02].
Serial cases represent situations where a case necessarily occurs before another (i.e.,
its occurrence enables the occurrence of the other). Serial cases subsume the Allen’s
beforeandmeetsrelations (i.eCi is beforeCj or Ci meetsCj) [All83]. Parallel
cases subsume all possible Allen’s relations since they only stipulate that two cases
occur within a pre-fixed period of time in whatever order. In our problem domain the
separation in time between to consecutive actions usually does not influence the final
impact on the system (e.g., once an attacker has performed a reconnoissance he could
launch an immediate attack just instants after or on the contrary wait and launch it
two or three days later, the consequences would surely be the same). However, this
issue is crucial for recognition purposes. For example, if we use small size windows
to analyze the sequence of alerts, then sufficiently-separate alerts could deceive our
system, since we could not be able to correlate them. A similar issue has not been
addressed in the above approaches.

A number of domains have been the scenario chosen by other approaches to address
temporal issues in CBR. Take as an example the following references. Autonomous
robot navigation as we saw above [RS93a, LA01, LP95]. In process supervision,
Rougegrez proposed REBECAS for process forecast [Rou94], Cortes et al developed
DAI-DEPUR for problem determination in waste-water treatement plants [CMC00].
Colomer et al provided a the dynamic time warping algorithm improved with a quali-
tative representation of process variables by means of episodes for diagnosis purposes
in a laboratory plant [CMG02]. Meléndez et al proposed FUTURA for electric load
forecasting [MV03]. Schmidt et al presented TeCoMed to provide early warnings
against forthcoming waves of even epidemics in trend prognoses for medical prob-
lems [SHP96, SG03]. Hansen combined CBR and fuzzy sets for weather prediction
[Han00]. Zehraoui developed CASEP to enable the prediction of sequence of user’s
navigation actions in a web store [Zeh03]. Fdez-Riverola and Corchado provided
a hybrid neuro-symbolic model used to predict the apparition of oceanic red tides
[FC03b].

As a concluding remark for this Section, we summarize the differences between
time-series analysis in other CBR approaches and ours. Time-series analysis in CBR
has been commonly based on the three following assumptions about observations.
First, a separate stream of observations is used for each sensor attached to the system
being modeled [Her99]. Second, an observation is a numerical value, usually a real
number. Only a few works have addressed time-series built on categorical or ordinal
data with a serial structure [WH98]. Third, observations are equidistant over time (i.e.,
taken at regular intervals of time). Thus many models only apply to equally spaced
time series (i.e. daily exchange rate or weekly rainfall). In any case, each observation

34 STATE OF THE ART

is provided together with the time at which it occurred [Her99]. Nevertheless, as we
noticed in Chapter 1, there are real-world domains such as network-based sensor-
driven monitoring [MR97, DPV02], international event sequence analysis [Sch95] or
intrusion detection alert triage [CM02, GG01, MP03e, Esk02] where those assump-
tions cannot be sustained. In these domains, firstly, we cope with problems that model
not equally time-spaced observations whose serial structure comprise a number of fea-
tures, with values that may be numeric, qualitative, or structured [DPV02]. Secondly,
these observations stem from several sensors at different sources, usually, parallelized
through a single data stream. This implies the necessity of correlation techniques to
discern observations that belong to the same sequential structure. Thirdly, the exact
time at which events occur is not so important as the order in which they occur.

A singular particularity of our approach with respect to many of the works pre-
sented above is that we do not need to match the beginning of a sequence (or episode
[CMG02]) for retrieving a potential case that explain the current situation and conse-
quently engage inference. Representing sequential cases as compositional hierarchies
also allows us to make not only forward predictions but also backward predictions to
dealt with missing information. This characteristic in our approach is highly valuable
considering that we count on an noisy and imprecise environments where for example
sensors could fail to notify an alert or attackers continuously exploit new unknown
vulnerabilities.

2.4 COMPOSITIONAL CASES

Relatively little attention has been spent on CBR systems that are able to combine
relevant pieces of several past cases when solving a new problem [BM88, Red90,
Hin92, Vel92, DK93, GAD94, PLL95, BA95, RA96, MPG96]. The pioneering works
in this aspect correspond to Barletta et al [BM88] and Redmond [Red90]. These
approaches proposed to store cases as separate pieces, orsnippets[Kol88]—i.e., sub-
cases sharing a set of conjuctive goals [Red90]. The representation of cases by means
of snippets has several advantages as illustrated in the CELIA system, developed by
Redmond [Red90]. In CELIA snippets were linked in order to preserve the structure
of reasoning and indexed using both internal and global problem solving context.
Barletta and Mark [BM88] stated that links are necessary to maintain coherence
and consistency of actions. Each snippet stores three types of information [Red90].
Firstly, information about a goal and the information related to the pursuit of that goal.
Namely, each snippet is organized around one particular goal. Secondly, information
about the current problem solving context at the time the goal was initiated. This
includes the initial problem description. Thirdly, information about the links to other
related snippets. Each snippet is linked to the snippet for the goal that suggested
it and to the snippets for the goals it suggests. Snippets facilitate the retrieval and
identification of relevant sub-cases based on the goals of the problem at hand. Snippets
can be accessed either directly, matching the current situation and the goal and context
that a snippet stores, or sequentially, following links between snippets. One of the
main drawbacks of snippets as defined by CELIA is that they have to be pre-computed

COMPOSITIONAL CASES 35

before being stored for further reuse. Sequential cases in our approach bear certain
resemblance to snippets. However, sequential cases can be dynamically decomposed
to provide a partial explanation or compounded on-the-fly to provide a composite
explanation. An additional drawback of snippets arise due to the fact that they are
indexed using the global problem solving context what may not be feasible in a multi-
agent setting where agents only have a partial view of the global problem solving
context as stated by Prasad [PLL95].

There are two interrelated tasks where CBR systems have been shown to be more
applicable and successful when they use multiple cases [DK93, HKS95]:case-based
designandcase-based planning[MAN01]. A case-based designer provides a new
design based on previous designs that were useful in the past. The objective of these
systems ranges between two extremes: routinely configuring a new solution based on
the parametric variation of existing designs [SGK92] and, on the contrary, creatively
providing radical customized solutions [AMS98]. Hinrichs developed JULIA for
autonomous design [Hin92]. JULIA addressed issues of case segmentation and in-
dexing of case chunks but it was limited to represent a moderate numbers of relatively
simple artifacts. For example,Alba, our research prototype, takes into account more
than 1800 basic individual cases (as of this writing), each one corresponding to one
of the alerts that aSNORT sensor can evoke providing a huge number of possible
combinations. Sequential cases can be compounded together using both parallel or
serial relations as we show in Chapter 3 of the thesis. Domeshek and Kolodner devel-
oped ARCHIE a case-based aid for conceptual design in architecture [DK93]. They
addressed issues related to the complexity of cases and how they can be segmented
into chunks for future reuse and how those chunks should be indexed for subsequent
retrieval. Branting and Aha also discussed multiple case reuse by means of cases that
were represented using several levels of abstraction [BA95]. Likewise, Smith and
Keane proposed D́EJÀ VU a CBR system for plant-control software design that was
able to compound a new solution using different parts of multiple cases at various
levels of abstraction [SK96].

A case-based planner constructs a new plan based on previously generated plans
(plan cases) saving considerable time over planning from scratch [MAN01]. A plan
case is a sequence of actions to meet predefined specifications. These specifications
or goals are decomposable into subsets of specifications or subgoals allowing cases
to be decomposed into sub-cases. This hierarchical decomposition enables a case-
base planner to constructs new plans in terms of sub-cases (subparts of multiple
cases) increasing its versatileness due to greater number of possible combinations.
Goel et al proposed a multi-strategy navigation planning system called ROUTER
[GAD94]. ROUTER was also able to retain cases that previously have been broken
up into small pieces. Veloso proposed PRODIGY/ANALOGY, a system that was
also able to retrieve and subsequently combine the results of an arbitrary number of
totally ordered plans [Vel92, Vel96]. Ram and Francis presented NICOLE-MPA, a
multi-plan adaptor algorithm that allowed a case-based least-commitment planner to
retrieve and adapt relevant pieces of multiple past experiences [RA96]. They used
plan clippings that were similar in essence to snippets but that can be constructed

36 STATE OF THE ART

dynamically during problem solving rather than pre-computed beforehand as we
mentioned above.

Macedo et al proposed the representation of structured plan cases as tree-like
structures built from goals and actions [MPG96]. We refer to that representation as
Hierarchical and Temporal Related Case Pieces (HTRCPs). HTRCPs are useful in
structured planning domains. Macedo et al applied HTRCPs at music composition re-
formulating, previously, the musical composition task as a planning task [MPG96]. In
HTRCPs each node corresponds to a case piece whose goal may be broken up into sub-
goals and represented by case pieces in its subnodes. Case pieces are made up of a set
of attribute-value pairs describing its properties. Arcs represent causal justifications or
explanations (hierarchical and temporal relationships) between case pieces. They dis-
tinguished six types of arcs depending on the relatioship induced between case pieces:
implicit/explicit arcs, temporal/hierarchical arcs, and antecedent/consequent arcs.
This classification in turn determines eight different types of case piece contexts—
the neighboring case pieces: ranging from antecedent-hierarchical-implicit context to
consequent-temporal-explicit context. Moreover, they use a pseudo-date scheme to
represent time that is based on Allen’s temporal intervals [All83]. Each case piece in
a case plan is given a period of time and represented by a pseudo-date to facilitate the
obtention of temporal relations. The likeliness between Macedo et al’s HTRCPs and
sequential cases in our approach is notable. The main difference comes from the fact
that sequential cases represent plans from the point of view of the recognizer. That
is to say, sequential cases are devised for the recognition of plans in mind whereas
HTRCPs are useful for plan generation. Thus, HTRCPs lack predictive capabilities
while sequential cases allows one to make inferences based on statistical regularities.
We discuss the differences between case-based sequence recognition and case-based
sequence generation later on in Section 2.5.

The combination of multiple sub-cases has also be addressed from a multi-agent
perspective. In multi-agent scenarios, the problem at hand is solved compounding
past cases that are logically or physically distributed and managed by different agents.
Prasad et al [PLL95] presented a new model of response based on cooperative retrieval
and composition of a case whose sub-cases are distributed across several agents in
a multi-agent setting. In this way, the response to a query is derived after compos-
ing partial responses from distributed case bases. Since no single agent contains the
complete information to respond to a query, piecing together related partial responses
from disparate agents is necessary. However a case derived from the summation of
best sub-cases may not give rise to a good overall case. Thus, to smooth incon-
sistencies they introduced theNegotiation Retrieval(NR) algorithm that allowed to
cooperatively retrieve responses while negotiating compromises to solve conflicts.
Schematically, a complex query is presented to several agents. Then each agent is
responsible for retrieving information related to a part of the query. Afterwards,
agents negotiate to piece together an acceptable response. Prasad et al viewed the
NR algorithm as “an asynchronous parallel distributed constraint optimization search
to obtain a good overall episode assembled from case pieces”. This can be consid-
ered as the first work concerned with distributed case bases in a multi-agent setting.
Plaza et al have investigated different cooperation and learning methods among dis-

CASE-BASED SEQUENCE ANALYSIS 37

tributed CBR agents [PAM97, MPA99, OP03]. Leake and Sooriamurthi have recently
provided some insights related with the use of multiple case bases [LS01, LS03].

Up to now, in this Chapter, we have summarized previous CBR works that opened
four of fundamental issues that we deal with. However, to the best of our knowl-
edge those issues still remain open and nobody has seized them together. Thus,
our approach is arguably different in essence from other major CBR proposals. Next
Sections are devoted to provide background on some relevant issues for the fully com-
prehension of this document and review in summary form some additional works.

One of the hallmarks of human intelligence is having available in long-term as-
sociative memory a number of recurring sequential patterns that are useful for re-
calling past situations and making predictions when they are partially recognized.
Hence, many common human activities ranging from language and reasoning to
complex problem solving such as planning are based on previously learned sequences
[SG01a, SG01b]. In next Section we will overview some of relevant works concerned
with case-based sequence generation, recognition, prediction, and learning.

2.5 CASE-BASED SEQUENCE ANALYSIS

The automated, sequential and time series analysis of sensed data collected over time
has been applied in many different disciplines under various guises and for different
purposes. For example, discovery of black holes in large-scale astrophysical data
[ZS03a], forecasting conflicts in international event analysis [Sch00], fraud detection
in cellular telephones [FP97], intrusion detection [LB99], etc. We refer to the general
task that underpins such multiple approaches and paradigms assequence analysis7.
Sequence analysis encompasses a collection of methods, techniques, and tools that
aim at extracting meaning from data with a serial composition and decode it into an
understandable structure for further reasoning. Said differently, sequence analysis’s
goal is to make sense of data with a sequential (temporal or spatial) structure. Several
computer science disciplines have been very prolific and produced an outstanding
number of methods, techniques, and tools for the automation of sequence analysis
(e.g., natural language processing [MS99], computational biology [Gus97], machine
learning [SG01a, Die02], speech recognition [Jel97], etc). The applicability, limita-
tions, and complexity of sequence analysis depends on a number of factors mainly
concerned with (i) the purpose of the analysis (e.g., recognizing if a sequence is legit-
imate, predicting elements of a sequence, discovering new sequential patterns, etc);
(ii) how the analysis is performed (e.g., on-line, off-line, etc); (ii) the nature of the
data itself (e.g., noisy, sparse, incomplete, numerical, categorical, structured, etc);
and (iv) the characteristics of the environment (e.g., Markovian or non-Markovian,
deterministic or stochastic, stationary or non-stationary, etc). Ceaseless CBR aims at

7We prefer to call such task sequence analysis rather thansequence learningsince we consider that it also
covers other aspects of the operationalization of the sequences learned and not only the process of learning
(constructing) them [SG01a].

38 STATE OF THE ART

analyzing on-line unsegmented (noisy) sequences of complex objects that stem from
multiple coincidental sources with the purpose of recognizing similar past situations
and predicting undesired situations in plenty of time. These particular characteristics
and the assumptions often required (e.g.,iid, Markovian, stationary, etc) make infea-
sible the adoption of a large number of current sequence analysis methods, techniques,
and tools. Next, we provide a concise characterization of several sequence analysis
tasks according to the purpose of the analysis and concisely examine some case-based
approaches to those tasks [SG01a, Die02]. Then we enumerate some existing and
extended techniques and speculate on their appropriateness for our particular problem
domain.

2.5.1 Case-Based Sequence Generation

The goal of sequence generation is to produce or continue a succession of elements
whose order is crucial for the success of the task at hand. That is to say, given a
sequence of lengthj ≥ 0, generate ak more elements in the succession8:

[~x1, ~x2, · · · , ~xj] → [~xj+1, · · · , ~xj+k]

The most striking example of case-based sequence generation is case-based plan-
ning9 [BMV98, Spa01]. In factautomated planningis one of the problem-solving
arenas where the CBR research community has been more prolific from the very
beginning and where CBR has been successfully applied [SA77, Ham89, Sug95,
MAN01, BM93, RA96, MPG96, BMV98, Spa01, DAN02]. As mentioned above, a
case-based planner constructs a new plan—a sequence of actions to meet predefined
specifications—based on previously generated plans saving considerable time over
planning from scratch [MPG96, MAN01]. Nonetheless, as we will note in Chapter 8,
case-based plan recognition—the case-based planning counterpart—has not deserved
the same attention and has been less explored.

2.5.2 Case-Based Sequence Recognition

Sequence recognition aims at deciding whether a sequence conforms a known pattern
or not. Said differently, given a sequence of complex objects of lengthn, the goal is
to predict a single labely that classifies such sequence10:

[~x1, ~x2, · · · , ~xj] → yes or not

As we noted in the above Sections, most CBR systems have dealt with instanta-
neous situations rather than with situations that require to recognize a temporally-

8Whenk > 1 the task is known as open-loop, otherwise it is called close-loop [SG01a].
9Sequence generation through actions is also referred assequential decision making[SG01a].
10Notice that this prediction can be also stochastic rather than deterministic. As a matter of fact, sequence
generation, recognition, and prediction can also be specified stochastically rather than using a deterministic
formulation [SG01a, Die02].

CASE-BASED SEQUENCE ANALYSIS 39

evolving sequence of events. Ceaseless CBR, on the contrary, focuses on such sit-
uations. A high-level task that involves these kind of situations isplan recognition.
Hence, we also consider Ceaseless CBR as the basic mechanism for the construction
of plan recognitionsystems in multi-agent settings. We consider this one of the main
frontiers to explore in the future such as we will point out in Chapter 8.

2.5.3 Case-Based Sequence Prediction

Sequence prediction (or time-series prediction) tries to foretell the next elements of
a sequence. That is, given the preceding elements of a sequence this task attempts to
predict the successivek elements11:

[~x1, ~x2, · · · , ~xj] → [~xj+1, · · · , ~xj+k]

Notice that this task coincides with the sequence generation task. Hence, the
different task formulations above can be transformed one into each other [SG01a].
Likewise, we can also turn the solution to one of these tasks into a solution for another
[Die02]. Furthermore, in the real-world, most problems consist of combinations and
alterations of these tasks. For example, intrusion detection aims at (i) recognizing
suspicious sequence of actions and (ii) predicting the next steps of an attacker so that
(iii) the proper sequence of countermeasures can be generated. As pointed out before,
we only focus on the two first steps above. Ceaseless CBR attempts to recognize
sequences of complex objects (alerts) that have been previously deemed of interest
to the user (security manager) so that their priority can be assigned accordingly.
In addition, in our problem domain, when the sequence of alerts corresponds to a
malicious activity that could affect the operations of the network under surveillance
the objective is to advert it in plenty of time. Many of the approaches that we have seen
in the above Sections can be classified as case-based sequence prediction approaches
[RS93a, Jac97, MV03, Zeh03].

2.5.4 Case-Based Sequence Analysis Tasks

Generally speaking, two interrelated tasks sustain almost every sequence analysis
undertaking:

The creation or learning of sequence modelsthat establish what sequences are rec-
ognizable or legitimate. For example, Hidden Markov Models (HMMs) [Rab89,
Bil02], stochastic grammars (SGs) [Ney92], recurrent neural networks (RNNs)
[Pea95], sparse n-grams [Esk02, Pfl02], sliding-window techniques [Die02],
Conditional Random Fields (CRFs), [LMP01], sequential case-bases, etc. Sev-
eral machine learning paradigms (supervised, unsupervised, reinforcement-
based, etc) aim at constructing such sequence models (HMMs, RNNs, etc)

11Whenk = 1 we call it single-step prediction and whenk > 1 multi-step prediction.

40 STATE OF THE ART

based on a number of independent and identically distributed (iid) training ex-
emplars [HT01b, RN03]. For example, using the expectation-maximization
(EM) algorithm [MK96], gradient-descent methods, clustering, etc. Let us
take the example of HMMs. Hidden Markov Models (HMMs) provide a flexi-
ble statistical model that has been successfully applied more than any other
technique for sequence generation, recognition, and prediction in multiple
disciplines [Rab89, Bil02]. For example, intrusion detection [Lan00], fore-
casting international conflicts, [Sch00], predicting protein secondary structure
[AHH93], model-based diagnosis [YKP00], text recognition [AB95], computer
vision [RB91], etc. See Cappé’s list of references for a complete bibliography
[Cap01]. However, HMMs present several disadvantages that have to be con-
sidered above all when coping with dynamics environments (e.g., imagine a
hand-written recognition system that not only had to cope with the variabil-
ity introduced by each individual writer but also with a dynamic alphabet).
The most common problems with HMMs are [Kad02]: (i) the large number
of parameters required even when modeling a small number of states; (ii) the
Markovian assumption and its secondary effects (e.g., the probability of staying
a number of time-steps in a given state turns to decrease exponentially instead of
linearly as required in many domains); (iii) HMMs only use positive data (i.e.,
the presence of exemplars of other classes does not decreases the probability
of observation); (iv) the absence of a method to determine the number of states
and transitions; and, as consequence of the above, (v) HMMs require a very
large amount of data to be trained. Moreover, the concepts learnt by HMMs
(transition and emission probabilities) are not easily-understandable by human
experts and they are also hard-to-craft by human experts in certain domains that
do not admit the statistical assumptions or where there is not enough statistical
support to learn them.

The comparison of sequencesto determine whether a given sequence is legitimate
or not [Kru83]. The most extended technique for sequence comparison is
dynamic programming. It appears at the core of many well-known algo-
rithms (e.g., Viterbi algorithm [G 73], Levenshtein distance [Lev66], align-
ments [Gus97], time-warping algorithms [SK83], etc A few CBR approaches
have used dynamic programming algorithms in the recognition of sequences.
For example, to recognize static sequences in domains such gene finding and
music [LZ99, CW03a, AGM03] or temporally-evolving sequences of data for
diagnosis purposes in a laboratory plant [CMG02].

The main tendency of statistical learning has been to develop classifiers neglecting
two important aspects of the real world:structureand time. Therefore, statistical
classifiers have been developed focusing on individual objects with a fixed set of
static attributes rather than focusing on the evolution of its attributes over time and
its relationships with other objects in the domain. In real-world scenarios this is not
often the case and focusing on "flat-data" (i.e., data consisting of identically-structured
objects assumed to beiid) or using static attributes rather than temporally-evolving
attributes may be out of question [TAK02, Kad02]. For example, generative models

CASE-BASED TROUBLESHOOTING 41

(HMMs, SGs, etc) require very strict independence assumptions to achieve tractability
and therefore are not recommendable for representing multiple interacting features or
long-range dependencies [LMP01]. Conditional models (Markov Networks [Pea88],
CRFs [LMP01], etc) overcome this shortcoming but their current training methods
still present low convergence. Generally speaking, it could be said that although
general-purpose probabilistic models are well understood and widely used they are
still restricted to small "explicit" state spaces or require a pre-established number
of states variables [FGS02]. The recent burst of works on (Dynamic) Probabilistic
Relational Models (PRMs) announce a shift on the above machine learning tendency
[FGK99, SDW03].

In real-world domains where the above statistical learning models are often hard to
apply and where an automated system expects to cope with related problems that recur
over its lifetime, the case-based paradigm elicits as an elegant approach to surmount
the complexity barrier and facilitate a mechanism that allows an automated system
to improve its performance with experience.

2.6 CASE-BASED TROUBLESHOOTING

Automate troubleshooting aims at minimizing the time and cost required to fix a
system’s problem or to recover a system from a faulty state. Automate troubleshooting
can be seen as composed of three interlaced processes:problem detection, root cause
identification, andproblem repair. We consider the system under observation as a
complex system made up of several components. The time and cost to fix a problem
is the sum of the time and cost to detect the problem and determine its root causes
(problem determination or fault diagnosis) and the time and cost required to execute
the actions that can restore the system to a healthy state again (problem repair). The
time and cost of problem determination depends on the time and cost required to isolate
the problem (problem detection and root cause identification) proposing a number
of competing hypotheses and the time and cost spent on testing these hypotheses
(diagnostic tests) [KS95]. When the number of possible faulty components is large,
an effective strategy in time and cost for both problem determination and problem
repair becomes of paramount importance. A number of works in different problem
domains have investigated methods for the selection of the optimal set of diagnostic
tests in a cost-effective way [LP93, BRM02, Bay03]. We, in this thesis, are only
interested in problem detection and root cause identification issues and leave the
automation of diagnostic tests and problem repair issues for further work. Providing
systems with autonomous problem determination and full remediation capabilities
(i.e., self-healing systems) is an incipient area of research that constitutes the focus
of our future work such as we will explain in Chapter 8 of the thesis.

As systems grow in number of components and complexity (e.g., in large-scale
manufacturing and service equipment, thousands of electro-mechanical, hydraulic,
and digital electronic components are assembled together to perform an intended
function [Gup98]), knowledge-based (KB) troubleshooting tools are becoming sig-
nificantly more necessary to identify the ever-increasing number of components

42 STATE OF THE ART

that could be responsible for a fault. However, traditional KB techniques such
those used by rule-based systems [Cal89, MCV89, Mar89] or model-based systems
[KW87, BMM93, JW93] are limited by their brittleness and their lack of flexibility
[FGT91, Gup98]. These techniques cannot precisely capture the dynamic complex-
ity of large systems [CKF02]. Said differently, those techniques are not resilient to
continuous changes or manage easily the presence of noise, imprecise, or adversarial
conditions. Moreover, they not only require experts to constantly input extensive
knowledge about the systems but also continuous human oversight and the domain
expertise of their end users. Lewis grouped the limitations of those techniques un-
der the following four headings [Lew93, Lew95]: (i) the knowledge representation
problem (i.e., the mismatch between a real-world task and its corresponding repre-
sentational scheme accentuates due to constant changes in the environment); (ii) the
knowledge acquisition problem (i.e., continuously compiling details of how problems
are solved and articulating the reasoning that experts use becomes infeasible); (iii)
the brittleness problem (i.e., those systems do not recover gracefully after confronting
a problem that they were not designed to cope with); and (iv) the problem of learning
and adapting in evolving domains. CBR emerges as a suitable paradigm to confront
the dynamic complexity of large systems [Lew95, Gup98]. A number of automated
troubleshooters have already shown the feasibility of CBR in complex and dynam-
ics domains [Goo91, BL91, RR91, AW92, Sim92, RNC93, BH95, Lew93, Lew95,
WTM95, RTT96, Gup98, PNM99, MT00]. For example, Lewis extended a Ticket
Troubleshooting System (TTS) system with CBR methods that aided in computer
network alarm management [Lew95], Gupta introduced SPOTLIGHT, a CBR tool
for complex equipment troubleshooting [Gup98], and Ram et al presented a frame-
work for introspective multi-strategy learning approach in the context of electronics
assembly manufacturing through which a troubleshooter was able to introspect about
its own performance and identify what it needed to learn to improve its own perfor-
mance [RNC93]. They introducedmeta-explanation patterns(Meta-XP) as causal,
introspective explanation structures that explains how and why and agent reasons.
They distinguished betweenTrace Meta-XPsthat are able to record a declarative
trace of the reasoning performed by a system andIntrospective Meta-XPthat facili-
tate the analysis of the declarative reasoning trace and help to explain the reasoning
process and determine what to learn and how to learnt it [RNC93]. Furthermore,
(case-based) explanation models have been largely studied by the CBR community
[SKR94, Aam94, Lea95]. We overview some case-based explanation approaches
in Section 2.6.2 and see how they lay the groundwork of a significant part of our
approach. Nonetheless, as mentioned throughout this document, many of the CBR
approaches above as well as the dominant mainstream CBR model [AP94] only con-
template instantaneous situations rather than time-extended situations that are only
partially expressed in terms of unsegmented sequences of observational data stem-
ming from multiple coincidental sources. Thus, as pointed out in Chapter 1 of the
thesis, the problem determination issues that Ceaseless CBR deals with are signif-
icantly more challenging. In next Section we briefly describe a particular problem
domain (network event management) that widely subsumes the problem domain we

CASE-BASED TROUBLESHOOTING 43

cope with (alert triage in intrusion detection) showing the wide-spectrum of applica-
tion that our approach could reach.

2.6.1 Network Event Management

Network event management is one of the problem domains where different research
communities have been more prolific offering different troubleshooting approaches
that aim at mitigating the ever-increasing number of possible faults [FGT91, LF93,
BCF94, KS95, RH95, KYY95, YKM96, Mei97, SS01b, SS02a, SS02b, SS03].

With some necessary simplification, network event management systems could be
classified according to the fault localization techniques that they employ:

Rule-Based Reasoningsystems represent knowledge and expertise by means of
rules [Lie89, Cal89, MCV89, Mar89, BMM93, LMY99, HSV99]. These sys-
tems are unable to automatically learn from experience. A number of ap-
proaches have proposed to automatically discover rules from databases of past
alerts but discovered rules need to be constantly regenerated after small changes
in system configuration [Kle99, SS01a, ZXL02].

Model-Based Reasoningsystem that represent both physical and logical compo-
nents in the system by means of a model that describe the particular behavior of
each component and the relationships with other components [KW87, FGT91,
BMM93, JW93, Rie93, BLB99]. These systems look for discrepancies be-
tween the modeled and observed behavior of the system under supervision.
Most times such discrepancies are originated due to noise in the observed be-
havior or to a wrong model. However most of these systems model neither noise
nor wrong models. These systems as well as expert systems work well in small
static settings but both types of systems suffer the drawbacks signaled above
when applied to a large system in an environment of noise and uncertainty.

Fault-Propagation Model-Based Reasoningsystems represent the relationship be-
tween faults and symptom events using adependency model[BCF94, KS95,
RH95, KYY95, YKM96, Gru98, HSV99, SS01b, SS02a, SS02b, SS03]. A
dependency model is a causality graph that describes the relationships among
problems and observable symptom events. Given a series of events, a depen-
dency model is used to work the way back to their cause (e.g., a component
failure, a perpetrated attack, etc) and determine which components (or attacks)
might be responsible for the symptoms observed so far. A dependency model
can be represented using different formalisms such as: context-free grammars,
code-books, belief networks, or dependency graphs. We review some of these
formalisms below.

Case-based Reasoningsystems are able to make decisions based on their experi-
ence on past situations [Lew93, Lew95, PNM99, MT00]. CBR systems lessen
the constant modeling efforts in dynamic enviroments and are able to learn
new correlation patterns over time [Lew95]. CBR systems are able to adapt

44 STATE OF THE ART

past cases to solve outstanding situations updating their case-bases with the
proposed solution for further reuse.

Ceaseless CBR is, in some sense, an hybrid approach given that we use a special
dependency (fault-propagation) model (i.e., actionable trees) to represent sequential
cases. This feature makes Ceaseless CBR particularly different from other approaches
before. An exception is Breese and Heckerman’s work [BH95]. We see the differ-
ences with their proposal later on in this Section. Next, we succinctly overview some
of the systems referred above.

Katzela and Schwartz designed a collection of fault localization algorithms relying
on dependency models that were able to find the best explanation of a set of alerts
[KS95]. Their algorithms used a fixed set of alerts as input and defined finding the
best explanation as the process of searching a set with (i) the minimum number of
components that explain all the alerts; and (ii) the maximum probability that at least
one of the components in it is a primary fault. Katzela and Schwartz shown that the
problem of finding the best explanation of the received alerts is NP-complete trans-
lating the problem into a generalization of the set cover problem [KS95]. Ceaseless
CBR also searches the best explanation but it does incrementally and therefore the
greedy algorithms proposed by Katzela are not directly applicable. Given that alerts
often result in a set of possible alarm sequences, Rouvellou and Hart proposed to
model each fault by means of a probabilistic finite state machine (PFSM) [RH95].
PSFMs were automatically built from historic data associating sequence of alerts to
fault occurrences. An PSFM output sequences correspond to the possible sequence
of alerts that results from the corresponding fault. They designed an on-line correla-
tion algorithm that was able to receive as input an interleaving of sequences of alerts
stemming from multiple faults. Ceaseless CBR is very similar, in essence, to this
approach. Although, actionable trees are not so powerful as PFSMs they are more
easily-learnable. Moreover, Ceaseless CBR also learns new cases on-line. Rouvel-
lou and Hart’s alert model took into account the presence of noise what differed from
other previous probabilistic approches [PR87, PR90, BCF94]. A number of works
have also considered the occurrence of corrupted (lost and spurious) symptom events
[KYY95, ZXL02, SS02a]. Ceaseless CBR is also resilient to a noisy sequence of
alerts.

Kliger et al introduced a coding approach in which problems are viewed as mes-
sages generated by the system that are encoded using the sequence of alerts that they
cause into a code-book [KYY95, YKM96]. Correlation is interpreted as decoding
such alerts to identify the message [KYY95, YKM96]. This approach produced a sub-
stantial improvement in real-time correlation due to optimized symptom events sets
and fast decoding mechanisms. Kliger et al modeled causal likelihood by means of a
general framework defined as semi-ring that provided an abstract measure of causality
that could be instantiated with distinct modelsdeterministic, temporal, fuzzy logic,etc.
We have followed a similar approach as the underlying mechanism to model part-of
strength relationships in actionable trees as we will see in the next Chapter given the
independence advantages that brings to do so [BMR97]. In domains where the com-
ponents of the system and possible problems can be completely specified beforehand,

CASE-BASED TROUBLESHOOTING 45

the codebook approach is general, scalable, and resilient to noise. However, this turns
to be the downside of this approach since each code-book has to be pre-computed
and stored beforehand. Thus when this approach is used to manage the events of
current computer networks (where changes abound) or when all possible problems or
components are unknown beforehand (as in intrusion detection), code-books need to
be continuously updated with the corresponding overhead that this implies [KYY95].
Steinder and Sethi proposed the utilization ofpositive information(i.e., the lack of
any disorder in some system components) to improve the accuracy of fault localiza-
tion. They developed a non-deterministic fault-localization process resilient to the
existence of spurious and/or lost alerts based on their previous research on applying
belief networks to fault localization [SS01b, SS02a, SS02b, SS03]

However, not always it is feasible to obtain a complete characterization of every
possible problem and provide a perfect model establishing all possible relationships
between problems and symptom events. CBR approaches require less modeling ef-
fort and are not subjected to the list of problems mentioned above. The most relevant
CBR approach in network management is due to Lewis [Lew93, Lew95]. He pro-
posed to enhance Trouble Ticket Systems (TTSs) with CBR capabilities that aided
in alert management. A TTS tracks a problem along is life cycle into a network
fault management system [MT00]. A TTS forwards problems but does not analyze
or solve them.That is a TTS is usually used to expedite a service request by sending
a trouble ticket to right channel in the network operation [Lew95]. Trouble tick-
ets are finally received by human repairers who try to determine an explanation and
remedy for the trouble. Lewis proposed to transform a TTS into a CBR problem
solver able to automatically manage alerts conveyed by trouble tickets. He proposed
CRITTER, a network CBR Trouble Ticket System. CRITTER [Lew93, Lew95] was
a precursor of many network management approaches including the small number of
other CBR approaches that we have found in the literature [MT00]. CRITTER was
inspired by five other CBR systems: PRISM—a case-based telex classifier [Goo91],
CEBRUM—a case-based tool for large-scale manufacturing [BL91], CANASTA—a
crash analysis troubleshooting assitant [RR91], SMART—a CBR call support system
[AW92], and MASTER another CBR TTS system [DV95]. CRITTER was one out of
five components that composed the architecture for network management proposed
by Lewis [Lew95]. The rest of components were: a network management platform
(NMP), a TTS, an automatic trouble ticket generator (ATTG), and a (human) net-
work troubleshooter (NT). The workings of this architecture are as follows. Alerts
are detected by the NMP, subsequently alerts are collected by the ATTG that is re-
sponsible for creating the corresponding trouble tickets in the TTS. Finally, alerts
are analyzed by CRITTER that sends its output to the NT. CRITTER used master
cases (i.e., case structures that subsume experiences with similar individual cases)
and implemented diverse adaptation strategies such asnull adaptation, parameter-
ized adaptation, critic-based adaptation.

Null adaptation is used when the solution found in the retrieved cases can be directly
mapped to new cases [Lew95]. A null adaptation strategy is a good way to start

46 STATE OF THE ART

the learning process when the system is initiating its operations and only relies
on the seed case base [Lew95].

Adaptation by substitution is used when the solution is unworkable but substituting
several pieces may make it workable. Therefore, adaptation by substitution
strategy replaces several pieces of the solution of a retrieved case by new pieces.

Parameterized adaptation is based on the relationship between the attributes that
describe a problem and the attributes of the corresponding solution and is useful
when the relevant variables in a case are numerical, similar cases exists but
the parameters does not scale, and we can infer the formula through which the
numeric solution is computed from the values in the problem. The CBR system
compares the problem at hand when the solution in a past case and uses the
relation between both to derive a new solution [Lew95].

Critic-Based Adaptation is based on the troubleshooter’s feedback on the proposed
solution. Thus, the burden of adaptation lies on the troubleshooter who can
add/modify adaptation rules. When the NT knows beforehand that a solution
proposed by the system will not work then the NT tweaks manually the solution
(so that it can be applied) and files a new case. This adaptation method requires
a language to specify the differences between the new problem description and
the problem description that was altered [Lew95] (e.g., specifying a different
role).

Ceaseless CBR also uses master cases but opposed to Lewis’ master cases we addi-
tionally store statistical information on the occurrence of the individual cases. Cease-
less CBR also implements the null adaptation and critic-based adaptation strategies
allowing the user to tweak the priority corresponding to received alerts. Additionally,
as we see in Chapter 5, Ceaseless also provides a compositional adaptation strategy
that allows new sequential cases to be compounded based on small recurrent sub-
cases. In Ceaseless CBR, sequential cases not only can be hand-crafted by an expert
based on a number past problem solving experiences but also through continuous
operation.

Melchiors and Tarauco extended the CINEMA TTS with CBR and created DUMBO
[MT00] that was able to propose diagnostic actions and learn new relevant features
that appeared in unpredicted situations. For further details on event management see
Oshie and Kliger’s report where a number of reasoning methods and architectures are
contrasted [OK94]. Malheiros’ thesis also provides a complete survey on alert corre-
lation in communication networks [Mei97]. Malheiros proposed a correlation model
based on arecursive multi-focal correlationprinciple that establishes how a network
can be recursively partitioned into smaller sub-networks that facilitate to focalize the
search of faulty components. Steinder and Sethi provided a comprehensive review of
event correlation future challenges [SS01a].

The advent of communication networks during the last few years has made that
event correlation systems gain special attention. In fact they are recently being trans-
formed from mere tools for monitoring computer network exceptions to event man-
agement tools responsible of supervising businesses’ complete supply chain. In other

CASE-BASED TROUBLESHOOTING 47

words, their responsibilities are being expanded from low-level resource availability
problems in the lower layers of network protocols to performance problems in business
processes. A number of comercial event management systems are today available:
ENTUITY, OPENVIEW, SMARTS INCHARGE (that implements the Kliger et
al’s coding approach [KYY95]),TIVOLI, SPECTRORX (that employs CBR), etc.
However, these systems commonly not only lag behind the pace of network size
and complexity growth but also behind the demanding requirements posed by huge
amounts of distinct events that a single enterprises daily generates [Lew93]. Thus,
investigating new techniques, such as Ceaseless CBR, that are able to make sense of
large amount of distributed and heterogeneous events is, nowadays, of paramount im-
portance for enterprise management. New approaches are starting to address problem
determination in large and dynamic systems [CKF02].

Ceaseless CBR starts with any of a world observable symptom events and searches
the best explanation, the combination of sequential cases that are most highly corre-
lated with the origin of alerts received so far, under the belief that the attacks associated
to these sequential cases are causing such alerts. The best explanation prioritizes most
urgent alerts minimizing costs in terms of both network administrator’s interventions
and risk that would convey a wrong explanation. Thus, Ceaseless CBR can also be
seen as a reminding-based explanation model that facilitates the generation of plausi-
ble explanations in dynamic, imprecise, and adversarial environments (i.e., domains
that are complex and imperfectly understood [Lea95]) based on past explanations of
similar situations. Next Subsection briefly overviews some case-based explanation
models.

2.6.2 Case-Based Explanation

Explanation is making sense of evidence (i.e., finding causes for observed facts
[CS94, Lea95]). Explanation and its imitation by computers has been largely studied
within the AI community [SA77, SL89, SKR94, PR87, CS94, Aam94, Lea95, TD97].
Case-based explanation generates new explanations to current situation by reusing
relevant past explanations that were useful in similar past situations instead of gen-
erating them starting from scratch [SKR94]. A number of works addressed different
issues of the generation process of case-based explanations in complex domains with
imperfect domain knowledge and incomplete information [SL89, Kas94, Lea94].
ABE [Kas94], ACCEPTER [Lea94], AQUA [Ram94], and SWALE [SL89], are four
well-known case-based explanation systems. Owens investigated retrieval issues
[Owe94], Leake analyzed how to evaluate explanations [Lea92, Lea94], and Kass
how past explanations could be adapted [Lea95]. Subsequently, Leake analyzed the
commitments and contributions of the case-based approach to explanation generation
[Lea95]. Leake discussed models that used case-base reasoning to generate abductive
explanations of anomalous events in everyday understanding guided by prior experi-
ence and current information needs. He identified six fundamental issues that used to
characterized different approaches to abductive explanation:the nature of explana-
tory chains, when to explain, what to explain, how explanations are generated, how

48 STATE OF THE ART

to select the best explanation. We focus on each of these issues later on in Chapter 5
of the thesis.

Succinctly, the four most important differences between Leake’s case-based expla-
nation model and Ceaseless CBR are: (i) the case-based explanation model reflects
plausible reasoning by means of reasoning chains supporting belief in a state to be
explained like many other approaches [JJ94, CS94]. On the contrary, we follow an
approach closer to Peng and Reggia’sparsimonious covering theory[PR90]. For us,
explanations are combinations of disorders (computer attacks) that provide a cover-
ing for a set of manifestations (alerts) according to the pre-established part-of links
in the corresponding sequential cases [PR87, PR90]. As we explain below,parsi-
monious covering theorylays the groundwork of part of Ceaseless CBR explanatory
process; (ii) the case-based model automatically generates an explanation whenever
an anomalyarises during the understanding process. However, we have defined
a measure of urgency that prompts explanation when possible accumulated risk is
above a given threshold in similar way to Huang and Schachter’s approach [HS97];
(iii) we not only select best candidates based on minimality criteria such as Occam’s
razor and judge plausibility using similarity-based methods as the case-based model,
but also use application and environment-dependent measures such as risk; (iv) our
model provides composite explanations since many concurrentanomaliescould be
causing different but coincidental problems at a time.

The three main advantages of case-based explanation model signaled by Leake are:
(i) better candidate explanations since they are started from explanations that were
supported by prior experience; (ii) that are created more efficiently than generating
explanations from scratch; and (iii) more precise explanations that are likely to be
useful since they have been retrieved and adapted focusing on system needs through
an integrated process of generation and evaluation. Finally, the case-based model rep-
resents explanations asexplanation patterns(XPs). XPs were introduced by Schank
to encode causal schemas in his script-based theory of understanding [SA77, Sch86].
As stated by Aamodt, explanations in KBS has two distinct interpretations: (i) the
explanation that a system produces for the benefit of the user; and (ii) the explanation
that a system generates for itself during problem solving. As we show in Chapter 5
of the thesis, we adopt the second approach since explanations constructed in such
a way are also susceptible of being transformed into good explanations for the user
[Aam94].

An essential component for the generation of hypotheses in case-based explanation
as well as in troubleshooting in general isabduction. Abduction was introduced by
Peirce as an additional inference method to induction and deduction [Pei48]. Abduc-
tion or abductive inference generates plausible explanations (hypotheses) for the data
at hand [PR90]. Abduction constitutes the basis of most diagnostic problem solving
methods [PR90]. Abductive inference is best explained through the pattern of reason-
ing shown in Figure 2.1 [JJ94]. Abduction, or inference to the best explanation, is an
inference process that goes from observed data to a hypothesis that best explains the
observed data [JJ94]. Conclusions generated by abduction are only plausible rather
than logically implied by the premises. There are several models of abductive expla-
nation (e.g., the case-based explanation model reflects plausible reasoning by means

CASE-BASED TROUBLESHOOTING 49

D is a collection of data (facts, observations, givens),
Hypotheses H explains D (would, if true, explain D),
No other hypothesis explains D as well as H does.

Therefore, H is probably correct.

Fig. 2.1 Abductive Reasoning Pattern [JJ94].

of explanatory chains rather than using deductive proofs that depend on additional ab-
ductive assumptions). However, many of these models are hard to apply to problems
where imperfect knowledge abound and where reasoning resources are constrained.
For further details see Streiter classification of interpretations of abduction [Str02].
In the context of adversarial conditions of intrusion detection systems, abductive in-
ference generates new hypotheses that allows problem solving to follow up with a
convinient reasoning [CAM02, GG01]. Ceaseless CBR uses abduction within two
of its processes. In Ceaseless Retrieve, hypothesizing on the presence of alerts that
have not been observed, and in Ceaseless Reuse hypothesizing on the completion of
sequential cases that have been only partially observed.

Peng and Reggia introduced a formal theory of diagnostic inference namedparsi-
monious covering theorythat was extended to incorporate probability theory [PR90].
In a nutshell, parsimonious covering theory is able to formalize many imprecise and
intuitive aspects of abduction providing a good theoretical foundation for automated
diagnostic problem-solving [PR90]. Parsimonious covering theory distinguishes two
kinds of entities:manifestationsanddisorders. Manifestations are directly observ-
able whereas disorders are causes of manifestations. Domain specific knowledge is
codified by means of causal networks that make explicit the causal associations among
manifestations and disorders. Causal associations take the direction from disorders to
manifestations in such a way that the presence of a manifestation evokes all its possible
causative disorders (alternative or competing hypotheses). The inference mechanism
of the parsimonious covering theory follows a sequentialhypothesize-and-testcycle.
Given a sequence of manifestations the "hypothesize phase" sequentially merges the
sets of evoked disorders for each manifestation providing a set of alternative hypothe-
ses or explanations. Each hypothesis in this set covers all manifestations analyzed
so far and isparsimonious. The hypothesis that contains the minimum number of
disorders is called theminimum cover. The test phase is performed by a question-
answering process to explore additional manifestations that help to discriminate hy-
potheses. The hypothesize-and-test cycle continues manifestation-by-manifestation
until all the manifestations in the sequence have been processed. The final hypotheses
could refer to several disorders. The Ceaseless CBR inference process can be con-
sidered as a model of the inference process parsimonious covering theory. However,
we deal with an infinite sequence of manifestations (alert stream) and a measure of
urgency that prompts when to explain. Moreover, the test phase in Ceaseless CBR
consists of simply waiting the arrival of new alerts. We see further details of these
issues in Chapter 5 of the thesis.

50 STATE OF THE ART

Activate

Explain

Focus

Retrieve Reuse Learn

Activate

Explain

Focus

Activate

Explain

Focus

Fig. 2.2 Aamodt’s Explanation Driven Model[Aam91]

Ceaseless CBR can also be seen as aexplanation-driven modelsimilar to the
model used by the CREEK CBR system. CREEK addressed problem solving and
learning in weak theory, open, changing domains [Aam91]. CREEK combined cases
and generalization-based domain knowledge within a single semantic network. Later
on, Aamodt specialized the CREEK architecture with an explanation engine, the so-
calledexplanation-drivenCBR model [Aam94]. This model is a general reasoning
scheme that consists of three sequential tasks:activate, explain, andfocus.

Activate takes as input the observed facts and returns a set of activated concepts of the
semantic network. This process establishes the limits for further reasoning to
take place within. Concepts are activated using the pre-established relationships
in the semantic network or through links to past cases.

Explain takes as input a set of activated concepts of the semantic network and returns
a set of hypotheses supported by explanations.

Focus takes as input those hypotheses that are supported by explanations that are
above a given strength and returns the best explanation according to a collec-
tion of application and environment-dependent priorities (i.e., the least risky
solution first).

This generic scheme is then instantiated for the retrieval, reuse, and learning pro-
cesses as sketched in Figure 2.2. The Ceaseless CBR explanation model can be seen
as an instantiation of Aamodt explanation scheme. However, as we see in Chapter 5
of the thesis, our approach differs operationally from Aamodt’s model since the above
explanation tasks are distributed along the Ceaseless CBR processes. In other words,
Ceaseless Retrieve activates the knowledge required (sequential case activations) to
represent the current situation, Ceaseless Reuse combines different sequential case
activations to generate explanations of the current situation and proposes the best
explanation, and Ceaseless Revise receives user’s feedback on the best explanation

CASE-BASED TROUBLESHOOTING 51

to constraint and focus further explanations. This cyclic process repeat ceaselessly
as long as new alerts are received given that Ceaseless CBR deals with situations
that are extended over time as opposed to CREEK that only deals with instantaneous
situations. As we mentioned in Section 2.3, CREEK was subsequently extended to
cope with time-extended situations by Jaere [JAS02]. Huang and Shachter introduced
a general framerwork for designing alarms that aid in process monitoring specially
devised for intensive-care units (ICUs) although it could be applied in may real world
contexts. They defined an alarm as a subordinate agent that monitors an environment
on behalf of a decision maker (DM) evoking alerts that request the DM’s attention.
An ideal alert is characterized as an action-based alert that communicates urgency
They presented a decision-theorectic measure of the alert urgency. We have used a
similar measure to determine when Ceaseless CBR has to provide an explanation.

Next we succinctly overview a troubleshooting approach that bears a striking
resemblance in some aspects with Ceaseless CBR.

2.6.3 Decision Theoretic Case-Based Reasoning

Breese and Heckerman defined a decision-theorectic methodology for developing di-
agnosis and troubleshooting applications based on CBR [HBR94, BH95, HBR95].
They represented diagnostic cases by means of a specific belief network structure
where nodes representedissues, causesandsymptoms. An issue is a conflict among
a set of causes. A cause is a contributing factor, activity or configuration item, and
a symptom is a particular behavior caused by an issue. The case-base is modeled
as a big belief network hand-crafted by an expert who also initially assesses Dirich-
let distributions. Each issue, cause or symptom node stores a textual description.
New problem descriptions are provided in plain text that is used by a probabilistic
information-retrieval similarity metric [SAB94] to generate a collection of salient
causes and symptoms. That collection is presented to the user. Using the user’s in-
dications a new belief network that models the current situation is created. The new
network only represents the relevant parts of the problem at hand (i.e., a subset of the
case-base) and is constructed using an efficient method for finding sets of d-separated
nodes [GVP90]. The constructed belief network is then used to (i) compute the proba-
bilities of distinct problems; (ii) to generate a recommendation for components repair;
and (iii) to recommend further information-gathering actions based on cost analysis.
Finally, the new case is retained updating the Dirichlet distributions corresponding
to observed nodes whose parents were also observed. When new issues, causes, or
symptoms are found then they are also inserted into the case-base.

This approach is similar in essence to Ceaseless CBR. However, a sequential
case only stores part of the complete model for problem determination that helps to
determine its plausibility given a collection of alerts. Since we store sequential cases
individually, we avoid the on-the-fly construction for each new problem. Moreover,
we consider a number of distinct problems (attacks) occurring coincidentally whereas
they solved problems sequentially (one by one) supposing the occurrence of only
one problem at a time. Their input is provided by an user and they use a myopic
approximation (i.e., they presuppose that the user will make just one observation at

52 STATE OF THE ART

a time) whereas we received the input from an automated process and deal with a
sequence of interlaced observations corresponding to simultaneous problems.

Belief networks constitute a mathematically sound formalism for probabilistic
inference. A number of efficient algorithms and its successful and demonstrated
applicability in different domains establishes an incentive for investigate its suitability
for many other domains. However, belief network have to been hand-crafted by
expert and usually require the intervention of more than an expert to properly model
a concrete domain. In addition, they require constant expert oversight to properly
model the domain in the long-term. When the environment is continuously changing
this process obviously grows unmanegeable. As we show in Chapter 3, the inference
model for belief updating of actionable trees is a special case of apoly-tree model. A
poly-tree model or simple a poly-tree is a singly connectedBelief Network(BN) (i.e.,
it contains no undirected loops). In other words, a BN whose underlying undirected
graph has no cycles [Pea88, Dec98, KZ03]. The main particularity of poly-trees, and
therefore of actionable trees, is that inference can be done in linear time. (i.e., the
time and space complexity of exact inference in poly-trees is linear in the size of the
network [RN03]). ThereforeBelief Assessment, and theMost-Probable
Explanation (MEP) andMaximum A-posteriori Hypothesis (MAP) tasks
can be accomplished efficiently [Pea88, Dec98].

A few other works have also investigated the integration of case-based reasoning
and decision-theoretic techniques under a unified framework [TCW97, GS01]. Tsat-
soulis et al investigated how decision theory can help CBR deal with uncertainties in
the problem domain and how CBR can help decision theory handle complex problems
with a large number of variables [TCW97]. Gilboa and Schmeidler have provided a
theory of case-based decisions based on the observation that people make decisions
by analogies to past cases [GS01].

Intrusion detection can be considered as a special troubleshooting task where the
symptom events are produced by information security devices (e.g., firewalls, IDSes,
etc) due to a confluence of two factors: the presence of a number of vulnerabilities or
exposures in our computer network and the presence of an external12 agent (human,
artificial or a combination of both) with malign intentions that exploit such vulnerabil-
ities or exposures. The key point here is that we can not control such external factor
as much as we can control an internal component (e.g., likewise a power delivery
management system cannot control a lightning strike that completely burns one of its
components and probably its consequent thunderbolt effects).

12Notice that by external we do not refer to the relationship with the target system (e.g., an employee or
not) but an element whose actions are out of the control of the system.

CASE-BASED INTRUSION DETECTION 53

2.7 CASE-BASED INTRUSION DETECTION

The main task of IDSes can be generalized as the monitoring ofcomputer activi-
ties looking for deviations from normal behavior ornonintrusivebehavior [DG01].
Computer activities can be monitored at different level of detail: system calls traces
[KH97], operating system logs, audit trail records [ESB96], resources usage, net-
work connections, etc. Therefore, nonintrusive behavior can be defined as the use
of computer resources according to the corresponding security policy whereas what-
ever other behavior there is should be treated asintrusive. Spafford et al [SZ00]
and previously Heady et al [HLM90] defined intrusion as “any set of actions that
attempt to compromise the integrity, confidentiality, or availability of a resource”,
disregarding the success or failure of those actions. An IDS aims to discover intru-
sion attempts and whenever an intrusion (or intrusive behavior) is detected the IDS
notifies to the proper authority by means ofalerts. Usually, alerts take the form
of emails, database or log entries, etc and their format and content vary according
to the particular IDS. Notification to the proper authority can be considered as the
basic response to an intrusion. On top of notification more sophisticated mecha-
nisms to provide automatic response to intrusions can be developed. Our work is
mainly centered around the alert management and notification tasks. Notice that
there are several surveys and reports that cover, better than we could ever done here,
many of the different techniques and tools that we mentioned throughout this Section
[ACF99, Axe98, Jac99, JS00, NWY02, CL02].

Intrusion detection has been investigated for almost twenty five years since An-
derson’s first seminal article [And80]. A number of diverse techniques and systems
have been developed along this time. Loosely speaking , these techniques have been
traditionally classified according to two possible detection strategies:anomaly-based
detectionandsignature-based or misuse detection. Anomaly-based detection prior
to detection declares what is known as nonintrusive behavior whereas signature-
based detection declares a priori what is known as intrusive behavior. To perform
their task anomaly-based IDSes make use of profiles of normal behavior that have
been learnt statistically whereas signature-based IDSes decide beforehand what be-
havior is intrusive using patterns of misuse that have been codified using an attack
language [VEK00]. Both strategies for intrusion detection present several short-
comings. Mainly, signature-based detection can hardly detect unknown intrusions
whereas anomaly-based detection is highly dependent on the enviroment in which
profiles of nontintrusive behavior were learnt. It is widely accepted that intrusion
detection can not be solved easily with a single strategy. As a matter of fact, hy-
brid approaches were early proposed [Axe98]. Nowadays, an assumed fact by the
IDS research community is that there is no silver bullet against computer network
intrusions (i.e., no single IDS is able to detect all possible attacks). Thus, the broad
consensus reached by the IDS community is that the best solution is to design a
perimeter defense with different layers of protection combining multiple prevention
and detection devices and techniques. Currently, contrasting or correlating output
coming from different IDSes constitutes the current goal of many network security
endeavors. The fusion and correlation of information stemming from different infor-

54 STATE OF THE ART

mation security devices not only permits to decrease the number of false positives
since many of them can be automatically disregarded but also increases the number
of façades covered what diminishes in turn the number of false negatives. However,
although high-level correlation systems are gaining popularity, more effective fusion
and correlation techniques as well as evaluation techniques are still required most due
to the ever-increasing sophistication of attacks in addition to the heterogeneity and
volume of the information being managed.

Generally speaking, two kinds of components can be distinguished in the current
state of the art IDSes [JS00, DW01]:

Probes are intrusion detection systems available either as commercial or in the pub-
lic domain [DW01]. Probes compile information using host-based sensors as
well as network-based sensors and evoke an alert whenever suspicious activity
is detected. A couple of examples of probes could be:SNORT andRealSe-
cure. Probes can be considered low-level sensors such as firewalls or integrity
checkers [HRT03]. Probes usually do not produce a common output format
as recommended by the Intrusion Detection Working Group (IDWG) what
adds difficulties to the aggregation and correlation process and increases the
complexity of ACCs [CD03, WE03, FMW03].

Aggregation and Correlation Components (ACC) ACCs or alert triage systems
take as input alerts from probes or other ACCs covering complementary por-
tions of the overall attack space [DW01]. An ACC after analyzing and cor-
relating received alerts determines whether to send such alerts to the network
administrator or not [GHH01a, HRT03].Alba, our research prototype de-
scribed in Chapter 7, can be seen as one of these components. An aggregation
or correlation component or alert triage system emits a judgment on the malig-
nancy of each alert on an IDS alert stream. Such judgment determines whether
an alert is finally notified or not to the site security officer. Thus, the decision
of notifying or not to the site security officer is finally made by the alert triage
system. Ceaseless CBR aims at increasing the performance of such decisions.
When ACCs are provided with amissionmodel then they can produce more
savvy decisions. A mission model is a detailed description of the network under
surveillance including the resources are vital and how different vulnerabilities
could affect their operations [PFV02, HRT03].

One of the main obstacles for the rapid development of higher-level ACCs stems
from the absence of a common ontology that not only impedes to deal with computer
security incidents at a higher level of abstraction but also the collaboration among
different intrusion detection systems. Next, we briefly describe some ACCs that
appear in the literature.

2.7.1 Alert Correlation

Alert correlation can be defined as a conceptual interpretation of multiple alerts such
that a new meaning is assigned to these alerts [JW93]. Although the major applica-

CASE-BASED INTRUSION DETECTION 55

tion of alert correlation is problem determination, it has other purposes such as alert
triage (or filtering), alert abstraction or generalization (i.e., creating a composite alert
[LMY99]), or problem prediction [JW93]. In Section 2.6.1, we have seen several
approaches to alert correlation in network management. Alert correlation has also
application in diverse domains such as patient-care monitoring [HS97], air-traffic
control, etc. Loosely speaking, alert correlation in intrusion detection do not differ so
much from alert correlation in communication networks. As mentioned above, intru-
sion detection alerts stem from information security devices (e.g., firewalls, IDSes,
etc) and are cause due to a confluence of two factors: the presence of a number of
vulnerabilities or exposures in our computer network and the presence of an external
agent (human, artificial or a combination of both) with malign intentions that exploit
such vulnerabilities or exposures. The spatial and temporal aspects of alert correla-
tion are similar in both domains. Jiang and Cybenko discussed several aspect of time
and space correlation for network security [JC]. Previously, Mathonet et al did the
same in the context of network troubleshooting [MCV89].

The correct interpretation of an IDS alert stream is an active area of research in the
intrusion detection community [GHH01b, VS01, CM02, CAM02, MMD02, NCR02,
PFV02]. We divide the exposition of relevant works in the following interrelated
categories:alert correlators, distributed IDSes, ontologies, andattack languages.
As mentioned above, for further details in many of these systems see the referred
surveys [ACF99, Axe98, Jac99, JS00, NWY02, CL02].

2.7.1.1 Alert Correlators

Valdes et al extended EMERALD with probabilistic methods (based on Bayes
inference) for sensor correlation [PN97, VS00] and demonstrated the performance
(increased sensitivity and specificity) of sensor fusion [VS00, VS01]. Then, they
adopted notions from the field of multi-sensor data fusion and examined situations
involving heterogeneous sensors on diverse platforms [VS01, PFV02]. They intro-
ducedexpectation of similarityas a way to correlate alerts that match closely but not
perfectly. Our dynamic similarity, as we explain in Chapter 4 of the thesis, allows a
similar capability using sequences of alerts instead of individual alerts. Porras et al
proposed M-correlator, a prototype system, part of EMERALD [PN97], that corre-
lates and priorizes alerts coming from multiple information security devices such as
IDSes, firewalls, authentication services, etc [PFV02]. M-correlator filters an alert
stream by assigning to each alert anincident rankthat indicates the priority of such
alert and its likelihood of success. The incident rank is based on arelevance score
and apriority calculationthat are computed taking into account the topology and op-
erational objectives of the protected network and anincident handling fact base. The
relevance score is computed comparing the topology of the protected network and the
vulnerability requirements provided by the incident handling fact base whereas the
priority calculation indicates the degree to which the alert is targeted at operational
objectives and the security officer’s interest for this alert type. Finally, M-correlator
is also able to combine related alerts using analert clustering algorithm. The topol-
ogy database of the protected network and the incident-handling fact base constitutes

56 STATE OF THE ART

the main sources of knowledge of M-correlator. The topology database is automati-
cally updated by means ofNmap [Fyo97, Hil01] and provides information about OS
type and version, hardware type, network services, etc. The incident-handling fact
base contains more than one thousand types of incidents compiled fromRealsecure,
SNORT, Checkpoint, and EMERALD. Such incidents are structured according to
fields such as unique incident code, commercial off-the-shelf code, incident class,
description, vulnerable OS and hardware, bound ports and application, cluster list,
and references.

Debar and Wespi proposed an aggregation and correlation algorithm that formed
groups of alerts notifying a small number of composite alerts rather than an unman-
ageable number of raw alerts [DW01]. Their algorithm, based on an unified alert
data model, used rules to create correlationships between different alerts according
to two different types of relationships:duplicates(i.e., common alerts provided by
different sensors) andconsequences(i.e., alerts that follow a causal or temporal chain
and should occur together). They introduced the concept of situations to aggregate
alerts that have certain characteristics in common (e.g., alerts with the same source,
the same target and belonging to same alert class can be aggregated). Sequential
cases, in our approach, are able to express the same relationships and situations that
can been described in Debar and Wespi’s approach.

Ning et al also proposed to focus on the logical steps behind attacks rather than
on low-level attacks or anomalies [NC02, NCR02]. Ning et al’s approach is mainly
based on the observation that the objective of the first stages of a multi-stage attack
is to preparethe way for the later stages [NCR02]. They establish the notions of
prerequesites, consequences, hyper-alert types, andhyper-alert correlation graphas
the means to represent the knowledge about attacks. A prerequesite of an attack is
a necessary condition for the attack to be successful. The consequence of an attack
is defined as the possible outcome of the attack. Prerequisites and consenquences
are expressed in terms of predicates of a first order logic. A hyper-alert type is
composed of afact, a prerequisite, and consequences. The fact provides the alert
information in terms of attribute-value pairs. Both prerequisites and consequences
are expresed by means of formulae whose free variables are all in fact. A hyper-alert
graph represents correlated alerts. It is a connected graph whose nodes are hyper-alerts
and the directed edges represent thepreparerelationship mentioned above. Based on
these notions Ning et al introduced three utilities to interactively analyze large sets of
correlated alerts [NCR02]adjustable graph reduction, focused analysis, andgraph
decomposition. The adjustable graph reduction utility allows an user to choose the
degree to which the number of nodes and edges of a hyper-alert correlation graph
should be reduced. The focused analysis utility allows an user to specify the hyper-
alerts of interest. Finally, the graph decomposition permits hyper-alert correlation
graphs to be decomposed in smaller graphs according to a cluster algorithm similar
to the proposed by Porras et al and mentioned above [PFV02].

2.7.1.2 Ontologies for Intrusion Detection

CASE-BASED INTRUSION DETECTION 57

Morin et al proposed M2D2, a formal model based on the B-Method [Abr96,
MMD02]. The B-Method is an extension of the Z notation [Spi92] that covers the
development part of the design process of safety-critical applications. Z is a formal
method that uses predicate logic and set theory for the specification of discrete digital
software and hardware systems proposed by Abrial [Abr96]. The M2D2 model con-
siders four relevant sources of information to accomplish the alert correlation task:
the monitored information system, vulnerabilities, security tools for the monitoring,
and events. The monitored information system are modelized by Morin et al using
a hyper-graph, where nodes are the network interfaces and edges are subsets of two
kinds of interfaces: hosts and links. This model is an adoption of the TCP/IP network
topology proposed by [Vig03]. As a main part of the monitored information system
and for correlation purposes, they also modeled products—logical entities executed
by hosts. Vulnerabilities are modelized and built from the ICAT CVE based vulnera-
bility database (see Chapter 7 of the thesis for further details). Security tools are also
modelized as part of the topology of the monitored system. Finally, the last source
of information modelized is composed of events, alerts and scans. They modeled all
events occurring in a network such asIPevents, TCPevents, UDPevents, HTTPevents.
Events produced by security tools are modeled asscanswhereasalertsare modeled
as a kind of events that reflect the state of an IDS.

We introducedSOID, a Simple Ontology for Intrusion Detection, that allows
our agent-aided intrusion detection tool calledAlba (ALert BArrage) to reason about
computer security incidents at a higher level of abstraction than most current intrusion
detection systems do [MP03e]. We dentified four key sources of knowledge to be
conceptualized (networks, incidents, vulnerabilities, andalerts) and built a separate
ontology for each of them using the knowledge representation languageNoos [AP96].
Finally, we merged those partial ontologies in a more global ontology that we have
calledSOID. SOID can be seen as a domain-specific language for intrusion detection
alert triage that (i) facilitates the conceptualization of the environment in which the
IDS probles operate; and (ii) enables the use of several automated problem solving
paradigms such as Ceaseless CBR. We throughly describeSOID in Chapter 7 of the
thesis.

M2D2 bears some resemblance withSOID. The most significative difference be-
tween both approaches is that M2D2 uses the B formal method to model the different
sources of information for the alert management task whereas we are using a de-
scription logic like language. Goldman used CLASSIC, another description logic
language [BBM89, GHH01b]. Formal methods, such as Z, constitute an excellent
notation for formal specification and have a great deal of expressive power but are not
well integrated with common development methods and are hard to apply to inerently
inconsistent domains. On the other hand, knowledge representation languages like
Noos or description logic languages are less formal. That is, they have lesser expre-
sivity and lack semantics needed for extensive analysis. However, they are good for
the development part of the design process and make the necessary jump to program
code less problematic. The B-method tries to minimize the drawbacks of formal
specification. Nevertheless, B is overkill for real world domains where expensive

58 STATE OF THE ART

verification takes months to write and even more to understand13. Thus, it is only
recommendable for safety-critical applications. Therefore, for IDSes we think that
for research purporses where a variety of different and novel methods have to be
devised, our approach is good enough. For real world applications, once the applica-
bility of novel methods have been shown, time and effort investments in models like
M2D2 can have much more sense.

Different taxonomies of computer security incidents have been proposed [UP02].
An ontology centered on computer attacks was introduced in [GPK99]. That ontology
provides a hierarchy of notions specifying a set of harmful actions in different levels
of granularity—from high level intentions to low level actions. An ontology based
on natural language processing notions is proposed in [RHT01] as the theoretical
foundation to organize and unify the terminology and nomenclature of information
security (in general). A target-centric ontology for intrusion detection based on the
features of the target (system component, means of attack, consequences of attack
and location of attack) has been proposed in [UP02]. IDMEF tries to establish a
common data model for intrusions mainly based on XML [CD03, WE03]. Thus, has
a limited capability to describe the relations among objects and requires each IDS to
interpret the data model programmatically [UP02]. In [UP02] RDFS was proposed
as an alternative to IDMEF and in [Noe01] an ontology for computer attacks was
provided on top of DAML+OIL (now renamed OWL) [DCH02]. The representation
we use inSOID is equivalent toOWL Lite [DCH02].

2.7.1.3 Distributed IDSes

Research interest in distributed IDSes have recently increased since these systems
offer greater coverage and security and not are limited by scalability issues as cen-
tralized IDS. Three striking examples of this kind of systems are AAFID [SZ00],
EMERALD [PN97], and GRIDS [SCC96]. Crosbie and Spafford were the first to
propose autonomous agents in the context of intrusion detection. Their initial pro-
posal evolved to become AAFID [SZ00]. Other works such as Cooperating Security
Managers have proposed a multi-agent system to handle intrusions instead of only
detecting them [WFP96]. However, in these works agents lack reasoning capabilities
and are used for mere monitoring. More sophisticated agents with richer function-
ality were introduced by [GPK99]. It has been argued in [CHS00] that a collection
of heterogenous software agents can reduce risks during the window of vulnerability
introduced between when an intrusion is detected and the security manager can take
an active role in the defense of the computer system.

2.7.1.4 Attack Languages

13These conclusions were derived from a synthesis of ideas shared in a personal communication with Dr.
Richard V. Benjamins.

CASE-BASED INTRUSION DETECTION 59

Attack description languages or attack languages for short provide an abstract set
of concepts in terms of which computer attacks can be described. It can be said that
every IDS has its own attack language in terms of which it codifies misuse signatures,
statistics of normal behavior, or both depending on the method or mix of methods
followed by the IDS. Thus, there is a number of diverse attack languages to describe
known attacks. Moreover, the level of detail at which attacks are described depends
again on the method followed by the IDS. Vigna et al [VEK00] characterized attack
languages according to the following different classes: event languages, response
languages, reporting languages, correlation languages, correlation languages, exploit
languages and detection languages. In that classification, our approach can be seen as
a correlation language based on a description logic-like language. The ever increasing
frequency of new coordinated and multi-stage attacks motivates the need for better
attack models [DLD02]. Doyle et al proposed a richer language that subsumes and
extends the expressive capabilities of current attack languages [DSS00, DKL01].
The benefit of dealing with events at higher level of abstraction is twofold: (i) it
allows irrelevant details to be removed; and (ii) the differences between heterogeneous
system to be hidden. Abstraction-based intrusion detection proposed by Ning et al
[NJW01] provided a framework for distributed attack specification and detection
based on a set of autonomous but cooperative components and event abstraction.
One of the most relevant advantages of generic signatures provided by Ning et al is
the possibility of accomodating different variants of known attacks. Sequential cases
share the same property.

Templeton et al proposed JIGSAW, a language for specifying models of multi-stage
attacks [TL00]. This language allows one to describe more ellaborate scenarios since
attacks are described in terms of (abstract attack) conceptsinstead of only events
as other approaches. In JIGSAW, each stage that conforms a multi-stage attack is
described in terms of abstract situations defined by concepts. Each concept specifies
a set of capabilities that are required in order to occur. Capabilities describe the state
that must be satisfied for a particular stage of an attack to occur. Thus, each concept
requires a set of capabilities to occur. Once that capabilities are met, the concept
provides additional capabilities that can be useful for other concepts to hold. A key
concept in JIGSAW is that multiple events can provide equivalent capabilities. For
instance, there are different tools by which an attacker can achieve his or her objective.
JIGSAW models can be used to discover new attacks. This constitutes a fundamental
advantage with respect to other previous approaches.

Ning et al’s approach is a variation of JIGSAW [TL00, NCR02]. However, three
interesting differences can be appreciated: (i) the utilities provided by Ning et al are
interactive whereas JIGSAW does not present such capability; (ii) Ning et al allow
the aggregation of alerts to be performed before and after correlation has taken place
while JIGSAW does not allow correlation at any time; and (iii) Ning et al allow
prerequisites to be partially satisfied whereas JIGSAW requires a complete match
of prerequisites or required capabilities. Finally, SCYLLARUS, MIRADOR, and
MAFTIA are other well-known previous projects that also addressed the reduction in
the number of alerts that a human security officer has to handle.

60 STATE OF THE ART

Goldman et al [GHH01a] introduced SCYLLARUS, a prototype of an architec-
ture for integrating multiple IDSes into an unified framework for overall security
assessment. SCYLLARUS is mainly based on the intrusion reference model (IRM)
in turn composed of a network entity/relationship database (NERD), security goal
database, and event dictionary. NERD allows one to modelize the site’s hardware
and software. The security goal database allows site’s objectives and security policy
to be modelized whereas the event dictionary provides the terms to describe harmful
and benign events. One of the sub-ontologies that underpinsSOID is NERD.

Cuppens et al introduced, as part of the MIRADOR project [Cup01], a cooper-
ative module for IDSes called CRIM [CM02]. This module provide functions for
alert clustering, alert merging, alert correlation, and intention recognition. Alerts and
attacks are modeled using a first order logic. Concretly, alerts are modeled using the
IDMEF format, but for automatic reasoning purposes alerts are automatically trans-
lated into a set of logical facts of a first order logic. Attacks are specified using the
LAMBDA attack language. The fields that define an attack are attack pre-condition,
attack post-condition, attack scenario, detection scenario, and verification scenario.
The pre-condition and post-condition fields of an attack have respectively a simi-
lar meaning to the prerequesites and consenquences of an attack within the Ning
et al’s approach mentioned above [NC02]. The scenario attack field expresses the
set of events produced by an intruder when the attack occurs. The combination of
events needed to detect an attack are specified in the detection scenario field. Fi-
nally, the verification scenario field indicates the combination of events that allow to
check if the attack suceeds. To describe the system’s state through pre-conditions and
post-condtiont they useL1, a language based on the logic of predicates with some
restrictions. They only use conjunction, that is, they do not contemplate disjunction
in the pre-conditions or post-conditions of an attack. Moreover, negation is only ap-
plied to predicates not to conjunctive expressions. Attack, detection, and verification
scenarios are specidifed using event calculus algebra that allows operators such as
sequential composition, parallel unconstrained execution, non deterministic choice,
etc. They introduced semi-explicit correlaction as a method to automatically generate
correlation rules that then are applied in an on-line process. Performing the analysis
of attack descriptions specified in LAMBDA and trying to identify if an attackA
contributes to the execution of another attackB. If this is the case then they formal-
ize it using the post-contidion field ofA and the pre-condition field ofB through the
following formulapost(A) → pre(B). They establish the notions of direct (simple
and general case) and indirect correlation based on the logical unification of pre-
conditions and post-conditions of attacks. Based on these notions, they defined an
offline correlation process that generates a set of correlation rules. Then these rules
are applied to the alerts produced by the IDS following an online correlation process
that aggregate alerts corresponding to the same attack scenario. Finally, an abdutive
correlation process allows one to forecast the next step of an attack scenario. Michel
et al introduced ADELE [MM01]. ADELE has many aspects in common with the
LAMBDA language. The main difference between both approaches is that ADELE
follows a procedural against the declarative approach followed by Lambda. ADELE
was devised to allow all the aspects of an attack to be described in only one language

CASE-BASED INTRUSION DETECTION 61

given that most attack languages center around one aspect of the attack. Adele pro-
vides a machine readable (XML-like syntax) model of attack. Attacks in ADELE
are expressed from the point of view of both attacker and defender. Sequential cases
only represent attacks from the point of view of the defender.

MAFTIA (Malicious and Accidental Fault Tolerance for Internet Applications)
was an IST Programme RTD Research Project that studied the tolerance paradigm
to construct dependable distributed systems. MAFTIA combined notions borrowed
from the fault tolerance field and notions coming from security areas such intrusion
detection and cryptographic protocols. In MAFTIA, concepts such faults, synchrony,
topology and security goals have rigorously been formalized using CSP (Commu-
nicating Sequential Processes) [Ros98]. An important part of MAFTIA has been
devoted to the creation of a taxonomy of intrusion detection systems and attacks
[ACD01]. MAFTIA describes IDSes in terms of the capabilities that they have. In
order to conceptualize the capabilities of IDSes, firstly an actvity taxonomy is created.
This taxonomy allows one to unify the input of different IDSes. Moreover, using this
taxonomy and the notion of activity assumptions and activity scope a taxonomy of
attacks is established. Furthermore, MAFTIA describes harmful and harmless ac-
tivities in terms of the IDS capabalities required for their detection. In this way, for
example, an IDS can be evaluated indepently of its signature database.

In spite of the fact that intrusion detection is a task highly amenable to AI solutions
and particularly to CBR approaches [Fra94], the number of approaches to intrusion
detection using case-based reasoning techniques is really scarce [ESB96, SSY02,
MP03d] as we see in next Section.

2.7.2 Case-Based Reasoning for Intrusion Detection

To the best of our knowledge, only a few case-based approaches to intrusion detec-
tion have been published [ESB96, SSY02]. The first case-based reasoning model for
intrusion detection was published by Esmaili et al in 1996 [ESB96]. They argued
that in spite of the fact that a number of intrusion detection experts systems (e.g.,
IDES [Lun90], NADIR [HHM90], MIDAS [SSH88], USTAT [Ilg93], etc) behave
conveniently for recognizing single dangerous events or even sequences of events,
rule-based expert systems present difficulties in acquiring and representing knowl-
edge. Since their knowledge-bases can neither easily be created nor updated and
they lack of flexibility for representing and recognizing minor variations of the same
intrusion. Our reasons in favor of investigating CBR in these domains are based on
a close argumentation (see Chapter 1).

Esmaili et al proposed a Case-Based Intrusion Detection System (CBIDS) whose
input is the audit trail produced by an operating sytem14 and whose output is a collec-
tion of countermeasure actions that the system performs based on the severity of the
intrusion detected so far. A response table stores all the available countermeasures

14CBIDS used theAudit Event Log file generated by theC2-Basic Security Module, the audit collection
tool provided bySun-OS 4.1.3.

62 STATE OF THE ART

that the system could take depending on several conditions. They first constructed a
taxonomic hierarchy ofaction classesand defined arisk factor for each action class.
The action classes are formed grouping together commands inUnix that share the
same semantic. For example, the action classFILE CREATION whose semantic is
creating new filesencompassesBSD Unix commands such astouch, vi, vim, jove,
emacs, etc. Another example is the action classDUPLICATE whose semantic is
copying filesand whose elements are the commandscp, cat, more, less, zcat and
their argumentsorigin, destine. Action classes are also provided with a category
depending on various factors such as: whether they are explicitly forbidden by the
security policy not, or whether they may pass through the protection mechanism or
not. A risk factor (RF) represents the degree of risk associated with each possible
action in the system. A RF provides a measure of the potential threat to the system
that each action entails. A RF is computed in terms of each action category using
a fuzzy-logic approach (i.e., a risk factor may take values ranging fromvery-low
throughmiddle to very-high).

In CBIDS cases store previously known intrusion scenarios. They used a case-base
of 20 intrusion scenarios collected from several theses [Por92, Kum95]. Figure 2.3
shows an example of such scenarios that exploits a well-knownmail vulnerability.
In such attack scenario a sequence of five actions could allow an attacker to get
root privileges. A past intrusion scenario is composed of a collection of alternative
sequences of commands that resulted in the same unauthorized access. Two different
alternatives to the attack scenario above are shown in Figure 2.3. Attacks can not
only be altered using different actions but also changing the order of the actions.
However, as we see below reasoning in terms of action class increases the number of
false positives. In addition a case stores adescriptionand anexample scenario. A
description provides a definition of the different action classes that intervene in the
scenario together with their required values for arguments and option fields (e.g., for
the last scenariosDUPLICATE, ACCESS-CONTROL, CREATE-FILE, MAIL, and
EXECUTION). An example scenario is a concrete instantiation of the scenario with
the corresponding commands. Precisely, what we have depicted in Figures 2.3 and
2.4 are three example scenarios. Scenarios are constructed using action classes since
it guarantees the robustness and portability of the cases. A CBR engine constantly
compares then most recent commands in the sequence of commands that an user
executes against the case-base. All matched cases are instantiated and kept into the
working memory. A case is matched if it stores a sequence of action classes such
that its first element subsumes one of then most recent commands. This retrieval
process is dynamic just like Ceaseless Retrieval but unlike traditional CBR systems
that suppose full descriptions of problems. CBIDS continuously keeps a set of cases
that match the current window in working memory and refreshes them upon the arrival
of new audit record. This facet is similar to what we have called in our approach
sequential case activations. In CBIDS, cases are subsequently ranked according to
their combined risk factor(CRF) that is computed using the combination operation
for belief functionsintroduced by MYCIN [BS84]. The case with the highest CRF
determines the set of recommend actions (e.g.,NO-ACTION, RAISE-WARNING-
LEVEL, INFORM-ADMINISTRATOR, etc).

CASE-BASED INTRUSION DETECTION 63

Mail Root Attack
Step Command Argument 1 Argument 2 Comment
1.- cp /bin/csh /usr/spool/mail/root # assumes no root mail file
2.- chmod 4755 /usr/spool/mail/root #make setuid file
3.- touch x # create empty file
4.- mail root < x # mail the empty file to root
5.- /usr/spool/mail/root # execute setuid-to-root shell

Fig. 2.3 Mail Root CBIDS attack scenario [ESB96]. (1) The attacker firstly creates a copy of
csh and renames it as root’s mail file. (2) Then the attacker activates the setuid bit on the fake
file. Subsequently, (3) the attacker creates an empty message and (4) sends it to root. ifmail
fails to reset thesetuid bit of /usr/spool/mail/root before it sets its owner toroot then a flaw
arises and consequently (5) the attacker only needs to execute that file to escalate privileges to
root.

Mail Root Attack Variant I Mail Root Attack Variant II
cat /bin/csh /usr/spool/mail/root cp /bin/csh /usr/spool/mail/root
chmod 4755 /usr/spool/mail/root touch x
jove x chmod 4755 /usr/spool/mail/root
elm root< x mail root< x
exec /usr/spool/mail/root /usr/spool/mail/root

Fig. 2.4 Mail Root CBIDS interchangeable attack scenarios [ESB96]. The first variant
consists of an alternative sequence of commands with respect to the sequence of commands in
Figure 2.3. The second variant is constructed swapping commands 2 and 3.

The main coincidences and differences between CBIDS and Ceaseless CBR are
summarized in the following. In terms of case representation, we use a graphical
model (actionable trees) to represent all the alternative sequences that conforms a case
whereas CBIDS uses a simple set of sequences. In our approach, partially matched
actionable trees provide a measure of confidence on the occurrence of the complete
sequential case (following a pre-established likelihood model). CBIDS only uses a
measure of risk to rank cases what surely results in a large number of false positives
(i.e., a case whose risk is high but its evidence is too low does not need to be reported).
The taxonomic hierarchy ofUnix commands provided by CBIDS and the alert model
that Ceaseless CBR uses share a similar purpose. As mentioned above, the abstraction
provided by CBIDS action classes results in more robust and portable cases. However,
such abstraction also has a negative effect in the performance of the system since the
number of false positives could increase enormously. In our approach,sequential
abstract casesas mentioned above in Section 2.4 are only used as a back-up when no
other explanation is available. We consider this aspect indispensable in order to reduce
the number of false positives. With respect to case matching and retrieval, CBIDS
uses a simple retrieval mechanism based on the matching of one command out of a
window containing thenmost recent commands against the first element of one of the
sequences of action classes in the intrusion scenario represented by each case. This
mechanism is in fact an command-driven retrieval (see Section 3.5 for a discussion
of different window models). That is to say, CBIDS operates on an command-by-
command basis. Ceaseless CBR on the contrary matches the current window of alerts
against the set of whole sequences that represents each sequential case and retrieves,

64 STATE OF THE ART

for example, sequential cases independently of whether the alert(s) that initiate(s) the
sequence is/are matched or not. This is useful when considering noise, the possibility
that the attacker uses a unknown variant to initiate the corresponding attack, or a
sneaking attacker that hides part of his actions, etc. CBIDS uses a simple risk model
to rank retrieved cases and subsequently select the case that is finally presented to the
user or used to generate a convenient response. This model operates on case-by-case
basis. That is, the case with the highest case is selected and then successively the
second one, etc. Ceaseless CBR tries to find the best explanation for the complete
set of pending alerts, alerts in the current window and alerts that were not explained
in preceding windows. This is required given that we have to produce an effective
triage which in turns requires explaining malicious, innocuous and false positive
alerts. Moreover, Ceaseless CBR selects the final explanation not only considering
the risk (computed as a combination of hostility, exposure, and cost) but also the
possible outcomes of each explanation. Thus, we define a measure of utility that is
computed for each explanation that Ceaseless CBR makes and a measure of urgency
that obligates to Ceaseless CBR to make prompt decisions in those occasions that
require so.

Other differences between CBIDS and Ceaseless CBR stem from the fact that
CBIDS uses host-based commands directly as input whereas we use the alerts pro-
vided by network-based sensor. As a matter of fact, we work at a higher-level of
abstraction and therefore our results depend in part on the quality of the associated
network-based sensor. Finally, as Esmaili et al already pointed out a major difference
between CBR models for intrusion detection (such as CBIDS and Ceaseless CBR)
and CBR systems for other domains such as design, planning or diagnosis stem from
the fact that intrusion detection demands to work on a real-time basis.

Recently Schwartz et al proposed to improve the capabilities ofSnort IDS [Roe99].
(see Section 7.2) using a case-based approach [SSY02]. They re-implementedSnort
treating eachSnort rule as a case that was codified using XML. We have performed
a similar translation ofSnort rules intoNoos lingo but using the intermediate for-
mat provided byACID. Schwartz el al proposed a similarity measure based on a
collection of distinct comparators for each feature (Snort rule properties) rather than
using a complete match on all features asSnort. There are two main differences to
our approach. First, we work at higher-level of abstraction using alerts provided by
Snort as input and providing a priority as output whereas they used directly suspect
network packets as input and provided alerts as output. They tried to substituteSnort
detection engine with a reflective engine that used the comparators mentioned above.
That is, they (apparently) used theSnort sniffer and its pre-processors but neither its
detection engine nor its output postprocessors. Second, their approach was stateless
since they assessed the danger of each suspect network packet (case) individually
whereas our approach can be considered stateful and considers a whole sequence of
alerts before determining the priority of alerts.

Next Section overviews some few works concerned with the evaluation of alert cor-
relation and alternatives methods to ROC analysis that constitute the basic technique
of the evaluation framework that we will propose in Chapter 6.

EVALUATION OF ALERT TRIAGE 65

2.8 EVALUATION OF ALERT TRIAGE

The evaluation of intrusion detection systems (IDSes) has gained attention over the
last years [DM02b, DCW99, GU01, LFG00, McH00]. First, the 1998 and 1999
DARPA evaluations conducted by the Massachusetts Institute of Technology (MIT)
Lincoln Laboratory [LFG00, HLF01] and then Mchugh’s critique [McH00] of such
experiments have shown that this area needs much more research and experimentation
before a framework for the evaluation of IDSes can be widely accepted. Moreover,
in the industry, IDS benchmarks provide misleading results rather than useful inde-
pendent evaluations what accentuates this need [DM02b, Ran01]. In Chapter 6 of
the thesis we pursue a less ambitious objective. We intend at providing a framework
for the evaluation ofalert triage—just a cog in the intrusion detection machinery.
As we have seen in Chapter 1 of the thesis, alert triage is the process of rapid and
approximate prioritization for subsequent action of an IDS alert stream [MP01]. Alert
triage is the main task to be performed by IDS modules that, as we have seen above,
have been named differently in the literature such as alert correlators [NC02], d-boxes
[SS98], analyzers [WE02], ACCs [DW01], assistants [MP03e], etc. Indepently of
the name, the correct interpretation of an IDS alert stream constitutes an active area of
research in the intrusion detection community [NC02, SS98, WE02, DW01, MP03e,
MP03d, CM02, GHH01b, MMD02, NCR02, PFV02]. Nonetheless, to the best of our
knowledge nobody has provided a formal method of analysis for the evaluation of this
particular component of IDSes. As a matter of fact the first experimental validation
of correlation systems was recently published [HRT03]. Up to this work researches
had not previously compared the performance of correlation systems [HRT03]. An
explanation for the lack of literature on the evaluation of these systems could be that
up to now they did not reach the adequate level of maturity to assess the collective
progress in the field [HRT03].

One of the most difficult issues when measuring the performance of an IDS is
defining a meaningful measure unit. That is, in terms of what we count the number
of times that the IDS makes the right or wrong decision. This was one of the main
drawbacks of MIT Lincoln Laboratory experiments. It was impossible to say formally
how many times an IDS was right or wrong and therefore the use of ROC analysis
made no sense. In alert triage the unit is clear. It is "alert". That is, the performance
of an alert triage system depends on the number of times that it disturbs the SSO
unnecessarily and the number of times that it does not advert about malicious alerts.

Next, we briefly overview the use of ROC analysis in intrusion detection.

2.8.1 ROC Analysis in Intrusion Detection

The beginnings of ROC analysis in intrusion detection were misleading. ROC anal-
ysis was originally introduced in the evaluation of IDSes in the 1998 DARPA exper-
iments carried out by MIT Lincoln Laboratory [LFG00, McH00]. MIT researchers
performed a cost insensitive evaluation of DARPA funded IDSes. However their

66 STATE OF THE ART

investigations were based on some misconceptions of ROC analysis such as signaled
in [McH00]:

1. They did not employ a comprehensive unit measure to properly construct con-
fusion matrices.

2. The evaluation of parametric IDSes were performed without previously select-
ing an operating point for those IDSes.

3. The interpretation of the results did not use a standard ROC space.

Stolfo et al proposed a method based on cost metrics as an alternative to ROC
analysis to study the performance of IDSes [SFL00]. However, in their evaluations
they did not use all the valuable information provided by ROC analysis such as
Gaffney and Ulvila demonstrated later [GU01]. To the best of our knowledge, Gaffney
and Ulvila’s work has been the soundest proposal of ROC analysis for the intrusion
detection community [GU01]. They provide a method grounded in decision, cost
and ROC analysis to compare the performance of intrusion detectors. However,
they did not provide any method for the construction of the ROC curves that they
analyzed given that as mentioned above it is hard to find a comprehensive unit of
measure when a complete intrusion detection system is evaluated. Tanachaiwiwat et al
proposed complete models for the assessment of risk in intrusion detection [THC02].
However, they use simple performance metrics instead of the more powerful analysis
capabilities of ROC curves.

Next, we briefly overview two ROC alternatives. See [GTD01] for an additional
comparison between ROC analysis and the Taguchi method for quality engineering.

2.8.2 ROC Alternatives

DET (Detection Error Tradeoff) curves were introduced in [MDK97] as a variant
of ROC curves. The main difference with respect to ROC curves is that a DET
curve shows the tradeoff between the two types of error involved in a detection task.
A DET curve plots a performance curve showing the range of possible operating
characteristics. As ROC curves the abcissa axis shows the false positive fraction
however the ordinate axis shows the false negative fraction instead of the true positive
fraction. Figure 2.5 depicts three ROC curves and their alternative representation
using DET curves. A DET curve gives equal treatment to false negatives and false
positives what produces quasi-linear plots. When the curves are straight lines means
that the underlying likelihood distributions are normal. DET curves have been used
in large vocabulary speech recognition tasks [MDK97].

Other alternative to ROC representation is to explicitly represent the cost of a
detection system such as was proposed in [DH00]. An explicit representation allows
one to directly seize the range of frequencies and the range of costs where a detection
system surpass the others and to quantify how much better it is. Explicitly representing
expected cost sets a cost space where the abcissa axis designates the probability-cost
function for positive examplesPFC(C+)and the ordinate axis indicates the expected
cost normalized (NEC) with respect to the cost of the worst detection system.

EVALUATION OF ALERT TRIAGE 67

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Curves

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false positive fraction

fa
ls

e
ne

ga
tiv

e
fr

ac
tio

n

Plot of DET Curves

Detector−1
Detector−2
Detector−3

Detector−1
Detector−2
Detector−3

Fig. 2.5 ROC Curves and DET Curves Comparison. DET curves plot error fractions on both
axes abcissa and ordinate.

PFC(C+) =
P (C+) · C(D− | C+)

P (C+) · C(D− | C+) + P (C−) · C(D+ | C−)
(2.1)

NEC = (1− TPF − FPF) · PCF (C+) + FPF (2.2)

An important feature of explicitly representing expected cost is its duality with
respect to ROC space. That is, a line in the ROC space can be directly transformed
to a point in the cost space whereas a point in the ROC space is converted into a line
in the cost space.

Bidirectional point/line duality
NEC = (1− TPo)× PCF (C+)
PFC(C+) = 1

1+S

(2.3)

WhereS is the slope of the line andTPo the intersection with the abcissa axis. Figure
2.6 depicts 3 ROC points and their dual representation whose error type weighting is
1:10 (i.e., a cost of 1 for each false positive and a cost of 10 for each false negative).
We will be back to Fig. 2.6 later on in Chapter 6 of the thesis. The main advantage
of explicitly representing expected cost is its comprehensible visual interpretation.

68 STATE OF THE ART

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Points

bc

0 0.2 0.4 0.6 0.8 1
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

a a a a a a a a a a a a a a a a a a a a

probability cost function
no

rm
al

is
ed

 e
xp

ec
te

d
co

st

Plot of Explicit Expected Cost

b
b b

b b
b b

b
b b

b b
b

b b
b b

b b
b

c c c c c c c c c c c c c c c c c c c c

Fig. 2.6 Three ROC points and their dual representation explicitly representing expected
cost.

This Chapter places the thesis within the larger research landscape and has served
to review in summary form much of the relevant material from the literature.

3
Sequential Cases

This Chapter introduces the knowledge structures and techniques that sustain sequen-
tial cases. We commence our exposition in Section 3.1 pointing out the relevance of
hierachical knowledge structures, the unbalanced attention that compositional hierar-
chies have received with respect to taxonomic hierarchies in the Artificial Intelligence
literature, and the importance of partonomic knowledge for properly reasoning on
composite or aggregated objects. In Section 3.2 we introduce the alert model that
makes our approach independent of the alert device and define most of the terms
needed through the rest of the thesis. In Section 3.4 we throughly describe the so-
called actionable trees. Actionable trees are predictive compositional hierarchies
that are useful for dealing with sequences of complex objects and reasoning in terms
of partial sequences that continuously arrive over time. Finally, in Section 3.5 we
overview several window models to compute aggregates of interest over a sequence
of alerts.

3.1 HIERARCHICAL KNOWLEDGE STRUCTURES

Artificial Intelligence (AI) allows computers to achieve human-level performance on
a variety of specialized reasoning and learning tasks. Several AI techniques allow one
to perform tasks that otherwise would be difficultly doable by human beings, at least in
an admissible amount of time [Gem99]. Often, these tasks reflect structure—smaller
and common parts to build from—according with the number of regularities that
constantly appears in the natural world. It is apparent that human beings exploit these
regularities to solve complex tasks [Gem99]. As a matter of fact, structure appear

69

70 SEQUENTIAL CASES

throughout human knowledge supporting many aspects of commonsense reasoning
[Why69]. The natural world (both the physical and the biological) are also plenty
of examples that exhibe hierarchical structure [Why69]. Hierarchical structure is not
only omnipresent in natural systems but also in artificially created systems [LGW02].

Hierarchical structures have played a lead role in the problem of modeling rep-
resentations within the Artificial Intelligence and Cognitive Science fields [WCH87,
Mac89, Rin89, RK91, G00]. Understanding the workings of hierarchical structures
in natural systems and devising artificial software devices that accurately simulate
the real world mimicking the emergence of comparable structures also constitutes
an arena of research within the Artificial Life community [LGW02]. In knowledge
representation and object-centered formalisms, hierarchies are key for bridging the
gap between low-level, fine-grained representations and high-level concepts [Pfl02].

There exist two well-known types of hierarchies:taxonomic hierarchiesandcom-
positional hierarchies. It is often said that taxonomic hierarchies control the level of
abstraction whereas the level of granularity is controlled by compositional hierarchies
[Pfl02]. Respectively, these structural hierarchies are also known as subsumption or
is-a relation andpart-of relation:

Not-
suspicius

Bad-
unknown

Attempted-
recon

Successful-
recon-
limited

Successful-
recon-

largescale
Attempted-

dos
Successful-

dos
Attempted

-user
Unsucessful-

user
Attempted-

admin
Successful-

admin

ProbeUnclassified DOS Remote-to-
local

Snort
Alert

WEB-MISC
long basic

authorization
string

Attempted-
dos

DOS
MSDTC
attempt

DOS
MSDTC
attempt

DDOS
mstream
client to
handler

DDOS
shaft client
to handler

DDOS
shaft

synflood

WEB-MISC
apache

DOS
attempt

WEB-
MISC ICQ
webserver

DOS

TELNET
livingston

DOS

SMTP
exchange
mime DOS

NETBIOS
DOS

RFPoison

User-to-root

Fig. 3.1 Partial view of a taxonomic hierarchy forSnort alerts. The lowest level shows alerts
indicanting adenial of service(DoS)

Is-a Relation The is-a relation allows objects with similar properties in a given do-
main to be organized into classes [Bra83, Woo91]. For example,Homo Sapi-
ens species occupies a particular place whithin a well established taxonomic
hierarchy (Homo Sapiens, Hominidae, Catharrhini, Primates, Eutheria,
Mammalia, Therapsida, Synapsida, Amniota, Terrestral Vertebrates, and
so on) [GD02]. Given that taxonomic hierarchy we can make interpretations
such asHomo Sapiens is aHominidae or Mammalia subsumesHomo Sapi-
ens. Figure 3.1 depicts a partial view of the taxonomic hierarchy that we have
constructed for modeling alerts in computer networks. In Chapter 7, we will

HIERARCHICAL KNOWLEDGE STRUCTURES 71

describeSOID our particular ontology for intrusion detection that provides
us with taxonomic hierarchies for alerts, incidents, computer networks, and
vulnerabilities.

Part-whole Relation The part-of (part-whole) relation facilitates the organization of
objects in the domain in terms of composite or aggregated objects—individuali-
sed entities which themselves are composed of and can be analysed into other in-
dividual entities [WCH87, PL94, RN95, LS97, Mor98, Lam00, Sat00, GD02].
A well-understood example is HTN (Hierarchical Transition Network) plan-
ning. Usually, a HTN planner starts with an abstract network representing
the whole task to be solved, and proceeds by expanding the abstract network
into more detailed sub-tasks lower down into a hierarchy, until the sub-tasks
only contain executable actions [KJN94, MPG96]. In intrusion detection, a
composite or multi-stage attack can be identified by the sequence of intrusion
alerts that generates. This sequence of alerts (the whole) can be divided into
smaller chunks or subsequences of alerts (the sub-parts) that represent specific
portions of the attack. Figure 3.2 shows a compositional hierarchy that repre-
sents a composite attack. In this example, a sequence of four intrusion alerts
are grouped together into a composite attack (one main part) called theMitnick
attack. This attack (the whole) can in turn be decomposed into two levels of
subparts. Each sub-part groups together alerts that correspond to portions of the
attack that are logically coupled. If we consider theTCP Sequence-Number
Prediction attack independently of the compositional hierarchy of Figure 3.2
we can say that such attack only contains one main part and one level of atomic
subparts (nmap fingerprint attempt andSYN half-open connection). Now,
this attack could be part of aTCP Hijacking attack that in turn could be part
of theMitnick attack.

These two types of relations enable respectively two basic operations:abstraction
andcombination[VC98]. Both operations sustain a variety of methods for pattern
recognition:syntactic pattern recognition, mathematical linguistics, structural pat-
tern recognition, andstatistical pattern recognition(see [VC98] for further details).
Although the philosophical concerns about the interpretations of both relations have
their origins a long time ago by part of linguistics, mathematicians, and philoso-
phers [Sim87, Har02], the attention that each type has been dispensed is different,
at least, in thedata and knowledge engineeringandmachine learningcommunities
[CV02]. Only few years ago Lambrix claimed that “the is-a relation has received a
lot of attention and is well-understood, while part-of has not been studied as exten-
sively. Also the interaction between these two relations has not been studied in any
detail” [Lam00]. Recently, Pfleger stated “the fact that vastly more learning effort has
been devoted to taxonomic structure, strongly indicates a need for work on learning
compositional structure” [Pfl02]. Neither object-centered sytems have been provided
with appropiate semantics and specific inferential mechanishms for the part-whole
relation as noted by Artale et al “rarely do current formalisms and methodologies
give it (part-whole relation) a specificfirst-classdignity” [AFG96b]. The following

72 SEQUENTIAL CASES

SYN Flooding
DOS

"Prevent victim
from noticing any

malfunction"

Mitnick Attack

TCP Hijacking
"Establish a

forged connection
with victim"

IP source
address
spoofing

TCP Sequence-
Number

Predicition

nmap fingerprint
atempt

SYN half-open
connection

Fig. 3.2 A compositional hierarchy for the well-known Kevin Mitnick attack.

are a representative sample of works tackling this critical deficiency [Sat95, Ber96,
Ber96, Fra93, Var96, JN98, PL94, AFG96a, Sat00, Lam00, ABT99, AFG96b].

One of the issues that we are mostly concerned with in this thesis is hierarchical
structuring of sequences by means of compositional hierarchies1. A compositional
hierarchy (part-whole hierarchy) is a graph (see Figure 3.2) that represents a composite
object as a hierarchical composition of parts with the semantics that nodes represent
parts and substructures and the arcs represent the structure of the object [Uta94]. In
a compositional hierarchy the nodes at the bottom refer to individual parts of the
composite object whereas nodes at the higher levels reflect substructures (the higher
the level the larger the substructure represented). Sequences as many other types
of data exhibit hierarchical compositional structure [Pfl02]. Hence, sequences are
made up of subsequences that in turn are made up of sub-subsequences and so on
[SG01b]. A sequence of lower-level entities can be represented using subsequences of
high-level entities orchunks. The following examples try to give an intuitive picture
of how both types of hierarchies (taxonomic and compositional) can be used when
analyising sequences. Figure 3.3 shows an example sequence of letters that conform
the wordthinking. Taking this sequence as a unique exemplar it could be said that the
occurrence of a letteri is always immediately followed by the occurrence of a letter
n. Following the taxonomic hierarchy depicted by Figure 3.4 the wordthinking can

1Compositional Hierarchies have been widely studied in the context of model-based recognition systems
[Uta94]. Recently, Plfeger’s thesis provided a significant advance in the learning of these structures [Pfl02].

HIERARCHICAL KNOWLEDGE STRUCTURES 73

t h i n k i n g

Fig. 3.3 An example sequence, the wordthinking.

letter

vowel consonant

a e i o u b c d w y z...

Fig. 3.4 An example taxonomic hierarchy of letters.

be represented, in a more abstract way, as a sequence ofvowels andconsonants
such as shown in Figure 3.5. Using such abstraction an additional pattern could be
formulated: a vowel always occurs among blocks of two consonants. Therefore,
higher level inferences can be done using abstraction as illustrated with the patterns
that can be extracted before and after abstraction.

On the other hand, if we look at the compositional structure of the wordthinking
it could be broken down as shown in Figure 3.6. An important issue in compositional
hierarchies is how to allocate substructures [Uta94]. Taking the example introduced
by Utans, Figures 3.7, 3.8, and 3.9 show three different compositional hierarchies of
the same object. The compositional hierarchy in Figure 3.7 have been constructed
using substructures that emphasize parallel segments whereas the compositional hi-
erarchy in Figure 3.9 uses substructures that emphasize the use of angles. Finally, the
substructures in the compositional hierarchy shown by Figure 3.8 emphasize the reuse
of parts. We are mainly concerned with compositional hierarchies that emphasize the
use of decoupled substructures (just as in Figure 3.7). That is, each substructure is
assigned a local context reflecting independence from the rest of substructures at the
same level in the hierarchy.

We propose to represent sequential cases by means compositional hierarchies.
Particularly, we introduceactionable treesto represent sequences of complex objects
and reason in terms of partially observed sequences. An actionable tree is a a Multi-
Rooted Acyclic Graph (MAG) with the semantics that (i) roots symbolize observable
symptom events, (ii) intermediate nodes (in the trunk and crown) embody sequences
of events (chunks), and (iii) the arcs represent part-whole relationships as well as the
likelihood of occurrence of the whole (sequence) given the part (subsequence). We

74 SEQUENTIAL CASES

consonant consonant vowel consonant consonant vowel consonant consonant

Fig. 3.5 An example abstraction of the wordthinking following hierarchy of Figure 3.4.

t h i n k i n g

t h i n

th in

in g

k

think ing

Fig. 3.6 An example compositional hierarchy, in which individual letters of the wordthinking
are pieced together into chunks such asth or in, which in turn are pieced together to conform
the wordthinking [Pfl02].

throughly describe actionable trees in Section 3.4. Next Section introduce the alert
model and basic structures that sustain the techniques presented in the rest of this
Chapter.

3.2 ALERT MODEL

We suppose alerts that are triggered by automated real-time systems that collect and
interpret sensor data in real-time2. In other words, we deal with processes that have
already been automated but whose output still provide an unmanageable number of
alerts. Remember the separation between probes and ACCs that we did in Chapter
2 and that we will make explicit again in Chapter 7. As a result of such previous
automation, alerts come in a standardized form. Alerts are complex objects (data
structures) made up of a setF of numeric, qualitative and structured features that can
be modeled as tuples over theCartesianproductDf1×Df2×· · ·Dfn−1×Dfn where

2As noted in Chapter 1, we use indistinctly the terms alert, event, manifestation, etc.

ALERT MODEL 75

Fig. 3.7 A compositional hierarchy for the digit 9 for a seven-segment LED display empha-
sizing parallel lines.

Fig. 3.8 A compositional hierarchy for the digit 9 for a seven-segment LED display empha-
sizing reuse.

F = {f1, f2, · · · , fn} andDfi is the range of possible values (domain) of featurefi
[JD02]. More formally, we model alerts using feature terms3.

Next, we define the basic elements that form analert model.

Definition 1 (Alert Model) An alert modelA is defined as an ordered pairA =
〈ϑ,Σ〉 whereϑ is a set of variables andΣ is an alert signature defined as follows.

Definition 2 (Alert Signature) An alert signatureΣ = 〈S,⊥,F ,�〉 is a four-tuple
whereS is a set of sort symbols;F is a set of feature symbols; and� is a decidable
partial order onS such that⊥ is the least element.

Definition 3 (Alert) Given an alert modelA = 〈ϑ,Σ〉, an alert is an expression of
the formψ ::= X : s[f1

.= Ψ1 . . . fn
.= Ψn] whereX is a variable inϑ called the

3Feature terms organizes concepts into a hierarchy ofsorts, and representtermsor individualsas collections
of features(functional relations). For further details and examples see [Pla95]

76 SEQUENTIAL CASES

Fig. 3.9 A compositional hierarchy for the digit 9 for a seven-segment LED display empha-
sizing angles.

root of the alert,s is a sort inS, f1 . . . fn are features inF , n ≥ 0, and eachΨi is
an alert and/or variable4.

We denote the set of variables occurring inψ asϑψ. We also define the function
root(ψ) that returns the sort of the root. Notice that whenn = 0 we are defining a
variable without features.

Definition 4 (Dummy Alert) A dummyalert is an alert with no features and whose
root is any. We indistinctly denote it byψ0 or by overloading⊥ symbol.

An important notion to distinguish ispath equalitysince it allows actionable trees
to specify constraints among the distinct alerts that compound a sequential case as
we will see later on. We formally define apathandpath equalityas follows.

Definition 5 (Path) Given an alert modelA = 〈ϑ,Σ〉, a pathρ(X, fi) is a sequence
of features going from the variableX to the featurefi.

We can concatenatepathsto conform longer pathsτ = ρ1 · · · ρn.

Definition 6 (Path Equality) There is apath equalitywhen two pathsρ(X, fi) and
ρ(Y, fj) point to the same value (i.e.,ρ(X, fi) = ρ(Y, fj)).

Path equality is equivalent to variable equality in first order terms. Figure 3.10
shows a formal representation of an alert. Alerts are also represented graphically by
means of labeled directed graphs. See Figure 7.13 in Chapter 7 for an example of an
alert evoked by aSnort sensor such as it is represented in theNoos object-centered
language.

Next, we introduce two crucial concepts:subsumptionandsequences.

4Notice that we consider that every possible value is a singleton rather than a set. The motivation for this
characteristic is twofold: first, it makes much more comprehensible the notion of path defined below; and,
second, it avoids exponential explosion caused when computing subsumption according to the definition
introduced subsequently.

ALERT MODEL 77

3.2.1 Informational Order Among Alerts

Given an alert modelA = 〈ϑ,Σ〉, sorts inΣ.S have by definition an informational
order relation (�) among them, wheres � s′ means thats carries less information
thans′—or equivalently thats is more general thans′. The minimal element (⊥) is
calledany and it represents the minimum information (i.e.,∀s∈Σ.S⊥ � s). When
a feature has an unknown value it is represented as having the valueany. All other
sorts are more specific thanany. Based on that order among sorts, intuitively, we say
of two alertsψ,ψ′ ∈ A = 〈ϑ,Σ〉 thatψ subsumesψ′ (ψ v ψ′) when all that is true
for ψ is also true forψ′. More formally:

Definition 7 (Alert Subsumption) Given an alert modelA = 〈ϑ,Σ〉, an alertψ ∈
A subsumes other alertψ′ ∈ A (ψ v ψ′) if:

1. root(ψ) � root(ψ′), i.e., the sort ofψ′ is a subsort ofψ’s sort.

2. ∀f ∈ Σ.F : ψ.f 6= ⊥ ⇒ ψ.f 6= ⊥, i.e., every defined feature inψ is also
defined (has a value different fromany) in ψ′.

3. ∀f ∈ Σ.F : ψ.f = v 6= ⊥ ⇒ v v v′ = ψ′.f

4. path equality is satisfied downwards:

ρ(root(ψ), f1) = ρ((root(ψ), f2) = v

⇒

(ρ(root(ψ′), f1) = ρ((root(ψ′), f2) = v′) ∧ (v v v′)

Alert subsumption is essential in our approach to compare both individual alerts
and sequence of alerts and determine their similarity. We now proceed to the definition
of sequence of alerts.

3.2.2 Sequences of Alerts

The basic goal here is to provide some concepts that allows us to model conveniently
the manipulation of sequences of alerts. We firstly distinguish betweensequence of
alertsandsequence of sorts. Often this separation is valid for dealing with sequences
of simple objects and therefore gaining simplicity and minoring the complexity and
increasing the efficiency of several algorithms.

Definition 8 (Temporal Sequence of Alerts)Given an alert modelA = 〈ϑ,Σ〉, a
temporal sequence of alerts, or simply a sequence of alerts,~S is an ordered collection
of alerts~S = [ψ1, ψ2, . . . , ψn] such that each~Si ∈ A has at least a common feature
t ∈ Σ.F (usually a time-stamp) whose values are totally ordered i.e.,ψ1.t ≤ ψ2.t ≤
· · · ≤ ψn.t. We denote an individual alert within a sequence~S by ~Stii or ψtii or
without ti superscripts when the specific value oft is not of interest. We say that
~S ∈ A∗.

78 SEQUENTIAL CASES

a172981 =

2664

theft

Meta
.=

2666666666664

meta
id

.= 1-172981
time

.= 2003-03-27 07:21:25
triggered-signature

.= MS-SQL Worm propagation attempt

sensor
.=

2664
sensor
name

.= 212.9.90.9
interface

.= eth0
filter

.= none

3775

3777777777775

IP
.=

266666666666666666666666664

IP
source-addr

.= 192.242.129.28
dest-addr

.= 212.9.90.9
Ver

.= 4
Hdr-Len

.= 5
TOS

.= 0
length

.= 404
ID

.= 14278
flags

.= 0
offset

.= 0
TTL

.= 117
chksum

.= 39281

FQDN
.=

24 FQDN
Source-Name

.= mdaemon.compulink.gr
Dest-Name

.= bcn2.isoco.net

35

377777777777777777777777775

UDP
.=

2664
UDP
source-port

.= 4426
dest-port

.= 1434
length

.= 384

3775

Payload
.=

266666666666664

Payload
length

.= 376

content
.=

................

................

....B.........p. B.p.B........h.. .B.....1...P..5.

...P..Qh.dllhel3 2hkernQhounthick ChGetT f.llQh32.d
hws2f .etQhsockf .toQhsend....B.E .P..P.E.P.E.P..P

....B.... = U..Qt.B....1.QQP..Q.E.P.
E.P..j.j.j...P.E .P.E.P........ < a ...E...@........ ...).......E.j..
E.P1.Qf..x.Q.E.P .E.P....

377777777777775

3775

Fig. 3.10 MS-SQL Worm propagation alert represented using feature terms.

The length of a sequence~S = [ψ1, ψ2, . . . , ψn], written |~S|, is its cardinality (n).
Two sequences of alerts can be linked together using the• operator.

Definition 9 (Sequence of Sorts)Given an alert modelA = 〈ϑ,Σ〉, a temporal
sequence of sorts, or simply a sequence of sorts,~T is an ordered collection of sorts
~T = [s1, s2, . . . , sn] such that~Ti ∈ A.Σ.S. We say that~T ∈ A.Σ.S∗

Given a sequence of alerts~S ∈ A∗ we can obtain the corresponding sequence
of sorts ~T ∈ Σ.S∗ such that~Ti = root(~Si). The length of a sequence of sorts
~T = [s1, s2, . . . , sn], written |~T |, is its cardinality (n). Two sequences of sorts are
linked together by means of the operator◦.

Definition 10 (Simple Sequence Subsumption)Given an alert modelA = 〈ϑ, Σ〉,
and let ~S and ~P be two sequences of sorts inΣ.S∗, such that~S = [s1, s2, ..., sn],
~P = [p1, p2, ..., pm], |~S| = n, |~P | = m, andn > m we say that~P subsumes
~S if there exists a sequence of indices1 ≤ i1 < i2 < · · · < im ≤ n such that:
p1 � si1 , p2 � si2 , · · · , pm � sim .

We overload the operatorv to denote that a sequence of sorts~Si subsumes another
sequence of sorts~Sj (i.e., ~Si v ~Sj).

ALERT MODEL 79

Notice that simple sequence subsumption entails a subsequence comparison where
not only a perfect matching between the elements of the pattern and the text are
allowed but also a partial match based on the informational order established among
sorts. Notice also that subsequence comparison has higher complexity than substring
matching [FGS01]. Sequence subsumption is defined as follows.

Definition 11 (Sequence Subsumption)Given an alert modelA = 〈ϑ,Σ〉 and let~S
and ~P be two sequences of alerts inA∗ such that~S = [ψ1, ψ2, ..., ψn] and ~P = [ψ′1,
ψ′2, ..., ψ

′
m], |~S| = n, |~P | = m, andn > m. We say that~P subsumes~S if there exists

a sequence of indices1 ≤ i1 < i2 < · · · < im ≤ n such that:ψ′1 v ψi1 , ψ
′
2 v

ψi2 , · · · , ψ′m v ψim .

When it is clear that both operands are sequences of alerts we use the overloaded
v operator. Given a sequence of alerts of lengthn it can be segmented according to
the following definition.

Definition 12 (Sequence Segmentation)Given an alert modelA = 〈ϑ, Σ〉, let ~S
be a sequence of alerts inA∗ such that~S = [ψ1, ψ2, ..., ψn] and |~S| = n; then a
sequence segmentationS(~S,m) of degreem, or simply m-segmentation, is a sequence
of m + 1 segment boundaries in[1, n] such thatS(~S,m) = [s1, s2, · · · , sm, sm+1]
and1 = s1 < s2 < s3 < · · · < sm < sm+1 = n + 1. We denote bySegm(~S) the
set of all m-segmentations of~S.

A m-segmentation yields a sequence ofm segments[S1, · · · ,Sm]: [[ψ1, · · · ,
ψs2−1], [ψs2 , · · · , ψs3−1], · · · , [ψsm

, · · · , ψn]] = [[ψsi
, · · · , ψsi+1−1]]mi=1 such that∑m

i=1 |Si| = n. Notice therefore that given a sequence of alerts there exist multiple
possible segmentations. The sequence segmentation definition likewise applies to a
sequence of sorts.

A crucial operation between sequences for comparison purposes isalignmentas
we will see in the next Chapter of the thesis. We define a sequence alignment as
follows. The same definition also applies to sequences of sorts.

Definition 13 (Sequence Alignment)Given an alert modelA = 〈ϑ, Σ〉 and two
sequences~S1, ~S2 ∈ Σ∗. An alignment of sequences~S1 and ~S2 is a pair 〈~S′1, ~S′2〉
attained by insertion of a number of dummy feature terms (⊥) in both sequences such
that: |~S′1| = |~S′2| and∀1≤i≤|~S′1|

~S′1[i] is aligned with~S′2[i] and either~S′1[i] or ~S′2[i]
is not a dummy feature term.

Finally, we define the notion ofoccurrenceas follows:

Definition 14 (Occurrence) Given an alert modelA = 〈ϑ, Σ〉 and two sequences
~S1, ~S2 ∈ Σ∗. We say that~S1 occurs in~S2 if ~S1 subsumes~S2 (i.e., ~S1 v ~S2).

We will subsequently use these definition for introducing the strength of a part-of
relation in Section 3.4.4. Next we provide a partial introduction to our case base
model that we complete in Chapter 5.

80 SEQUENTIAL CASES

3.3 CASE BASE MODEL

Let’s first define the notions of compositional and sequential (serial and parallel)
cases.

Compositional CasesA compositional (or composite) case is an assemblage of sev-
eral cases that lies in a hierarchical structure. The cases on the upper levels are
made up of sub-cases that in turn are compositional. The lowest level is made
of indivisible cases. The highest level is made up of only one case that refers
to the whole compositional hierarchy. Intermediate compositional cases (cases
that lie between the highest level and the lowest level) are considered as part
of a larger ensemble solution rather than as individual solutions to the case at
hand.

Sequential CasesA sequential case is a compositional case where a temporal order
is established among all the parts that comprise it. If all the sub-cases that make
up a sequential case are totally-ordered then we say that the sequential case is
serial. If the order of all the sub-cases are interchangeable then we say that
the sequential case is parallel. Otherwise, we say that it is a partially-ordered
sequential case (i.e., an arbitrary sequential case made up of serial and parallel
subcases).

Additionally, we distinguish betweenmaster casesandabstract casesas we will
see in Chapter 5. Now we concentrate on the compositional aspects of sequential
cases. We can say that among the sub-cases that compound a sequential case there
exist a part-of relation defined as follows.

3.3.1 Part-Of Representation

Let us define the notion ofdirect partas follows.

Definition 15 (Direct Part) We say that a caseCi is a direct partof a caseCj ,
denoted byCi � Cj , iff Ci ⊂ Cj ∧ @Ck 6= Ci : Ci � Ck ∧ Ck � Cj (i.e., they are
one step away).

Notice that we could also name the part-whole relation. For example we could
writeCi�reconnaissanceCj indicating that caseCi constitutes a directreconnaissance
part of caseCj . Naming part-of relations allows one to distinguish between different
kinds of relations [Lam00]. However, as we will see below, we are more interested in
the order between parts and consider only two types of relations (serial and parallel)
thus we obviate the name of part-of relations from now on.

A case that has direct parts is a compositional case. A case that has no parts is a
simple case.

Definition 16 (Serial Part) We say that caseCi is a serial partof caseCj , denoted
byCi � Cj , iff Ci is a direct part ofCj andCj is a serial case.

ACTIONABLE TREES 81

Definition 17 (Parallel Part) We say that caseCi is a parallel partof caseCj , de-
noted byCi �‖ Cj , iff Ci is a direct part ofCj andCj is a parallel case. Whenever
there is no place for confusion we simply denote parallel parts by�.

Definition 18 (Part-of) We say that caseCi is apartof caseCj , denoted byCi�∗Cj ,
iff there existn ≥ 0 casesCk+1, · · · , Ck+n such thatCi�Ck+1 � · · ·�Ck+n�Cj .

The part-of relation is the transitive closure over all direct parts. IfCi is a direct
part ofCj it is also a part ofCj . Following Lambrix part-of representation basis we
make the following assumptions [Lam00]:

1. A case can not be a part of itself:

∀Ci
¬(Ci �∗ Ci) (3.1)

This assumption implies that there are no cycles in the part-of relation. There-
fore the part-of relation is also antisymmetric given that it is also transitive.

2. A composite case is made up of at least two direct parts:

∀Ci,Cj
Ci � Cj → ∃Ck : Ck 6= Ci ∧ Ck � Cj (3.2)

3. If a caseCi is a direct part of another caseCj then there is no other caseCk
such thatCi is part ofCk andCk is part ofCj .

∀Ci,CjCi � Cj → @Ck : Ci �∗ Ck ∧ Ck �∗ Cj (3.3)

Therefore if a caseCj is composed-of a composite caseCi then direct parts of
Ci are not direct parts ofCj .

3.4 ACTIONABLE TREES

An actionable tree is a predictive compositional hierarchy—a knowledge structure
with the ability to easily capture the hierarchical structure of sequences, reasoning
at higher levels in terms of part-whole relationships, and making predictions. An
actionable tree is represented using a Multi-Rooted Acyclic Graph (MRAG) with
the semantics that roots (defined below) represent observable events, intermediate
nodes represent composite (serial or parallel) cases and the arcs represent part-whole
relationships. An actionable tree allows one to specify:

• Sorts to which each part of a composite case belongs.

• Constraints between the different parts conforming of a composite case by
means of path equalities (see Definition 6).

• A (partial) order among the different parts that comprise a composite case.

82 SEQUENTIAL CASES

Moreover, an actionable tree facilitates one to reason and make inferences in terms
of part-whole relations. For example, inferring the existence of a whole based on the
presence of a number of its parts or determining whether a new whole could be built
from available parts that belong to a particular type. In the next Subsection we provide
definitions of basic terms and structures which we shall need throughout the rest of
this Section.

3.4.1 Basics

For the sake of completeness we first define graph and some related terms5. If the
reader is familiar with graph basics can skip this subsection without loss of continuity.

Definition 19 (Graph) A graphG is an ordered pair〈V,E〉 such thatV 6= ∅ is a
finite set andE is a finite collection of two-element subsets ofV . The elements ofV
are called nodes or vertices. Each unordered pair{u, v} ∈ E with end nodesu and
v is called an arc, edge, link, or connection.

Given an arca = {u, v}, we say thatu andv areadjacenteach other and that both
areincidentwith a. Theneighborsof a nodeu are its adjacent nodes.

Definition 20 (Degree) Given a graphG = 〈V,E〉 the degree ofu ∈ V , denoted by
deg(u) is the number of its neighbors.

When every node has degreed then we say that a graph isregular of degreed. An
arca = {u, v} whereu = v is called aself-loop. When the same arc occurs more
than once inE is called amultiple arc[BET99].

Definition 21 (Simple Graph) A simple graph has no self-loops and no multiple
edges.

A graph isconnectedif there is a path betweenu andv for each pair{u, v} of
vertices. From now on, we only consider simple connected graphs.

Definition 22 (Subgraph) Given a graphG = 〈V,E〉, a graphG′ = 〈V ′, E′〉 is a
subgraph of G iffV ′ ⊆ V andE′ ⊆ E ∩ (V ′ × V ′)

Definition 23 (Path) Given a graphG = 〈V,E〉 a path is a sequence[v1,v2, · · · , vk]
such thatvi ∈ V and{vi, vi+1} ∈ E for 1 ≤ i ≤ k−1. A path is a cycle if additionaly
{vk, vi} ∈ E.

We say that a graph isconnectedif each pair of vertices is joined by path. A graph
G = 〈V,E〉 is a weighted graphif there is a weight functionw : E → R associated
with it. The weight of a path[v1, v2, · · · , vk] is defined as the sum of the weights of
each{vi, vi+1}(i.e., {v1, v2}+ {v2, v3}+ · · ·+ {vk−1, vk}).

5See Jungnickel’s book for further details on graphs and trees [Jun99].

ACTIONABLE TREES 83

Definition 24 (Acyclic Graph) A graphG = 〈V,E〉 is acyclic if it has no cycles.

An acyclic graph is also known as aforest.

Definition 25 (Directed Graph) A directed graph or digraphG = 〈V,E〉 is a graph
where the elements ofE are directed arcs. That is ordered pairs of nodes〈u, v〉 instead
of unordered pairs{u, v}.

Given a directed graph, theunderlying undirected graphcan be constructed by
forgetting the directions of the arcs. The directed arc〈u, v〉 is anoutgoingarc ofu
and an incomingarc ofv.

Definition 26 (Out-degree) Given a digraphG = 〈V,E〉 the out-degree ofu ∈ V ,
denoted byoutdeg(u) is the number of its outgoing arcs.

Definition 27 (In-degree) Given a digraphG = 〈V,E〉 the in-degree ofu ∈ V ,
denoted byindeg(u) is the number of its incoming arcs.

A nodeu whose out-degree is 0outdeg(u) = 0 (i.e., without outgoing arcs) is
called asink. Conversely, a nodeu whose in-degree is 0indeg(u) = 0 (i.e., without
incoming arcs) is called asource.

Definition 28 (Directed Path) Given a digraphG = 〈V,E〉 a directed path is is a
sequence[u1, u2, · · · , vk] such thatvi ∈ V and〈vi, vi + 1〉 ∈ E for 1 ≤ i ≤ k − 1.
A directed path is a directed cycle if additionaly〈vh, vi〉 ∈ E.

Definition 29 (Directed Acyclic Graph (DAG)) A digraphG = 〈V,E〉 is acyclic
if it has no directed cycles.

The following theorem allows us to introduce the notion oftree. Its proof can be
found elsewhere [Jun99].

Theorem 1 Given a graphG = 〈V,E〉 such that|V | = n. Then any two of the
following conditions imply the third:

• G is connected.

• G is acyclic.

• G hasn− 1 arcs.

A graph G that accomplishes the conditions of Theorem 1 is called atree. There-
fore, a tree is aconnected acyclic graph[Jun99]. Anordered treeis a tree where the
children of every node are ordered, that is, there is a first child, second child, third
child, etc.

Definition 30 (Multi-Rooted Acyclic Graph) A Multi-Rooted Acyclic Graph (MRAG)
consists of a graphG = 〈V,E〉 and a set of distinguished nodesR ⊂ V . Each node
u ∈ R is called a root of G.

Notice that a MRAG is also amulti-rooted treeor poly-tree. Now we are ready to
introduce actionable trees.

84 SEQUENTIAL CASES

DoS

SCAN
cybercop
os probe

DOS
Land
Attack

Recon

DNS
named
version
attempt

FINGER
version query

SCAN SSH
Version map

attempt

(a) (b)

Fig. 3.11 (a) An actionable tree of aDoS attack. The first alertSCAN cybercop os probe
is a reconnaissance attempt generated when an attacker usesCybercop to ascertain which
ports the server is listening on and whether the ports are filtered by a firewall or not, and
to fingerprint which operating system is running. Once he detects that a victim is using an
unpatched version ofWindows NT he launches aDOS Land attack. This attack exploits that
some TCP/IP stacks crash or hang when sent a spoofed TCP SYN packet with the same source
and destination host and the same source and destination port (see CVE-1999-0016 for further
information). (b) A parallel actionable tree of aReconnaissance attack. The first alertDNS
named version attempt is a reconnaissance attempt generated when an attacker attempts
to determine the version of aBIND DNS server (see http://www.whitehats.com/info/IDS278
for further details). The second alertFINGER version query is generated by an attempt
of ascertaining which version offingerd is running on a host. The third alertSCAN SSH
Version map attempt is evoked when an attempt has been made to determine if a vulnerable
version ofssh is being used.

3.4.2 Actionable Trees

An actionable tree6 is an ordered tree in which a single special (distinguished) node
is designated as thecrown, a number of nodes are designated as theroots, and the
intermediate nodes in the path between the crown and a root node are designated as
the trunk7. Each node in an actionable tree is either aroot or annon-root. A root
node has no child nodes. A non-root node is an internal node that has one or more
child nodesand is called theparentof its child nodes. All children of the same node
aresiblings. In an actionable tree any nodev on the unique path from the crown tou
is called anancestorof u. We say that ifv is an ancestor ofu, thenu is descendant
of v. Non-root nodes can be classified intoserial or parallel according to the order
that they establish among their child nodes. Formally we define an actionable tree as
follows:

6We often refer indistinctly to actionable trees as alert trees.
7A anecdotic particularity of actionable trees is that, conversely to almost all tree graphical representations
that we (computer scientists) have been using for years, they are graphically drawn with the crown and
trunk above the roots such as in the natural world instead of pictured as inverted trees with the root node
at the top and the leaves at the bottom.

ACTIONABLE TREES 85

Break-in

DNS
named
version
attempt

DNS
EXPLOIT

named
overflow
attempt

Steal

MYSQL
root login
attempt

MYSQL show
databases

attempt

(a) (b)

Fig. 3.12 (a) An actionable tree of aBreak-In attack.The first alertDNS named version
attempt is a reconnaissance attempt generated when an attacker attempts to determine the
version of a BIND DNS server (see http://www.whitehats.com/info/IDS278 for further details).
The second alertDNS EXPLOIT named overflow attempt is generated by an attempted buffer
overflow associated with incorrect validation of NXT records. This attack leads the attacker up
to compromise the DNS server gaining access with the privileges of the user running BIND (see
http://www.cert.org/advisories/CA-1998-05.html for further information). (b) An actionable
tree of aSteal attack. The first alertMYSQL root login attempt is generated when an attempt
to log in to as root from a remote source is detected. The second alert is evokedMYSQL
show databases attempt when a remote user uses the commandshow to gather the list of
databases being served. The attacker may then continue to gain sensitive information from any
database in the system.

Definition 31 (Actionable Tree) Given an alert modelA = 〈ϑ,Σ〉 and a collection
of alerts Ψ = {ψ1, · · · , ψn} such thatψi ∈ A, an actionable tree is a 5-tuple
〈G,µ, τ, κ,�〉 where:

• G is a multi-rooted acyclic graphG = 〈V,E〉 whereV is partitioned in three
mutually exclusive sets:R (the set of roots),T (the set of trunk nodes), andC
(the singleton set containing the crown).

• µ : R→ Ψ is a mapping that associates each root node with an alert inΨ.

• τ : T ∪ C → {serial,parallel} is a mapping that associates each non-root
node with an order type.

• κ : T ∪ C → 2Σ.F is a mapping that associates each non-root node with a
subset of features (constraints) inΣ.F .

• E defines part-of relationships� among the subsets of R that in turn induces
an order among the elements of R.

The crownC represents the set of sequences composed of all alerts appearing inR
ordered according to� and satisfying the constraints imposed byκ. Non-root nodes
T ∪C represent meaningful sequences of the alerts mapped byR. Thus, each node in
the tree corresponds to a subsequence of alerts represented byC and the child nodes
of each node represent a segment of the parent sequence. We say that an actionable

86 SEQUENTIAL CASES

tree is serial if all its non-root nodes are serial and therefore the order induced among
root nodes by� is total. Figures 3.11(a), 3.12(a), and 3.12(b) show three examples
of serial actionable trees. In those examples the total order imposed by the order
in which they are depicted is crucial for the attacks to succeed (remember that an
actionable tree is an ordered tree). Likewise, we say that an actionable tree is parallel
if all its non-root nodes are parallel. Figure 3.11(b) shows a parallel actionable tree
representing a sequence of alerts that may be the prelude to an attack. The order in
which the three alerts are evoked is not important. Since the attacker’s objective is
just to determine which vulnerable versions of different services are being used on a
host, before proceeding to exploit one of those vulnerabilities. Notice that we depict
parallel nodes by means of dashed lines.

An actionable tree is injective if the mappingτ establishes a relation one-to-one
between root nodes and the sorts of alerts inΨ. Formally, for everys ∈ S there
exists at most oneu ∈ R with τ(u) = ψi ∧ root(ψi) = s. In other words, given
u, v ∈ R, whenroot(τ(u)) = root(τ(v)) then it follows thatu = v. From now on
we will focus only on injective actionable trees. We suppose that a computer attack
does not generates twice the same alert or that our sensors are able to aggregate alerts
that correspond to the same attacker’s action.

Actionable trees are useful to model a partially ordered collection of events oc-
curring together. Root nodes model individual events whereas non-root nodes model
composite events. Roots (or event-level nodes or evidence nodes) represent ob-
servable symptom events (i.e., alerts). Inference is engaged upon their individual
observation thus we call them roots. Nodes in the trunk represent composite events
(i.e., sequences of alerts), and the crown represents a composite event made up of a
sequence of all the events in the roots. Roots store alerts whereas non-root nodes store
constraints among the alerts of their respective child nodes (including their temporal
order).

The most simple actionable tree consists only of a node. That node is simulta-
neously a root and the crown. Therefore it stores both an alert and information that
qualifies that alert. Basic actionable trees are actionable trees that are only composed
of roots and crown. That is to say, the roots are directly neighbors of the crown (i.e.,
they are one step away). Actionable trees shown in Figures 3.11(a), 3.11(b), 3.12(a),
and 3.12(b) are basic actionable trees. Basic actionable trees can be compounded
together creating larger actionable trees. Figure 3.13 depicts an actionable tree that
have compounded piecing actionable trees in Figures 3.11(a), 3.12(a), and 3.12(b)
together. Notice that in an actionable tree in addition to the crown node the remaining
set of zero or more nodes are themselves actionable trees. The arcs of actionable
trees are undirected. However, we consider that actionable trees arebipolar. That is
to say, each and every arc in an actionable tree is either pointing from the crown to
the roots for generation purposes or from the roots to the crown for recognition and
prediction purposes. In the first situation, the parent, child, ancestor, and decendant
relationships are as mentioned above and an actionable tree corresponds to asimple
tree(i.e., between every pair of nodes there is at most one path and each node has at
most one parent). In the second situation, those relationships are reverse and therefore

ACTIONABLE TREES 87

an actionable tree corresponds to apoly-tree(i.e., although there is still at most one
path between every pair of nodes, nodes can have more than one parent).

Let us now define a concept ofyield that is of paramount importance for the
understanding of the rest of the thesis.

3.4.3 Yields of An Actionable Tree

An useful way to think about an actionable tree is as generator of sequences of its
root nodes (alerts) that meet the temporal restrictions and constraints imposed by its
non-root nodes. When used for generation purposes arcs represent thecomposed-of
relation (inverse of part-of) and an actionable tree can be mapped into a context-free
grammar that generates the set of sequences of alerts that it represents. We say that
an actionable tree produces a set of ordered, fixed-length sequences oryields. We
formally define a yield as follows.

Definition 32 (Yield) Given an actionable treeAT = 〈G,µ, τ, κ,�〉, a yield is
each one of the possible combinations of root nodes inR ⊆ G that meet the temporal
restrictions imposed byτ and satisfy the constraints mapped byκ.

Each actionable tree has associated a context-free grammar that allows one easily
compute its yields. For example, the set of sequences generated by the actionable
tree in Figure 3.11(b) is:

[DNS named version attempt, FINGER version query, SCAN SSH Version map attempt],

[DNS named version attempt, SCAN SSH Version map attempt, FINGER version query],

[FINGER version query, DNS named version attempt, SCAN SSH Version map attempt],

[FINGER version query, SCAN SSH Version map attempt, DNS named version attempt],

[SCAN SSH Version map attempt, DNS named version attempt, FINGER version query],

[SCAN SSH Version map attempt, FINGER version query, DNS named version attempt]

That is to say, each and every one of the possible combinations. The actionable tree
in Figure 3.13 only produces a unique combination:

[SCAN cybercop os probe, DOS Land Attack, DNS named version attempt,
DNS EXPLOIT named overflow attempt, MYSQL root login attempt,
MYSQL show databases attempt]

We also callepisodeto each possible combination or yield of an actionable tree.
As we have indicated in the first Chapter of the thesis most of our knowledge about

the situation at hand is neither absolutely true nor completely available but only true
with some degree of certainty and partially available. So how to express uncertainty
with actionable trees? We have provided actionable trees with a general framework
for representing likelihood according to different theories.

88 SEQUENTIAL CASES

Break-in

DNS
named
version
attempt

DNS
EXPLOIT

named
overflow
attempt

Steal

MYSQL
root login
attempt

MYSQL show
databases

attempt

DoS

SCAN
cybercop
os probe

DOS
Land
Attack

Theft

Fig. 3.13 An actionable tree of aTheft attack. This actionable tree is composed of the
actionable trees of Figures 3.11(a), 3.12(a), and 3.12(b). An attacker launches a DoS against a
machine running an IDS, subsequently breaks in to a DNS server, spawns a remote shell, and
steals some information from aMySQL database.

3.4.4 Predictive Actionable Trees

A predictive actionable tree embodies an actionable tree in a representation that fa-
cilitates predictive inference. For this purpose we use a general model of likelihood
that allows several schemes to model the strength of part-of relation. This model is
based on associating a semiring structure with the relationships entailed by the arcs
of actionable trees.

A semi-ring is defined as follows:

Definition 33 (Semiring) A semiringS is an algebra〈L,⊗,⊕, 0, 1〉 such thatL is
a set,0, 1 ∈ L are constants,⊗ is a multiplicative operation, and⊕ is called an
additive operation that satisfy the following conditions:

1. Multiplicative unit element:

∀a ∈ L, a⊗ 1 = a = 1⊗ a (3.4)

2. Additive unit element:

∀a ∈ L, a⊕ 0 = a = 0⊕ a (3.5)

3. Left and right annihilator:

∀a ∈ L, a⊗ 0 = 0 = 0⊗ a (3.6)

i.e., 0 is multiplicative absorbing element.

ACTIONABLE TREES 89

4. Multiplicative associativity:

∀a, b, c ∈ L, (a⊗ b)⊗ c = a⊗ (b⊗ c) (3.7)

5. Additive associativity:

∀a, b, c ∈ L, (a⊕ b)⊕ c = a⊕ (b⊕ c) (3.8)

6. Additive commutativity:

∀a, b ∈ L, a⊕ b = b⊕ a (3.9)

7. Left and right distributivity:

∀a, b, c ∈ L, a⊗(b⊕c) = (a×b)⊕(a×c)∧(a⊕b)⊗c = (a⊗c)⊕(b⊗c) (3.10)

Therefore〈L,⊗, 1〉 is a monoid and〈L,⊕, 0〉 is a commutative monoid. Moreover
we define the additive operation to beidempotentover L:

∀a ∈ L, a⊕ a = a (3.11)

We also extend the additive operation to be used over sets of elements of L as
follows8:

∀a ∈ L,
∑

({a}) = a (3.12)

∑
(∅) = 0 (3.13)

∑
(L) = 1 (3.14)

∑
(
⋃
i∈I

Li) =
∑

(
∑
i∈I

(Li)) (3.15)

Given a semiringS with the above additional characteristics we can compare
different elements of the semiring using a partial order≤S defined as follows:

∀a, b ∈ L, a ≤S b↔ a⊕ b = b (3.16)

The following theorem holds:

Theorem 2 The relation≤S onL defined asa ≤S b↔ a⊕ c = b is a partial order
(i.e.,≤S is reflexive, transitive, and antisymmetric).

8A semiring so defined is called ac-semiring[BMR97].

90 SEQUENTIAL CASES

Proof:

• ∀a ∈ L, a ⊕ a = a given that⊕(
∑

) is idempotent and thereforea ≤S a by
definition of≤S . Thus,≤S is reflexive.

• Assuming thata ≤S b and b ≤S c we have thata ⊕ b = b and b ⊕ c = c.
Therefore, using Eq. 3.8,a ⊕ c = a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c = b ⊕ c = c.
Thus,≤S is transitive.

• Assuming thata ≤S b and b ≤S a we have thata ⊕ b = b and b ⊕ a = a.
Therefore, using Eq. 3.9,a = b⊕ a = a⊕ b = b. Thus,≤S is antisymmetric.

The elements ofL provide a measure of part-of strength ranging from0 to 1. 0
indicates the lowest strength and1 indicates the highest strength. The multiplicative
operation computes the strength in part-of transitive closures whereas the additive
operation computes the strength of multiples part-of relations. The intuition behind
a ≤S b is thatb is preferable.

Now we define formally a predictive actionable tree.

Definition 34 (Predictive Actionable Tree) Given an alert modelA = 〈ϑ,Σ〉 and a
collection of alertsΨ = {ψ1, · · · , ψn} such thatψi ∈ A, a predictive actionable tree
is a 6-tuple〈G,µ, τ, κ, φ,�, L〉 whereG, µ , τ , κ and� are defined as in actionable
trees andL andφ as follows:

• L is a likelihood model that assigns a measure of strength to the part-whole
relation.L can be instantiated according to the models belowD,T, P, PT, etc.

• φ : E → L is a mapping that labels each arce ∈ E to a part-of strength inL.

A number of modelsL could be used to instantiate the likelihood framework
ranging from a simple deterministic model to uncertainty models such as Shafer-
Dempster through combinations of probabilistic and temporal models. Take the
following models as an example:

Deterministic This is the basic model. We could label arcs in an actionable tree us-
ing a deterministic modelD instantiating the above likelihood framework as follows.
L = {0, 1}, ⊗ = ∧, ⊕ = ∨ and〈L,∧, 1〉 and〈L,∨, 0〉 are respectively a monoid
and a commutative monoid composing the semiring [KYY95]:

D = 〈{0, 1},∧,∨, 0, 1〉 (3.17)

That is to say, the multiplicative operation is the Boolean∧ (and) whereas the additive
operation is the Boolean∨ (or) with the respective unit elements 1 and 0 and the order
0 ≤D 1. Following this model all the arcs of an actionable tree are labeled with 1
(since all the arcs labeled with 0 are purportedly not considered in the construction
of the actionable tree). Figure 3.14 shows an example of a deterministic actionable
tree. In this example the mere occurrence of one of the alerts allow us to infer the
final presence of the complete sequence. Although a pure deterministic model would

ACTIONABLE TREES 91

Break-in

DNS
named
version
attempt

DNS
EXPLOIT

named
overflow
attempt

1 1

Steal

MYSQL
root login
attempt

MYSQL show
databases

attempt

1 1

DoS

SCAN
cybercop
os probe

DOS
Land
Attack

1 1

Theft

1 1 1

Fig. 3.14 A deterministic actionable tree.

Break-in

DNS
named
version
attempt

DNS
EXPLOIT

named
overflow
attempt

30 15

Steal

MYSQL
root login
attempt

MYSQL show
databases

attempt

20 15

DoS

SCAN
cybercop
os probe

DOS
Land
Attack

30 10

Theft

120 60 15

Fig. 3.15 A temporal actionable tree.

decrease the number of false negatives, the number of of false positives will become
unmanageable since the presence of only an alert will fully activate the actionable
tree.

Temporal In this case the multiplicative operation is the sum of times along the
part-of transitive closure and 0 its unit element. The additive operation is themin
operation over real numbers and its unit element is∞. The order≤T is the real
numbers order. The temporal semi-ring is:

T = 〈[0,∞[,+,min, 0,∞〉 (3.18)

92 SEQUENTIAL CASES

Break-in

DNS
named
version
attempt

DNS
EXPLOIT

named
overflow
attempt

0.4 0.6

Steal

MYSQL
root login
attempt

MYSQL show
databases

attempt

0.5 0.3

DoS

SCAN
cybercop
os probe

DOS
Land
Attack

0.2 0.5

Theft

0.3 0.4 0.6

Fig. 3.16 A probabilistic actionable tree.

Intuitively, when the arcs of an actionable tree are labeled using this model the
time units express the expected time of occurrence of the whole given the part.∞ can
be interpreted as that the part is unlikely to occur in a finite time whereas0 indicates
immediate ocurrrence. For example, Figure 3.15 depicts a predictive actionable tree
using a temporal likelihood model. In this case, the presence of aSCAN cybercop
os probe alert would allow us to infer that the occurrence of aTheft attack will take
place in at most 150 seconds. If, additionally, we observed aDNS EXPLOIT named
overflow attempt alert then we would conclude that aTheft attack will occur in only
75 seconds.

Probabilistic The likelihood framework could also be instantiated using the proba-
bilistic model given by the following semi-ring:

P = 〈[0, 1], ·, 1−
k∏
i=1

(1− li), 0, 1〉 (3.19)

That is the multiplicative operation is the product of probabilities (i.e.,⊗ = ·) and
the additive operation is defined as:

l1 ⊕ l2 ⊕ · · · ⊕ lk = 1−
k∏
i=1

(1− li) (3.20)

The order≤P is the order of the real numbers. Figure 3.16 shows the same
actionable tree as Figure 3.15 but now using a probabilistic model. In this case, the
presence of of aSCAN cybercop os probe alert would allow us to infer that the
probability of occurrence of aTheft attack is 0.06. If, additionally, we observed a
DNS EXPLOIT named overflow attempt alert then we would conclude that the
probability of occurrence of aTheft attack is 0.2856, i.e.,1− ((1− (0.2 · 0.3)) · (1−
(0.6 · 0.4))).

ACTIONABLE TREES 93

Break-in

DNS
named
version
attempt

DNS
EXPLOIT

named
overflow
attempt

(0.4,30) (0.6,15)

Steal

MYSQL
root login
attempt

MYSQL show
databases

attempt

(0.5,20) (0.3,15)

DoS

SCAN
cybercop
os probe

DOS
Land
Attack

(0.2,30) (0.5,10)

Theft

(0.3,120) (0.4,60) (0.6,15)

Fig. 3.17 A probabilistic-temporal actionable tree.

In Chapter 5, we will employ this probabilistic model as the underlying part-of
strength model used by Ceaseless CBR processes to manage uncertainty about the
completion of the sequential cases at hand.

Moreover, combinations of several semi-ring can also be used to instantiate the
above likelihood framework. For example, we can consider the following combina-
tion of a probabilistic and temporal model.

Probabilistic-Temporal This model allows on to measure the part-of strength in
terms of pairs(li, ti) such that the first elementli refers to the confidence on the
occurrence of the relation and the second termti refers to expected time of occurrence.
The composite model is given by the following semi-ring.

PT = 〈[0, 1]× [0,∞[,
(k∏
i=1

li,
k∑
i=1

ti

)
,

(1−
k∏
i=1

(1− li),minki=1(ti)), (0,∞), (1, 0)〉 (3.21)

Notice that in this case the multiplicative operation is a composition that inherits
the multiplicative operations of the above probabilistic and temporal models.

(l1, t1)⊗ (l2, t2)⊗ · · · ⊗ (lk, tk) = (
k∏
i=1

li,
k∑
i=1

ti) (3.22)

Likewise the additive operation is computed based on the above models.

94 SEQUENTIAL CASES

(l1, t1)⊕ (l2, t2)⊕ · · · ⊕ (lk, tk) =
(
1−

k∏
i=1

(1− li),minki=1(ti)
)

(3.23)

Figure 3.17 shows an example of a predictive actionable tree that instantiates this
model. In this case, the presence of of aSCAN cybercop os probe alert would allow
us to infer that the probability of aTheft attack occurring in the next 150 seconds
is 0.06. If, additionally, we observed aDNS EXPLOIT named overflow attempt
alert then we would conclude that the probability of occurrence of aTheft attack in
the next 75 seconds is 0.2856.

The order in this model is given by the following expression:

(l1, t1) ≤PT (l2, t2) ↔ l1 ≤P l2 ∧ t1 ≤T t2 (3.24)

Next, we will see how to assign a particular strength to each part-of relation
provided by an actionable tree.

3.4.4.1 Part-of Strength

The general semi-ring structure introduced above allow us to use distinct likelihood
models using the same hierarchical structure provided by actionable trees. Let’s see
now how we assign a particular part-of strength (likelihood) to each and every one of
the part-of relations provided by actionable trees (i.e.,li’s in the above models). We
need to introduce first the notion ofsupport9.

Using the definition of occurrence (Definition 14), the support of a sequence of
alerts can be defined as follows:

Definition 35 (Support) Given an alert modelA = 〈ϑ, Σ〉 and a sequence of alerts
~S2 in A, the supports of a sequence of alerts~S1 is defined as the probability that a
randomly-chosen window of sizet in ~S2 contains an occurrence of~S1

10.

s(~S1, ~S2, t) =
#windows of sizet where ~S1 occurs

#windows in~S2

(3.25)

The part-of strength or confidence of a part-of relation is defined in terms of the
support of the part and the support of the whole.

9Notice that the support-strength framework used for capturing the dependence among parts and wholes
carried out by actionable trees can be seen as the support-confidence framework used byassociation rules
to model dependences among items represented in a database or events into a sequence[AS95, MTV97,
Ada00, ZZ02].
10Notice that sizet can refer either to a temporal or to a spatial dimension. For example in a sequence of
31483 alerts that extends over more than 111 days (such ourRustoord data-set has) there are either 315
non-overlapping windows of size 100 alerts or 2680 time-based windows of size 3600 seconds. See next
Section for further details.

ACTIONABLE TREES 95

Definition 36 (Part-of Strength) Given an alert modelA = 〈ϑ, Σ〉 a sequence of
alerts ~S2 in A, a window of sizet, and two sequential casesC1 andC2 in A, such
thatC1 �∗ C2 the strength of an part-of relationlC1�C2 is defined as the support of
the occurrence of the whole over the support of the part.

lC1�∗C2 =
s(C2, ~S2, t)

s(C1, ~S2, t)
(3.26)

As we mentioned before, we will see in Chapter 5 how Ceaseless CBR uses sequen-
tial cases represented by means of predictive actionable trees (that use a probabilistic
model) to compute the likelihood of the occurrence of an attack (the whole) given
some of the intrusion alerts that it generates (its parts). Predictive actionable trees have
been devised with the main purpose in mind of providing a measure of confidence
we have in the occurrence of a sequence of alerts given a number of observations.
Said differently, they provide a measure of the strength with which the existence of
the whole can be determined in terms of the existence of some of its parts.

In our domain the intuition behind part-of strength is that if during an attack a
sensor evokes the alerts inC1 then it is also likely to evoke the alertsC2 in a period of
time that does not exceedst. Notice that part-of strength assignations could also be
done by a human expert. However, part-of strengths not only vary depending on the
concrete scenario but also over time within the same scenario. Thus, human expert
assessment can be significantly more costly and less accurate than automatic data-
driven assessment. Therefore, an actionable tree allows one to engage inference upon
the occurrence of alerts that are subsumed by alerts appearing in its root nodes. In the
construction of an actionable tree, alerts in its roots follow a process of abstraction
in order to increase the number of alerts that will engage inference. The constraints
imposed by non-root nodes allows one to reduce the number of alerts that produce
subsequent inferences.

Each predictive actionable tree has associated a degree of belief (likelihood) of
occurrence in terms of the alerts observed so far. Such degree of belief is updated
as long as more alerts are observed. The inference model for belief updating of
actionable trees is a special case of apoly-tree model. A poly-tree model or simple
a poly-tree is a singly connectedBelief Network(BN) (i.e., it contains no undirected
loops). In other words, a BN whose underlying undirected graph has no cycles
[Pea88, Dec98, KZ03]. The inference model of an actionable tree is a poly-tree
where each observed node (observable symptom events) has no parents and both
observed nodes and latent nodes have only one child. Moreover, in an actionable tree
there is only a node whose degree of belief is of interest (i.e., the crown). The main
particularity of poly-trees, a therefore of actionable trees, is that inference can be done
in linear time. (i.e., the time and space complexity of exact inference in poly-trees is
linear in the size of the network [RN03]).

The on-line analysis of temporally-evolving sequences of alerts requires to select
an adequate window model to compute aggregates of interest over a number of alerts.
Next section examines several window models.

96 SEQUENTIAL CASES

3.5 WINDOW MODEL

This section discusses four different window models for aggregate analysis of se-
quences. In Chapter 6, we will experimentally analyze how they intervene in the
performance of our model. Our objective is to guarantee the robustness of the CBR
model proposed independently of the window model chosen. In some sense, a con-
crete window model determines how large is the context is considered each time that
inference is invoked upon the arrival of new events. Window models vary according
to size of the window. The size of a window can be measured in terms of the number
of elements considered or in terms of the time interval that the window represents.

Given a sequence ofn alerts~S = [ψt11,w1
, ψt22,w2

, · · · , ψtii,wi
|ψti+1
i+1,wi+1

, · · · ,ψtnn,wn
]

wherei ≤ n, ti superscripts represent each alert timestamp,wi represents the weight
(importance) that each alert will receive (these subscripts are omitted when they are
equal for all alerts). Finally,| establishes the frontier between the alerts analyzed so
far and pending alerts—alerts that were received but have not been considered for
analysis yet. We will contemplate the following models:

Alert-driven The first model consists of a window of size one. That is to say, not to
use a window model at all. Thus, a system following this model operates on an
alert-driven basis and its inference is engaged upon a new event arrival. This
model is not subject to the inaccuracies resulting from an incorrect specifica-
tion of the size of the window (in terms of space or time) [SS03] and can be
easily adapted to performpoint monitoring—i.e., only the latest element in the
sequence is of interest [ZS03b]. We will denote bywej thejth alert of ~S (i.e.,

ψ
tj
j). The next alert to analyze at a given timet is computed as follows:

we(t) =

{
ψ
ti+1
i+1 when i < n

wait until the next alert arrivalψtn+1
n+1 otherwise

(3.27)

Landmark Window This model establishes a specific point-in-timeλ named the
landmark and then returns alerts between the landmark and the current timet.

w
l(t)
λ = [ψtjj , · · · , ψ

tk
k] : tj > λ ∧ tk ≤ t (3.28)

In this model the sequence of alerts to analyze becomes longer and longer in
every interation. However, the landmark may be periodically changed increas-
ing it in tλ time units. In this case we would obtain windows of durationtλ,
i.e., [t− tλ, tλ] from the immediately-preceding landmarkt− tλ until the cur-
rent point-in-timet. Then each window, for example, aggregates alerts on a
monthly or daily or hourly basis, etc. Nevertheless, the number alerts aggre-
gated by each window may vary over time depending on the alert inter-arrival
frequency. In this case, the next alerts to analyze at a given timet are given by:

w
l(t)
tλ

= [ψtjj , · · · , ψ
tk
k] : tj > t− tλ ∧ tk ≤ t (3.29)

WINDOW MODEL 97

Sliding Windows This model uses a moving window of fixed size that always con-
siders the most recent alerts in the sequence. Depending on how its size is
determined (in terms of space or time) the following two models are possible:

Space-based Sliding WindowA window in this model consists of thek most
recent alerts to arrive.

w
sbw(t)
k = [ψtii , · · · , ψ

tl
l] : l = min(i+ k, n) (3.30)

Time-based Sliding Window A time-based sliding window of durationtw
considers those alerts that arrived no more thantw time units ago.

wtbw(t)
ι = [ψtii , · · · , ψ

tl
l] : tl = ti + tw (3.31)

Other type of sliding window that deserves special attention isrecurrent sliding
window(i.e., with overlap> 0). In this case, a sliding window with a smaller
size is running again within each window. This model is specially useful for
learning and mining purposes. When the overlap between two consecutive
windows is 0 we will refer to these window models as space-based and time-
based respectively.

Damped Window This model considers the most recent alerts the most interesting.
Thus in a damped window model the weights corresponding to alerts into the
past are decreased exponentially. An example of a damped space-based sliding
window model will be:

w
dsbw(t)
k = [ψtii,w∗pi

, · · · , ψtll,w∗pl
] :

l = min(i+ k, n) ∧ pi < · · · < pl ∧
l∑
i

pi = 1

(3.32)

Sometimes the context required to properly analyzed a sequence is greater than the
one provided by a specific window model. For example, an attack (pattern) to be
detected could appear partially divided into several consecutive windows impeding
its recognition but causing the same malicious effect. In these cases elastic window
models can solve this kind of problems by extending the size of the window as far
as needed. To select a proper window model and its correct size constitutes by itself
an arena of research. Our approach solves this problem by maintaining a working
memory where a number ofpending alertsin the form ofcase activationsare kept
over several iterations such as we will see in Chapter 5 of the thesis. In the experiments
described in Chapter 6 we will only consider the space-based, time-based, and alert-
driven models.

98 SEQUENTIAL CASES

3.6 SEQUENTIAL CASES RECAP

This Chapter introduced the terms needed to know to read the rest of the thesis. We
have addressed the conceptual and representational issues concerned with the knowl-
edge structures that allow a case-based reasoner to analyze unsegmented sequences
of complex objects in terms of sequential cases. We have described an unified data
model to represent alerts and introduced the notion of sequential case. A sequen-
tial case is a compositional case where additionally a temporal order is established
among their parts. We have proposed to represent sequential cases by means com-
positional hierarchies. Particularly, we have introducedactionable treesto represent
sequences of complex objects and reason in terms of partially observed sequences.
An actionable tree is a a Multi-Rooted Acyclic Graph (MRAG) with the semantics
that (i) roots symbolize alerts (observable symptom events), (ii) intermediate nodes
(in the trunk and crown) embody sequences of alerts (chunks), and (iii) the arcs rep-
resent part-whole relationships as well as the likelihood of occurrence of the whole
(sequence) given the part (subsequence). We used a general model of likelihood that
allows several schemes (deterministic, probabilistic, temporal, etc) to model part-of
strengths. This model is based on associating a semiring structure with the part-whole
relationships entailed by the arcs of actionable trees. In Chapter 5, we will see how
Ceaseless CBR uses sequential cases represented by means of predictive actionable
trees that use a probabilistic model to compute the likelihood of the occurrence of an
attack (the whole) given some of the intrusion alerts that it generates (its parts).

Next Chapter is devoted to a dynamic sequence similarity that allows a case-based
reasoner to retrieve relevant sequential cases.

4
A Dynamic Sequence

Similarity

This Chapter introduces a similarity measure to compare the sequences of alerts
yielded by actionable trees (yields or episodes) against the current window of alerts
in the alert stream. Our similarity measure has two outstanding characteristics: con-
tinuously adaption to data seen so far and promotion of rareness. We first overview
in Section 4.1 some concepts about similarity. Then, we introduce in Section 4.2 the
notion of sequence similarity and overview two approaches for its computation—edit
distancesandalignments. Then, in Section 4.3 we formally define our dynamic se-
quence similarity as a semi-global alignment and describe several of its components:
(i) a dynamic subsumption scoring scheme based on the reciprocal ofOddsthat uses
a taxonomic hierarchy to properly compute the score given to each pair of alerts; (ii)
an operation of abduction that automatically injects an alert in arbitrary positions of
the alert stream; (iii) a operation of neglection that ignores an alert at an arbitrary
position in the alert stream; and (iv) a system of dynamic programming recurrence
equations that returns the score of the optimal alignment between a suffix and a prefix
of the respective sequences being compared. These two operations allow us to deal
respectively with lost and spurious alerts in the alert stream. Section 4.4 illustrates
how our dynamic sequence similarity works using a simple example. Finally, in
Section 4.5 we show how those components behave over time using our real-world
data-sets.

99

100 A DYNAMIC SEQUENCE SIMILARITY

4.1 INTRODUCTION

At the heart of a case retrieval system is always the computation of a similarity measure
between a new case and previous cases in a case base. A similarity measure provides a
useful approximation of human-determined similarity [AAD03]. Similarity measures
have been largely studied both within and outside the CBR research community. As a
matter of fact, over the years, similarity measures have been invented and reinvented
a number of times at a variety of fields. In CBR, similarity measures have been
categorized according to:

• several models [Ric92, OB97]: eitherabsolute, relative or metric similarity;
and

• several approaches to their realization [Por89, OB97]: eitherrepresentational
or computational.

On the one hand, an absolute similarity function judges two terms to be either
similar or not similar whereas a relative similarity assigns a degree of similarity to
each pair of terms. Often this degree or score is normalized and restricted to lie in some
interval (e.g., [0, 1]). Sometimes it is an arbitrary value. Absolute similarity functions
are simple but counterintuitive since people is commonly used to deal with degrees of
similarity while relative similarity functions are more intuitive but more complex too
since arbitrary degrees of similarity have to be quantified. Metric similarity functions
have been proposed to circumvent both absolute and relative similarity drawbacks. A
metric similarity is a lattice-valued function that generalizes over absolute and relative
similarity. A metric similarity function returns values (degrees of similarity) from a
total order rather than real numbers and in addition provides a lattice that makes such
values comparable [OB97].

On the other hand, in CBR systems that follow a representational approach the
mechanism responsible for seeing similarity is hard-coded (i.e., similarities are com-
puted at case base update time rather than on every retrieval [OB97]) whereas CBR
systems that implement a computational approach compute similarity on each re-
trieval. We will introduce in this Chapter a relative similarity for CBR systems that
follow a computational approach.

When dealing with individual objects, where each object is made up of a number of
numerical, qualitative, and structured values, there are a number of well-known sim-
ilarity measures (such as Euclidean, Manhattan, L’Eixample, etc) that, the great ma-
jority, have their roots in the well-established Tversky’s theory of similarity [TK70].
For instance, following Tversky, we can conceptualize the similarity of two alerts as
the combination of pairwise comparisons of the individual feature-structure-values
in both alerts as follows [Tve77]:

Definition 37 (Alert Similarity) Given the following alert signatureΣ = 〈S,⊥,F ,�
〉, the similarity of two alertsψi ∼ ψj is computed as follows:

ψi ∼ ψj = γf(π(ψi) ∩ π(ψj))− αf(π(ψi)− π(ψj))− βf(π(ψj)− π(ψi))

INTRODUCTION 101

where:

• π(ψ) ⊂ F is the set of all features of alertψ.

• π(ψi) ∩ π(ψj) is the set of common features to eventsψi andψj .

• π(ψi)− π(ψj) is the set of features that are present in alertψi but not in alert
ψj , i.e., the distinctive features ofψi.

• π(ψj)− π(ψi) is the set of features that are present in alertψj but not in alert
ψi, i.e., the distinctive features ofψj .

• f is a measure that represents the salience of a set of features.

• α indicates the relevance of the distinctive features of alertψi.

• β indicates the relevance of the distinctive features of alertψj .

• γ indicates the relevance of the common features of both alerts.

Likewise, the computation of the similarity of two casesc1 andc2 can be con-
ceptualized as the combination of pairwise comparisons of the individual feature-
structure-vales in both cases [OB97]. When cases are represented by feature terms,
their anti-unification also gives a similarity metric with a lattice based on subsumption
[Pla95]. See Gebhardt and Jantke’s respective works for other approaches exploiting
geometrical relations between cases or other nonstandard concepts of similarity in
CBR that take structural properties into account, with the aim of making more flexible
and expressive comparisons [Jan94, Geb96]. As we will see later on, we measure
the similarity of two alerts in terms of their respective sort’s position in a taxonomic
hierarchy and their respective frequency of occurrence. The rationale behind our ap-
proach is clear. First, to gain efficiency and, second, to reduce complexity compared
with the above definition.

We are concerned with the problem of defining similarity not only between in-
dividual objects but also between sequences of objects (e.g., where each object and
additionally has an associated time of occurrence). As pointed out in Chapter 2,
computing similarity of sequences of cases is much less developed than computing
similarity between individual cases. Without a shadow of a doubt, one of the most
deployed techniques for comparing sequences isLevenshteindistance (and the like)
[Lev66]. By far, both Sankoff and Kruskal’s book and Gusfield’s book are the key
sources for finding throughly discussions about all the problems surrounding sequence
comparison [SK83, Gus97]. In the AI literature, most work in sequences is based on
the Schank and Abelson concept of scripts [SA77]. A number of non-linear methods
such as genetic algorithms and neural networks have also been proposed for sequence
comparison in a variety of domains such as international event analysis [Sch00]. See
Chapter 2 for more references.

However, almost all the above similarities and techniques can be considered as
non-adaptive. Broadly speaking, they return the same score independently of the

102 A DYNAMIC SEQUENCE SIMILARITY

context, the history of the system, or the specific point in time at which a compari-
son is occurring. In this Chapter, we propose and describe a similarity measure for
computing the similarity of two sequences of objects that continuously adapts to data
seen so far. We argue that the context and the history in which comparison occurs is
fundamental to pinpoint some aspects of interests (such as rareness) of the sequences
being compared. We take a simple approach to solving this problem. We propose a
semi-global alignment that uses a time-varying subsumption scoring scheme. This
scoring scheme uses a taxonomic hierarchy and the frequency of occurrence to com-
pute the score for each pair of terms in the semi-global alignment. As we will see,
to promote the rareness of terms being compared the score is computed using the
reciprocal of theOdds. Additionally, we have defined two operations:abduction
andneglectionthat allow us to deal respectively with lost and spurious alerts in the
alert stream. Another feature that distinguishes our approach is the fact that normal-
ized and non-normalized versions behave differently. The non-normalized similarity
computation gives preference to rare occurrences of alerts that are more indicative
that something new (unknown) is undergoing. When normalized the similarity lies
between 0 and 1 and gives preference to complete occurrences. That is, sequences
of alerts that are completely included in the alert stream are promoted (ranked first)
versus those that only occur partially.

Our sequence similarity can be seen as a dynamic similarity. Keane et al pro-
poseddynamic similarityas an alternative to static similarity theories arguing that
past, present and future contribute to the perceived similarity of the things [KS01].
The idea behind dynamic similarity is treating the computation of similarity from a
process-oriented perspective rather than as a process acting over static representa-
tions. That is, in situations where the mental representations of two events are similar
the whole cognitive processing context—past, present, or prospective—contributes
to the conceived similarity of the events. However, this elegant concept lacks the
operational model that allows one to compute the similarity between two sequences
of events. In this Chapter we try to provide an operational model. Next, Section suc-
cinctly describes some alternatives to compute the similarity between two sequences.

4.2 SEQUENCE SIMILARITY

Computing the similarity between two sequences can be interpreted like the search
of evidence that both sequences share a common serial structure. For example, in
biological sequence analysis comparing two sequences is looking for the testimony
that they have diverged from a common ancestor through continuos mutation and
selection processes [DEK98]. In geology the sequences being compared represent
the stratigraphic structure of core examples [EGG93]. In our case, we look for the
evidence that some alerts in the alert stream and a sequential case are derived from a
common attack pattern (perhaps altered using new undetectable actions or exploiting
new vulnerabilities).

Generally speaking, there are two kinds of differences between two sequences:

SEQUENCE SIMILARITY 103

• those that arise due to the differences between their serial structure; and

• those that arise due to the individual differences among the elements of each
sequence.

Using the terms of the alignment theory of similarity [MG01] it could be said that
two sequences~S1 and~S2 always share a collection of:

Commonalities Comparable elements that appear at the same position in both se-
quences:

C(~S1, ~S2) = {(~S1[i], ~S2[i])}0<i≤min(|~S1|,|~S2|) : ~S1[i] ∼ ~S2[i] (4.1)

Alignable differences Comparable elements that occur in both sequences but at dif-
ferent position:

A(~S1, ~S2) = {(~S1[i], ~S2[j])}0<i≤|~S1|,0<j≤|~S2|,i 6=j : ~S1[i] ∼ ~S2[j] (4.2)

Non-alignable differencesNon-comparable elements that appear in one sequence
but not in the other:

N (~S1, ~S2) =

{~S1[i]}0<i≤|~S1| : ∀j ~S1[i] � ~S2[j] ∪ {~S2[j]}0<j≤|~S2| : ∀i ~S2[j] � ~S1[i]
(4.3)

Computing the similarity between two sequences entails the definition of a scoring
model that determines how commonalities, alignable differences and non-alignable
differences are weighted when a comparison is performed. Moreover, given that
depending on how both sequences are aligned the commonalities and alignable dif-
ferences differ, we also need to establish a strategy for aligning both sequences. Next,
we overview two possible strategies:edit distancesandalignments.

4.2.1 Edit Distances

Edit distancesandalignmentshave been used in a multitude of fields of study such as
biology, geology, telecommunications, speech recognition, etc to compare sequences
[Kru83, EGG93, Gus97, MR97, DEK98, Ron98]. An edit distance uses dynamic
programming to minimize the cost of theoperationsneeded to transform a sequence
into another. Those operations are able to eliminate non-alignable differences and to
align alignable differences. We formally define the distance between two sequences
of alerts as follows:

104 A DYNAMIC SEQUENCE SIMILARITY

Definition 38 (Sequence Edit Distance)Given the following alert signatureΣ =
〈S,⊥,F ,�〉, the distance between two sequences of alerts~S1 and~S2 can be computed
as follows:

~S1 ∼D ~S2 = minT∈T ∗{C(T)−
∑|~S2|
i=1(~ST1 [i] ∼ ~S2[i])} (4.4)

where:

• T ∗ is the language of transformations, usually over the alphabet{deletion (D),
insertion (I), match (M), or substitution (S)}.

• T ∈ T ∗ is a sequence of transformations that describes howS1 can be trans-
formed intoS2

• ~ST1 is the result of applying the transformationsT on ~S1.

• C(T) is the cost of the transformations (i.e.,
∑|T |
i=1 C(T [i]).

• ∼ is the similarity between alerts of Definition 37.

Notice that the above definition is a distance and not a similarity and therefore
the higher the score the more dissimilar are the terms being compared. The above
definition has associated a key issue: how to weigh up the cost of transformations
(operations). Commonly, only a small set of edit operations is used such assubstitu-
tion, insertion, deletion, etc. The cost of each operation can be the same or distinct
depending on the application. A common assignation of cost is -1 for insertions,
deletions, and substitutions and 0 for matches. The cost can also vary depending
on the specific element of the alphabet that is being edited (inserted, deleted, substi-
tuted, etc). For example, in computational biology, alphabet-weight edit distances use
scoring matrices to differentiate the cost of replacement between different elements.
However, the most common is that each operation has an associated cost that does not
varies over time and is independent of the elements involved as input in the operation.
In our approach, on the contrary, the cost of each operation not only depends on the
pair of elements being compared but also changes over time depending on the own
history of the system that makes the comparisons.

4.2.2 Alignments

Another approach to estimate the similarity between two sequences is using analign-
ment. Alignments are used in molecular biology instead of edit distances to compute
similarity measures between strings of DNA, proteins, etc. We have already intro-
duced formally the notion of alignment between sequences of alerts in Definition 13.
Once an alignment between two sequences has been established, dynamic program-
ming is employed to find the score of the alignment that maximizes the similarity
(i.e., the optimal alignment). Alignments follow a similar dynamic programming
formulation to edit distances. However, an alignment tries to maximize the scor-
ing given to commonalities between both sequences. That is, instead of measuring

DYNAMIC SEQUENCE SIMILARITY 105

the cost of transformations we need look for the optimal alignment that maximizes
the contribution of commonalities. Usually a scoring matrix is used to determine
the score given two every possible pair of matching elements. This matrix does not
vary over time. For example, in biology a number of sensitive scoring schemes have
been developed based on known sequences where the probabilities of mutation can
be computed empirically for example BLOSUM, PAM or BLAST[Gus97, DEK98].
Alignments that try to match a short sequence (a subsequence of a long a one) against
a long one are called global. Those alignments that match a complete sequence with
part of the other are called semi-global alignments. Finally, the alignments that only
try to match pieces of the two sequences are called local alignments. As we see
below, our similarity measure is a semi-global alignment that seeks the optimal align-
ment between the suffix and the prefix of the sequences of involved. Moreover, in
our approach the scoring matrix used is computed dynamically since it changes over
time.

4.3 DYNAMIC SEQUENCE SIMILARITY

Dynamic sequence similarity is a functionS, denoted in infix notation by∼S , that
produces a number expressing the degree of similarity between two sequences of
alerts. The criteria of closeness between two sequences used to computedS is based
on four basic components:

1. A dynamic subsumption scoring scheme that dynamically computes the score
given to each pair of aligned alerts.

2. An operation of abduction that enables the generation of new alerts in the alert
stream.

3. An operation of neglection that ignores alerts from the alert stream.

4. A collection of dynamic programming recurrence equations that allows one to
find efficiently the score of the optimal alignment.

As we have said before, we seek the optimal alignment between the suffix of the
first sequence given as input (that we refer indistinctly as~S1 or alert stream) and the
suffix of the second sequence (that we refer indistinctly as~S2 or sequential case).
The motivation for this specific alignment is that we are interested in anticipating as
much as possible the detection of a sequential case. Thus, if we recognize the prefix
of a sequential case then we are able to immediately predict its suffix.

4.3.1 Dynamic Subsumption Scoring Scheme

We use a dynamic subsumption scoring scheme as an efficient way to compute the
likeliness of two alerts and obtain the score for the subsumption replacements (the
score given to alerts that are aligned together). This subsumption scoring scheme

106 A DYNAMIC SEQUENCE SIMILARITY

tries to maximize the score given to the subsumption of rare alerts. The score given to
each pair of alerts is based on the following assumptions. The score of aligning like
alerts should be different to the score of aligning unlike alerts. Likewise, the score of
aligning frequent alerts should be different to the score of aligning rare alerts.

We define a dynamic subsumption scoring scheme as scoring scheme that given a
taxonomic hierarchy employs the subsumption relation and the frequency of occur-
rence of each sort to compute an score that measures the relatedness or similarity of
two alerts that are aligned. This score will vary over time as long as the frequency
of sorts changes. Our dynamic subsumption scoring scheme receives as input two
alerts (or their sorts directly). If the first alert does not subsume the second then the
score returned is−∞ (i.e., the alerts are not related at all)1. But when it does (the
first alert subsumes the second) it returns a score that is based on the reciprocal of the
Odds2. That is to say, when the Odds of a subsumption are high the scoring returns a
low value and when the Odds are low the scoring returns a high value. This behavior
tries to leverage the importance of the occurrence of rare alerts. Formally:

Definition 39 (Dynamic Subsumption Scoring Scheme)Given the following alert
signatureΣ = 〈S,⊥,F ,�〉, a subsumption scoring schemeM is a square|S| × |S|

matrix such thatMi,j =
{ 1−qi

qj
if i � j

−∞ otherwise
whereqi and qj are respectively the

frequencies of the alerts in the alert stream whose sorts arei ∈ S andj ∈ S.

Notice that we have measured the similarity of two alerts in terms of their respective
sort’s position in a taxonomic hierarchy and their respective frequency of occurrence.
The rationale behind our approach is clear. First, to gain efficiency and, second, to
reduce complexity:

1. The computation of subsumption that we realize only takes linear time (using
a subsumption matrix) whereas the computation of the similarity according to
Definition 37 is polynomial in the number or attributes or even exponential
depending on the complexity (e.g., sets) of the values of each attribute.

2. We only require a taxonomic hierarchy and the frequency of occurrence of each
sort rather than demanding to parameterize (or learn) a number of artificial
values (e.g.,α, β, and so on) as needed in other well-known aforementioned
similarity measures.

Next we define an operation of abduction on the alert stream. This operation is
mainly oriented to provide a method resilient to noise—lost alerts.

1Notice our dynamic subsmption scoring scheme is asymmetric.
2The Odds in favor of an evente are the number of ways the event can occur compared to the number of
ways the event can fail.

DYNAMIC SEQUENCE SIMILARITY 107

4.3.2 Abduction

We define an operation of abduction such thatAbduction(~S, ψ, i) injects an alertψ
in alert stream~S at positioni. When aligning two sequence of alerts, this operation
inserts missing alerts so that an alignment can take place. Following information
theory we can say that abducting an alert whose sort occurs frequently in the alert
stream should cost less than abducting a rare alert and that abducting a more general
alert should be more costly than a more specific one. Therefore, we compute the cost
of an abduction using two parameters:

1. theα-rarity of the alert that is being abduced; and

2. the place that the sort of the alert (root(ψ)) occupies in the hierarchy of sorts
S.

The cost of abduction is therefore given by the equation:

Ca(ψ) = −
∑

ψ′∈S:root(ψ)vψ′
ρα(ψ′) (4.5)

whereρα(ψ) is theα-rarity of alertψ that is defined as:

ρα(ψ) =
α-rare(ψ)
]distinct

(4.6)

.
We say that alertψ is α-rare if its sort appears exactlyα times in alert stream.

]distinct denotes the number of different sorts in the alert stream [DM02a].
This operation of abduction automatically generates virtual alerts while computing

the similarity of the alert stream and a sequential case. These virtual alerts can be
seen as the automatic generation of hypotheses that will entitle plausible explanations
from the current alert stream [GG01, CM02]. This special feature of our approach
is useful for dealing with unobserved actions (i.e. missing alerts that our sensors are
not able to detect because the corresponding signature has not been published yet or
because the intruder is using a new and unknown vulnerability or simply an alteration
of a known attack). Moreover, abduced alerts also allows one to predict alerts that
are likely to occur.

4.3.3 Neglection

We define an operation of neglection such thatNeglection(~S, i) ignores an alert at
positioni from alert stream~S. We compute the cost of the neglectionCn(ψ) of an
alertψ as the inverse of itsα-rarity:

Cn(ψ) = −ρα(ψ)−1 (4.7)

This operation is useful given that we deal with coincidental or parallel sources
and thus we have to count on intervening non-matching elements that need to be
interpreted as noise. We define using the subsumption scoring scheme and abduction

108 A DYNAMIC SEQUENCE SIMILARITY

and neglection costs that we introduced above the similarity between two sequences
as follows.

4.3.4 Dynamic Programming Recurrence Equations

We define the dynamic sequence similarityS ∼ S, the similarity between sequences
of alerts, as the scoring of the optimal (semi-global) alignment between between the
suffix of the first and the prefix of the second. Formally:

Definition 40 (Dynamic Sequence Similarity)Given an alert modelA = 〈ϑ, Σ〉
and let ~S1 and ~S2 be two sequence of alerts inA∗. The similarity between~S1 and
~S2 is the score of the optimal alignment between a suffix of~S1 and a prefix of~S2:
~S1 ∼s ~S2 = max1≤j≤|S2|S(|~S1|, j)

The score of the optimal alignment is computed based on the following dynamic
programming recurrence relation:

S(0, 0) = 0
S(i, 0) = S(i− 1, 0)
S(0, j) = S(0, j − 1) + Ca(~S2[j])

S(i, j) = max

{ S(i− 1, j) + Cn(~S1[i])
S(i, j − 1) + Ca(~S2[j])
S(i− 1, j − 1) +M(~S1(i), ~S2(j))

(4.8)

WhereCn andCa are respectively the costs of neglecting and abducing the cor-
responding alert andM is the dynamic subsumption scoring scheme defined above.
The general condition will select in function of the corresponding costs to neglect an
alert in the alert stream, to abduce an alert from the sequential case of interest or to
subsume an alert of the sequential case with the corresponding alert in the alert stream.
Notice that the second base condition of the recurrence relationS(i, 0) = S(i− 1, 0)
states that we will neglect all the alerts in the alert stream whereas the second base
conditionS(0, j) = S(0, j − 1) + Ca(~S2[j]) means that all the alerts that compose
the sequential case will be abduced in the alert stream. Given our special alignment,
we do not assign any cost for neglecting alerts at the beginning of the alert stream
and at the end of the sequential case. Thus, the second base condition does not assign
any cost at all. We look for the optimal alignment through the last row of the score
matrix in the similarity definition [Gus97] (i.e.,max1≤j≤|S2|S(|~S1|, j)).

These operations compute the similarity in timeO(mn) wherem andn are the
lengths of the two sequences compared (i.e.,m = |~S1| andn = |~S2|). They also
requireO(mn) space to trace back the elements that were aligned and took place in
the scoring computation.

Two important aspects need to be taken into account from the above formulation.

1. First, our dynamic sequence similarity gives an arbitrary quantitative indication
of the relatedness of two sequences of alerts that ranges from 0 to∞ (i.e.,

HOW IT WORKS 109

a A B A A B C D E C C B A B A C C E A B
s Z Y Z Z Y Y X X Y Y Y Z Y Z Y Y X Z Y
t 1 1 2 3 4 4 5 5 5 6 7 10 10 10 10 11 11 12 12

Table 4.1 Illustrative sequence of alerts.a = alerts;s = super-sorts; andt = time-stamps

without an upper bound). Thus, as we see in the next Chapter, we need to
normalize it if we want to establish a fixed threshold to cut-off less similar
sequences to limit the size of the set of sequential cases retrieved. We define
the normalized dynamic sequence similarity between two sequences as follows:

‖~S1 ∼s ~S2‖ =
~S1 ∼s ~S2

~S2 ∼s ~S2

(4.9)

That is the fraction of the dynamic sequence similarity between~S1 and ~S2

and the dynamic sequence similarity between~S2 and ~S2. The normalized
dynamic sequence similarity ranges between 0 and 1. Given that the maximum
(arbitrary) value of the similarity between a sequence and another sequence is
obtained when compared with itself.

2. Second, our similarity measure gives higher values to rare dissimilar sequences
of alerts than to frequent similar sequences. That is to say, rare dissimilar
sequence receive a higher calculated similarity than common similar sequences.
There is a clear justification for this. Rare sequences of alerts can be more
dangerous than frequent ones. Thus, we say that our similarity provides a
mechanism to advert their presence.

Therefore, our dynamic sequence similarity can be seen as a ranking (that has also
been calledexcessin the literature [OB97]). As was noted by Osborne and Bridge
[OB97], “it is often easier for a user to ’rank’ objects, and even to say how much
’better’ one object is compared with another, than it is for a user to decide on the
degrees of similarity of objects”. Osborne and Bridge defined excesses and then
defined similarity measures in terms of these. In our case, the similarity between two
sequences of alerts indicates that both were caused by similar sources mechanisms.
However, since a rare sequence of alerts could bring more peril and the risk of disaster
than a frequent one our similarity ranks it first. We say that our dynamic similarity has
the particularity of ranking according the rareness and behaving as a regular relative
similarity when it is normalized. In order to understand this particularity, we a use a
simple but striking example, in next Section, to illustrate how our dynamic sequence
similarity works.

4.4 HOW IT WORKS

Table 4.1 shows a simple example of an alert stream that we will use to illustrate how
our dynamic similarity works. The alert stream contains 19 alerts of sortsA, B, C, D,

110 A DYNAMIC SEQUENCE SIMILARITY

⊥

Z Y X

B CA D E

Fig. 4.1 Illustrative taxonomic hierarchy of alerts.

andE. The first row indicates the sort of each alert. The second row references the
super-sort of each alert according to the taxonomic hierarchy depicted by Figure 4.1.
For example, sortY subsumes sortsB andC. There are three super-sortsX, Y, and
Z.⊥ is the highest sort in the hierarchy and subsumes the rest of sorts. We consider
a time-based window model of size 3 seconds. Therefore, we will use 4 windows
containing 4, 6, 1 and 8 alerts respectively to analyze the complete sequence.

Assume that we are at the forth iteration and therefore analyzing alerts whose
time-stamp is greater or equal to 10 and lower or equal to 12. That is to say, the
current window of alertsW4 is [A B A C C E A B]. Table 4.2 shows for each sort
the values of abduction and neglection cost as well as itα-rare,α-rarity and relative
frequency. Table 4.3 shows subsumption scoring scheme at the same point in time.
For example, for sortA MA,A = 1−0.3158

0.3158 = 2.1667. Notice that highest score goes
to sortD that is the least frequent (the rarest).

Now, let us suppose that we have only two sequences of alerts (two episodes) to
compare with the current window of alerts:e1 =[E B D] ande2 =[A B A]. Tables
4.4 and 4.5 show respectively the trace of the dynamic programming computation
for both sequences. The maximum value at the last row is written in boldface (i.e.,
the score of the optimal alignment). For sequence[E B D], sequence similarity with
current window of alerts ismax1≤j≤3S(8, j) = 10.4667 whereas for sequence[A
B A] is max1≤j≤3S(8, j) = 4.9667. Notice that in spite of the fact that sequence
of alerts[A B A] even occurs within the current window of alerts it receives a lower
score since dynamic sequence similarity promotes the rareness of sequence[E B D]
and ranks it first.

Now we will show what happens when we normalize both similarities (rankings
or excesses). Tables 4.6 and 4.7 show the trace for the computation of the sequence
similarity of each episode and itself. The maximum scores are 29.3 and 7.1333 for
episodes[E B D] and[A B A] respectively. If we normalize,‖W4 ∼s e1‖ = 10.4667

29.3 =

HOW IT WORKS 111

α-rare(i) α-rarity(i) qi Ca(i) Cn(i)

A 6.0000 1.2000 0.3158 -1.2000 -0.8333
B 5.0000 1.0000 0.2632 -1.0000 -1.0000
C 5.0000 1.0000 0.2632 -1.0000 -1.0000
D 1.0000 0.2000 0.0526 -0.2000 -5.0000
E 2.0000 0.4000 0.1053 -0.4000 -2.5000
Z 6.0000 1.2000 0.3158 -2.4000 -0.8333
Y 10.0000 2.0000 0.5263 -4.0000 -0.5000
X 3.0000 0.6000 0.1579 -1.2000 -1.6667
⊥ 19.0000 3.8000 1.0000 -11.4000 -0.2632

Table 4.2 Dynamic Sequence Similarity walkthrough.

A B C D E Z Y X ⊥
A 2.1667 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
B −∞ 2.8000 −∞ −∞ −∞ −∞ −∞ −∞ −∞
C −∞ −∞ 2.8000 −∞ −∞ −∞ −∞ −∞ −∞
D −∞ −∞ −∞ 18.0000 −∞ −∞ −∞ −∞ −∞
E −∞ −∞ −∞ −∞ 8.5000 −∞ −∞ −∞ −∞
Z 2.1667 −∞ −∞ −∞ −∞ 2.1667 −∞ −∞ −∞
Y −∞ 1.8000 1.8000 −∞ −∞ −∞ 0.9000 −∞ −∞
X −∞ −∞ −∞ 16.0000 8.0000 −∞ −∞ 5.3333 −∞
⊥ 0 0 0 0 0 0 0 0 0

Table 4.3 Dynamic Subsumption Scoring Scheme.

E B D
S2[0] S2[1] S2[2] S2[3]

S1[0] 0 -0.4000 -1.4000 -1.6000
A S1[1] 0 -0.4000 -1.4000 -1.6000
B S1[2] 0 -0.4000 2.4000 2.2000
A S1[3] 0 -0.4000 1.5667 1.3667
C S1[4] 0 -0.4000 0.5667 0.3667
C S1[5] 0 -0.4000 -0.4333 -0.6333
E S1[6] 0 8.5000 7.5000 7.3000
A S1[7] 0 7.6667 6.6667 6.4667
B S1[8] 0 6.6667 10.4667 10.2667

Table 4.4 Trace of dynamic sequence similarity computation for a window of 3 seconds and
episodeEBD.

0.3572 while ‖W4 ∼s e2‖ = 4.9667
7.1333 = 0.6962. Therefore, if we used a normalized

sequence similarity sequence[A B A] would be ranked first.
Continuing with the above example, let us show now how costs and subsumption

scoring values evolve over time and conveniently adapt to data seen so far. See Table
4.8 and Figure 4.2. Figure 4.2 plots the data in Table 4.8. The first row in Table 4.8
(plot (a) in Figurea 4.2) shows the cumulative absolute frequency of alertA along
the 4 windows. The second row (plot (b) in Figure 4.2) shows the exact number of
occurrences of alertA in each window. The third row (plot (c) in 4.2) shows the
cumulative absolute frequency of all the alerts. The forth and fifth row show the cost
of abduction and neglection respectively (plots (d) and (e) in Figure 4.2). Finally, the

112 A DYNAMIC SEQUENCE SIMILARITY

A B A
S2[0] S2[1] S2[2] S2[3]

S1[0] 0 -1.2000 -2.2000 -3.4000
A S1[1] 0 2.1667 1.1667 -0.0333
B S1[2] 0 1.1667 4.9667 3.7667
A S1[3] 0 2.1667 4.1333 7.1333
C S1[4] 0 1.1667 3.1333 6.1333
C S1[5] 0 0.1667 2.1333 5.1333
E S1[6] 0 -1.2000 -0.3667 2.6333
A S1[7] 0 2.1667 1.1667 1.8000
B S1[8] 0 1.1667 4.9667 3.7667

Table 4.5 Trace of dynamic sequence similarity computation for a window of 3 seconds and
episodeABA.

E B D
S2[0] S2[1] S2[2] S2[3]

S1[0] 0 -0.4000 -1.4000 -1.6000
E S1[1] 0 8.5000 7.5000 7.3000
B S1[2] 0 7.5000 11.3000 11.1000
D S1[3] 0 2.5000 6.3000 29.3000

Table 4.6 Trace of dynamic sequence similarity computation between episodeEBD and
itself.

A B A
S2[0] S2[1] S2[2] S2[3]

S1[0] 0 -1.2000 -2.2000 -3.4000
A S1[1] 0 2.1667 1.1667 -0.0333
B S1[2] 0 1.1667 4.9667 3.7667
A S1[3] 0 2.1667 4.1333 7.1333

Table 4.7 Trace of dynamic sequence similarity computation between episodeABA and
itself.

HOW IT WORKS 113

window 1 2 3 4
Q(A) 3.0000 3.0000 3.0000 6.0000
N(A) 3.0000 0.0000 0.0000 3.0000
Q 4.0000 10.0000 11.0000 19.0000
Ca(A) -1.5000 -0.6000 -0.6000 -1.2000
Cn(A) -0.6667 -1.6667 -1.6667 -0.8333
MA,A 0.3300 2.3300 2.6667 2.1667

Table 4.8 Costs and subsumption scoring dynamics for alertA.

last row (plot (f) in Figure 4.2) shows the subsumption score given to alertA along
the four windows. Notice how this score varies over time. It increases with alertA
rareness and decreases when alertA becomes more common. Similarly, the cost of
abduction decreases with rareness and increases with commonness. On the contrary,
the cost of neglection increases with rareness and decreases with commonness3. The
adaptation of the subsumption score, neglection, and abduction costs to data seen so
far is a singularity of our sequence similarity that allows us to conveniently pinpoint
those situations (sequence of events) that are rarer and could entail more peril.

1 2 3 4
3

3.5

4

4.5

5

5.5

6

Windows

F
re

qu
en

cy

(a)
 Alert A

1 2 3 4
0

0.5

1

1.5

2

2.5

3

Windows

A
le

rt
s

(b)
 Alert A

1 2 3 4
0

5

10

15

20

Windows

A
le

rt
s

(c)
 Alert A

1 2 3 4
−1.6

−1.4

−1.2

−1

−0.8

−0.6

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 Alert A

1 2 3 4
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 Alert A

1 2 3 4
0

0.5

1

1.5

2

2.5

3

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 Alert A

Fig. 4.2 Costs and scoring dynamics for alertA in illustrative example of Table 4.1 over
4 time-based windows of size 3. Plot (a) shows the cumulative absolute frequency of alert
A. Plot (b) shows a histogram of the number of occurrences per window. Plot (c) shows the
cumulative absolute frequency of all the alerts. Plot (d) shows the cost of abduction. Plot (e)
depicts the cost of neglection over the 4 windows. (f) shows the evolution of the subsumption
scoring scheme over time.

3Notice that costs are negative.

114 A DYNAMIC SEQUENCE SIMILARITY

Next Section, we will use the same graphics that we depicted for alertA to analyze
in further detail the evolution of the dynamic sequence similarity using a number of
alerts in our real-world data-sets.

4.5 COSTS AND SCORING DYNAMICS

This Section tries to make explicit the intuitions behind the costs and the scoring
scheme employed by our dynamic sequence similarity. We will show how these values
vary over time for a number of alerts in the distinct data-sets that we have collected for
experimental purposes. Specifically, we will analyze cumulative (absolute) frequency,
the number of occurrence on each window, the cumulative number of alerts, the
evolution of the cost of abduction, the cost of neglection, and the subsumption scoring
for a frequent alert, a rare alert, and an arbitrary alert in distinct data-sets and using
different window models. Table 4.9 lists the nine alerts analyzed below.

Dataset wm ws alert sid Fig.
Rustoord 0 100 WEB-IIS cmd.exe acces 1002 4.3
Rustoord 1 3600 WEB-IIS cmd.exe acces 1002 4.4
NaxPot 1 3600 WEB-MISC http directory traversal 1113 4.5
Rustoord 0 100 WEB-CGI campus access 1653 4.6
NaxPot 1 3600 SCAN SSH Version map attempt 1638 4.7
Huckleberry 1 3600 WEB-IIS CodeRed v2 root.exe access 1256 4.8
Rustoord 1 3600 WEB-IIS CodeRed v2 root.exe access 1256 4.9
NaxPot 1 3600 MS-SQL Worm propagation attempt 2003 4.10
Huckleberry 1 3600 MS-SQL Worm propagation attempt 2003 4.11

Table 4.9 Alert Analyzed. Dataset= dataset name;wm = window model;ws = window
size; alert=Snort signature; sid =Snort identifier. Fig. = figure number.

We first analyze the most frequent alert inRustoord data-set. See Appendix A for
further details on the data-sets. Plot 4.3(a) depicts the cumulative (absolute) frequency
of alertWEB-IIS cmd.exe access against the number of windows for a total of 315
windows4. In the last example, we used a space-based window of size 100 alerts with
null overlapping (see Section 3.5). Plot 4.3(b) shows a histogram of the alert over
the 315 windows (i.e., exactly the number of occurrences on each window). Plot
4.3(c) represents the cumulative number of alerts that allows us to compare the pace
at which the alert of interest increases its occurrence versus the number total of alerts
that occur in the system. As it can be seen alertWEB-IIS cmd.exe access frequency
contributes significantly to the total number of alerts in the system. A number of times
more than 80 over 100 alerts are of this sort. Thus, its cost of abduction continously
decreases as shown in Plot 4.3(d). This drop stabilizes as soon as the frequency of
occurrence increases with lower slope. The cost of neglection depicted by Plot 4.3(e)

4This alert indicates that an attempt has been made to exploit potential weaknesses in a host running
Microsoft IIS. This alert could correspond to either the prelude of an attack (i.e., an attacker trying to
compile information on theIIS implementation) or an attack to get root access to the host.

COSTS AND SCORING DYNAMICS 115

0 200 400
0

2000

4000

6000

8000

10000

12000

14000

Windows

F
re

qu
en

cy
(a)

 WEB−IIS cmd.exe

0 200 400
0

20

40

60

80

100

Windows

A
le

rt
s

(b)
 WEB−IIS cmd.exe

0 200 400
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Windows

A
le

rt
s

(c)
 WEB−IIS cmd.exe

0 200 400
−140

−120

−100

−80

−60

−40

−20

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 WEB−IIS cmd.exe

0 200 400
−25

−20

−15

−10

−5

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 WEB−IIS cmd.exe

0 200 400
0

500

1000

1500

2000

2500

3000

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 WEB−IIS cmd.exe

Fig. 4.3 Costs and scoring dynamics for alertWEB-IIS cmd.exe access (SID 1002) in
Rustoord data-set over 315 space-based windows of size 100.

becomes almost zero. This means that this alert is so common that can practically
be ignored and treated as noise (i.e., ignoring its occurrence does not intervene in the
final performance of the system). Finally, Plot 4.3(f) shows the scoring given to a
match between two alerts of sortWEB-IIS cmd.exe access over time. Although
initially it receives a high score as soon as the alert starts to be frequent the score
decreases and becomes practically zero. Said differently, it does not contribute to the
total similarity in a sequence neither positively nor negatively.

Figure 4.4 shows the same analysis as above but using a time-based window of
3600 seconds. Notice the similar behavior of costs and subsumption in spite of using
a distinct window model. Plot 4.4(b) shows the cadency of this alert. Every hour it
occurs between 10 and 70 times. It is important to notice that not appearing in the
plot does not mean that the alert did not occur but that the inner intrusion detection
was not working. Thus, the existence of this kind of alerts reinforces the importance
of ignoring frequent alerts (cost of neglection 0 or close to 0) as the best way to
concentrate vigilance on rare ones.

Figures 4.5 shows the evolution of alertWEB-MISC http directory traversal,
the most frequent alert in theNaxPot data-set5. This alert occurs around 20 times
every hour along, approximately, the first 2000 windows. Then, its presence suddenly

5A number of web servers and CGI scripts are vulnerable to directory traversal attacks. Often a web
server application may intend to allow access to a particular portion of the filesystem. But without proper
checking of user input, a user could often simply add ".." directories to the path allowing access to parent
directories, possibly climbing to the root directory and being able to access the entire filesystem. This
leads to information disclosure and possible exposure of sensitive system information.

116 A DYNAMIC SEQUENCE SIMILARITY

0 1000 2000 3000
0

2000

4000

6000

8000

10000

12000

14000

Windows

F
re

qu
en

cy

(a)
 WEB−IIS cmd.exe

0 1000 2000 3000
0

10

20

30

40

50

60

70

Windows

A
le

rt
s

(b)
 WEB−IIS cmd.exe

0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Windows

A
le

rt
s

(c)
 WEB−IIS cmd.exe

0 1000 2000 3000
−140

−120

−100

−80

−60

−40

−20

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 WEB−IIS cmd.exe

0 1000 2000 3000
−30

−25

−20

−15

−10

−5

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 WEB−IIS cmd.exe

0 1000 2000 3000
0

500

1000

1500

2000

2500

3000

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 WEB−IIS cmd.exe

Fig. 4.4 Costs and scoring dynamics for alertWEB-IIS cmd.exe access (SID 1002) in
Rustoord data-set over 2680 time-based windows of 3600 seconds.

increases and occurs around 100 times every hour along the following 3000 windows
with several peaks that exceed 150 alerts per hour. Observe that this alert even once
occurs more than 500 hundreds times in only a hour. The cost of abduction of this alert
increases dramatically whereas the cost of neglections as well as the score given by the
subsumption scoring scheme practically become 0 from the very beginning windows.
We have seen by now that our dynamic similarity measure behaves similarly using
different windows models and that minimizes the score given to frequent alerts. Let
us now show the same analyses for rare alerts.

Figure 4.6 shows the plots for alertWEB-CGI campus access, that occurred
only once in theRustoord data-set6. First notice that the alert only occurs once
although the cumulative frequency is 2. The reason is that in our analyses we used
Laplace’s adjustment to properly compute the subsumption scoring scheme of those
alerts that never occur and added an extra occurrence for each possible alert. This
alert occurred uniquely in the first window. Thus, as long as the analysis proceeds the
cost of abduction tends to zero whereas the cost of neglection increases significantly.
The score given by subsumption scheme also increases over time. Thus, if this alert
occurred again it would receive a significant score. Figure 4.7 shows the same analysis
for alertSCAN SSH Version map attempt that occurs 5 times in theNaxPot data-
set7. This rare alert, one of the least frequent inNaxPot data-set, receives similar

6These alerts indicate that an attempt has been made to gain unauthorized access to a CGI application
running on a web server.
7This alert indicates the prelude to an attack. An attacker tries to ascertain if a vulnerable version ofssh
is being used on the target host.

COSTS AND SCORING DYNAMICS 117

0 2000 4000 6000
0

2

4

6

8

10
x 10

4

Windows

F
re

qu
en

cy
(a)

 WEB−MISC http di

0 2000 4000 6000
0

100

200

300

400

500

600

Windows

A
le

rt
s

(b)
 WEB−MISC http di

0 2000 4000 6000
0

0.5

1

1.5

2

2.5
x 10

5

Windows

A
le

rt
s

(c)
 WEB−MISC http di

0 2000 4000 6000
−300

−250

−200

−150

−100

−50

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 WEB−MISC http di

0 2000 4000 6000
−6

−5

−4

−3

−2

−1

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 WEB−MISC http di

0 2000 4000 6000
0

500

1000

1500

2000

2500

3000

3500

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 WEB−MISC http di

Fig. 4.5 Costs and scoring dynamics for alertWEB-MISC http directory traversal (SID
1113) inNaxPot data-set over 5816 time-based windows of 3600 seconds.

treatment as above. That is to say, the cost of abduction is kept around 0 while the cost
of neglection stabilizes around -50. The score returned by our dynamic subsumption
scheme is also very high. These scores contribute to point out the importance of the
occurrence of this type of alert. As we have been shown, our dynamic similarity
promotes rareness. Let’s now show how it behaves with a number of arbitrary alerts.

We will depict the same graphics for an arbitrary alertCodeRed v2 root.exe
access in two different data-sets:Huckleberry in Figure 4.8 andRustoord in
Figure 4.9. Comparing both figures we see how the similarity of the same alert is
considered differently by each data-set depending on the exact number of occurrences.
Interestingly, through the analysis of the number of occurrences of this alert every hour
one can imagine the impact of the prevalence of Internet worms in intrusion detection
systems. TheCodeRedII worm started to spread on August 4, 20018. Our analyses
are dated in 2002 and 2003. At this rate, it can take months before Code Red goes
away or perhaps it may never stop completely. See CAIDA analyses9 or [ZGT02]
analysis for a thoroughly discussion. Figures 4.10 and 4.11 depict the analyses for
alertMS-SQL Worm propagation attempt that corresponds to theSapphire Worm
(also calledSlammer) that began to spread on January 25th, 200310. Notice that even
though these worms propagate using randomly-generated IP addresses the number

8This alert corresponds to an attack that exploits a buffer-overflow vulnerability in Microsoft’s IIS web-
servers. See Exampe 1 for further information.
9http://www.caida.org/analysis/security/code-red/
10See http://www.caida.org/analysis/security/sapphire/ for the corresponding CAIDA analysis.

118 A DYNAMIC SEQUENCE SIMILARITY

0 200 400
1

1.2

1.4

1.6

1.8

2

Windows

F
re

qu
en

cy

(a)
 WEB−CGI campus a

0 200 400
0

0.2

0.4

0.6

0.8

1

Windows

A
le

rt
s

(b)
 WEB−CGI campus a

0 200 400
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Windows

A
le

rt
s

(c)
 WEB−CGI campus a

0 200 400
−0.25

−0.2

−0.15

−0.1

−0.05

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 WEB−CGI campus a

0 200 400
−50

−40

−30

−20

−10

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 WEB−CGI campus a

0 200 400
0

0.5

1

1.5

2
x 10

4

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 WEB−CGI campus a

Fig. 4.6 Costs and scoring dynamics for alertWEB-CGI campus access (SID 1653) in
Rustoord data-set over 315 space-based windows of size 100.

of occurrences of the corresponding alerts on each data-set depends on the number
public IP addresses that the target network had open.

The analyses of the above nine alerts have served two main purposes: to show how
our dynamic sequence similarity behaves over time and to gain some insights about
the population of alerts that we deal with.

In this Chapter, we introduced a dynamic sequence similarity that allows us to
compare the input alert stream against the stored sequential cases as we see in the
next Chapter. Our dynamic sequence similarity measure has two main characteristics:
continuously adaption to data seen so far and promotion of rareness. Thus we say
that our dynamic sequence similarity measure is an useful mechanism to provide an
automated indication of similarity that approximates what an SSO could be interested
in.

COSTS AND SCORING DYNAMICS 119

0 2000 4000 6000
1

2

3

4

5

6

Windows

F
re

qu
en

cy

(a)
 SCAN SSH Version

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

Windows

A
le

rt
s

(b)
 SCAN SSH Version

0 2000 4000 6000
0

0.5

1

1.5

2

2.5
x 10

5

Windows

A
le

rt
s

(c)
 SCAN SSH Version

0 2000 4000 6000
−1

−0.8

−0.6

−0.4

−0.2

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 SCAN SSH Version

0 2000 4000 6000
−250

−200

−150

−100

−50

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 SCAN SSH Version

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 SCAN SSH Version

Fig. 4.7 Costs and scoring dynamics for alertSCAN SSH Version map attempt (SID
1638) inNaxPot data-set over 5816 time-based windows of 3600 seconds.

0 1000 2000 3000
0

50

100

150

200

Windows

F
re

qu
en

cy

(a)
 WEB−IIS CodeRed

0 1000 2000 3000
0

1

2

3

4

Windows

A
le

rt
s

(b)
 WEB−IIS CodeRed

0 1000 2000 3000
0

0.5

1

1.5

2

2.5
x 10

5

Windows

A
le

rt
s

(c)
 WEB−IIS CodeRed

0 1000 2000 3000
−1

−0.8

−0.6

−0.4

−0.2

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 WEB−IIS CodeRed

0 1000 2000 3000
−30

−25

−20

−15

−10

−5

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 WEB−IIS CodeRed

0 1000 2000 3000
0

2000

4000

6000

8000

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 WEB−IIS CodeRed

Fig. 4.8 Costs and scoring dynamics for alertWEB-IIS CodeRed v2 root.exe access
(SID 1256) inHuckleberry data-set over 2685 time-based windows of 3600 seconds.

120 A DYNAMIC SEQUENCE SIMILARITY

0 1000 2000 3000
0

200

400

600

800

1000

1200

1400

Windows

F
re

qu
en

cy

(a)
 WEB−IIS CodeRed

0 1000 2000 3000
0

1

2

3

4

5

6

Windows

A
le

rt
s

(b)
 WEB−IIS CodeRed

0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Windows

A
le

rt
s

(c)
 WEB−IIS CodeRed

0 1000 2000 3000
−15

−10

−5

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 WEB−IIS CodeRed

0 1000 2000 3000
−25

−20

−15

−10

−5

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 WEB−IIS CodeRed

0 1000 2000 3000
0

500

1000

1500

2000

2500

3000

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 WEB−IIS CodeRed

Fig. 4.9 Costs and scoring dynamics for alertWEB-IIS CodeRed v2 root.exe access
(SID 1256) inRustoord data-set over 2680 time-based windows of 3600 seconds.

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

3
x 10

4

Windows

F
re

qu
en

cy

(a)
 MS−SQL Worm prop

0 2000 4000 6000
0

10

20

30

40

Windows

A
le

rt
s

(b)
 MS−SQL Worm prop

0 2000 4000 6000
0

0.5

1

1.5

2

2.5
x 10

5

Windows

A
le

rt
s

(c)
 MS−SQL Worm prop

0 2000 4000 6000
−80

−60

−40

−20

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 MS−SQL Worm prop

0 2000 4000 6000
−250

−200

−150

−100

−50

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 MS−SQL Worm prop

0 2000 4000 6000
0

0.5

1

1.5

2
x 10

4

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 MS−SQL Worm prop

Fig. 4.10 Costs and scoring dynamics for alertMS-SQL Worm propagation attempt (SID
2003) inNaxpot data-set over 5816 time-based windows of 3600 seconds.

COSTS AND SCORING DYNAMICS 121

0 1000 2000 3000
0

50

100

150

200

250

300

Windows

F
re

qu
en

cy

(a)
 MS−SQL Worm prop

0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

Windows

A
le

rt
s

(b)
 MS−SQL Worm prop

0 1000 2000 3000
0

0.5

1

1.5

2

2.5
x 10

5

Windows

A
le

rt
s

(c)
 MS−SQL Worm prop

0 1000 2000 3000
−1.5

−1

−0.5

0

Windows

C
os

t o
f A

bd
uc

tio
n

(d)
 MS−SQL Worm prop

0 1000 2000 3000
−200

−150

−100

−50

0

Windows

C
os

t o
f N

eg
le

ct
io

n

(e)
 MS−SQL Worm prop

0 1000 2000 3000
0

2

4

6

8
x 10

4

Windows

S
ub

su
m

pt
io

n
S

co
rin

g

(f)
 MS−SQL Worm prop

Fig. 4.11 Costs and scoring dynamics for alertMS-SQL Worm propagation attempt (SID
2003) inHuckleberry data-set over 2685 time-based windows of 3600 seconds.

5
Ceaseless CBR

This Chapter throughly describes Ceaseless CBR. Ceaseless CBR can be seen as
a constructive situation awareness process governed ceaselessly byobservational
data, asequential case base, andcase activations. Such concepts are first described
in Section 5.1. Then, Section 5.2 explains how Ceaseless Retrieve uses dynamic
sequence similarity to retrieve similar sequential cases that subsume the sequence
of alerts at hand and createcase activationsthat anticipate as much as possible all
the situations that might likely occur. Section 5.3 describes how Ceaseless Reuse
construct explanations—combinations of case activations that completely explain the
sequence of alerts at hand—and provides a likelihood assessment for each explanation
considering its likely consequences. We also see how to tradeoff risk versus efficiency
estimating a degree ofurgencythat finally determines when the prioritization of
each alert has to be done. Section 5.4 explains how Ceaseless Revise allows users
to supervise the explanations provided by Ceaseless Reuse what guides its search
towards the best explanations in future iterations. Section 5.5 describes how Ceaseless
Retain constantly updates the sequential case base with the revised sequential cases
and with the frequencies of alerts seen so far. Finally, Section 5.6 sums up some of
the relevant characteristics of our model.

5.1 INTRODUCTION

Ceaseless CBR aims at finding the best explanation of an unsegmented sequence of
alerts with the purpose of pinpointing whether undesired situations (an attack, fault,
etc) have occurred or not and, if so, indicating the multiple responsible sources (if

123

124 CEASELESS CBR

more than one intervened) or at least which ones are the most plausible. Moreover,
Ceaseless CBR prioritizes each individual alert according to the proposed explana-
tions. Loosely speaking, the reasoning performed by Ceaseless CBR to accomplish
such task can be cast asplausible reasoning. Plausible reasoning can be understood
as the process of reasoning (and taking decisions) as best as we can in spite of the
presence of incomplete information and has an evident correspondence with common
sense. Based on current gathered evidence and past experience, Ceaseless CBR:

1. anticipates as much as possible all the situations that might occur generating
hypotheses based on sequential cases;

2. emits a judgment on how likely each situation is, and makes the decision on
whether to prioritize an alert or not according to its urgency that is computed
judging each alert’s further consequences;

3. creates an explanation composing hypotheses together that completely explain
all urgent alerts and prioritizes them accordingly;

4. revises the decision and its outcome; and finally stores the solution for further
reuse.

Conversely to the mainstream CBR model, we do not consider a unique process,
composed of four sequential sub-processes, initiated upon a new problem description
arrival. Instead we have broken up this process into four sub-processes running
ceaselessly in parallel: Ceaseless Retrieve, Ceaseless Reuse, Ceaseless Revise, and
Ceaseless Retain. By parallel processes we mean that their order of execution is not
restricted. The description of those processes constitutes the bulk of this Chapter.
Before explaining them in detail we describe first some concepts of interest. We see
Ceaseless CBR as a constructive situation awareness process governed ceaselessly
by observational data, asequential case base, andcase activations. We discuss each
of these concepts in detail through the next Subsections.

5.1.1 Observational Data

We assume that at a given point in timet there is a sequence ofn alerts (alert stream)
in the system. We denote by~S(t) the sequence of alerts received so far. We use~W

(t)
wm

to represent the most recently received alerts according to a specific window model
wm. We denote by~P (t) the sequence of pending alerts at timet. That is, alerts that
have not been prioritized yet either because they have just arrived or they were not
prioritized in a previous iteration because they had a lowurgency. We discuss this
issue in detail later on in Section 5.3.2. In an ever-changing environment, recalling the
history of the system can be the only way to reduce uncertainty. Our model considers
that as the analysis of the alert stream proceeds, it produces a probability distribution
over the set of all received alerts. This probability distribution constitutes the basis of
our similarity between sequences as well as the foundation that allows us to go from
observations to hypotheses and from hypotheses to explanations. Each alertψj in

INTRODUCTION 125

~S(t) belongs to a pre-specified alert signatureΣ = 〈S,⊥,F ,�〉 within a given alert
modelA = 〈ϑ,Σ〉 according to the definitions introduced in Chapter 3. For each sort
i in S we denote byq(t)i the relative frequency of sorti at timet. We use the relative

frequency of a sort to estimate its a priori probabilityP (t)(i) = q
(t)
i . When there is

no risk of confusion with the instant of time that we are referring to we simply use
P (i) andqi. We say that the probability of occurrence of an alertψj whose sort is
i = root(ψj) is P (ψj) = qroot(ψj) = qi. Notice that given two sortsi, j ∈ S such

that i � j thenP (i) > P (j) and thatP (⊥) = 1. Likewise, we denote byQ(t)
i the

absolute frequency of sorti at timet. The number of alerts received so far is given

by |~St|. Therefore,q(t)i = Q
(t)
i

|~St|
.

5.1.1.1 Noise Model

We consider that current monitoring systems (probes) are unable to capture all
possible alerts (observable symptoms events) that affect the system under supervision.
Alerts may be not evoked due to a number of causes. For example, because the
corresponding network sensors cannot detect an attacker’s action that corresponds to
a new and unknown vulnerability. Alerts could also be lost before reaching the alert
correlation component because they are transmitted through unreliable or corrupted
communication channels. We define the alert loss ratio as the probability that an
alert of a given sort is lost and denote it byL(i). This value is adjusted based on
the knowledge about the system under supervision. For example, if we know that
our sensor are able to detect almost any kind of reconnoissance activity we should
set up the probability of alerts of sortattempted-recon by 0. We could also adjust
that value using for example the packet loss rate in the communication channel or
other parameters that allow us to derive the reliability of the different components
that underpin the correlation component [SS03].

5.1.2 Sequential Case Base

We suppose that there initially exists a sequential case base made up of a number of
sequential casesC(0) = {C1, · · · , Cn} with n > 0 that have been either handcrafted
by a human expert or learnt through a sequential case discovery mechanism. A
sequential case provides a prototype (pattern) of sequences of alerts that were caused
by the same source during a specific situation. We consider two types of sequential
cases:sequential master casesandsequential abstract cases.

5.1.2.1 Sequential Master Cases

A sequential master case is an abstract representation of a sequential case that allows
one to cast several similar sequential cases that only differ in very specific attributes.
For example, the same computer attack launched from different IP address sources,
against different IP address destinations, at different times, or altering the order of

126 CEASELESS CBR

attack11 =

26664

theft

alerts
.=

26666666666666666666666666666664

serial-node

alerts
.=

2664
SCAN-cybercop-os-probe

likelihood
.=

»
probabilistic
likelihood

.= 0.2

– 3775
2664

DOS-land-attack

likelihood
.=

»
probabilistic
likelihood

.= 0.5

– 3775

constraints
.=

»
feature
name

.= source-addr

–
»

feature
name

.= dest-addr

–

likelihood
.=

»
probabilistic
likelihood

.= 0.3

–

37777777777777777777777777777775
26666666666666666666666666666664

serial-node

alerts
.=

2664
DNS-named-version-attempt

likelihood
.=

»
probabilistic
likelihood

.= 0.4

– 3775
2664

DNS-exploit-named-overflow-attempt

likelihood
.=

»
probabilistic
likelihood

.= 0.6

– 3775

constraints
.=

»
feature
name

.= source-addr

–
»

feature
name

.= dest-addr

–

likelihood
.=

»
probabilistic
likelihood

.= 0.4

–

37777777777777777777777777777775
26666666666666666666666666666664

serial-node

alerts
.=

2664
MYSQL-root-login-attempt

likelihood
.=

»
probabilistic
likelihood

.= 0.5

– 3775
2664

MYSQL-show-database-attempt

likelihood
.=

»
probabilistic
likelihood

.= 0.3

– 3775

constraints
.=

»
feature
name

.= source-addr

–
»

feature
name

.= dest-addr

–

likelihood
.=

»
probabilistic
likelihood

.= 0.6

–

37777777777777777777777777777775

risk
.=

26666664

loss-expectancy

rate-of-occurence
.=

24 risk
threat

.= 0.5
exposure

.= 0.9

35
single-loss-expectancy

.= 5000

37777775
priority

.= 0.8

37775

Fig. 5.1 Sequential case representation of aTheft attack using feature terms.

some attack steps. Sequential master cases are able to efficiently summarize a set
of similar situations. A sequential master case stores the structures that subsume
experiences with similar concrete sequential cases. Sequential master cases group
together cases that can be represented using the sameactionable treeand therefore
are stored only once but constantly updated with the statistical information that reflect
their different activations and how likely they are to occur. Along this Chapter we
assume that the underlying predictive actionable trees used by sequential cases are
based on the probabilistic likelihood model introduced in Section 3.4.4. Ceaseless

INTRODUCTION 127

CBR seeks to maintain a compact case base since it would not be feasible to store
the whole sequence of complex objects over time. Notice that our approach does
not disregard concrete sequential cases. In fact, concrete sequential cases are stored
for subsequentpost-mortemanalyses1. However, only sequential master cases are
considered for retrieval purposes. This increases efficiency whereas it does not affect
to performance detecting attacks. Figure 5.1 shows a sequential master case corre-
sponding to the probabilistic actionable tree shown in Figure 3.16 represented using
feature terms(i.e., the same representation formalism that we have used to describe
alerts in Chapter 3).

5.1.2.2 Sequential Abstract Cases

Ceaseless CBR additionally uses sequential abstract cases that provide an additional
level of abstraction to cope with unknown situations. Sequential abstract cases allow
Ceaseless CBR to find explanations for those alerts corresponding to attacks that have
never occurred in the system before. Sequential abstract cases are constructed based
on the informational order provided by the taxonomic hierarchy used to represent the
alerts (symptom events) at the roots of the actionable tree. Sequential abstract cases
are used as a back-up for the explanation of a group of unknown alerts and also allow
Ceaseless CBR to discover new sequential cases. Sequential abstract cases offer an
explanation to previously unknown situations. Thus, when Ceaseless CBR uses a
sequential abstract case means that the current case-base cannot properly define the
current situation and a new sequential case has to be created. The priority associated
with this new sequential case requires operator’s oversight. We use the predicate
abstract?(Ci) to determine whether a caseCi is abstract or not. We callsequential
case discoveryto the whole process by which Ceaseless CBR compounds new abstract
cases together (assembling case activations) and, after user revision, stores them for
further reuse. As we will see later on, this process is interleaved among the rest of
Ceaseless CBR processes.

In Ceaseless CBR, sequential cases not only can be hand-crafted by an expert
based on a number past problem solving experiences but also through continuous
operation and through an off-line methods to mine alert databases [JD02].

5.1.2.3 Risk Model

A sequential case allows one to define different fields storing relevant information
to the concrete domain of application. A field that is mandatory in the family of
domains we cope with is therisk cost. Risk cost expresses the expenses that the
occurrence of a particular undesired situation (attack, fault, etc) brings. It can be
measured, for example, in terms of the information lost, extent of system downtime,

1The goal ofpost-mortem analysisis threefold. First, to gather forensic evidence (contemplating different
legal requirements) that will support legal investigations and prosecution. Second, to compile experience
and provide or improve documentation and procedures that will facilitate the recognition and rapid repelling
of similar intrusions in the future, and, third, to validate the current security policy.

128 CEASELESS CBR

or business impact that the undesired situation causes. Understanding the effects on
critical infrastructures and the number of available countermeasures is of paramount
importance to properly appraise the risk of each possible undesired situation. It is
convenient to differentiate between risk and cost. The cost is measured in Euros
indicating the operational losses while risk is measured in terms of the odds of oc-
currence of the attack. Risk expresses the potential for harm and depends on the
concrete system’s exposure to particular threats. In other words, anything of variable
certainty and impact that threatens the successful achievement of a system’s mission.
Risk is considered as a weighting factor of the cost that reflects how likely or unlikely
an undesired situation is. Therefore, an alert corresponding to an attack with a high
cost but against which the system has a low exposure should receive a lower priority
than an alert corresponding to a less costly attack but against which the system has
a higher exposure. How to tradeoff between risk and cost depends on the concrete
security policy and risk aversion of the system under supervision. Although more
sophisticated risk functions could be used, for the sake of simplicity, we use a simple
risk cost function. We compute therisk costof each sequential caseCi as follows:

risk-cost(Ci) = (Ci.risk.rate-of-ocurrence.threat×
Ci.risk.rate-of-ocurrence.exposure)×

Ci.risk.single-lost-expectancy (5.1)

Where:

Threat is a measure of the likelihood that the specific type of undesired situation
represented byCi will be initiated against the system under supervision.

Exposure is a measure that specifies the likelihood of the system under supervision
to be vulnerable to the corresponding undesired situation.

Single lost expectancyrepresents the magnitude of losses resulting when the unde-
sired situation occurs.

We assume that alerting an operator on the occurrence of an attack will reduce the
exposure to such attack and therefore will additionally reduce its associated costs.
Thus, as soon as we have enough evidence to determine that an attack in undergoing
we should notify the network administrator. However, if our evidence does not reflect
the reality and we notify the network administrator prematurely then we are causing
a cost associated with the disturbance created in the network administrator that is
called false positive cost. Ceaseless CBR provides aminimum evidence thresholdθ
that can be set up by the corresponding SSO according to either a general security
policy, current situation, or his/her own risk preferences. For example, risk-averse
SSOs can set it up at its lowest value. Then, the system will be permanently on guard
and as soon as some small part of an attack is identified the SSO will be immediately
notified. In Chapter 6, we will experimentally analyze the impact on performance
for distinct values of this threshold. We also go back to this threshold later on in this
Chapter.

INTRODUCTION 129

5.1.3 Case Activations

One of the main issues we cope with is due to the fact that our problem descriptions
are only partially available over time. In other words, in the domains we are dealing
with new cases do not arrive assembled but broken up into pieces that arrive over
time without fixed boundaries and mixed in with other cases’ pieces that correspond
to problems that occur coincidentally. This establishes an important difference with
standard CBR approaches where a full-fledged case description is available at the
beginning. Therefore, an incremental case acquisition process is required. Case
acquisition entails piecing together different parts that resemble a past case. This
process is sequential and implicitly requires to retrieve cases from the sequential case
base ceaselessly. While this happens our model needs to keep a number of plausible
hypotheses that continuously best match the different partial descriptions received
during a specified time span. These hypotheses, that we have called case activations,
are generated by retrieving similar cases from the case base and are constantly updated
as soon as new evidence is gathered. Given an alert model, a case base, and a sequence
of alerts we formally define a case activation as follows:

Definition 41 (Case Activation) A case activation is a hypothesis on the occurrence
of a similar past case and is represented formally as a 6-tupleh = 〈C, â, ǎ, %, ẽ, t〉
where:

• C is a reference to the sequential case (actionable tree) being activated.

• â represents a partial binding between the sequence of alerts that occurred(the
subsumees) and are subsumed byC (the subsumer).

• ǎ represents those alerts inC that have not been observed yet and that were
abduced in the dynamic sequence similarity computation.

• % represents the rareness of the occurrence of the subsumees. We compute it
as the normalized sequence similarity betweenC and% i.e.,% = C ∼s â.

• ẽ measures the level of confidence (evidence) we have in the occurrence of a
complete similar sequence of alerts to those that the sequential caseC repre-
sents. We compute it as the normalized sequence similarity betweenC and â
i.e., ẽ = ‖C ∼s â‖ . We also denote it by‖%‖.

• t is the time at which the last alert on̂a occurred.

Notice that̃e expresses how relevant the current situation is compared to a sequen-
tial master cases that generalizes similar situations that occurred before. Remember
that is the rareness of the alerts what determines the score returned by the dynamic
sequence similarity such as defined in Chapter 4. That is to say, the rarer the alerts
that comprise an attack the higher the score.

New sequential cases are compounded sequentially combining the information
provided by different alerts that arrive over time. Consequently, at a given moment
in time we would only count on a new case partially. Thereby, we need to provide a

130 CEASELESS CBR

measure that determines the degree of completion of a new case acquisition. We have
defined a belief measure that expresses the probability that the complete new case
happens with a given confidence within a fixed interval of time. This belief measure
is computed using the inference mechanism provided by actionable trees (see Section
3.4.4). We say that this belief function is based on negative symptoms. That is, alerts
evoked by sensors after detecting that something dangerous was occurring. As we
see later on, Ceaseless CBR also usespositive symptoms. That is to say, the fact that
some of the alerts of a sequential case have not been observed decreases the belief on
the occurrence of the corresponding attack.

We say that there is a number of case activations that are active constantly. Case
activations can be partially ordered in terms of either their belief or their evidence or a
combination of both. Multiple and different orders can be established using other case
features or aggregate functions. For example, in intrusion detection alert triage, case
activations can be ordered in terms of the risk that the corresponding attack conveys
for the protected network. Said differently, a case activation with less evidence but
higher risk could get a higher prioritization. As we will see below, we have defined a
measure ofurgencythat tries to identify when a case activation should be considered
for further inference.

The number of sequential cases in the case base as well as the number of case
activations limits the efficiency of continuous retrievals and comparisons during case
acquisition. Therefore, it is interesting to define a policy such that certain case ac-
tivations which have been active for a long period of time without increasing their
evidence are considered obsolete and are “harvested” from the working memory. A
similar policy could be applied to the sequential case base. That is, cases that are not
retrieved for a long period of time should not be kept constantly under consideration.
However, the latter policy could run serious risks. For example, in intrusion detec-
tion alert triage we have to be aware of risky, malicious, and rare attacks, being thus
necessary to maintain the corresponding cases in spite of the fact that the common
hope is that those attacks never happen. A deprecation parameterτ establishes when
a case activation becomes obsolete: deprecated case activations are filtered from con-
sideration in successive iterations and presented to the user for its proper revision (or
simply disregarded).

5.1.3.1 Assembling Case Activations

We saw in Chapter 3 that a sequential case establishes a collection of constraints
among its parts. We define anequality path checkingprocess that ensures that such
constraints are followed when two case activation are compounded together. That is,
that path equality (Definition 6) will be kept for all alerts in the new case activation.
Formally:

Definition 42 (Equality Path Checking) Given an alert modelA = 〈ϑ,Σ〉 and a
temporal sequence of alerts~S = [ψ1, ψ2, . . . , ψn] such that eachψi ∈ A then
we say that the sequence~S is constrainable? given the a set of constraintsC =

INTRODUCTION 131

{f1, · · · , fm} : fi ∈ Σ.F when the path equality for all features inC is kept for all
alerts in ~S. That is to say:

constrainable?(C, ~S) =

{
true if ∀fi∈C∀ψj ,ψk∈~S

(
ρ(ψj , fi) = ρ(ψk, fi)

)
false otherwise

(5.2)

This process guarantees that all the alerts in a given sequence share a number of
common features. This process is part of thefusionof case activations that we have
defined as follows:

Definition 43 (Case Activation Fusion) The fusion of two case activationshi =
〈Ci, âi, ǎi, %i, ẽi, ti〉 andhj = 〈Cj , âj , ǎj , %j , ẽj , tj〉, denoted byhi] hj , is defined
as follows:

hi] hj =

{ hi � hj if compoundable?(hi, hj)
{〈Ci, âi, ǎi, %i, ẽi, ti〉,
〈Cj , âj , ǎj , %j , ẽj , tj〉} otherwise

(5.3)

Wherehi � hj is defined as:

hi � hj = 〈Ci, âi • âj , ǎi − âj , Ci ∼s (âi • âj), ‖%‖,max(ti, tj)〉 (5.4)

and• is the operator to link together temporal sequences of alerts that we introduced
in Section 3.2.2. The evidenceẽ of the new fused case activation is‖%‖ = ‖Ci ∼s
(âi • âj)‖.

We define the composability of two case activations as follows.

Definition 44 (Case Activation Composability) Composability is the quality of two
case activations of being able to be compounded together. We say that two case activa-
tionshi = 〈Ci, âi, ǎi, %i, ẽi, ti〉 andhj = 〈Cj , âj , ǎj , %j , ẽj , tj〉 are compoundable,
represented bycompoundable?(hi, hj), when:

1. The corresponding sequential cases do not subsume repeated alerts. That is,
the observed alerts in both case activations do not intersect.

(âi ∩ âj) = ∅ (5.5)

2. The constraints expressed by the corresponding sequential case are kept.

constrainable?(C.alerts.constraints, âi • âj) = true (5.6)

3. Either:

132 CEASELESS CBR

(a) Both case activations correspond to the same sequential case.

Ci = Cj (5.7)

(b) One of the case activations corresponds to a new abstract case.

(abstract?(Ci) ∧ ¬abstract?(Cj))
∨

(¬abstract?(Ci) ∧ abstract?(Cj)) (5.8)

(c) Both case activations correspond to a new abstract case and there exists
a sequential master case that can be abstracted to subsume the corre-
sponding composition:

abstract?(Ci) ∧ abstract?(Cj)
∧
∃Ck ∈ C(t) : Ck v âi ∪ âj (5.9)

Thus:

compoundable?(hi, hj) =

{
true if (5.7 ∨ 5.8 ∨ 5.9) ∧ 5.5 ∧ 5.6
false otherwise (5.10)

Therefore, those case activations that are compoundable can be fused together. As
we see later, this is useful to reduce the number of hypotheses under consideration.
The above definition can be easily extended to the union ofn case activations. Given
a setH made up ofn fused case activationsH = {hi1 , · · · , hin} and an additional
case activationhj then we define their fusion as follows:

H]hj =

{
H ∪ {hj} if @hi ∈ H : compoundable?(hi, hj)
{hik] hj}nk=1 otherwise (5.11)

Notice that each additional case activation is checked for composability against
all previous case activations and therefore a number of case activations can be pieced
together in the same operation. Likewise, given two setsH andH ′ of n and respec-
tively m fused case activationsH = {hi1 , · · · , hin} andH ′ = {hj1 , · · · , hjm} we
define their fusion as follows:

H]H ′ =
m⋃
k=1

(H] hjk) (5.12)

CEASELESS RETRIEVE 133

As we will see below, creating new case activations and assembling them together
are the core processes that allow Ceaseless CBR to discover new cases. That is, at
each iteration Ceaseless CBR not only tries to recognize past sequential cases but
compound new ones together using new abstract cases generated for those alerts that
are not covered by the current sequential case base (i.e., whose domains are empty).
Next Sections are devoted to discuss in detail each one the Ceaseless CBR processes.

5.2 CEASELESS RETRIEVE

Ceaseless Retrieve continuously compares the sequence of alerts at hand with se-
quential cases in the case base and keep updated a collection of case activations that
represent the currentsituation.

Algorithm 1 Ceaseless Retrieve
[htb]
Require: C(0), S(0), θ, τ , wm;
Local: H, R, A, Ci, hi
1: H(0) = ∅;
2: while truedo
3: A(t) = ∅;
4: R(t) = retrieve(root(~W (t)

wm(S(t))),C(t−1), θ);
5: for eachCi ∈R(t) do
6: hi = 〈Ci, âi, ǎi, %i, ẽi, t〉;
7: A(t) = A(t)] {hi};
8: end for
9: for eachψi ∈ ~W

(t)
wm : D(t)(ψi) = ∅ do

10: hi = 〈⊥, ψi, ∅, %∗, 1, t〉;
11: A(t) = A(t)] {hi};
12: end for
13: H(t) = H(t−1)]A(t);
14: for eachhi ∈ H(t) do
15: if hi.t− t > τ then
16: H(t) = H(t) − {hi};
17: end if
18: end for
19: send(H(t), CEASELESSREUSE); /* non-blocking call */
20: [H(t), ~P (t)] = recv(CEASELESSREUSE);
21: end while

Ceaseless Retrieve proceeds as follows. Upon new alerts arrival, it retrieves similar
sequential cases from the case base that best adjust to the current input. That is, it
matches the sequence of alerts provided by the current window against the collection
of sequences generated by each sequential master case. Ceaseless Retrieve establishes
a case retrieval policy based on the frequency of occurrence of alerts. This policy

134 CEASELESS CBR

promotes rareness. Those cases that subsume alerts that are very common receive
a low score whereas those cases that subsume rare alerts receive a high score. This
helps our system to notice those situations that apparently convey more peril since
the system is less used to dealing with them. The match is carried out using the
dynamic sequence similarity measure introduced in Chapter 4 that behaves according
to such policy. However, as we saw in Section 4.3 our dynamic sequence similarity
returns an arbitrary value that varies over time based on the frequency of the alerts
involved. In order to make the similarity value returned for each sequence equally
comparable we use a normalized sequence similarity (as we will see later on). An
elasticity thresholdθ establishes how many cases are retrieved. We call this threshold
minimum evidencesince it sets up the minimum threshold above which a hypothesis
is formulated. Therefore, cases that differ from the current sequence above a given
minimum evidence threshold are removed. For each sequential case that is similar
above this threshold acase activationis created. A case activation represents a
hypothesis that could explain part of the current sequence of alerts. Ceaseless Retrieve
pieces together case activations that fulfill the constraints specified by sequential cases.
The path equality checking process described above ensures that such constraints
are followed when two case activation are compounded together. This composition
reduces the number of elements to be posteriorly considered when constructing overall
explanations. The set made up of all current case activations defines the current
situation.

Let’s now discuss about Ceaseless Retrieve in more detail. The tasks performed by
Ceaseless Retrieve, sketched by Algorithm 1, are as follows. Assume that a case base
is initially composed ofn > 0 sequential casesC(0) = {C1, · · · , Cn}. H(t) denotes
the set of current case activations. InititallyH(0) = ∅. A(t) denotes the set of all new
case activations at iterationt. It is set to∅ at the beginning of each iteration (line:
3). ~W (t)

wm extracts the next sequence of alerts from the alert streamS(t)according to
a given window modelwm. We denote byR(t) the set of sequential cases retrieved
at iterationt (line: 4). Using the sequence of sorts returned byroot(~W (t)

wm(S(t)))
and our dynamic similarity measure∼s, those cases that are similar to the sequence
above a user-defined threshold0 < θ 6 1 are retrieved.

R(t) = retrieve(root(~W (t)
wm(S(t))),C(t−1), θ) (5.13)

Therefore:

R(t) =
{
Ci ∈ C(t−1) :

root(~W (t)
wm(S(t))) ∼s Ci
Ci ∼s Ci

> θ

}
(5.14)

We normalize the value of the dynamic sequence similarity function (between the
current sequence of alerts and the corresponding sequential case) dividing by the
value resulting from the dynamic sequence similarity function of the sequential case
and itself. Since the value returned by our dynamic sequence similarity is arbitrary
this is needed to fix the value boundaries for the thresholdθ.

A case activationhi = 〈Ci, âi, ǎi, %, ẽi, t〉 is created for each retrieved case con-
taining observed and abduced alerts as well as an estimation of its rareness and

CEASELESS REUSE 135

evidence and the time of the last observed alert (lines: 5–8). The new case activation
is then fused with previous case activations generated during the same iteration (line:
7).

A(t) = {hi : hi.Ci ∈ R(t)} (5.15)

We denote the domain of an alertψi over time byD(t):

D(t)(ψi) = {Cj ∈ C(t−1) : root(ψi) �∗ Cj} (5.16)

That is, the set of sequential cases including an alert of the same sort. We say
that an alert isuncoveredwhen its domain is∅. For each uncovered alert in~W (t)

wm, a
new case activationhi = 〈ψi, ψi, ∅, %∗, 1, t〉 is created using a simple actionable tree
composed uniquely of the observed alert (lines: 9–12):

∀
ψi∈ ~W (t)

wm:D(t)(ψi)=∅
A(t)] 〈ψi, ψi, ∅, %∗1, t〉 (5.17)

The evidence of this kind of case activation is originally set to 1 and its rareness at
its maximal value (i.e.,%∗ = max %i,∀hi). Therefore, if it was not fused with other
previous case activations it would promptly be prioritized since both its evidence and
rareness are the highest. New case activations generated at the current iteration are
fused with case activations created in previous iterations considering the constraints
imposed by each sequential case (line: 13). For example, the same source and
destination IP address in the whole sequence of alerts.

H(t) = H(t−1) ∪A(t) (5.18)

Those case activations that have not been altered during a certain period of time
(given by the paremeterτ) are filtered out from consideration (lines: 14–17):

H(t) = H(t) − {hi ∈ H(t) : hi.t− t > τ} (5.19)

Therefore, we say thatH(t) always keeps a number of up-to-date case activa-
tions for each pending alert. That is, alerts that have not received an explana-
tion/prioritization yet. We denote the sequence of indexes of pending alerts by~P (t).
We also say that,H(t), the set composed of all current case activations (hypotheses on
the occurrence of the corresponding attacks) defines the current situation. The current
situation is then sent to the Ceaseless Reuse (line: 19). Ceaseless Reuse decides on
which alerts to explain/prioritize first and returns those case activations and associated
alerts for which it estimates that more evidence is needed before the corresponding
alerts can be prioritized conveniently (line: 20). Next Section describes Ceaseless
Reuse.

5.3 CEASELESS REUSE

Ceaseless Reuse receives as input a set of case activations and uses their information to
produce a situation assessment. Ceaseless Reuse constantly searches the combination

136 CEASELESS CBR

of case activations that best explains the sequence of alerts most recently received and
those that did not find an explanation in previous iterations (pending alerts). Cease-
less Reuse constantly hypothesizes about the risk and cost that the overall situation
represents computing an estimation on the completion for each case activation using
the inference mechanism provided by actionable trees.

Algorithm 2 Ceaseless Reuse

Local: H, hi, b, B, E, e, e∗, ~U ,
1: while truedo
2: H(t) = recv(CEASELESSRETRIEVE);
3: for eachh(t)

i ∈H(t) do
4: b(t)+(hi) = 1;
5: for eachψj ∈ hi.ǎ do
6: b(t)+(hi) = b(t)+(hi)×

(
L(ψj) + ((1− L(ψj))× (1− P (ψj |hi))

)
;

7: end for
8: b(t)−(hi) = P (hi)P (~P (t)|hi);
9: b(t)(hi) = b(t)+(hi)× b(t)−(hi);

10: end for
11: [H(t),H(t)

U , ~P (t), ~U (t)] = rank(H(t),b(t));
12: send([H(t), ~P (t)], CEASELESSRETRIEVE); % non-blocking call
13: E(t) = {ei ⊆ H(t)

U : ∀ψi∈~U(t)∃hi ∈ ei : hi.Ci v ψi};
14: for eachei ∈ E(t) do
15: B(t)+(ei) = 1;
16: for hj ∈ ei do
17: B(t)+(ei) = B(t)+(ei)× b(t)+(hj);
18: end for
19: B(t)−(ei) = P (ei)P (~U (t)|ei);
20: B(t)(ei) = B(t)+(ei)×B(t)−(ei);
21: end for
22: e∗(t) = ei ∈ E(t) : B(t)(ei) is maximal;
23: send([e∗(t), ~U (t)], CEASELESSREVISE); % non-blocking call
24: end while

Ceaseless Reuse proceeds as follows. It constantly combines case activations to
form explanations. Explanations are ensembles of case activations that explain the
whole sequence of alerts at hand. Ceaseless Reuse uses a belief function to determine
which explanation is susceptible of being used to prioritize the corresponding alerts.
However, if this process prioritizes alerts too soon, that is, without being completely
sure of the presence of a (possible) exceptional situation, the number of false positives
will be high and the ultimate objective (to triage the alert stream) will not be achieved.
On the contrary, if it prioritizes too late and an exceptional situation is really occurring,
then the time to enable a prompt response is reduced. Thus we take a decision-theoretic
approach that maximizes the overall utility of each complete explanation and define
a measure of urgency that guides the decisions of this process over time. That utility

CEASELESS REUSE 137

takes into account the distinct costs that could be incurred after each prioritization
including possible damage costs on the system under supervision. The utility values
assigned to each explanation under consideration are estimated based on the success
of similar decisions in previous situations. This process enables the segmentation
of the sequence of alerts seen so far providing the best (sub-) explanation for each
segment. Algorithm 2 sketches the tasks performed by Ceaseless Reuse.

At each iteration Ceaseless Reuse receives a number of case activations that define
the current situation (line: 2): a number of competing hypotheses expressed in terms
of case activations that explain alerts that have been observed so far. We say that
a case activationhj explains an alertψk if the corresponding sequential casehj .C

subsumesψk (i.e.,hj .Cj v ψk or root(ψk)�∗h(t)
j .Cj). We explain the rest of tasks

performed by Ceaseless Reuse in detail through the next Subsections.

5.3.1 Ranking Case Activations

For each case activation Ceaseless Reuse computes a belief function as the product
of two other belief components (lines: 3–10): a negative component (that takes into
account observed alerts2) and a positive component (that takes into account those
alerts that have not been observed yet3):

b(t)(hi) = b(t)+(hi)b(t)−(hi) (5.20)

On the one hand, the positive component is computed in terms of the alerts that
have been abduced during the sequence similarity computation as follows:

b(t)+(hi) =
∏

ψj∈hi.ǎ

(
L(ψj) + ((1− L(ψj))(1− P (ψj |hi))

)
(5.21)

For each abduced alert we consider every possible alternative. That is to say, we
consider the probability that the alert is lostL(ψj) and the probability that the alert is
not lost(1−L(ψj)) but it was not observed given the sequential case corresponding
to the case activation at hand(1− P (ψj |hi)). Later we will show through Equation
5.30 how to compute the probability that the alert was in fact observed given such
case activationP (ψj |hi).

On the other hand, the negative belief on a case activationhi is computed as the
posterior probability of the case activation given the current sequence of pending
alerts (i.e., alerts that did not receive an explanation in previous iterations plus the
alerts received in the current iteration).

b(t)−(hi) = P (hi|~P (t)) (5.22)

Using Bayes’ theorem the posterior probability can be computed as follows:

2Negative symptoms.
3Positive symptoms.

138 CEASELESS CBR

P (hi|~P (t)) =
P (hi)P (~P (t)|hi)

P (~P (t))
(5.23)

The probability of the sequence of pending alerts~P (t) can be computed as follows:

P (~P (t)) =
∏

ψi∈~P (t)

P (ψi) (5.24)

Notice that Equation 5.24 is a constant for all case activations at the current it-
eration. Therefore the relative rank produced will be the same if we only use the
numerator of Equation 5.23. Thus, the computation ofb(t)−(hi) can be approxi-
mated as follows:

P (hi|~P (t)) ∝ P (hi)P (~P (t)|hi) (5.25)

The probability of a case activationP (hi) represents the probability of occurrence
of the associated sequential case that in turn represents the probability of occurrence of
the corresponding undesired situation (attack, fault, etc). This probability is computed
using the inference mechanism provided by the predictive actionable trees that we
saw in Chapter 3. From Equation 3.20:

P (hi) = 1−
∏

ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
)

(5.26)

Where, according to Definition 34,φ maps each arce to a part-of strength computed
using Equation 3.26.

The second part of the product of Equation 5.25 (i.e., the probability that given the
occurrence of a sequential case we observe the sequence of alerts~P (t)) is computed
as follows:

P (~P (t)|hi) =
∏

ψi∈~P (t)

(1− P (ψi|hi)) (5.27)

Using Bayes’ theorem to computeP (ψi|hi):

P (ψi|hi) =
P (ψi)P (hi|ψi)

P (hi)
(5.28)

By actionable trees the probability of occurrence of a sequential case given an alert
is:

P (hi|ψi) =
∏

e∈path(ψj ,hi.Ci)

φ(e) (5.29)

Substituting Equations 5.26 and 5.29 in Equation 5.28 we get:

CEASELESS REUSE 139

P (ψi|hi) =
P (ψi)

∏
e∈path(ψj ,hi.Ci)

φ(e)

1−
∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
) (5.30)

Thereforeb(t)−(hi) can be approximated using Equations 5.25, 5.26, 5.27, and
5.30 as follows:

b(t)−(hi) ∝

(
1−

∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
))
×

∏
ψi∈~P (t)

(
1−

P (ψi)
∏
e∈path(ψj ,hi.Ci)

φ(e)

1−
∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
)) (5.31)

Notice that a belief on a case activation does not need to be computed again and
again at each new iteration. That is, we can cache beliefs on case activations and use
them in later iterations. We only need to recompute them when they have varied at
the current iteration (i.e., whenhi.t is equal tot).

Once we have computed the belief on each case activation we rank them and select
a number of alerts to build an overall explanation (line: 11). The motivation for not
considering all the alerts at each iteration is twofold. First, to reduce the combinatorial
explosion in successive steps. The larger the number of alerts considered, the longer
it will take to build an overall explanation. Second, it does not make sense to consider
alerts for which our belief in their corresponding sequential case is too low, since it
increases the probability of making a wrong judgment and therefore decreasing the
expected utility. Different criteria could be applied to rank and select which alerts
to explain first. For example, ranking them using either their evidence or belief and
select always a fixed number of case activations or selecting all those case activations
whose belief is above a given threshold. Depending on the criteria applied we could
be trading off efficiency for risk. Our approach it to use instead a measure ofurgency
in the same way that it is applied to healthcare patient monitoring [HS97] and in mass
casualty incidents (MCI) where patients are screened based on probable needs for
immediate care and the resources available [BKS96, Str98].

5.3.2 Alert Urgency

Let us articulate the following question to explain the concept of alert urgency: what
is the need for prioritizing an alert right away and what would occur if we waited
to do it later? We answer that question using the notion of urgency. Urgency is the
degree to which an immediate prioritization is required [HS97]. Therefore, we say
that we do need to prioritize an alert only if it isurgent, while we could wait to do it
later at no risk when the alert is not urgent. We compute the urgency of each alert in
terms of the expected utility of prioritizing it right now, using our current degree of
belief on the hypotheses that explain it, versus the expected utility of waiting to do

140 CEASELESS CBR

it after more evidence has been gathered. In the latter case, a higher degree of belief
is obtained but at the risk of alerting too late about a undesired situation. Urgency
provides a measure of the relative benefits of increased performance making more
accurate judgments (selecting the appropriate case activation) versus the cost that
could imply the occurrence of a undesired situation. As we will see experimentally
in Chapter 6, alert urgency has a direct impact on the number of false positives and
false negatives that our system generates.

SinceH(t) denotes the current situation (i.e., all the case activations that represent
possible occurrences of cases), for each case activationhi ∈ H(t) two particular
decisions are possible:

d(t)(hi) → {wait,prioritize} (5.32)

We denote byd(t)
0 (hi) the act of leaving the case activations alone for further

iterations (i.e., to wait and not prioritize the corresponding alerts yet) and byd∗(t)(hi)
thebest decisionat each iterationt. The best decision is that which causes the situation
with the highestutility. We define the utility as a function that estimates a real number
for each possible situation and denoted it byU . Given that it is almost impossible to
know for sure how the next situation is influenced for each decision we compute for
each decision itsexpected utility.

E[U(H(t+1)|d(t)(hi)] =
∑

hit+1∈H(t+1)

P (hit+1 |d(t)(hi))U(hit+1 |d(t)(hi)) (5.33)

The expected utility of an individual case activationhi is computed as follows:

E[U(hi)] =

b(t)(hi) ×
(

P (hi.C) × B(D + |C+) +
(1− P (hi.C)) × C(D + |C−)

)
(1− b(t)(hi)) ×

(
risk-cost(hi.C) +
(1− P (hi.C)) × B(D − |C−)

) (5.34)

where risk-cost(hi.C) is computed according to Equation 5.1,P (hi.C) = hi.C.risk.rate-
of-occurrence,B(D+|C+) represents the benefit obtained for correctly prioritizing
when the alert is dangerous (i.e., positive decision when the condition of interest is
present),B(D−|C−) represents the benefit obtained for correctly not prioritizing an
innocuous alert (i.e., negative decision when the condition of interest is absent), and
C(D+ |C−) is the cost caused by a false positive. In Section 6.2.2 we will consider
the evaluation of these scenarios where correct decision outcomes have associated a
benefitB and incorrect decision outcomes have associated a costC.

Therefore, the best decision is that which maximizes the expected utility:

d∗(t)(hi) = argmaxd(t)E[U(H(t+1)|d(t)(hi)] (5.35)

CEASELESS REUSE 141

However, it is easy to appreciate that the next situation not only depends on the
decision made not just on a single case activation but over all the case activations
H(t). We denote byD(t) the set of all decisions made over all the case activations
H(t). Moreover, decisionsD(t) made at timet affect all the sequence of subsequent
situations[H(t+1), · · · ,H(∞)]. Likewise, a given situationH(t) is influenced by the
corresponding sequence of previous decisions[D(t0), · · · ,D(t−1)], wheret0 is the
time at which supervision was started. Obviously, we only consider finite sequences
of situations that extend along a maximum ofT iterations (i.e.,[H(t+1), · · · ,H(t+T)]
). We callT the decision horizon. WhenT = 1 we refer to the iteration horizon as
myopic. The best decision can then be defined as the argument that maximizes the
maximum expected utility:

d∗(t)(hi) = argmaxd(t)U(D(t+1)|d(t)(hi),H(t)) (5.36)

where the maximum expected utility is defined as follows:

U(D(t)|d(t−1)(hi),H(t−1)) =

maxd(t)

{
U(D(t+1)|d(t)(hi),H(t)) if t+ 1 6 t 6 t+ T − 2
E[U(H(t+1), · · · ,H(t+T)|d(t)(hi)] if t = t+ T − 1

(5.37)

We can finally define the urgencyυ(t)(hi) of a case activationhi as follows:

υ(t)(hi) =
U(D(tj+1)|d∗(tj),H(tj))− U(D(tj+1)|d(tj)

0 ,H(tj))
tj+1 − tj

(5.38)

Urgency measures the expected utility of prioritizing now against the utility ob-
tained if the prioritization is delayed. Given that not all alerts require to be treated
with the same urgency, we say that urgency allows us to trade off in prioritizing an
alert versus continuing computation as well as choosing among competing case acti-
vations. Therefore, we can dedicate resources to those alerts that seem more urgent.
Thus, we say that given the set of current case activationsH(t) and their current beliefs
b(t) the functionrank(H(t),b(t)) (line: 11) partitions alerts and their corresponding
case activations into those that are urgent (i.e., need an immediate prioritization) and
and those that will remain pending (i.e., waiting for further evidence). This function
also uses the rareness of the occurrence of the subsumeeshi.% to rank alerts. Thus,
when several alerts have the same urgency then the rarer the alert, the higher the rank
it gets. We denote by~U (t) the alerts that are urgent and need to be explained at the
current iteration. Alerts that can wait to be prioritized form the sequence of pending
alerts ~P for the next iteration. Likewise,H(t)

U denotes the set of case activations
that explain urgent alerts and that will be used at the current iteration to compound
explanations whereasH(t) denotes the set of case activations that remains for further
iterations. Both case activations that remains for further iterations and pending alerts
are sent back to Ceaseless Retrieve (line: 12).

Then, Ceaseless Reuse creates explanations using the set of case activations that
explain urgent alertsH(t)

U and select the explanation whose belief is maximal to

142 CEASELESS CBR

propose it to the user as the most plausible explanation. In next Subsection we will
see how to compound and rank explanations.

5.3.3 Ranking Explanations

An explanationei is a subset ofH(t)
U that explains all alerts in~U (t). An explanation

ei is said to explain an alertψk if it contains at least a case activationhj that explains
ψk. E(t) represents the set of all explantions—combinations of case activations that
explain completely the current sequence of urgent alerts~U (t). E(t) is computed fol-
lowing a parsimonious principle [PR90]. Based on the observation that the probability
of multiple coincidental sources is low we induce the following heuristic:e′ is not
included inE(t) if it contains a case activation that is already contained bye′′ ∈ E(t)

such that its size is lower:

E(t) = {e′ ⊆ H(t)
U : ∀ψi∈~U(t)∃hi ∈ e′ : hi.Ci v ψi

∧
@e′′ : |e′′| < |e′| ∧ (e′ ∩ e′′) 6= ∅} (5.39)

Therefore those explanations that contain case activations that appear in other
explanations that are already inE(t) and whose size is lower are not contemplated
(line: 13). The next step is to compute an estimation of the goodness for each
explanation inE(t) (lines: 14–21). We use a likelihood measure to conveniently
rank explanations. The explanation with the highest likelihood (the most probable)
can be chosen as the problem solution. We defineB(t)(ei) as a belief function that
represents the likelihood that all cases inei have occurred andei explains all alerts
in ~U (t). B(t) is computed using the beliefsb(t) previously computed for each case
activationhi. We use again a belief function based on a double component.

B(t)
(
ei
)

= B(t)+
(
ei
)
B(t)−

(
ei
)

(5.40)

The beliefB(t)+ (based on positive symptoms) gives a degree of suitability for
each explanation that is based on the intuition that when some of the expected alerts
have not occurred yet it is a positive symptom that allows us to decrease our belief
on the hypotheses that compound the explanation at hand.

B(t)+(ei) =
∏

hi∈ei

∏
ψj∈hi.ǎ

b(t)(hi) (5.41)

Using Equation 5.21:

B(t)+(ei) =
∏

hi∈ei

∏
ψj∈hi.ǎ

(
L(ψj) + ((1− L(ψj))(1− P (ψj |hi))

)
(5.42)

CEASELESS REUSE 143

The belief component based on negative symptoms determines the relative likeli-
hoods of multiple case activations according to their posterior probabilities.

B(t)−(ei) = P (ei|~U (t)) (5.43)

By Bayes’ theorem we know that

P (ei|~U (t)) =
P (ei)P (~U (t)|ei)

P (~U (t))
(5.44)

In order to compare posterior probabilities it is only necessary to compare the joint
probabilities since the normalization factorP (~U (t)) =

∏
ψi∈~U(t) P (ψi) is a constant

for all competing explanations at iterationt. Therefore:

P (ei|~U (t)) ∝ P (ei)P (~U (t)|ei) (5.45)

The a priori probability of a explanationei is given by:

P (ei) =
∏

hi∈e
(t)
i

P (hi) (5.46)

that can be estimated using Equation 5.26 as follows:

P (ei) =
∏

hi∈ei

(
1−

∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
))

(5.47)

The conditional probability of~U (t) givenei is computed as follows:

P (~U (t)|ei) =
∏

ψi∈~U(t)

(
1−

∏
hi∈ei

(1− P (ψi|hi))
)

(5.48)

Then, by Equation 5.30,

P (~U (t)|ei) =∏
ψi∈~U(t)

(
1−

∏
hi∈ei

(
1−

P (ψi)
∏
e∈path(ψj ,hi.Ci)

φ(e)

1−
∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
)))

(5.49)

Finally, from Equations 5.45, 5.47, and 5.49:

144 CEASELESS CBR

B(t)−(ei) ∝
∏

hi∈ei

(
1−

∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
))

×

∏
ψi∈~U(t)

(
1−

∏
hi∈ei

(
1−

P (ψi)
∏
e∈path(ψj ,hi.Ci)

φ(e)

1−
∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
)))

(5.50)

All explanationsei inE(t) are ranked according toB(t). The best explanatione∗(t),
the one that is maximal, among all competing explanations, is chosen as the problem
solution and sent to Ceaseless Revise for user’s revision (line: 23). Assuming that all
non-urgent alerts are originated by the same source we could say that the best expla-
natione∗(t) produces a m-segmentationS (according to Definition 12) of the current
sequence of alerts~W (t)

wm(S(t)) such thatS(~W (t)
wm(S(t)),m) ∈ Segm(~W (t)

wm(S(t)))
andm > |e∗(t)|+ 1 since each alert is explained by either a sequential case that was
included in the best explanatione∗(t) or is a non-urgent alert.

5.4 CEASELESS REVISE

Ceaseless Revise continuously provides a human (expert) operator with the set of most
likely explanations given the alerts received so far (instead of presenting a solution
periodically)4. The user can at any moment revise whatever combination of case
activations that is being proposed as the best explanation and propose modifications.
The revision process conveys the identification of new cases (most times including
alerts that are not considered by other case activations) and new classification of pre-
existing cases—altering their risk , cost or priority factors. Ceaseless Revise proceeds
according to Algorithm 3.

Ceaseless Reuse receives a collection of urgent alerts~U (t) and an optimal expla-
natione∗(t) that explains all alerts in~U (t) (line: 2). Then, Ceaseless Reuse requires
user’s feedback to get a supervised version of the optimal explanation (line: 3). The
operator’s feedback may create a completely new sequential case or update a past
sequential case (adding, deleting or altering observable events or constraints among
them), altering its risk (threat, exposure, or cost) or the corresponding prioritization.
Given the explanations, the user may decide to perform further observations or re-
pairs before reporting the results to the system. The operator’s feedback produces
a set of revised solutions that in turn produces the triage of the corresponding alerts
and initiates a back-propagation process that automatically updates the current case

4Notice that this means that the user is able to interrogate the model at any time to see what is happening but
at the application level, as we will see in Chapter 7, the user receives, for feasibility and usability purposes,
either a periodical email informing that nothing new has occurred or a spontaneous email notifying that
some extremely urgent is undergoing.

CEASELESS REVISE 145

Algorithm 3 Ceaseless Revise

Local: e∗, s∗,~U , p, f , hi
1: while truedo
2: [e∗(t), ~U (t)] = recv(CEASELESSREUSE);
3: s∗(t) = userfeedback(e∗(t), ~U (t))
4: for eachhi ∈ s∗(t) do
5: for eachψi ∈ ~U (t) : ψi ∈ hi.â do
6: p(t)[ψi] = h(t)

i .Ci.priority;
7: end for
8: for eachψi /∈ ~U (t) : ψi ∈ hi.ǎ do
9: f (t)[ψi] = hi.Ci.priority;

10: end for
11: end for
12: send(p(t), f (t), USER); % non-blocking call
13: send([s∗(t), ~U (t)], CEASELESSRETAIN); % non-blocking call
14: end while

activations. Notice that user’s feedback can also be provided by an automatic process
that keeps a model of the system under supervision. For example, in our applica-
tion (see Chapter 7) we used a model created and kept up-to-date automatically by
a network scanner such asNessus. The SSO can carefully define a threshold such
that individual explanations whose likelihood is above it either produce an automatic
triage of the corresponding alerts or require his or her intervention.

In any case, as soon as Ceaseless Reuse receives feedback it proceeds to prioritize
alerts accordingly. For each alertψi in ~U (t) that belongs to the subsumees of a case
activationhi in e∗(t) the priority corresponding to the subsumerh(t)

i .Ci.priority is
assigned (lines: 5–6). Moreover, for each alertψi that does not belong to~U (t) but
belongs to the abduced alerts of a case activationhi in e∗(t) a new alert prediction
is immediately generated and its corresponding priority assigned (lines: 8–10). All
prioritized alertsp(t) as well as all predicted alertsf (t) are then sent to the user for
its further processing (line: 12). Likewise, this process rather than a human user
could be an automatic process that is able to initiate a convenient response or a more
sophisticate reasoning module that uses predictions as input. For example, a plan
recognizer as we will propose as part of our future work in Chapter 8. In the next
Chapter, we will evaluate Ceaseless CBRpredictiveness. That is to say, its capability
of of predicting in advance alerts that will posteriorly occur.

The sequential case base must now be updated with the revised solution. This is
the task performed by Ceaseless Retain. Thus, Ceaseless Revise sends the revised
solution, prioritized alerts, and the sequence of urgent alerts to Ceaseless Retain (line:
13).

146 CEASELESS CBR

5.5 CEASELESS RETAIN

Once a solution has been revised by the user, the Ceaseless Retain process updates
the sequential case base accordingly. For each hypothesis that conformed the final
explanation distinct information is retained depending on the sequential case that
was employed. If the sequential case was completely new or adapted from a previous
sequential case (i.e., it is abstract) then a new sequential case is created in the sequential
case base. For each sequential case that already existed in the case base its statistics are
updated accordingly. Moreover, Ceaseless Retain continuously updates the likelihood
of occurrence of each sequential case as well as the likelihood of occurrence of each
alert in each sequential case. Thus, we say that the retain process is also performed on
a continuous basis. Those sequential cases whose probability of occurring together is
above the probability of occurring separately are merged together in a new sequential
case. Algorithm 4 sketches the tasks performed by Ceaseless Retain.

Algorithm 4 Ceaseless Retain

Require: s∗,~U ;
Local: ti, tf ,Ci, hi;
1: while truedo
2: [s∗(t), ~U (t)] = recv(CEASELESSREVISE);
3: for eachhi ∈ s∗(t) do
4: Ci = hi.C;
5: Ci.occurrence = Ci.occurrence + 1;
6: Ci.epidoses = Ci.epidoses ∪ hi.â;
7: if abstract?(Ci) then
8: C(t) = Ct−1 ∪ hi.C;
9: end if

10: end for
11: for eachψi ∈ ~W

(t)
wm do

12: Q
(t)
root(ψi)

= Q
(t)
root(ψi)

+ 1;
13: end for
14: for eachCi ∈ C(t) do
15: for eachψj ∈ Ci do
16: for e ∈ path(ψj , Ci) do

17: φ(e) = s(Ci,~S,wm

s(root(ψj),~S,wm)
;

18: end for
19: end for
20: end for
21: end while

Ceaseless Retain receives from Ceaseless Reuse a collection of revised hypothesis
s∗(t) according to which current urgent alerts in~U have been prioritized (line: 2). For
each sequential case that formed part of a hypothesis, if the sequential (master) case
previously existed Ceaseless Retain updates it number of occurrences (see Sections

CEASELESS CBR RECAP 147

3.2.2 and 3.4.4) (lines: 3–9). Moreover, if the the order of the subsumees differ from
the current episodes that the sequential case represents then the new episode is also
stored and the corresponding actionable tree updated in accordance (line: 6). If no
sequential master case for the case at hand previously existed, then additionally a new
sequential master is created and stored in the case base (lines: 7–9):

C(t) = Ct−1 ∪ hi.C

This process generates a new master case where all the irrelevant details corre-
sponding to the occurrence at hand have been dismissed. Finally, Ceaseless Retain
recomputes the likelihood of occurrence (part-of strength) for each alert sort within
each sequential case (lines: 11–20). That is, the absolute frequency of all alerts in
the current window is updated (lines: 11–13) as well as the relative frequency of all
alerts (not shown in the algorithm) and the part-of-strength within each sequential
case according to Equation 3.26 (lines: 14–20).

Therefore, we say that Ceaseless Retain continuously adds useful information to
the existing knowledge.

5.6 CEASELESS CBR RECAP

Ceaseless CBR translates the general goal of recognizing an undesired situation into
an on-line composition of a collection of individual and predefined sequences of symp-
tom events (alerts). Therefore, Ceaseless CBR can be seen as a constructive situation
awareness process governed ceaselessly by: (i) observational data—current gathered
evidence, and (ii) a sequential case base—past experience. The sequence of alerts
received so far pushes towards a situation (exceptional or not) whereas the sequential
case base pulls towards the best explanation expressed in terms of partially-matched
sequential cases (case activations). Ceaseless CBR tries to find the best explanation
to the current situation interpreted in terms of past sequential cases and prioritizes
alerts accordingly. Those alerts that cannot be explained using the current sequen-
tial case base are proposed to the user in the form of new abstract cases. The user
assesses their risk and assigns a proper prioritization. Then, new cases are stored for
subsequent reuse in further analyses. Ceaseless CBR is decomposed into four parallel
sub-processes that run forever in an infinite loop. Ceaseless Retrieve instantiates sev-
eral plausible hypotheses for the current sequence of alerts using similar sequences
provided by a sequential case base. Ceaseless Reuse assesses the goodness of each
hypothesis, generates explanations compounding hypothesis, and discerns between
competing explanations. Ceaseless Reuse decides on how immediately an alert needs
to be prioritized selecting for prioritization only those alerts that are urgent. On the
contrary, it makes non-urgent alerts to wait to be prioritized until additional support
for refining the associated hypotheses is gathered. Ceaseless Reuse determines appro-
priate decisions by assigning an utility value to each hypothesis under consideration
and uses a measure of urgency to maximize the expected utility and minimize the
overall risk of each decision. In some general sense, it could be said that Ceaseless

148 CEASELESS CBR

Retrieve generates explanations considering only the similarity between the current
window and the past cases, whereas Ceaseless Reuse takes into account additional
criteria such as rareness and uncertainty on the hostility, exposure, and cost of the
cases at hand. Ceaseless Revise provides the user with an explanation of the cur-
rent situation and obtains his or her feedback that is subsequently used to adapt the
explanation proposed. Human intervention is not mandatory, since a process pro-
viding an up-to-date model of the system under surveillance could take the human
out of the loop. For example, indicating whether the system is vulnerable or not to
the threats signaled by alerts. Ceaseless Retain, the process that completes the CBR
cycle, stores new sequential cases and keeps up-to-date the frequency of occurrence
of each alert within each sequential case so that Ceaseless Retrieve and Reuse can act
in accordance to the concrete distribution of alerts of the system under supervision.

Notice that Ceaseless CBR carries out two interlaced tasks at each iteration. On the
one hand, the recognition of past situations by means of previously stored sequential
cases, and, on the other hand, the discovery of new sequential cases. We call sequential
case discovery the process by which:

• Ceaseless Retrieve generates a case activation with its corresponding abstract
case for each previously unknown alert (i.e., alerts whose domain is empty).

• Ceaseless Retrieve fuses several case activations together providing new large
abstract cases.

• Finally, and once revised by Ceaseless Revise, these new abstract cases are
stored by Ceaseless Retain as a master case that will generalize particular
sequential cases in the future. In this process, some superfluous details of the
concrete sequential case that generated the abstract case are dismissed. For
example, the concrete source IP address or destination.

Our sequential case discovery process is comparable to mining approaches that
search association rules in streams of events. As a matter of fact, in a separate
branch of our research we implemented and tested Mannila’s algorithms (MINEPI
and WINEPI) [MTV97]. However, those algorithms (and the like) show an exces-
sive number of drawbacks from our point of view. First of all, they run off-line.
Second, they require a high number of passes over the data stream what is quite
inefficient; an arbitrary parameters (such as support, confidence, and window size)
have to be adjusted finely; and worst of all they generate an unmanageable number of
rules. Julisch and Dacier drawn similar conclusions and instead they proposed AOI
(Attribute-Oriented Induction) for mining alert databases [JD02].

An additional feature of Ceaseless CBR is its ability to handle burst situations
efficiently. Ceaseless CBR is able to identify burst situations controlling the number
of distinct alerts in the current window. When a burst situation arises (e.g., the number
of distinct alerts is below a pre-specified threshold or the number of unique alerts in the
current window is 1), Ceaseless CBR retrieves a special sequential case that subsumes
the whole window of alerts and proposes it as the only possible explanation. This
allows Ceaseless CBR to consume thousands of alerts in near real-time.

CEASELESS CBR RECAP 149

Finally, notice that Ceaseless CBR have been devised bearing the following policies
in mind. In increasing order of priority:

1. Explain first rare alerts. Since alerts seldom occurring are unusual cases for
which the system hardly had got practical experience to deal with. Saying this
in the other way around, it is supposed that the system have plenty of experience
to deal with common alerts and they do not require prompt attention.

2. Explain first uncovered alerts. Alerts for which there is no previous experience
should be presented to the user as soon as possible. That is, when no sequential
cases subsuming them can be found in the case base.

3. Explain first urgent alerts. Since these alerts are more likely to entail peril
and therefore they must take precedence over any other alert in the explana-
tion/prioritization process.

The objective of these policies is to dedicate computational resources to those
alerts whose corresponding prioritization produce themaximum expected utility.

This Chapter has described the processes that compose Ceaseless CBR in detail.
In the next Chapter, we will establish a framework for the evaluation of alert triage
systems that we subsequently will use to evaluate experimentally the performance of
Ceaseless CBR.

6
Performance Evaluation

This Chapter is devoted to evaluation of the techniques proposed through the thesis.
We will describe our experimental setting and evaluate Ceaseless CBR along five
different dimensions: (i) performance using a new formal framework for the evalua-
tion of alert triage (ii) capability of discovering new sequential cases; (iii) CPU time
requirements; (iv) capability of predicting future alerts (or preemptive ratio); and last
but not least important, alert load reduction achieved. This Chapter is divided into
three sections. Section 6.1 overviews ROC analysis and exposes some well-known
concepts in the context of detection systems. Section 6.2 describes the construction
of a decision-theoretic framework for the evaluation of alert triage that is based on
a combination of ROC analysis and computational geometry. We show how this
framework not only allows one to select the best alert triage system but also to make
practical choices when assessing different components of alert triage. We introduce
t-areaa new measure for computing the performance of non-parametric systems in
ROC spaces. The performance of alert triage depends on the environment where the
evaluation is carried out (i.e., whether misdetection costs are considered or not and
whether are known beforehand or not). We contemplate three possible environments
(scenarios) in increased order of uncertainty and therefore of complexity:ideal envi-
ronments, cost-based environments, andimprecise environments. Finally, Section 6.3
explains the set of experiments that we have conducted using the data-sets described
in Appendix A and draws some interesting conclusions on the performance achieved.
Our evaluations demonstrate how a Ceaseless CBR-enhaced IDS system provides
improvement in both the number of alerts that could be managed by a SSO and the
speed with which they could be triaged.

151

152 PERFORMANCE EVALUATION

6.1 ROC ANALYSIS

Alert triage can be formulated as a detection or classification task1 as we saw in
Section 1.2.1. ROC analysis is a key evaluation technique for comparing the perfor-
mance of detection and classification systems [Swe96] and lays the groundwork of
this Chapter. ROC analysis was originally introduced in the field of signal detection
theory in the 50’s [Ega75]. The term Receiver Operating Characteristic refers to the
performance (the operating characteristic) of a human or mechanical observer (the
receiver) that has to discriminate between radio signals contaminated by noise (such
as radar images) and noise alone [Ega75]. Nowadays, ROC analysis has become a
common tool in medical decision making to qualify diagnostic tests specially in radi-
ology [MSL76, HHJ97, HM82, HH02] and in psychology for sensory and cognitive
processes [SDM00]. Recently, ROC analysis has also been proposed to compare and
improve machine learning classifiers [PFK98, PF01, FFH02, WF02] and information
retrieval systems [MP01].

Detection is the judgement on the presence of some condition in the present or the
occurrence of an event in the future (e.g., an intrusion). A detection system, a person or
a device or a combination of both, makes (positive or negative) decisions regarding the
presence or absence of some condition [SDM00]. Depending on the output, detection
systems can be classified into non-parametric and parametric detection systems.

6.1.1 Non-parametric Detection Systems

When the output of a detection system only considers yes-no alternatives then it has
the four possible decision outcomes shown in Table 6.1.

Table 6.1 Four possible outcomes of a non-parametric detection system.

Condition
Decision Present Absent

Positive True Positives False Positives

Negative False Negatives True Negatives

On the one hand, a detection system makes two types of correct decisions: true
positives (TP) and true negatives (TN). That is, the judgement on the presence and
respectively absence of the condition of interest is correct. On the other hand, a
detection system can commit two kinds of decision errors: false positives (FP) and
false negatives (FN). Respectively, deciding that some condition is present when it is
really absent (e.g., an alert is signaled when there is a manifest absence of intrusive

1Respectively known is statistics as binary and n-ary hypotheses testing.

ROC ANALYSIS 153

behavior), and, conversely, deciding that some condition is absent when it is really
present (e.g., an attack is undergoing and no alert is evoked).

The evaluation of a non-parametric detection system can be performed using a
confusion matrix. A confusion matrix is a two-by-two table that collects the frequency
of the four possible decision outcomes for the evaluation of a detection system that
madeN decisions (N = TP + TN + FP + FN). The following fractions and
probabilities are of interest.

The true positive fraction(TPF) orP (D+ | C+) of a detection system is the
probability that it makes a positive decision (D+) when the condition is present (C+).
It is also calledsensivityor recall.

TPF ≈ TP

TP + FN
(6.1)

The true negative fraction(TNF) or P (D− | C−) of a detection system is the
probability that it makes a negative decision (D-) when the condition is absent (C-).
It is also calledspecificity.

TNF ≈ TN

FP + TN
(6.2)

The false positive fraction(FPF) orP (D+ | C−) of a detection system is the
probability that it makes a positive decision (D+) when the condition is absent (C-).

FPF = 1− TNF (6.3)

The false negative fraction(FNF) orP (D− | C+) of a detection system is the
probability that it makes a negative decision (D-) when the condition is present (C+).

FNF = 1− TPF (6.4)

Notice that the TPF answers the question: if the condition is present, how likely
will the detection system make a positive decision? The TNF answers the question: if
the condition is absent, how likely will the detection system make a negative decision?
Nevertheless, often the questions of interest are: if the decision was positive, how
likely is the condition to be present? and if the decision was negative, how likely is the
condition to be absent? These questions are answered using the following concepts.

The positive predictive value(PPV) orP (C+ | D+) of a detection system is
the probability that the condition is present (C+) given that the decision was positive
(D+). It is also calledprecision.

PPV ≈ TP

TP + FP
(6.5)

Thenegative predictive value(NPV) orP (C− | D−) of a detection system is the
probability that the condition is absent (C-) given that the decision was negative (D-).

NPV ≈ TN

FN + TN
(6.6)

154 PERFORMANCE EVALUATION

TheprevalenceP (C+) of a detection system is the probability that the condition
is present. See Axelsson’s work [Axe00] for a discussion on base-rates.

prevalence ≈ TP + FN

N
(6.7)

Theaccuracyof a detection system is the percentage of correct decisions that it
makes, i.e., the percentage of true positives plus the percentage of true negatives.

accuracy ≈ TP + TN

N
(6.8)

Frequently, accuracy has been used as the most basic form of measuring the perfor-
mance of a detection system when misdetection costs are not contemplated. However,
even so it is not a good measure of the performance of a detection system. Imagine
that we evaluate a detection system using a total of 1000 alerts, 997 innocuous alerts
and only three that correspond to malicious attacks. Then a simple detection sys-
tem that always makes negative decisions will have 0.997 accuracy even when it has
missed all the malicious alerts. Moreover, that level of accuracy will surely be hard
to achieve by a more sophisticated detection system [PF01]. We will show later that
the performance of a detection system should be measured in terms of not only the
number of decisions that it makes correctly but also in terms of the cost of the errors
that it commits.

Decision threshold

False
positives

False
negatives

True
negatives

True
positives

Positive decisionNegative decision

dmin dmax

Fig. 6.1 A decision threshold establishes a balance between both types of error.

6.1.2 Parametric Detection Systems

Often, some detection systems are designed to return a value on a continuous measure
—i.e., indicating the likelihood of the presence of the condition being inspected—
instead of a yes or not. In these detection systems, called parametric detection sys-
tems, an arbitrarydecision threshold(cut-off point) has to be chosen such that above
the decision threshold the decision about the condition is positive and below it the

ROC ANALYSIS 155

decision is negative. Figure 6.1 uses two Gaussian curves to illustrate the workings
of a decision threshold. The Gaussian on the left represents the population where
the condition is absent (e.g., alerts corresponding to innocuous attacks) whereas the
Gaussian on the right represents the population where the condition is present (e.g.,
alerts corresponding to malicious attacks). The decision threshold establishes a trade-
off between the two types of errors. In other words, if we move the decision threshold
to the left on the abcissa axis then the number of false negatives will be decreased
but the number of false positives will be increased. On the contrary, if we move the
decision threshold on the opposite direction both errors will be altered conversely.
So, how can we choose an optimal decision threshold?

ROC analysis allows one to select the optimal decision threshold of a parametric
detection system. ROC analysis is best explained in terms of its components.

ROC Space

ROC space is a two-dimensional Cartesian space that lies in a unit square where
the ordinate axis designates the true positive fraction and the abcissa axis designates
the false positive fraction (see Figure 6.2). The ROC space has four singular points:

1. (0,0) This point symbolizes a detection system that never makes positive deci-
sions and corresponds to a parametric detection system whose decision thresh-
old has been set to the maximum valuedmax.

2. (0,1) This point represents the perfect detection system. It always makes
correct decisions and therefore the FPF is 0 and the TPF is 1.

3. (1,0) This point denotes the worst detection system. FPF is 1 and the TPF is
0 since it always makes wrong decisions.

4. (1,1) This points symbolizes a detection system that always makes positive
decisions and corresponds to a parametric detection system whose decision
threshold has been set to the minimum valuedmin.

A diagonal line from the point(0, 0) to the point(1, 1) (the dotted line from the
lower left hand corner to the upper right hand corner in Figure 6.2) represents a
detection system with no discriminating power (i.e., a detection system that works no
better than chance).

ROC Point

Given a decision thresholdd a ROC point (operating characteristic) is a pair of
values(FPFd, TPFd) such thatFPFd represents the false positive fraction and
TPFd represents the true positive fraction for thresholdd. We say that one point in
a ROC curve dominates another if its above and to the left. That is, it has a higher or
equal TPF and lower or equal FPF.

156 PERFORMANCE EVALUATION

(FPFd1 , TPFd1) � (FPFd2 , TPFd2) if TPFd1 ≥ TPFd2 andFPFd1 ≤ FPFd2
(6.9)

ROC Curve

A ROC curve is constructed calculating the true positive fraction and false positive
fraction of a detection system for each possible decision threshold from strict to
lenient. Figure 6.2 depicts three hypothetical ROC Curves. Notice that the shape of
the ROC curve depends on how distinguishable are the underlying distributions (see
Figure 6.2 and Figure 6.3). When the decision threshold is set to its strictest value
dmax then all decisions are negative and therefore the FPF is 0 as well as the TPF.
This corresponds to the point(0, 0). On the other hand, the point(1, 1) corresponds
to the the most lenient decision thresholddmin when all decisions are positive and
therefore both FPF and TPF are 1. A ROC curve encapsulates all the information
provided by a confusion matrix for all possible values of a decision threshold. As a
matter of fact, it is said that A ROC curve makes explicit the inherent tradeoff between
sensivity and specificity for a number of different decision thresholds.

Slope of the Curve

At any point along the curve, the slope of the ROC curveS measures the decision
threshold used to generate that point [SDM00].S can be used to determine the
optimal decision threshold as we will see in Section 6.2.

Area Under the ROC Curve

The area under the curve (AUC) gives an estimation of the accuracy of a detection
system [HM82]. The higher the AUC, the greater the accuracy. A perfect detection
system will have an area of 1. A detection system with no discriminating power will
have an area of 0.5. There exist two types of methods to compute the area under the
ROC curve2: parametric and non-parametric methods [HHJ97]. Parametric methods
use a maximum likelihood estimator of the AUC [MSL76] whereas non-parametric
methods approximate the AUC by means of trapezoids. This last method has be
shown to be equal to Mann-Whitney-Wilcoxon test statistic [HM82, HT01a, HH02].
See [HT01a] for a generalization of the area under the ROC curve to multiple class
classification problems. As we will see later, these methods allows one to compare
one or several detection systems in different populations3.

2Notice that the area under the ROC curve is equivalent to Gini index in Lorenz diagrams [Gas72].
3The Department of Radiology of the University of Chigaco provides a number of com-
puter programs to compute the area under the ROC curve. They are available at www-
radiology.uchicago.edu/krl/toppage11.htm.

A FORMAL FRAMEWORK FOR THE EVALUATION OF ALERT TRIAGE 157

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Curves

A

B

C

Fig. 6.2 Three illustrative Receiver Operating Characteristic curves corresponding to distri-
butions on Figure 6.3.

Non-parametric detection systems can be represented in a ROC space by a single
ROC point. Sometimes in the literature [DCW99, LFG00] it has been suggested to
complete a ROC curve for non-parametric detection systems connecting that single
point with straight lines to points(0, 0) and(1, 1). The usefulness of this procedure
has caused some discussion such as Gaffney and Ulvila pointed out [GU01].

In this section we have introduced some basic concepts that we will use in our
framework to evaluate alert triage in three scenarios: when the costs of misdetection
are disregarded, when the costs of misdetection are known a priori, and when we
cope with imprecise environments and the costs are unknown a priori and can change
dynamically.

6.2 A FORMAL FRAMEWORK FOR THE EVALUATION OF ALERT
TRIAGE

Alert triage is the process of rapid and approximate priorization for subsequent action
of an IDS alert stream [MP01]. Alert triage is a classification task that takes as input
the alerts generated by a number of (distributed) intrusion detection sensors (e.g.,
Snort [Roe99]) and classifies them producing a tag indicating its malignancy (degree
of threat) for each alert. Such tags priorize alerts according to their malignancy. De-
pending on its priorization each alert will require an automatic response, notification,

158 PERFORMANCE EVALUATION

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) ROC curve A (b) ROC curve B (c) ROC curve C

Fig. 6.3 Three illustrative pairs of distribution to generate ROC curves in Fig 6.2. (a) Non-
distinguishable distributions: N(2,2), N(1,2). (b) Distinguishable distributions: N(2,1), N(-
2,1). (c) N(2,1), N(-1, 2)

or manual response from the site security officer (SSO). The tag assigned to alerts
can be a (fuzzy) label (e.g.malicious , innocuous , falsepositive , etc) or
it can be a continuous value. Alert triage can be explained in terms of the following
priority formulation [PFV02] wheremissionis defined in terms of the critical and
sensitive assets of the target network.

Definition 45 (Priority Formulation) Given an alert modelA = 〈ϑ,Σ〉 and let an
alert stream~S = [ψ1, ψ2, . . . , ψtn] such thatψi ∈ A find:

HighImpact = {ψα, ψβ , . . . , ψω} ⊆ ~S

∀ψi∈HighImpactThreatRank(ψi,Mission) > Tacceptable (6.10)

For the sake of brevity, we suppose that once the alerts have been priorized there
will be only two possible responses{notification,¬notification}. In addition,
looking at Equation 6.10 it can be said that the decision thresholdTacceptable will
discern between two (apparently) disjoint classes of alerts (i.e those alerts that require
notification to the SSO and those alerts that do not). We, therefore, without loosing
generality, proceed in our evaluation as if alert triage was a detection task4. We
consider the evaluation of alert triage as a tournament process where a ranking is
established among competing systems. We proceed as follows:

1. Participants are provided with a detailed model of the target networks and their
missions using a common ontology [MP03e].

2. N consecutive alerts is selected from the alert stream (e.g., extracted from a
database) and sent to the participants.

4Notice that as we mentioned above and we will see below the mathematical methods used in this work
(AUC, ROC Convex Hull) can be extended to multiple class classification [HT01a, Sri99].

A FORMAL FRAMEWORK FOR THE EVALUATION OF ALERT TRIAGE 159

3. Participants emit their judgement on each alert.

4. The outcomes of each participant are represented by means of a ROC point
(non-parametric systems) or ROC curve (parametric systems). The decision
threshold (operating point) of parametric systems will be varied in the evalua-
tions so that all possible values of the decision threshold can be evaluated.

5. The system or group of systems that outperforms the rest of participants is
selected as the winner.

The performance of the participants will depend on the environment where the
evaluation is carried out. We contemplate three possible environments (scenarios) in
increased order of uncertainty and therefor of complexity. It is worth to notice here
that the first environment is a particular case of the second environment that in turn
is subsumed by the third environment.

6.2.1 Ideal Alert Triage Environment

In this environment, we do not contemplate misdetection or misclassification costs
at all, neither a utility function over the decisions that are made correctly. This
scenario is valid at design time when we want to check new triage techniques and for
example fix some kind of requirement such as the maximum number of false positives
allowable [Axe00]. The goal of alert triage in this scenario is either to maximize
the overall percentage of correct decisions or minimize the overall percentage of
incorrect decisions. The performance of parametric systems can be computed using
the area under the ROC curve as we saw in Section 6.1 whereas the performance of
non-parametric systems can be measured using accuracy (Equation 6.8) but as we
indicated in Section 6.1 accuracy is not always a good measure, particularly, if true
negatives abound [KHM97]. We will see a clear example later on in our experimental
results. Fortunately, there exist other performance measures in the literature such as:

e-distance E-distance is the Euclidean distance from the perfect classifier (point
(0, 1)) and the ROC point of interest [HGF02].

e-distance= 1−
√
W · (1− TPF)2 + (1−W) · FPF 2 (6.11)

WhereW is a parameter that ranges between 0 and 1 and establishes the relative
importance between false positives and false negatives.

f-measure F-measure is a combination of recall (TPF) and precision (PPV) [LG94].

f-measure=
(β2 + 1) · TPF · PPV
β2 · PPV + TPF

(6.12)

Whereβ is a parameter ranging from 0 to infinity that weights recall and
precision.

160 PERFORMANCE EVALUATION

Table 6.2 Confusion matrices for alert triage systemsa, b, andc.

a b c
TP FP TP FP TP FP

133 53 156 87 101 116

FN TN FN TN FN TN

12 802 3 754 5 778

TPF FPF TPF FPF TPF FPF

0.9712 0.0620 0.9811 0.1034 0.9528 0.1298

Table 6.3 Accuracy measure results for alert triage systemsa, b, andc.

a b c

accuracy 0.9350 0.9100 0.8790
e− distance 0.9269 0.9256 0.9024
f −measure 0.8036 0.7761 0.6254

g −mean 0.9276 0.9379 0.9106
t− area 0.9276 0.9388 0.9115

g-mean Geometric mean is high when both TPF and TNF are high and when the
difference between both is small [KHM97].

g-mean=
√
TPF × TNF (6.13)

However, both e-distance and f-measure performance measures require to ex-
plicit an arbitrary parameter to conveniently weight false positives and false nega-
tives whereas g-mean has not a clear interpretation. Thus, we have developed a new
measure, calledt-area, for this purpose.

6.2.1.1 T-area

As we saw above, ROC AUC seems to be an intuitive and robust method to compute
the performance of parametric systems. However, computing (or approximating) the
area for an arbitrary ROC requires certain skills. For non-parametric systems, it is
easier since AUC coincides with the area of a quadrilateral formed by the ROC point of
interest (FPF, TPF), the worst detection system (1,0), the detection system that never
makes positive decisions (0,0), and the detection system that always make positive
decisions (1,1). Based on the observation that the diagonal (that represents detection

A FORMAL FRAMEWORK FOR THE EVALUATION OF ALERT TRIAGE 161

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Points

bc

a e f g t
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a a

a

a a

measures

ac
cu

ra
cy

Accuracy comparison

b
b

b

b b

c
c

c

c c

Fig. 6.4 ROC points and ranking corresponding to three alert triage systems.

systems with no discriminating power) and the point of interest always conform a
triangle (except when the point of interest lies in the diagonal), we have defined a
new performance measure called t-area as follows:

Definition 46 (T-Area) T-area is the area of the quadrilateral formed by the segments
connecting the ROC point of interest and all the singular points of the ROC space
except the perfect detection system. We compute T-area using Heron’s formula:

t-area=

{ 1/2 +
√
s · (s− a) · (s− b) · (s− c) if TPF > FPF

1/2 if TPF = FPF

1/2−
√
s · (s− a) · (s− b) · (s− c) if TPF < FPF

(6.14)

Wheres = a+b+c
2 i.e., half the perimeter,a =

√
2, b =

√
TPF 2 + FPF 2, and

c =
√

(1− TPF)2 + (1− FPF)2.

Notice that according to t-area all detection systems with no discriminating power
will have always an area of 0.5. T-area does not require arbitrary parameters and has
an intuitive interpretation (AUC). An additional advantage of this measure is that it
makes parametric and non-parametric systems comparable. Next, we will see how the
aforementioned performance measures including accuracy and t-area behave using a
simple example.

Table 6.2 shows the confusion matrices of three alert triage systemsa, b, andc that
have taken part in an evaluation using a stream of 1000 alerts. The corresponding ROC
points(FPFa = 0.0620, TPFa = 0.9712), (FPFb = 0.1034, TPFb = 0.9811),

162 PERFORMANCE EVALUATION

(FPFc = 0.1298, TPFc = 0.9528) are depicted in Figure 6.4. We have used all
the above performance measures to rank them. The results are shown in Table 6.3
and Figure 6.4. Clearly, the ROC points ofa andb dominate the ROC point ofc
(according to Equation 6.9). All measures discern betweena & b andc. However,
there is no consensus among the different accuracy measures to signala or b as a
winner. We advocate for the use of t-area given that it has an intuitive explanation
(ROC AUC), serves to compare parametric and non parametric systems, and does not
depend on parameters that establish an artificial weight between the errors.

In intrusion detection misdetection costs are asymmetric. That is, the cost of
notifying a SSO when an alert corresponds to an innocuous attack (or false positive)
is really lower compared with the cost of not adverting the presence of an intruder.
Thus, once we have designed an alert triage system we should examine that it will
contemplate such difference. Next scenarios allow one to evaluate an alert triage
system in a cost sensitive way.

6.2.2 Cost-based Alert Triage Evaluation

We consider now scenarios where correct decision outcomes have associated a benefit
B and incorrect decision outcomes have associated a costC. B(A | A) represents
the benefit obtained for correctly classifying an alert of typeA andC(A | B) is
the cost incurred if an alert of type B was misclassified as being an alert of class A.
These scenarios are valid to test alert triage systems in simulated environments and
to determine their optimal decision threshold. In this case, an alert triage detection
system outperforms another if it has a lower expected cost. Thus, the goal here
is to maximize the expected value of each decision. The expected cost of a non-
parametric detection system or a parametric detection system operating at a given
decision threshold is given by:

Expected Cost=
P (C+) · P (D+ | C+) ·B(D+ | C+) +
(1− P (C+)) · P (D− | C−) ·B(D− | C−) +
P (C+) · P (D− | C+) · C(D− | C+) +
(1− P (C+)) · P (D+ | C−) · C(D+ | C−)

(6.15)

Two consequences can be inferred directly from 6.15:

1. Two detection system will have the same expected value if:

TPF2 − TPF1

FPF2 − FPF1
=

1− P (C+)
P (C+)

× B(D− | C−) + C(D+ | C−)
B(D+ | C+) + C(D− | C+)

(6.16)

Equation 6.16 defines the slope of aniso-performanceline [PF01].

2. The slopeS that corresponds to the optimal decision threshold can be computed
as follows:

A FORMAL FRAMEWORK FOR THE EVALUATION OF ALERT TRIAGE 163

Soptimal =
1− P (C+)
P (C+)

× B(D− | C−) + C(D+ | C−)
B(D+ | C+) + C(D− | C+)

(6.17)

In Chapter 2, we described an alternative representation. Figure 2.6 showed the
explicit representation of costs using the method introduced in Section 2.8.2 for the
alert triage systemsa, b,and, c analyzed in Section 6.2.1. Notice that the alert triage
systemb will be better under certain cost conditions than systema and viceversa.
Thus, if the conditions are known a priori we can clearly choosea or b.

Once an intrusion detection system has been developed, its operational costs will
depend on the the importance of the target’s mission (system under surveillance) and
the nature of the possible future attacks (e.g., to be attacked by a CodeRed propagation
is quite different from being wounded by a malefactor or experiencing a DoS attack)
and the level of hostility [GU01]. The ultimate objective of intrusion detection is
to develop robust systems able to face imprecise environments, thus we also have to
address this type of scenarios.

6.2.3 Alert Triage Evaluation in Imprecise Environments

In these scenarios, misdetection costs not only will be unknown a priori but also
will vary over time. These scenarios are useful for the evaluation of systems for
real-world deployment. To decide whether an alert triage systems outperforms others
in this type of environment we will use a robust and incremental method for the
comparison of multiple detection systems in imprecise and dynamic environments
that has been proposed in [PF01]. This method, named ROCCH (ROC Convex Hull)
is a combination of ROC analysis, computational geometry, and decision analysis.
Thus, once the ROC points or ROC curves have been computed for the different
participants we proceed as follows to select the best alert triage systems:

1. Firstly, we compute the convex hull5 of the set of ROC points that symbolizes
a composite alert triage system.

2. Secondly, we compute the set of iso-performance lines corresponding to all
possible cost distributions.

3. Finally, for each iso-performance line we select the point of the ROC convex
hull with the largest TPF that intersects it.

Figure 6.5 depicts the ROC points and curves for the alert triage systems analyzed
above. To select which systems will be of interest for a collection of unknown
conditions we compute the convex hull such as it is shown in Figure 6.6. In that
figure, the circled points denote the points that forms part of the convex hull and
therefore can be optimal for a number of conditions: they form part of the composite
alert triage system chosen as a winner. Therefore, we can continue our analysis

5The convex hull of a set of points is the smallest convex set that includes the points.

164 PERFORMANCE EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Curves

AT−1
AT−2
AT−3
a
b
c

Fig. 6.5 3 ROC points and 3 ROC curves representing 6 alert triage systems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Curves

AT−1
AT−2
AT−3
a
b
c
convex hull

Fig. 6.6 ROC Convex Hull of ROC points and curves of Figure 6.5.

EXPERIMENTAL RESULTS 165

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Plot of ROC Curves

AT−1
AT−2
AT−3
a
b
c
convex hull

S1

S2

Fig. 6.7 Iso-performance lines for different sets of conditions.

without the non-parametric systemc and the parametric systems2 and3. Finally,
Figure 6.7 shows two illustrative iso-performance lines corresponding to the slopes
S1 andS2. Thus, for each of the different sets of conditions that determine the values
of slopesS1 andS2 the alert triage systemsa andb will be the optimal respectively.

Next Section describes experiments we did to analyze the performance of our
techniques using the above framework and three data sets created using real-world
alerts.

6.3 EXPERIMENTAL RESULTS

The exposition of this Section proceeds as follows. Subsection 6.3.1 succinctly de-
scribes the three data-sets compiled and their main characteristics. Subsection 6.3.2
presents the experimental setting that we have used to emulate vulnerabilities and pro-
vide feedback on new discovered cases. Subsection 6.3.3 introduces a basic algorithm
that we have defined to establish a baseline to compare Ceaseless CBR performance
with. Subsection 6.3.4 enumerates diverse evaluation criteria that we used to measure
the overall performance of our approach. Subsection 6.3.5 defines and enumerates
the experiments that we carried out. Subsection 6.3.6 provides Ceaseless CBR results
when all the alerts in the current window are explained right away whereas 6.3.7 takes
into account the measure of urgency described in Chapter 5. Finally, Subsection 6.3.8
draws some conclusions on the most relevant aspects of the achieved performance.

166 PERFORMANCE EVALUATION

6.3.1 Data-sets

For a case study of workday IDS load we set up three IDSes into three different
scenarios to capture real-world alerts. We collected three alert data-sets in real en-
vironments along more than 15 months (in total) of continuous surveillance6. We
called them respectivelyRustoord, Naxpot, andHuckleberry for the place where
they were compiled. These environments tried to simulate a realistic situation where
a network administrator sets up an IDS and what he or she obtains in return is an un-
manageable stream of alerts. A feature that characterizes real world data is that since
the conditions are not controlled, there are all sorts of contaminating effects (such
misconfigurations, downtimes, etc). Next we briefly describe the alert databases. See
Appendix A for further details.

Rustoord is composed of 31483 alerts covering a period of almost 16 weeks. There
are 90 unique alerts (i.e., number of alerts with different sort). The most
frequent alert wasWEB-IIS cmd.exe access that occurred 12050 times, what
supposed a 38% of all occurrences. We evaluated the dynamics of this alert in
Chapter 4. Alerts usually occur in burst. There are even days with more than
3000 alerts. On the average there are 11 alert every hour. The weekly alert
load is on average 1967 alerts per week.

Naxpot is composed of 204977 alerts corresponding to almost 35 weeks of contin-
uous observation. InNaxpot data-set,WEB-MISC http directory traversal,
MS-SQL Worm propagation attempt, andSCAN SOCKS Proxy attempt
were the most frequent alerts with a 47%, 12%, and 12% of all of the occur-
rences respectively. On the average there are more than 35 alerts every hour. A
number of days the alert load is even over 2000 alerts a day what implies almost
90 alerts per hour. InNaxpot we observed 331 unique alerts. The weekly alert
load is on average 5856 alerts per week.

Huckleberry is composed of 219886 alerts occurring in around 16 weeks. On
average we observed 82 alerts per hour. There are three days where the number
alerts is above 25000 alerts in part due to a misconfigured DSL router that
caused a total of 166534MISC UPNP malformed advertisement alerts.
That is, the 75.8% of all alert load. InHuckleberry data-set, 203 unique alerts
were identified. The weekly alert load is on average 13742 alerts per week.

We observed in our data-sets that alert load is dominated by alerts corresponding to
automated attacks (worms, script kiddies7, etc) and the presence of truly sophisticated
multi-stage attacks is rare. This observation is in good agreement with other studies
[OMS03]. Another source of alerts corresponded to miscofigured network elements.

6We use two simple honeypots in two different home networks and a IDS running on a real software
company.
7According to The Jargon Dictionary: "The lowest form ofcracker; script kiddies do mischief with scripts
and programs written by others, often without understanding theexploit".

EXPERIMENTAL RESULTS 167

For example, inHuckleberry data-set a cable modem that was incorrectly configured
caused multiples bursts of alerts. This kind of errors increased significantly the alert
rate.

The distribution of alert sorts is highly skewed. The bottom half of alerts produce
. 1% of the overall alert load while a small number (5-10) of top alerts is responsible
for 80% or more of the total load. That is, a few alerts occur very often while many
others occur rarely. These observations allow one to induce that alert load (alert
popularity) follows a Zipfian distribution8. That is to say, the frequency of occurrence
of alerts (P) as function of their rank (r), determined by their frequency of occurrence,
is a power-law functionPr ' 1

rz wherez is close to unity9. Figure A.11 shows the
plots that we used to check whether our data-sets are driven by Zipfian distributions.
It is remarkable that the graph corresponding toNaxpot data-set is the closest to a
straight line when plotted using logarithmic axes. Notice that precisely this data-set
was compiled over a longer period of time than the others two (i.e., 36 weeks vs 16
weeks). We have used a scatter plot to see how multiple occurrences of alerts spread
over time. As shown in Figures A.7, A.8, and A.9, the prevalance of some alerts
creates a band of points that follow a horizontal pattern. For example, the top band
in Figures A.8 and A.9 corresponds toMS-SQL Worm propagation attempt alerts
whoseSnort signature identifier (sid) is 2003. A band of data points that follow a
vertical pattern indicates the presence of multiple attacks the same day surely caused
by automated tools or network scanners suchNessus or Satan. Figure A.10 shows
a scatter plot for all three data-sets where we can see the presence of certain alerts
extends over data-sets whereas other alerts appear uniquely in one of them.

Each alert provided the following information:id, time, triggered-signature,
sensor, ip-source-addr, ip-dest-addr, ip-ver, ip-hdr-len, ip-tos, ip-length, ip-id,
ip-flags, ip-offset, ip-ttl, ip-chksum, fqdn-source-name, fqdn-dest-name, pro-
tocol, andpayload. See Figure 3.10 for a specific example of an alert. In Chapter 7
we will see further details on how this information is abstracted prior to be processed
by Ceaseless CBR.

6.3.2 Experimental Setting

Assessing the danger of the events that caused each alert requires to know the spe-
cific network environment where the alert was triggered (remember the relative-
environment dependency problem that we pointed out in Section 1.2.2). In order to
use the same alert load with different network models to which they were captured our
experimental framework allows us to simulate which network elements are vulnerable
or exposed. A parameter calledoverall exposuredetermines the simulated percentage
of vulnerabilities on the network under supervision. We have tested our techniques
with different levels of exposure obtaining the same level of performance. All the

8linkage.rockefeller.edu/wli/zipf/
9A number of recent studies have shown that popularity in different Internet domains tends to be driven
by Zipfian (aka Rank-Size) distributions [BCF99].

168 PERFORMANCE EVALUATION

data-set p tpf fpf recall precision prevalence
Rustoord 0 1.0000 1.0000 1.0000 0.1046 0.1046
Rustoord 1 0.9997 0.3326 0.9997 0.2598 0.1046
Rustoord 2 0.0000 0.1986 0.0000 0.0000 0.1046
Rustoord 3 0.0000 0.1123 0.0000 0.0000 0.1046
Rustoord 4 0.0000 0.1123 0.0000 0.0000 0.1046
Rustoord 5 0.0000 0.0000 0.0000 N/A 0.1046
Naxpot 0 1.0000 1.0000 1.0000 0.1995 0.1995
Naxpot 1 0.9929 0.9982 0.9929 0.1987 0.1995
Naxpot 2 0.0464 0.1589 0.0464 0.0679 0.1995
Naxpot 3 0.0297 0.0174 0.0297 0.2987 0.1995
Naxpot 4 0.0297 0.0174 0.0297 0.2987 0.1995
Naxpot 5 0.0000 0.0000 0.0000 N/A 0.1995
Huckleberry 0 1.0000 1.0000 1.0000 0.0899 0.0899
Huckleberry 1 0.9945 0.9890 0.9945 0.0903 0.0899
Huckleberry 2 0.0192 0.1467 0.0192 0.0127 0.0899
Huckleberry 3 0.0002 0.1465 0.0002 0.0001 0.0899
Huckleberry 4 0.0002 0.1465 0.0002 0.0001 0.0899
Huckleberry 5 0.0000 0.0000 0.0000 N/A 0.0899

Table 6.4 Performance results for a simple baseline algorithm.data-set= data-set name;
wm = window model;ws = window size;p = priority threshold;tpf = true positive fraction;
fpf = false positive fraction.

experiment described below were carried out using a simulated overall exposure of
0.2. That is, approximately 2 out of 10 alerts are dangerous and imply a risk for the
system under supervision. We used a function calledfeedback that mimics a SSO
providing feedback on the risk entailed by new discovered cases. This allowed us to
run the experiments without human intervention at all. In a real world deployment of
our approach, as we noticed in Chapter 5, the underlying network model and the ac-
tual vulnerabilities can also be automatically compiled using network scanners such
asNessus reducing significantly human intervention10. The alert loss ratioL for
each and every alert was set up at 0.001 (see Section 5.1.1.1). That is, we estimated
the probability of our IDS sensors missing an alert at about 1 in 1000.

6.3.3 Baseline

We used the default priority assigned bySnort to create a simple baseline algorithm
with which to compare Ceaseless CBR performance. This simple baseline algorithm
uses a threshold ranging from 0 to 5 to prioritize alerts and notify them accordingly.
For example, when it is set up to 3, only alerts with aSnort priority higher than 3
are considered dangerous and notified to the SSO. Given a specific exposure level we
simulated a number of vulnerabilities for each of the scenarios where we captured
our alerts. Then we used the original alert load of each scenario and run our baseline
algorithm obtaining the results described in Tables 6.4 and 6.5. Let us now show with
these tables a clear example our previous arguments against the accuracy. Notice first
the low prevalence 0.1046, 0.1995, and 0.0899 in all the data-sets (i.e., false negatives

10Without these tools the ability to analyze the level of risk entailed by each alert remains one of the most
pressing challenges to SSOs.

EXPERIMENTAL RESULTS 169

data-set priority accuracy e-distance f-measure g-mean t-area
Rustoord 0 0.1046 0.2929 0.1893 0.0000 0.5000
Rustoord 1 0.7022 0.7648 0.4124 0.8168 0.8336
Rustoord 2 0.7176 0.2791 N/A 0.0000 0.4007
Rustoord 3 0.7948 0.2884 N/A 0.0000 0.4438
Rustoord 4 0.7948 0.2884 N/A 0.0000 0.4438
Rustoord 5 0.8954 0.2929 N/A 0.0000 0.5000
Naxpot 0 0.1996 0.2929 0.3327 0.0060 0.5000
Naxpot 1 0.1996 0.2942 0.3311 0.0428 0.4974
Naxpot 2 0.6826 0.3164 0.0551 0.1976 0.4438
Naxpot 3 0.7925 0.3138 0.0540 0.1707 0.5062
Naxpot 4 0.7925 0.3138 0.0540 0.1707 0.5062
Naxpot 5 0.8005 0.2929 N/A 0.0000 0.5000
Huckleberry 0 0.0899 0.2929 0.1649 0.0000 0.5000
Huckleberry 1 0.0994 0.3007 0.1656 0.1047 0.5028
Huckleberry 2 0.7783 0.2987 0.0153 0.1279 0.4362
Huckleberry 3 0.7768 0.2854 0.0001 0.0114 0.4268
Huckleberry 4 0.7768 0.2854 0.0001 0.0114 0.4268
Huckleberry 5 0.9101 0.2929 N/A 0.0000 0.5000

Table 6.5 Performance measures for a simple baseline algorithm.data-set= data-set name;
wm = window model;ws = window size;θ = evidence threshold;

abound). As it can be seen in Table 6.5, when the priority is set to 5 the accuracy
of our baseline algorithm in the three data-sets is respectively 0.8954, 0.8005, and
0.9101. This could be considered as good performance in spite of obtaining 0 true
positives and 0 true negatives. Notice, however, that t-area is 0.5 for all of them since
that algorithm has no discriminating power at all. Clearly, that the best performers
in Naxpot andHuckleberry hardly behaved better than chance. The highest t-areas
in both data-sets are 0.5602 and 0.5028 respectively. According to t-area the best
perfomance inRustoord data-set as well as inHuckleberry was achieved when the
priority threshold was set up to 1. InNaxpot data-set it was achieved when either the
priority threshold was set up to 4 or 5. Concluding, this algorithm did unsurprisingly
poorly as shown in both Tables. Unfortunately, this approach coincides with the way
a high number of real world IDSes operate. Notice that our simple baseline algorithm
was only intended to provide a standard comparison of Ceaseless CBR with those
IDSes.

6.3.4 Evaluation

We evaluated the overall goodness of our approach analyzing five groups of perfor-
mance characteristics:

1. First of all, we evaluated the performance of our techniques using the frame-
work introduced throughout this Chapter. For each trial, we provide its true
positive fraction (tpf), false positive fraction (fpf), recall, precision, preva-
lence, accuracyas well as the value given by other performance measures such
ase-distance, f-measure, g-mean, andt-area. For a number of trials we also
provide their ROC curves that we constructed varying the minimum evidence
threshold (θ) along several values.

170 PERFORMANCE EVALUATION

2. Secondly, we evaluated the capability of discovering new sequential cases in
terms of the number of cases found, the number of alerts in each case, the
number of different episodes of each case, and the number of occurrences of
each case. An important parameter to consider here is the number of questions
formulated. That is, either the number of human interventions required to
properly assess the priority of new sequential cases or the number of queries
sent to the model of the network under surveillance created by network scanners
such asNessus.

3. Thirdly, we also measured the CPU time required by each Ceaseless process.
Notice that we have grouped together the time taken by Ceaseless Revise and
Ceaseless Retain for two reasons: (i) sometimes the time taken by each individ-
ual process is too small to be meaningful; and (ii) both processes run interlaced
what makes difficult to separate their elapsed execution time.

4. Fourthly, we measured for each trial itspredictivenessor preemptive ratio.
That is, the capability of predicting future alerts. The preemptive ratio is
defined as the number of alerts whose occurrence was predicted in advance
and really occurred afterwards over the the number of alerts whose occurrence
was predicted but never occurred. We considered correct predictions those that
took place between the following window and a maximum period of time that
we fixed at 86400 seconds for all experiments.

5. Finally, we measured the alert load reduction that our techniques were able to
achieve in the weekly alert load of each data-set.

6.3.5 Experiments

We measured the performance of our techniques with varying window models, win-
dow sizes, and minimum evidence thresholds trying to determine the influence caused
in the aforementioned distinct performance characteristics. As a matter of fact, each
individual trial is identified by the following four parameters: data-set name (data-
set), window model (wm), window size (ws), and minimum evidence threshold (θ).

We have carried out two blocks of experiments:

CCBR In this first block we did not consider urgency at all. That is, Ceaseless
CBR was configured to explain all alerts in the current window right away. We
denoted by CCBR this first block of experiments.

UCCBR In the second block, denoted by UCCBR, we analyzed the influence of
urgency. That is, at each iteration Ceaseless Reuse decides on which alert to
prioritize and which alert should wait to be prioritized in further iterations.

This separation allowed us in addition to measure how the fact of prioritizing right
now versus to do it only when is urgent affects Ceaseless CBR performance. In all
experiments reported below, the sequential case base is constructed from scratch.
That is, we initiated each trial with no sequential cases. Remember that one of

EXPERIMENTAL RESULTS 171

data-set wm ws θ tpf fpf recall precision prevalence
Rustoord 0 100 0.1 1.0000 0.1452 1.0000 0.4458 0.1046
Rustoord 0 100 0.3 1.0000 0.1448 1.0000 0.4464 0.1046
Rustoord 0 100 0.5 0.9994 0.1442 0.9994 0.4473 0.1046
Rustoord 0 100 0.7 1.0000 0.1445 1.0000 0.4470 0.1046
Rustoord 0 100 0.9 1.0000 0.1443 1.0000 0.4473 0.1046
Rustoord 0 100 1 1.0000 0.1483 1.0000 0.4405 0.1046
Rustoord 0 50 0.5 0.9994 0.1355 0.9994 0.4627 0.1046
Rustoord 0 25 0.5 0.9982 0.1215 0.9982 0.4896 0.1046
Rustoord 0 10 0.5 0.9994 0.0945 0.9994 0.5525 0.1046
Rustoord 0 5 0.5 1.0000 0.0870 1.0000 0.5729 0.1046
Rustoord 0 1 0.5 1.0000 0.0000 1.0000 1.0000 0.1046
Rustoord 1 3600 0.5 1.0000 0.1430 1.0000 0.4496 0.1046
Rustoord 1 86400 0.5 1.0000 0.1486 1.0000 0.4400 0.1046
Naxpot 0 10 0.5 0.9967 0.0408 0.9967 0.8588 0.1995
Naxpot 1 3600 0.5 0.9968 0.0597 0.9968 0.8063 0.1995
Huckleberry 0 10 0.1 1.0000 0.0065 1.0000 0.9387 0.0899
Huckleberry 0 10 0.3 1.0000 0.0056 1.0000 0.9463 0.0899
Huckleberry 0 10 0.5 1.0000 0.0060 1.0000 0.9424 0.0899
Huckleberry 0 10 0.7 1.0000 0.0058 1.0000 0.9448 0.0899
Huckleberry 0 10 0.9 1.0000 0.0055 1.0000 0.9470 0.0899
Huckleberry 0 10 1 1.0000 0.0091 1.0000 0.9155 0.0899
Huckleberry 1 3600 0.5 0.9996 0.0371 0.9996 0.7269 0.0899

Table 6.6 Experimental results for CCBR.data-set= data-set name;wm = window model;
ws = window size;θ = evidence threshold;tpf = true positive fraction;fpf = false positive
fraction.

the dimensions through we evaluated Ceaseless CBR is its ability to discover new
sequential cases. A logical next step, which we have left for future work, is to measure
the impact on performance when the sequential case base is initialized with a number
of previously hand-crafted sequential cases. Another future step is to share sequential
cases among different data-sets. Said differently, what would be the impact of using
sequential cases learnt through the analysis of a data-set within the analysis of other
data-set? This would be part of our preliminary work to extend our approach to a
multi-agent setting such as we will see in the next Chapter. The set of constraints
employed to discover new sequential cases were{ip-source-addr,ip-dest-addr} in
all experiments below.

6.3.6 CCBR

We initially carried out a first set of experiments where all alerts in the current window
are explained (i.e., in each iteration the number of alerts to explain is the number of
alerts in the current window). To analyze the influence of the minimum evidence
threshold (θ) used by Ceaseless Retrieve we fixed the window model and size. We
run Ceaseless CBR inRustoord and Huckleberry data-sets fixing a space-based
window of size 100 and 10 respectively and varyingθ from 0.1 to 1. Likewise, to
analyze the influence of the window size we run Ceaseless CBR inRustoord data-set
fixing θ to 0.5 and varying the window size from 100 to 1. Additionally, we carried
out other trials with time-based windows and distinct sizes.

172 PERFORMANCE EVALUATION

data-set wm ws θ accuracy e-distance f-measure g-mean t-area
Rustoord 0 100 0.1 0.8700 0.8973 0.6167 0.9246 0.9274
Rustoord 0 100 0.3 0.8703 0.8976 0.6172 0.9248 0.9276
Rustoord 0 100 0.5 0.8708 0.8980 0.6180 0.9248 0.9276
Rustoord 0 100 0.7 0.8706 0.8978 0.6178 0.9249 0.9278
Rustoord 0 100 0.9 0.8708 0.8980 0.6182 0.9251 0.9279
Rustoord 0 100 1 0.8672 0.8951 0.6116 0.9229 0.9258
Rustoord 0 50 0.5 0.8786 0.9042 0.6325 0.9295 0.9319
Rustoord 0 25 0.5 0.8910 0.9141 0.6570 0.9364 0.9383
Rustoord 0 10 0.5 0.9153 0.9332 0.7116 0.9513 0.9524
Rustoord 0 5 0.5 0.9221 0.9384 0.7285 0.9555 0.9565
Rustoord 0 1 0.5 1.0000 1.0000 1.0000 1.0000 1.0000
Rustoord 1 3600 0.5 0.8720 0.8989 0.6203 0.9258 0.9285
Rustoord 1 86400 0.5 0.8669 0.8949 0.6111 0.9227 0.9257
Naxpot 0 10 0.5 0.9667 0.9710 0.9227 0.9778 0.9780
Naxpot 1 3600 0.5 0.9516 0.9577 0.8915 0.9682 0.9686
Huckleberry 0 10 0.1 0.9941 0.9954 0.9684 0.9968 0.9968
Huckleberry 0 10 0.3 0.9949 0.9960 0.9724 0.9972 0.9972
Huckleberry 0 10 0.5 0.9945 0.9957 0.9703 0.9970 0.9970
Huckleberry 0 10 0.7 0.9947 0.9959 0.9716 0.9971 0.9971
Huckleberry 0 10 0.9 0.9950 0.9961 0.9728 0.9972 0.9972
Huckleberry 0 10 1 0.9917 0.9936 0.9559 0.9954 0.9954
Huckleberry 1 3600 0.5 0.9662 0.9738 0.8417 0.9811 0.9813

Table 6.7 Performance measures for CCBR.data-set= data-set name;wm = window model;
ws = window size;θ = evidence threshold

Performance Analysis

Tables 6.6 and 6.7 summarize the performance results of the first block of exper-
iments. From these data we can see, for example, that inRustoord data-set when
Ceaseless CBR is configured to use a time-based window model of size 86400 seconds
andθ = 0.5 has an improvement of 18.98% in precision, for an overall improvement
in accuracy of 16.47% w.r.t. our simple baseline algorithm using priority = 1. Said
differently, even the worst Ceaseless CBR configuration (according to t-area) out-
performs the best configuration (according to t-area) of our baseline algorithm (see
Tables 6.4 and 6.5): a t-area of 0.9257 and 0.8336 respectively. The improvement in
the other two data-sets is much more superior.

Let us forget the trial that used an alert-driven model (wm=0 andws=1) by now.
We will talk about it later on in this Section. Therefore, without considering the
alert-driven model and according to t-area, the best performer in theRustoord data-
set was the configuration using a space-based window of size 5 andθ = 0.5 with a
t-area of 0.9565. The rest of performance measures accuracy, e-distance, f-measure,
and g-mean also signaled that configuration as the best. Thus, in an ideal alert triage
environment we can conclude that this configuration was the winner (outperformed
the rest).

Let us now consider what happens when we confront an imprecise environment
where misdetection costs are unknown a priori. Figure 6.8 shows the ROC curves and
ROC points for the several alert triage configurations that we tested inRustoord data-
set. We can easily distinguish the higher ROC AUC of the curve corresponding to the
configuration using a space-based window of size 100 (green solid line) compared
against the ROC curve of our baseline algorithm (blue dashed line). We proceeded

EXPERIMENTAL RESULTS 173

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=100
wm=0; ws=50
wm=0; ws=25
wm=0; ws=10
wm=0; ws=5
wm=1; ws=3600
wm=1; ws=86400

Fig. 6.8 ROC curves and points for several Ceaseless CBR configurations inRustoord
data-set.

as explained in Section 6.2.3 and computed the convex hull of the set of ROC curves
and points symbolizing a composite alert triage system. Figure 6.9 depicts the points
that conform the Convex Hull (using black circles). Aside the points (0,0) and (1,1)
the point (0.087, 1.0000) is the only one in the convex hull. Therefore, among all
configurations tested, this configuration is optimal under all possible cost conditions
in Rustoord data-set. Notice that this point corresponded to the one signaled by
t-area as the best performer (i.e.,wm=0; ws=5; θ = 0.5). Thus, we can conclude that
small windows perform better than larger ones.

In Naxpot data-set we used two different configurations: a space-based window
of size 10 and a time-based window of size 3600. In both cases we used a minimum
evidence thresholdθ of 0.5. According to t-area, the best performer inNaxpot data-
set was the configuration that used a space-based window of size 10, a t-area of 0.9780
against a t-area of 0.9686. However, we will see below how this is not always true
since, depending on the specific cost conditions, the time-based configuration could
be better. Figure 6.10 shows the ROC curves and ROC points for the configurations
that we tested inNaxpot data-set. Figure 6.11 shows the points (black circles) that
conform the convex hull forNaxpot data-set. In this case, both configurations are
maximal. Thus, we need to compute the set of iso-performance lines corresponding
to all possible cost distributions before we can determine which configuration is the
winner. Using Equation 6.16, we can say that both alert triage systems will have
the same expected cost when the slope of the iso-performance line is0.0053 =

174 PERFORMANCE EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=100
wm=0; ws=50
wm=0; ws=25
wm=0; ws=10
wm=0; ws=5
wm=1; ws=3600
wm=1; ws=86400
convex hull

Fig. 6.9 Convex hull forRustoord data-set.

(0.9967−0.9968)
0.0408−0.0597 . Approximately, if we would use an error type weighting of 1:200

(i.e., a cost of 1 for each false positive and a cost of 200 for each false negative) then
both alert triage configurations would achieve the same performance. Figure 6.12
depicts two iso-performance lines in the former ROC space. The first (magenta solid)
line corresponds to an error type weighting of 1:2 and the second (red dashed-dot)
line corresponds to an error type weighting of 1:500. Using the first iso-performance
line (slope = 0.5) the optimal configuration corresponds to the system that used a
space-based window model whereas using the second iso-performance line (slope =
0.002) the optimal configuration corresponds to the system that used a time-based
window model. Thus, depending on the concrete cost characteristics of the systems
under surveillance a specific configuration is best suited than another.

According to t-area, the best performers inHuckleberry data-set are the config-
urations that used a space-window model of size 10 andθ equal either to0.3 or 0.9.
Both configurations are tied at 0.9972 t-area. Figure 6.13 shows the ROC curves and
ROC points for the configurations that we tested inHuckleberry data-set. Figure
6.14 additionally shows the convex hull where the configuration that used aθ = 0.9
is the only one present and therefore the optimal under all possible cost conditions.

Let us now draw some conclusions about Ceaseless CBR. Generally speaking, we
can say that the performance of Ceaseless CBR increases withθ and decreases with
the size (number of alerts) of the window model. Therefore, configurations that use
small windows (either in time or space) and a high evidence threshold are highly

EXPERIMENTAL RESULTS 175

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=10
wm=1; ws=3600

Fig. 6.10 ROC curves and points for several Ceaseless CBR configurations inNaxpot data-
set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=100
wm=1; ws=3600
convex hull

Fig. 6.11 Convex hull forNaxpot data-set.

176 PERFORMANCE EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=100
wm=1; ws=3600
convex hull
iso−performance 1:2
iso−performance 1:500

Fig. 6.12 Iso-performance lines forNaxpot data-set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=10
wm=1; ws=3600

Fig. 6.13 ROC curves and points for several Ceaseless CBR configurations inHuckleberry
data-set.

EXPERIMENTAL RESULTS 177

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

baseline
wm=0; ws=100
wm=1; ws=3600
convex hull

Fig. 6.14 Convex hull forHuckleberry data-set.

recommendable to increase the performance of Ceaseless CBR (i.e., to reduce both
the number of false negatives and false positives).

Remember that Ceaseless Retrieve generates a case activation with its correspond-
ing abstract case for each previously unknown alert (i.e., alerts whose domain is
empty). Moreover, Ceaseless Retrieve fuses together case activations compounding
in turn new large abstract cases together. When these new cases are integrated into
an overall explanation presented to the user and accepted by her, then they are stored
as as sequential master case. This process, performed by Ceaseless Retain is called
sequential case discovery (see Section 5.6).

Let’s now see some insights about the sequential cases discovered by Ceaseless
CBR.

Sequential Case Discovery

Let us first show three examples of sequential cases that were found in each one of
our data-sets:

• In Rustoord, we found a sequential case (that was assigned id 34507) that oc-
curred 27 times. This sequential case was derived from a previous sequential
case (with id 152) and was composed of 3 alerts,{882, 895, 1213} ([WEB-
MISC backup access WEB-CGI calendar access WEB-CGI redirect ac-
cess]), that appeared in two different episodes: [1213 882 895] and [882 1213

178 PERFORMANCE EVALUATION

895]. This sequential case was represented by an actionable tree with a parallel
node for alerts 1213 and 882 and a serial node for the former node and alert
895.

• In Naxpot, we found a sequential case that occurred 84 times (whose assigned
id was 10669). It was derived from a previous sequential case (with id 1763)
and contained three alerts,{982 1002 1288}, that appeared in only one episode:
[1002 1288 982] ([WEB-IIS cmd.exe access WEB-FRONTPAGE / vti bin/
access WEB-IIS unicode directory traversal attempt]). This sequential
case was represented by a serial actionable tree.

• In Huckleberry, we found a sequential case made up of 3 alerts,{[1002 1256
1288}, that occurred exactly in the same order (i.e., only in 1 episode) 89 times:
[WEB-IIS cmd.exe access WEB-IIS CodeRed v2 root.exe access WEB-
FRONTPAGE / vti bin/ access]. This sequential case (with id 10538) was
derived from a previous sequential case (with id 1323) and was represented by
a serial actionable tree.

Table 6.8 shows some statistics on sequential cases discovered by Ceaseless CBR
in our data-sets. In addition to the configuration parameter of each trial. We can
see, in this order, the total number of sequential cases discovered, the number of
sequential cases that represented burst situations, the median number of alerts per
sequential case, the median number of episodes per sequential case, and the median
number of occurrences per case. Some other relevant results such as the number of
sequential cases that were adapted from previous ones, and the number of queries
(either to the user or to an automatic feedback process) needed appear in Table 6.9.
Next, we analyze these data in further detail.

Number of sequential casesThe number of sequential cases found ranged from
90 to 195 inRustoord, from 255 to 273 inNaxpot, and from 118 to 160 in
Huckleberry. The number of sequential cases seems to be governed by both the
size of the window (ws) and the minimum evidence threshold (θ). As long as we
fix the window size, the number of sequential cases decreases with the increment
of θ. On the contrary, if we fixθ, the number of sequential cases increases with
the decrement of the size of the window. Figure 6.15(a) shows the cumulative
number of sequential cases inRustoord data-set using Ceaseless CBR with
a space-based window of size of 100 alerts andθ = 0.9. Likewise, Figures
6.15(b) and 6.15(c) depict respectively the cumulative number of sequential
cases found inNaxpot andHuckleberry data-sets using Ceaseless CBR with
a space-based window of size 10 alerts andθ = 0.5 andθ = 0.9 respectively. In
the three trials we can observe that the cumulative number of sequential cases
grows rapidly at the beginning of the experiment and then more gradually.
Approximately, in the first quarter of the experiment Ceaseless CBR discovers
the 75% of the sequential cases. From this observation, we can say that an
important part of the alert load corresponds to situations that occur again and
again as we already anticipated when we depicted the scatter plots of Appendix
A.

EXPERIMENTAL RESULTS 179

data-set wm ws θ Cases Bursts Alerts Episodes Occ.
Rustoord 0 100 0.1 182 5 2.00 1.00 7.00
Rustoord 0 100 0.3 177 5 2.00 1.00 7.00
Rustoord 0 100 0.5 173 5 2.00 1.00 7.00
Rustoord 0 100 0.7 173 5 2.00 1.00 7.00
Rustoord 0 100 0.9 176 5 2.00 1.00 6.50
Rustoord 0 100 1 159 5 1.00 1.00 6.00
Rustoord 0 50 0.5 175 6 2.00 1.00 8.00
Rustoord 0 25 0.5 186 10 2.00 1.00 8.00
Rustoord 0 10 0.5 193 23 1.00 1.00 9.00
Rustoord 0 5 0.5 195 35 1.00 1.00 9.00
Rustoord 0 1 0.5 90 0 1.00 1.00 17.00
Rustoord 1 3600 0.5 189 26 1.00 1.00 7.00
Rustoord 1 86400 0.5 165 5 2.00 1.00 7.00
Naxpot 0 10 0.5 373 26 3.00 1.00 2.00
Naxpot 1 3600 0.5 255 26 2.00 1.00 3.00
Huckleberry 0 10 0.1 143 10 2.00 1.00 4.00
Huckleberry 0 10 0.3 143 10 2.00 1.00 3.00
Huckleberry 0 10 0.5 146 10 2.00 1.00 3.00
Huckleberry 0 10 0.7 150 10 2.00 1.00 4.00
Huckleberry 0 10 0.9 160 10 2.00 1.00 4.00
Huckleberry 0 10 1 148 10 2.00 1.00 3.00
Huckleberry 1 3600 0.5 118 18 1.00 1.00 3.00

Table 6.8 Sequential cases statistics for CCBR.data-set= data-set name;wm = window
model; ws = window size;θ = evidence threshold;Cases= total sequential cases found;
Bursts= Burst situations;Alerts = median of alerts per case;Episodes= median of episodes
per case;Occ. = median of occurrences per case.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180
Sequential Cases

Windows

C
as

es

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

300

350

400
Sequential Cases

Windows

C
as

es

0 0.5 1 1.5 2 2.5

x 10
4

0

20

40

60

80

100

120

140

160
Sequential Cases

Windows

C
as

es

(a) (b) (c)

Fig. 6.15 Cumulative number of sequential cases found. (a) InRustoord data-set using
Ceaseless CBR with a space-based window of size 100 alerts andθ = 0.9. (b) In Naxpot
data-set using Ceaseless CBR with a space-based window size of 10 alerts andθ = 0.5. In
Huckleberry data-set using Ceaseless CBR with a space-based window of size 10 alerts and
θ = 0.9.

Burst situations The number of cases discovered corresponding to burst situations11

depends exclusively on the the window model and window size as shown in

11Notice that the number of sequential cases that represent burst situations does not represent the number
of burst occurrences but the number of distinct burst situations. For example, inRustoord data-set using
a space-based window of size 10 alerts andθ = 0.5 there were 23 cases that represented burst situations.
One of these cases corresponding to alertWEB-IIS cmd.exe access (sid = 1002) occurred altogether
377 times.

180 PERFORMANCE EVALUATION

Table 6.8. When the window model and size were fixed the number of burst
situations found did not vary. It is easy to understand that the smaller the
window size, the bigger the number of distinct burst situations detected. Notice
that when the size is 1 (alert-driven model) the number of burst situations
detected is 0.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90
Number of alerts in Sequential Cases

Alerts

C
as

es

0 5 10 15
0

20

40

60

80

100

120

140

160

180
Number of alerts in Sequential Cases

Alerts

C
as

es
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70
Number of alerts in Sequential Cases

Alerts

C
as

es

(a) (b) (c)

Fig. 6.16 Number of cases per number of alerts. (a) InRustoord data-set using Ceaseless
CBR with a space-based window of size 100 alerts andθ = 0.9. In Naxpot data-set using
Ceaseless CBR with a space-based window of size 10 alerts andθ = 0.5. (c) In Huckleberry
data-set using Ceaseless CBR with a space-based window of size 10 alerts andθ = 0.9.

Alerts per sequential caseAs shown by Table 6.8 the median of alerts per case
varied between 1 and 2 in bothRustoord andHuckleberry data-sets whereas
in Naxpot varied between 2 and 3. Apparently, the number of alerts per case
decreases with the window size and does not vary withθ. Figure 6.16(a) shows
the number of alerts per case inRustoord data-set using Ceaseless CBR with
a space-based window size of 100 alerts andθ = 0.9. More than 80 cases were
composed of only one alert. An important number of cases, more than 40, were
composed of 2 alerts. Almost 10 cases were composed of 5 alerts, and there
even cases with 6 and 7 alerts. The same graphic is depicted forNaxpot and
andHuckleberry datasest using Ceaseless CBR with a space-based window
size of 10 alerts andθ = 0.5 andθ = 0.9 respectively by Figures 6.16(b) and
Figures 6.16(c). Notice that there are sequential cases that were made up of
up to 10 or more alerts. We have also depicted the number of alerts for each
concrete sequential case. Figure 6.17(a) represents the number of alerts in each
of the 176 cases inRustoord data-set. Figure 6.17(b) and 6.17(c) do the same
for the respective 373 and 160 sequential cases inNaxpot andHuckleberry.

Episodes per sequential caseAnother important aspect to consider is the number of
episodes in each sequential case. This number is entirely related to the under-
lying actionable tree that will subsequently be used to represent the sequential
case. A sequential case with only an episode is a serial actionable tree. The
distinct episodes will determine which nodes in the representation will be serial
and which ones parallel as we saw in the above examples. At first sight, it seems
that the number of episodes found does not vary with the window model nor

EXPERIMENTAL RESULTS 181

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180
Case alerts

Alerts

C
as

e

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400
Case alerts

Alerts

C
as

e

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180
Case alerts

Alerts

C
as

e

(a) (b) (c)

Fig. 6.17 Alerts in Cases. (a) InRustoord data-set using Ceaseless CBR with a space-based
window of size of 100 alerts andθ = 0.9. (b) In Naxpot data-set using Ceaseless CBR with
a space-based window of size of 10 alerts andθ = 0.5. (c) In Huckleberry data-set using
Ceaseless CBR with a space-based window of size of 10 alerts andθ = 0.9.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180
Case episodes

Episodes

C
as

e

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400
Case episodes

Episodes

C
as

e

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

140

160

180
Case episodes

Episodes

C
as

e

(a) (b) (c)

Fig. 6.18 Episodes in Cases. (a) InRustoord data-set using Ceaseless CBR with a space-
based window of size 100 alerts andθ = 0.9. In Naxpot data-set using Ceaseless CBR with a
space-based window of size 10 alerts andθ = 0.5. In Huckleberry data-set using Ceaseless
CBR with a space-based window of size 10 alerts andθ = 0.9.

with θ. Figure 6.18(a) shows the number of episodes for each of the 176 cases
discovered inRustoord data-set. At least 8 sequential cases surpass the four
episodes per sequential case. Figure 6.18(b) shows the number of episodes for
each of the 373 cases inNaxpot data-set, and Figure 6.18(c) shows the number
of episodes for each of the 160 sequential cases discovered inHuckleberry
data-set.

Occurrences per sequential caseNow, let us analyze the number of occurrences
of each one the sequential cases found. That is, the number of times that the
sequential case was used to prioritize the corresponding alerts. At a glance, it
seems that the smaller the window size the higher the number of occurrences
found and that the higher the value ofθ the lower the number of occurrences
per case detected. In Figure 6.19(a) we can see the number of occurrences

182 PERFORMANCE EVALUATION

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

120

140

160

180
Case ccurrences

Occurrences

C
as

e

0 1 2 3 4 5 6

x 10
4

0

50

100

150

200

250

300

350

400
Case ccurrences

Occurrences

C
as

e

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

80

100

120

140

160

180
Case ccurrences

Occurrences

C
as

e

(a) (b) (c)

Fig. 6.19 Occurrences of cases. (a) InRustoord data-set using Ceaseless CBR with a space-
based window of size 100 alerts andθ = 0.9. (b) In Naxpot data-set using Ceaseless CBR
with a space-based window of size 10 alerts andθ = 0.5. (c) in Huckleberry data-set using
Ceaseless CBR with a space-based window of size 10 alerts andθ = 0.9.

of each of the 176 cases inRustoord. We can see, for example, that five
sequential cases occurred more than a thousand times. Figures 6.19(b) and
6.19(c) data the same data forNaxpot andHuckleberry data-sets using the
same configurations as above.

Adaptations The last but one column in Table 6.10 (A) shows the number of new
sequential cases that were created adapting previous encountered sequential
cases either generalizing using the hierarchy of sorts or extending the length
of previous sequential cases because new alerts were found to meet the con-
straints expressed by the sequential case. For example, inRustoord data-set
the number of adapted sequential cases varied between 107 and 122. The per-
centage of adapted sequential cases over the total of sequential cases found
(see Table 6.8) varied between 0 when Ceaseless CBR was configured using an
alert-driven model and a 68.55% when Ceaseless CBR was configured using a
space-based of size 100 alerts andθ = 1. In Naxpot, the number of sequential
cases adapted ranged from 87 to 167 and the percentage of adapted sequential
cases ranged from a 34.12% (using a time-based window) to a 44.77% (using a
space-based window). InHuckleberry, the number of sequential cases varied
between 52 and 80 and the corresponding percentages between a 44.07% (us-
ing a time-based window of 3600 seconds andθ = 0.5) and a 50.68% (using
a space-based window of 100 alerts andθ = 0.5). It is difficult to extrapolate
from the data observed whether the number of adaptations depends either on
the window model orθ. An important point here, which we have left for fu-
ture work, would be to measure the goodness of the adaptations performed by
Ceaseless CBR, separating between those adaptations that contribute to detect
new attacks that are new variants of known attacks and those adaptations that
are only good for dismissing false positive alerts.

Queries Remember that in our approach feedback can be provided automatically
using a network model that is in turn provided by a network scanner or emulated

EXPERIMENTAL RESULTS 183

as in our experiments. We annotated however the number of user interactions
required in each trial. They appear reflected as the number of questions (Q) in
Table 6.10. It seems that the number of questions decreases when the evidence
threshold increases while it increases when the size of the window decreases. If
the cost by query is high then a large window size and high evidence threshold
are recommendable.

We have seen how the window model, window size, and minimum evidence thresh-
old affect the sequential cases discovered by Ceaseless CBR along several dimensions.
Next, we will analyze the time taken by each Ceaseless CBR process.

Time Analysis

The last three columns in Table 6.9 show the mean time elapsed by each of the
Ceaseless CBR processes. For example, inRustoord data-set the mean elapsed
time per retrieval varied between 0.03 seconds and 5.64 seconds. The highest value
corresponded with a time-based window of 1 day (86400) seconds and the lowest with
an alert-driven model. Likewise, the time elapsed by Ceaseless Reuse and Ceaseless
Revise+Retain ranged respectively from almost 0 and 0.01 seconds when using an
alert-driven model to 9.27 and 2.75 seconds when using a time-based window of size 1
day. InNaxpot the time taken by Ceaseless Retrieve varied between 1.84 seconds and
35.97 seconds when using a time-based window of 3600 seconds. InHuckleberry
the elapsed time for all Ceaseless CBR processes (Retrive, Reuse, Revise+Retain)
were the same for all trials (0.05 seconds, 0.00 seconds, and 0.07) except for when
using a time-based window that the times went up to 5.15, 1.47, and 0.79 seconds
respectively. These variations are due to the limiting factors that we will see below.

The total time taken by each trial is shown in the last column of Table 6.10.
Ranging from 1252 seconds when using an alert-driven model inRustoord (the
smallest) data-set to 247906 seconds when using a time-based window of size 3600
seconds inNaxpot (that has almost 7 times more alerts thanRustoord). These
data clearly show how the total time elapsed depends on the window model chosen.
For example, in the case ofRustoord data-set there is a variation of up to 2437
seconds between an alert-driven model and a fixed time-based window of size 86400
seconds. Both tables show a number of limiting factors in the performance. Table
6.9 shows the number total of windows (#w), the mean of alerts per window (ā), the
mean interval time per window computed considering the inter-arrival time between
the first alert and the last alert in the window (I), and the mean number of cases
per window (̄c). The mean interval time per window gives us a rough idea of the
mean reaction time that we would have if we would want to proceed on-line. Table
6.10 shows additional data such as the total number of sequential cases retrieved (R)
by Ceaseless Retrieve, the total number of hypotheses (H) generated by Ceaseless
Retrieve, the total number of explanations (E) generated by Ceaseless Reuse, the
total number of queries formulated (Q) by Ceaseless Revise, and the total number of
adapted cases (A).

184 PERFORMANCE EVALUATION

data-set wm ws θ #w ā I c̄ Ret Reu Rev
Rustoord 0 100 0.1 315 99.95 30283.63 116.50 3.92 3.37 1.59
Rustoord 0 100 0.3 315 99.95 30283.63 113.70 3.68 3.09 1.54
Rustoord 0 100 0.5 315 99.95 30283.63 113.05 3.65 2.95 1.51
Rustoord 0 100 0.7 315 99.95 30283.63 114.26 3.57 2.93 1.50
Rustoord 0 100 0.9 315 99.95 30283.63 117.37 3.76 2.87 1.49
Rustoord 0 100 1 315 99.95 30283.63 105.24 3.14 2.82 1.43
Rustoord 0 50 0.5 630 49.97 14954.95 117.87 1.86 0.66 0.75
Rustoord 0 25 0.5 1260 24.99 7405.56 122.62 0.90 0.16 0.49
Rustoord 0 10 0.5 3149 10.00 2478.12 125.68 0.33 0.02 0.21
Rustoord 0 5 0.5 6297 5.00 1141.79 125.35 0.15 0.01 0.08
Rustoord 0 1 0.5 31483 1.00 1.00 65.11 0.03 0.00 0.01
Rustoord 1 3600 0.5 1137 27.69 941.53 120.19 1.23 0.67 1.02
Rustoord 1 86400 0.5 209 150.64 32226.89 105.49 5.64 9.27 2.75
Naxpot 0 10 0.5 20498 10.00 919.48 265.32 1.84 0.03 1.42
Naxpot 1 3600 0.5 5353 38.29 2450.69 171.50 35.97 1.07 9.27
Huckleberry 0 10 0.1 21989 10.00 406.85 119.35 0.05 0.00 0.07
Huckleberry 0 10 0.3 21989 10.00 406.85 117.29 0.05 0.00 0.07
Huckleberry 0 10 0.5 21989 10.00 406.85 119.35 0.05 0.00 0.07
Huckleberry 0 10 0.7 21989 10.00 406.85 122.90 0.05 0.00 0.07
Huckleberry 0 10 0.9 21989 10.00 406.85 130.96 0.05 0.00 0.07
Huckleberry 0 10 1 21989 10.00 406.85 121.19 0.05 0.00 0.07
Huckleberry 1 3600 0.5 1989 109.43 709.41 90.33 5.15 1.47 0.79

Table 6.9 Window model characteristics for CCBR.data-set= data-set name;wm = window
model;ws = window size;θ = evidence threshold;#w = number of windows;̄a = mean of
alerts per window;I = mean interval time per window;̄c = mean of cases per window;Ret =
mean elapsed time per retrieval;Reu= mean elapsed time per reuse;Rev= mean elapsed time
per revise & retain

data-set wm ws θ R H E Q A T
Rustoord 0 100 0.1 4109 26053 872 69 113 2797.69
Rustoord 0 100 0.3 2682 24692 562 62 115 2618.24
Rustoord 0 100 0.5 2199 24258 437 61 112 2556.84
Rustoord 0 100 0.7 1881 24040 408 58 115 2519.09
Rustoord 0 100 0.9 1539 23872 356 59 117 2559.03
Rustoord 0 100 1 0 23670 315 50 109 2326.10
Rustoord 0 50 0.5 3347 23194 847 58 117 2058.70
Rustoord 0 25 0.5 5515 22823 1609 64 122 1948.27
Rustoord 0 10 0.5 10244 19863 3868 77 116 1754.30
Rustoord 0 5 0.5 11426 18238 7598 84 111 1460.85
Rustoord 0 1 0.5 31393 31483 31483 90 0 1252.16
Rustoord 1 3600 0.5 4271 24941 1491 78 111 3313.34
Rustoord 1 86400 0.5 1700 25789 287 58 107 3689.05
Naxpot 0 10 0.5 65783 154643 29650 206 167 67395.44
Naxpot 1 3600 0.5 29566 195586 9528 168 87 247906.52
Huckleberry 0 10 0.1 8293 33169 23289 75 68 2627.11
Huckleberry 0 10 0.3 6259 31508 22694 72 71 2588.15
Huckleberry 0 100 0.5 5025 30505 22314 72 74 2629.00
Huckleberry 0 10 0.7 5434 30913 22896 75 75 2651.00
Huckleberry 0 10 0.9 4208 29759 22523 80 80 2650.38
Huckleberry 0 10 1 0 28225 21989 79 69 2594.47
Huckleberry 1 3600 0.5 3293 39914 2299 66 52 14729.29

Table 6.10 Performance characteristics for CCBR.data-set= data-set name;wm = window
model;ws= window size.θ = evidence threshold;R = number of cases retrieved;H = number
of hypotheses generated;E = number of explanations generated;Q = number of questions
formultated;A = number of cases adapted;T = total elapsed time.

EXPERIMENTAL RESULTS 185

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16
Elapsed time

Windows

T
im

e

Ceaseless CBR
Ceaseless Retrieval
Ceaseless Reuse
Ceaseless Revise & Retain

Fig. 6.20 Elapsed time by Ceaseless CBR processes inRustoord data-set using a space-
based window of size 100 alerts andθ = 0.9

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

25
Elapsed time

Windows

T
im

e

Ceaseless CBR
Ceaseless Retrieval
Ceaseless Reuse
Ceaseless Revise & Retain

Fig. 6.21 Elapsed time by Ceaseless CBR processes inNaxpot data-set using a space-based
window of size 10 alerts andθ = 0.5.

A first conclusion that can be drawn form these data is that the total time elapsed
decreases in function of the number of alerts per window and increases in function
of θ. As a matter of fact, an upper bound on the time taken by Ceaseless Retrieve
(Ret) could be computed in terms of the number of sequential cases, the number of
episodes per sequential case, the number of alerts per episode and the number of alerts
per window. Likewise, an upper bound of the time elapsed by Ceaseless Reuse (Reu)
can be established using the number hypotheses generated and the mean number of
alerts to explain (alerts per window in this group of experiments). An upper bound

186 PERFORMANCE EVALUATION

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Elapsed time

Windows

T
im

e

Ceaseless CBR
Ceaseless Retrieval
Ceaseless Reuse
Ceaseless Revise & Retain

Fig. 6.22 Elapsed time by Ceaseless CBR processes inHuckleberry data-set using a space-
based window of size 10 alerts andθ = 0.9.

of the time used by Ceaseless Revise and Ceaseless Retain (Rev) can be defined
in terms of the mean number hypotheses per explanations, the number of queries,
and the number of previous sequential cases in the case base. Figure 6.20 plots the
time taken by each process against 315 windows of size 100 alerts that were used to
analyzedRustoord data-set using a minimum evidence threshold of 0.9. The time
taken by Ceaseless Reuse (red line) remains practically constant since the number
alerts to explain in each iteration is constant The time taken by Ceaseless Revise
& Retain (light blue line) grows linearly with the size of the case-base (see Figure
6.15). However, the time taken by Ceaseless Retrieve (green line) grows more more
abruptly and so does the total time taken by Ceaseless CBR (blue line) taken up to
14 seconds at the end of the analysis according with the number of sequential cases
in case-base (see again Figure 6.15). Notice that each valley corresponds to a burst
situation where Ceaseless CBR performed considerably fast. Figures 6.21 and 6.22
show similar plots for the other two data-sets.

All experiments described were run on a dual processor Power Mac G5 at 2GHz.
We usedMATLAB6p5 software package to code our algorithms.

Preemptive Ratio

Table 6.11 shows the total number of predicted alerts (P), the total number of
successful predicted alerts or anticipated alerts (A), and the preemptive ratio (PR)
(i.e., PR = successes

#predictions) for each trial. For example, inRustoord data-set using a
fixed space-based window of size 5 the preemptive ratio was 0.78. That is, about 78%
of times that Ceaseless CBR predicted the occurrence of an alert it finally happened.
In Naxpot the highestPR was only 0.43 whereas inHuckleberry went up to 0.90.
We think that one of the factors that caused the poorPR of Ceaseless CBR inNaxpot

EXPERIMENTAL RESULTS 187

weekly weekly
data-set wm ws θ P A PR alert load alert reduction
Rustoord 0 100 0.1 542 248 0.46 1967.69 92.35%
Rustoord 0 100 0.3 483 250 0.52 1967.69 92.36%
Rustoord 0 100 0.5 431 247 0.57 1967.69 92.41%
Rustoord 0 100 0.7 386 239 0.62 1967.69 92.39%
Rustoord 0 100 0.9 342 230 0.67 1967.69 92.40%
Rustoord 0 100 1 0 0 N/A 1967.69 91.73%
Rustoord 0 50 0.5 734 483 0.66 1967.69 93.17%
Rustoord 0 25 0.5 1240 817 0.66 1967.69 94.04%
Rustoord 0 10 0.5 2012 1518 0.75 1967.69 95.35%
Rustoord 0 5 0.5 2093 1643 0.78 1967.69 95.90%
Rustoord 0 1 0.5 0 0 N/A 1967.69 95.11%
Rustoord 1 3600 0.5 979 446 0.46 1967.69 92.48%
Rustoord 1 86400 0.5 288 143 0.50 1967.69 92.01%
Naxpot 0 10 0.5 4806 2072 0.43 5856.49 80.89%
Naxpot 1 3600 0.5 1684 342 0.20 5856.49 79.69%
Huckleberry 0 10 0.1 758 566 0.75 13742.88 93.02%
Huckleberry 0 10 0.3 575 481 0.84 13742.88 93.04%
Huckleberry 0 10 0.5 570 487 0.85 13742.88 92.92%
Huckleberry 0 10 0.7 545 458 0.84 13742.88 92.93%
Huckleberry 0 10 0.9 431 386 0.90 13742.88 93.02%
Huckleberry 0 10 1 0 0 N/A 13742.88 92.68%
Huckleberry 1 3600 0.5 388 274 0.71 13742.88 84.77%

Table 6.11 Predictive characteristics and weekly alert load reduction for CCBR.data-set=
data-set name;wm = window model;ws = window size.θ = evidence threshold;P = number
of predicted alerts;A = number of anticipated alerts;PR= preemptive ratio.

was variability on the number sorts (unique alerts) 331 vs 90 inRustoord and 203 in
Huckleberry. The preemptive ratio seems to increase withθ since the evidence of the
corresponding actionable tree used to make the prediction is higher. The preemptive
ratio also increases with small windows. Notice that the preemptive ratio is not
defined when eitherθ = 1 or when the window size is 1 (i.e., an alert-driven window
model) since there is no predicted alerts at all.

Alert Load Reduction

Table 6.11 also shows for each trial the mean weekly alert load and the average
weekly alert reduction percentage achieved using Ceaseless CBR. For example, in
Rustoord data-set the maximum alert reduction was 95.90% that corresponded to
the trial where we used a space-based window of size 5 andθ = 0.5. Figures 6.23
compares original alert load with actual alert load using Ceaseless CBR with a fix
window size of 100 alerts andθ = 0.9. Figure 6.26 depicts alert reduction achieved
along 16 weeks inRustoord data-set using the later configuration. From this data,
we can see that Ceaseless CBR achieved an alert reduction of more than 90% in
14 weeks out of 16 weeks covered by the data-set. The total alert reduction was a
95.80%. InNaxpot data-set the maximum alert reduction in the two trials shown in
Table 6.11 corresponded to the space-based window model. Ceaseless CBR achieved
a reduction of 80.89% of the weekly alert load that was originally of 1967 alerts per
week (on average). Figure 6.24 shows the comparison between current alert load and
the initial alert load inNaxpot data-set along 35 weeks of surveillance whereas Figure

188 PERFORMANCE EVALUATION

6.27 shows the weekly alert load reduction. InHuckleberry data-set, we achieved
an alert reduction of up to a 93.02% using a space-based window of 10 alerts and
θ = 0.9. Likewise, Figure 6.25 compares forHuckleberry data-set the current alert
load and the initial alert load along 16 weeks. Finally, Figure 6.28 shows the alert
load reduction achieved inHuckleberry.

Alert reduction seems to decrease with the increment of the window size and
be practically unaffected byθ. Notice that, in all three data-sets, the configuration
with the best alert reduction coincides with the best performer according to t-area.
However, we think that we would need to run more experiments before a categorical
conclusion can be drawn from this observation. That is, before stating that the best
Ceaseless CBR performer coincides with the one achieving the highest alert reduction.

1
2

0

2

4

6

8

10

12

14

16

18

0

1000

2000

3000

4000

5000

6000

Current Alert Load vs Initial Alert Load

Weeks

A
le

rt
s

Fig. 6.23 Current alert load vs initial alert load inRustoord data-set using Ceaseless CBR
with a space-based window of size 100 alerts andθ = 0.9.

These results show how automatically assessing the malignancy of alerts using
Ceaseless CBR pays off by reducing significantly weekly alert load. We could say
that our results outperform the results of the only work we are aware of that has
tackled with alert reduction [JD02]. Julisch and Dacier achieved a maximum of 75%
on average alert load reduction over a year using attribute-oriented induction (AOI)
[JD02]. However, we think that a common alert database should be used to make
both approaches comparable.

EXPERIMENTAL RESULTS 189

1 2

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000
Current Alert Load vs Initial Alert Load

Weeks

A
le

rt
s

Fig. 6.24 Current alert load vs initial alert load inNaxpot data-set using Ceaseless CBR
with a space-based window of size 10 alerts andθ = 0.5.

Finally, let us remark that although the performance of an alert-driven approach
(wm=0 andws=1) seems, at first sight, excellent (i.e.,tpf =1 andfpf =0 in Table 6.6)
it has a number of disadvantages:

1. First of all, a higher number of queries (human interventions) is required, 90
were needed inRustoord data-set as shown in Table 6.10. In practice, one
query was needed for each type of alert. Notice that using a window size of
100 alerts the number of queries was reduced down to 40.

2. Second, a null preemptive ratio as seen in Table 6.11. That is, it is much more
difficult to predict the occurrence of future alerts using an alert-driven model.

3. Third, the difficulty of discovering burst situations as we can see in Table 6.8.

4. The last but not least important disadvantage is the impossibility of discovering
multi-stage attacks since each alert is analyzed in isolation without considering
its sequential relationships with other alerts.

In pursuit of a finer-grained understanding of the influence of urgency in our ap-
proach we have carried out a second block of experiments where we tried to inves-
tigated the impact on the performance when not all alerts in the current window are
considered for explanation but only the most urgent ones. For the sake of simplicity,
we only show next the results corresponding to the best performers above.

190 PERFORMANCE EVALUATION

1
2

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

x 10
4

Current Alert Load vs Initial Alert Load

Weeks

A
le

rt
s

Fig. 6.25 Current alert load vs initial alert load inHuckleberry data-set using Ceaseless
CBR with a space-based window of size 10 alerts andθ = 0.9.

data-set wm ws θ tpf fpf recall precision prevalence
Rustoord 0 5 0.5 0.9997 0.0126 0.9997 0.9029 0.1046
Naxpot 0 10 0.5 0.9966 0.0186 0.9966 0.9303 0.1995
Naxpot 1 3600 0.5 0.9987 0.0432 0.9987 0.8520 0.1995
Huckleberry 0 10 0.9 1.0000 0.0029 1.0000 0.9712 0.0899

Table 6.12 Experimental results for UCCBR.data-set= data-set name;wm = window
model; ws = window size;θ = evidence threshold;tpf = true positive fraction;fpf = false
positive fraction.

6.3.7 UCCBR

We analyzed the performance of the best configurations in the former experiments
using the measure of urgency introduced in Chapter 5 and obtained the results de-
scribed below. We used a deprecation factorτ of 7200 seconds (see Section 5.1.3).
That is to say, after 2 hours case activations become deprecated and are filtered out
from consideration and the corresponding alerts received directly the lowest priority.
We used a error type weighting 1:U[1,1000] (i.e., a cost of 1 for each false positive and
a cost uniformly distributed between 1 and 1000 for each false negative). Therefore
each potential vulnerability simulated in our experimental setting got also associated
a cost (single lost expectancy) randomly generated between 1 and 1000. The benefit
of properly prioritizing a dangerous alertB(D + |C+) was set to 100 whereas the
benefit of not prioritizing an innocuous alertB(D − |C−) was set to 1. We used a
myopic iteration horizon.

EXPERIMENTAL RESULTS 191

0 2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

5000

6000
Weekly Alert Load

Weeks

A
le

rt
s

Current Alert Load
Alert Load Reduction

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
Weekly Alert Reduction

Weeks

A
le

rt
 L

oa
d

R
ed

uc
tio

n
(%

)

(a) (b)

Fig. 6.26 Alert load reduction inRustoord data-set using Ceaseless CBR with a space-based
window of size 100 alerts andθ = 0.9 . (a) Alert load before and after Ceaseless CBR; (b)
Weekly alert load reduction.

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000
Weekly Alert Load

Weeks

A
le

rt
s

Current Alert Load
Alert Load Reduction

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Weekly Alert Reduction

Weeks

A
le

rt
 L

oa
d

R
ed

uc
tio

n
(%

)

(a) (b)

Fig. 6.27 Alert load reduction inNaxpot data-set using Ceaseless CBR with a space-based
window of size 10 alerts andθ = 0.5 . (a) Alert load before and after Ceaseless CBR; (b)
Weekly alert load reduction.

Tables 6.12 and 6.13 summarize the performance results for this second block of
experiments. At first view, we can see that UCCBR achieved a small improvement of t-
area in each trial. Respectively, 0.0371 (0.9936 vs 0.9565), 0.0110 (0.9890 vs 0.9780),
0.091 (0.9777 vs 0.9686), and 0.013 (0.9985 vs 0.9972). This improvement was in
part due to an important reduction in the number of false positives whose fraction
varied from 0.0870 to 0.0126 inRustoord data-set, from 0.0408 to 0.0186 and from
0.0597 to 0.0432 inNaxpot data-set, and from 0.0055 to 0.0029 inHuckleberry

192 PERFORMANCE EVALUATION

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10
x 10

4 Weekly Alert Load

Weeks

A
le

rt
s

Current Alert Load
Alert Load Reduction

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
Weekly Alert Reduction

Weeks

A
le

rt
 L

oa
d

R
ed

uc
tio

n
(%

)

(a) (b)

Fig. 6.28 Alert load reduction inHuckleberry data-set using Ceaseless CBR with a space-
based window of size 10 alerts andθ = 0.9 . (a) Alert load before and after Ceaseless CBR;
(b) Weekly alert load reduction.

data-set wm ws θ accuracy e-distance f-measure g-mean t-area
Rustoord 0 5 0.5 0.9887 0.9911 0.9488 0.9936 0.9936
Naxpot 0 10 0.5 0.9844 0.9866 0.9623 0.9889 0.9890
Naxpot 1 3600 0.5 0.9651 0.9694 0.9195 0.9775 0.9777
Huckleberry 0 10 0.9 0.9973 0.9979 0.9854 0.9985 0.9985

Table 6.13 Performance measures for UCCBR.data-set= data-set name;wm = window
model;ws = window size;θ = evidence threshold;

data-set. However, the true positive fraction decreased in two of the trials. From 1 to
0.9997 inRustoord data-set and from 0.9967 to 0.9966 inNaxpot data-set using a
space-based window. Those decrements were caused by the confluence of two factors:
the corresponding single lost expectancy associated to the involved sequential cases
was too low and the corresponding belief was also too low. Therefore, Ceaseless CBR
preferred not to prioritized them since the corresponding alerts were not considered
urgent. In the other two trials, the number of true positives was kept or even improved
(from 0.9967 to 0.9987 inNaxpot data-set using a time-based window). To properly
claim that UCCBR outperforms CCBR in those trials we proceeded as indicated in our
evaluation framework. Thus, we plotted the ROC points for both data-sets as shown
in Figures 6.29(a) and 6.30(b) and their corresponding convex hulls in Figures 6.29(b)
and 6.30(b). In the case ofRustoord data-set, notice that both ROC points formed
part of the convex hull and therefore both are optimal under different cost conditions.
In the case ofNaxpot data-set, only the points representing UCCBR configurations
lie in the convex hull. Thus, we only need to pick and choose between UCCBR
configurations since the combination of all UCCBR configurations outperforms the
combination of all CCBR configurations. We have already seen before how to use
iso-performance lines to decide on this matter. As a conclusion we can say that if
our sequential cases are able to properly store the damage (single lost expectancy)

EXPERIMENTAL RESULTS 193

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

CCBR wm=0; ws=5
UCCBR wm=0; ws=5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

CCBR wm=0; ws=5
UCCBR wm=0; ws=5
convex hull

(a) (b)

Fig. 6.29 (a) ROC points for several CCBR and UCCBR configurations inRustoord data-set
and (b) their corresponding convex hull.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

CCBR wm=0; ws=10
CCBR wm=1; ws=3600
UCCBR wm=0; ws=10
UCCBR wm=1; ws=3600

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

CCBR wm=0; ws=10
CCBR wm=1; ws=3600
UCCBR wm=0; ws=10
UCCBR wm=1; ws=3600
convex hull

(a) (b)

Fig. 6.30 (a) ROC points for several CCBR and UCCBR configurations inNaxpot data-set
and (b) their corresponding convex hull.

caused by undesired situations then the use of a urgency measured in Ceaseless CBR
is highly recommendable from the point of view of the overall performance achieved.

The sequential cases discovered using a measure of urgency did not vary so much
from the results presented above except for the number of occurrences of each sequen-
tial case. This decrement was mainly due to the fact that many alerts were directly
prioritized at the lowest level because they became deprecated and therefore they

194 PERFORMANCE EVALUATION

weekly weekly
data-set wm ws θ P A PR alert load alert reduction
Rustoord 0 50 0.5 734 613 0.83 1967.69 97.14%
Naxpot 0 10 0.5 1011 554 0.55 5856.49 89.43%
Naxpot 1 3600 0.5 746 254 0.34 5856.49 87.69%
Huckleberry 0 10 0.9 63 59 0.93 13742.88 96.29%

Table 6.14 Predictive characteristics for UCCBR.data-set= data-set name;wm = window
model;ws= window size.θ = evidence threshold;P = number of predicted alerts;A = number
of anticipated alerts;PR= preemptive ratio.

were not considered within the Ceaseless CBR processes anymore. We observed a
noticeable increase in the time elapsed specially by Ceaseless Retrieve and Ceaseless
Reuse as a consequence of the higher number of case activations considered at each it-
eration. In the case of Ceaseless Retrieve the time varied from hardly 10 milliseconds
in Rustoord data-set up to almost a second inNaxpot data-set. InHuckleberry the
difference was practically inappreciable in part due to the high number of burst situ-
ations that were directly prioritized independently of the measure of urgency. In the
case of Ceaseless Reuse the differences are smaller since, in spite of the higher num-
ber of case activations, explanations are made up of a reduced number of hypotheses
(only those that explain the most urgent alerts). We observed a substantial improve-
ment in the preemptive ratio and weekly alert load reduction produced by UCCBR.
Table 6.14 shows the results obtained for the above trials. Comparing Tables 6.11 and
6.14 it can be seen that UCCBR improved the preemptive ratio inRustoord data-set
in almost a 5%, from approximately 78% to 83%. In the two trials for theNaxpot
data-set the improvement was of the order of 12% and 14% respectively, whereas is
Huckleberry data-set it was of the order of 3%. The explanation for this higher rate
of successful predictions is the fact that the measure of urgency only considered for
explanation those case activations with a high degree of belief. This had two conse-
quences. On the one side, it reduced the number of alert predicted and, on the other
side, it increased the success ratio. Finally, UCCBR increased the weekly alert load
in the order of the 2% inRustoord data-set, in the order of 8% inNaxpot data-set,
and in the order 3% inHuckleberry data-set. This improvement was in part due to
the number of alerts that were prioritized by default because they never turned to be
urgent.

6.3.8 Conclusions

Our evaluations demonstrate how a Ceaseless CBR-enhaced IDS system improves
both the number of alerts that has to be managed by a SSO and the speed with which
they could be triaged. As we have seen, Ceaseless CBR is able to significantly reduce
the weekly alert load while keeping the number of false negatives very low and an
admissible rate of false positives. Ceaseless CBR is able to keep the true positive
rate over and above 99% and the false positive rate under and below 1%. This level
of performance demonstrates that Ceaseless CBR can perform sufficiently for real
world deployment.

EXPERIMENTAL RESULTS 195

Notice however that:

• on the one hand, the capability of Ceaseless CBR to ’sense’ the presence of
all occurring malicious attacks depends on the ability of the underlying IDS to
detect suspect packets and evoke the corresponding alerts; and

• on the other hand, the capability of Ceaseless CBR to ’specify’ that an attack
is not present depends on either the ability of the underlying network model
of knowing its own vulnerabilities or their capability of the SSO of correctly
assessing the malignancy of the sequential cases proposed by Ceaseless CBR.

That is, the above rates reflect the capability of Ceaseless CBR to prioritize cor-
rectly both those alerts that really constitute a threat for the system under surveillance
and those that bring no peril at all. We have also seen the capability of Ceaseless
CBR to discover new sequential cases both creating them from scratch and adapting
previously existing ones (discovered in former iterations). This turns out to be an
additional advantage of our approach since it does not require to be provided with an
initial sequential case-base. That is, Ceaseless CBR automatically acquires sequential
cases [VC93] on-the-fly as the analysis of the sequence of intrusion alerts proceeds
(i.e., in only one pass over the alert stream). Ceaseless CBR provides an acceptable
preemptive ratio. It went up to a 78% inRustoord data-set. We have also seen how
the capability of Ceaseless CBR to predict the occurrence of future alerts can signifi-
cantly be improved using a measure of urgency. InNaxpot data-set this improvement
up to 14% . Moreover, we have achieved significant reductions in the weekly alert
load. We got reductions up to a 95.90% inRustoord data-set, to 80.89% inNaxpot,
and to 93.02% inHuckleberry data-set. In addtion, we substantially improved those
reductions using our measure of urgency in up to a 8.54% inNaxpot data-set.

Furthermore, through our experiments we have tried to determine the influence
caused by distinct window models, window sizes, and minimum evidence thresholds
in the distinct performance characteristics that we have used to measure the overall
goodness of Ceaseless CBR. After our experimental evaluation of Ceaseless CBR we
can conclude that:

• The performance of Ceaseless CBR is affected by the size of the window as
well as by the value of minimum evidence threshold employed. Concretely, the
smaller the window, the higher the t-area; and the higher the evidence threshold,
the higher the t-area.

• The number of sequential cases discovered by Ceaseless CBR is affected by
both the window size andθ. We say that the smaller the window, the bigger
the number of sequential cases found; and the higher the minimum evidence
threshold, the lower the number of sequential cases found. We also observed
that the number of alerts per case decreases with the size of the window but
seemed not to affected byθ. We also noticed that the number of episodes found
does vary neither with the window model nor withθ but that the smaller the
window size the higher the number of occurrences found and that the higher

196 PERFORMANCE EVALUATION

the value ofθ the lower the number of occurrences per case detected. Finally,
the higher the evidence threshold, the lower the number of questions sent to
the user; and the smaller the window, the higher the number of questions.

• The total time elapsed by Ceaseless CBR decreases in function of the number
of alerts per window and increases in function ofθ.

• The number of alerts correctly predicted by Ceaseless CBR (preemptive ratio)
is affected by both the number of alerts per window and the minimum evidence
threshold. The smaller the size of the window, the higher the preemptive ratio;
and the higher the evidence threshold, the higher the preemptive ratio.

• The alert load reduction is only influenced by the window size. The higher the
window size, the lower the alert reduction.

• A measure of urgency seems to contribute positively to the preemptive ratio
of Ceaseless CBR. A smaller number of alerts are predicted with a higher
success ratio. Urgency also seems to have a positive impact on the alert load
reduction in part because many alerts never become urgent and are prioritized as
non-malicious by default when become deprecated. A measure of urgency also
achieves a significant reduction in the number of false positives. However, as we
have seen the number of false negatives can increase and therefore depending on
the specific cost conditions would be recommendable or not to use a measure
of urgency. In other words, we have to use it cautiously since not always
the negative impact of all possible undesired situations can be estimated in
advance. However, if the damage costs are known a priori or can be estimated
based on past experiences then is highly recommendable to use it to improve
the overall performance of Ceaseless CBR. On the other hand, using a measure
of urgency makes the Ceaseless Retrieve and Ceaseless Reuse processes longer
as a consequence of the higher number of case activations considered at each
iteration.

Our experimental results illustrated the efficiency and scalability of our approach
across scenarios of varying difficulty. Finally, notice that while our experiments have
been conducted using data stemming from a specific network IDS (i.e.,Snort) our
results can be extrapolated to other IDSes. Our alert model introduced in Chapter 3
guarantees the independence between our techniques and the underlying sensor used.

In this Chapter, we have provided a formal framework for the evaluation of alert
triage systems that we have used to evaluate the performance of Ceaseless CBR.
Moreover, we have also assessed Ceaseless CBR with respect to its ability to discover
new cases, predict future alerts, and reduce weekly alert overload with varying param-
eters. Two remarkable results of our approach are, first, the ability to summarize the
information sent to the network administrator and, second, the significant reduction
on the alert overload. For example, inRustoord experiments around 175 cases (more
or less depending on the trial) summarized completely an alert stream made up of
31483 alerts and the weekly alert load was reduced up to a 97.14%. Our results show

EXPERIMENTAL RESULTS 197

that improvements using the Ceaseless CBR paradigm are reasonable and might find
good use in practice.

7
Application

This Chapter brings the discussion down to earth, describing the architecture of a first
prototype of an autonomous agent calledAlba tasked with alert triage that employs
the new methods proposed throughout the thesis to assist a network administrator’s
decision making. Initially, Section 7.1 provides a big picture ofAlba architecture.
The underlying network sensors as well as the rest of the IDS machinery needed to
supportAlba is explained in Section 7.2.Alba’s architecture is sustained by two
main components. First, a domain-specific language calledSOID (Simple Ontology
for Intrusion Detection) that facilitates the representation of the environment and
contextual information in which the IDS operates and enables the use of the automated
problem solving paradigms proposed. Indeed,SOID constitutes an instantiation
of the formal alert model proposed in Chapter 3 on top of theNoos knowledge
representation language [AP96].SOID is described in Section 7.3. Second, an
overlay management system that wraps a conventional IDS up with the knowledge
and reasoning capabilities to properly evaluate the extent of threats. We explain the
different knobs and switches of this system and the technology used to construct it in
Section 7.4.

7.1 ALBA OVERVIEW

To demonstrate the applicability of our methods we constructed a first prototype of
an agent-aided intrusion detection tool calledAlba (ALert BArrage) that assists a

199

200 APPLICATION

Alba email

SSO

Probe email

Fig. 7.1 Alba placement. Alba mediates between a conventional IDS or probe and the
corresponding SSO.

network administrator’s decision making reducing the burdensome output produced
by a conventional intrusion detection system (IDS).1

As we already pointed out in Section 2.7,Alba can be catalogued as an aggregation
and correlation component (ACC) [DW01, HRT03].Alba aims at producing high-
level reasoning beyond low-level probes capabilities.Alba mediates between the
alarm element—such as is considered in a generic architectural model of an IDS—
and the corresponding SSO (see Figure 7.1).Alba aims at performing the alert
management task on behalf of her SSO. Specifically,Alba aims at reducing the
number of false positives due toinnocuousattacks and to increase the predictive
power forharmful multi-stageattacks. Alba emits a judgment on the malignancy
of each alert on an IDS alert stream. Such judgment determines whether an alert
is finally notified or not to the network administrator. Additionally,Alba groups
together alerts corresponding to multi-stage attacks and burst situations minimizing
the number of required interactions with her SSO’s. The development ofAlba posed
two main problems: (i) a useful level of description is required to automate a major
part of the alert management task; and (ii) and efficient and robust method to rapidly
interpret the alert stream is required.

We overcome the first problem introducing an ontology for intrusion detection
that allowed us to comprehensibly represent a number of knowledge sources needed
to properly interpret alerts [MP03e]. The purpose of this ontology is to provide a
mechanism that allows a sequence of alerts (alert stream) provided by a conventional
IDS not only to be readable but also understandable by a software agent. Ontologies
provide a way of capturing a shared understanding of terms that can be used by
humans and programs to aid in information exchange. Unfortunately, currently there
is no common ontology that allows computer security incidents to be conceptualized
in a standardized way. Neither does there exists a widely accepted common language
for describing computer attacks. Consequently, the first and foremost step in the
development ofAlba was to construct an ontology that provides a comprehensive
understanding of security incidents concepts. We have called that ontologySOID

1This tool with all its particularities should be conceived as a proof of concept and never as software ready
for deployment.

ALBA OVERVIEW 201

that stands for Simple Ontology for Intrusion Detection.SOID establishes well-
defined semantics that allowAlba to process information consistently and reason
about an IDS alert stream at a higher level of abstraction, facilitating in this way the
automation of the alert management task [MP03e]. As we see later on in Section 7.3,
SOID constitutes an instantiation of the formal alert model proposed in Chapter 3 on
top of theNoos knowledge representation language [AP96].

The second problem was solved constructing a software agent—an overlay system
that wraps a conventional IDS up with the knowledge and reasoning capabilities to
properly evaluate the extent of threats. We also refer to this software agent asAlba.
Concretely,Alba maintains a number of models constantly updated by means of a
collection of sensors and monitors and embodies Ceaseless CBR within her inner
logic. Figure 7.2 sketches the architecture that provides the primitive resources that
allows Alba to reason, learn, accept direction and explain itself meaningfully. In
the next subsections, we provide a brief description of the three layers that conform
Alba’s architecture.

7.1.1 Perception Layer

The first layer provides, on the one hand, a collection of sensors (i.e., the inner
IDS) strategically placed to continuously monitor and analyze every packet on the
protected network, and, on the other hand, a number of scanners and monitors that
enableAlba to keep several sources of knowledge (that we will introduce later on)

Sensor(s) Network scanner(s) CVE
 monitor

Sensor ruleset
monitor(s)

Perception layer

Recognition layer

Planning layer

Ceaseless Retrieve Ceaseless Reuse Ceaseless Revise Ceaseless Retain

Sequential
Case Base

Alert Model

Mission Model

Network ModelAlert Stream Model

Recognition
Criteria Action ModelPlan Recognition

Vulenarbilities Model

Fig. 7.2 Overview ofAlba multi-layered architecture.

202 APPLICATION

constantly updated. This layer allowsAlba to perform additional preventive tasks
such as pinpointing security weaknesses for correction.

7.1.2 Recognition Layer

The second layer providesAlba with deliberative capabilities. First, a collection of
models—expressed on top of the concepts defined bySOID—allowsAlba to reason
about security incidents, vulnerabilities, alerts, and the protected network. Second,
a sequential case base permitsAlba to store sequential patterns of both malicious
and innocuous activity. Those patterns are represented by means of actionable trees.
Third,Alba keeps an updated profile of the alert stream (alert frequency, rareness, etc)
and uses Ceaseless CBR for continuously overseeing the alert stream looking for an
explanation for each group of alerts so that they can be conveniently prioritized. Alerts
that have already been prioritized as well as predicted alerts are sent to the planning
layer that finally decides on the convenience of notifying the SSO or initiating a proper
action to repel an attack.

7.1.3 Planning Layer

The third layer providesAlba with reflective capabilities. First, a model of the
network mission and costs allowsAlba to make savvy judgements on the priorization
of certain malicious alerts as well as to keep the number of false positives under
control. Second, a plan recognition model uses priorized alerts and predicted alerts
to properly anticipate the plans of a malefactor and initiate the corresponding plan of
countermeasures using a collection of prespecified actions (e.g., creating a new rule
in a firewall, closing a specific connection, etc). Third,Alba accepts directions from a
network administrator or SSO who can provideAlba with different criteria to decide
when to initiate an action instead of simply notifying. The network administrator
also governs the parameters that indicate how to estimate the similarity of the current
sequence of alerts with previous patterns (e.g., window model, window size, minimum
evidence, etc) and establishes what constraints are of interest (e.g., IP source and
IP destination) to properly prune the discovery of new sequential cases. Next, we
describe the conventional IDS that feedsAlba with alerts.

7.2 THE INNER IDS

The conventional IDS that we have used is an open source architecture based onSnort
as the key component [Hil01]. Other secondary components are: aMySQL database2,

2dev.mysql.com

THE INNER IDS 203

the analysis console for intrusion databases (ACID)3, a number ofPHP4, procmail5,
andPerl scriptswww.perl.org, and anApache web serverwww.apache.org. We
got running the same software platform into a number ofRed Hat Linux boxes
and into severalMac OS X’s BSD-based Darwin machines. Recently a burst of
new books has popularized this open source architecture for intrusion detection that
we selected time ago [CBF03, Koz03, Reh03]. Those books describe its different
features far better than we could ever have done here. Thus, we only provide a
succinct description of its main components.

7.2.1 Snort

Snort is an open source network intrusion detection system supported by a large
community6. Snort performs lightweight real-time traffic analysis and packet log-
ging on IP networks [Roe99].Snort has been compared and used together with other
signature-based IDSes and has always provided excellent results [AFV02]. Basically,
Snort is a signature-based IDS composed of a sniffer, a collection of preprocessors,
a detection engine and a collection of postprocessors.Snort is configured using a
configuration file and a collection of files containing rules (signatures) used by the
detection engine.Snort sniffer acquires traffic from a network link using libpcap7.
Then, for each network packet a number of decoder routines fill out the packet struc-
ture from link level protocols up to higher level details such as TCP or UDP ports.
Packets are then processed by a number of registered preprocessors that check differ-
ent features. Finally, a detection engine checks every packet against the activeSnort
rules as established in the configuration file. A collection of output postprocessors
indicate how alerts have to be signaled. A large collection ofSnort rules has been
published. At the time of finishing this work there were available more than 1800
stable rules.Snort rules are classified in twenty three different classes. We have
define inNoos a sort for each one of these classes. ASnort rule is composed of a
Snort identification number (SID), a message, a signature and references. Moreover,
for a few rules a summary, impact, more detailed information, attack scenarios, ease-
ness of attack, false positives, false negatives and corrective actions are also provided.
We developed aPerl script to automatically translateSnort rules intoNoos domain
knowledge. Figure 7.3 shows an example containing a couple ofSnort rules.

7.2.2 Alert Database

We set upSnort to log in to a MySQL database and installed ACID (Analysis Console
for Intrusion Databases) for alert browsing and management. ACID provides a web

3acidlab.sourceforge.net
4www.php.net
5www.procmail.org
6www.snort.org
7www.tcpdump.org

204 APPLICATION

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS CodeRed v2 root.exe access";
flow:to_server,established; uricontent:"/root.exe";
nocase; classtype:web-application-attack;
reference:url,www.cert.org/advisories/CA-2001-19.html; sid:1256; rev:7;)

alert udp $EXTERNAL_NET any -> $HOME_NET 1434
(msg:"MS-SQL Worm propagation attempt";
content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 01|";
content:"sock"; content:"send";
reference:bugtraq,5310; classtype:misc-attack; reference:bugtraq,5311;
reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2003; rev:2;)

Fig. 7.3 Example ofSnort rules:WEB-IIS CodeRed v2 root.exe access (Snort signature
SID=1256) andMS-SQL Worm propagation attempt Snort signature (SID=2003).

Fig. 7.4 ACID console forRustoord dataset.

interface (a set of PHP scripts) to data stored bySnort8. Figures 7.4, 7.5, and 7.6
show whatACID interface looks like. That interface provides a number of features
such as database searching, browsing and decoding of layer 3 and 4 logged packets,
alert management, and exporting to e-mail messages.

8To run the experiments described in Chapter 6 we dumped the corresponding MySQL database into a
comma separated value (CSV) file format that was directly imported from MATLAB.

THE INNER IDS 205

Fig. 7.5 ACID console forNaxpot dataset.

Fig. 7.6 ACID console forHuckleberry dataset.

206 APPLICATION

7.2.3 Sending Alerts to Alba

We used email sendingACID feature as the mean to send alerts toAlba. A cron
process periodically queriesACID database and sends an email containing new alerts
to Alba. Alba uses aprocmail preprocessor to handle her incoming email. This
procmail preprocessor uses aPerl script to translate each alert in the body message
into aNoos term (see Section 7.3.7) and forwards the new translated content toAlba.
Alba checks for new emails on a regular basis. New alerts are streamed according
to a pre-specified window model and sent to a Ceaseless CBR process that finally
analyzes them. The whole process allowsAlba to consume alerts in near real-time.
Next Section describesSOID in further detail.

7.3 SOID

We refer to the term ontology as a formal specification of a vocabulary of concepts and
the relationships among these concepts that provides a machine readable set of defini-
tions that in turn create a machine understandable taxonomy of classes and subclasses
and relationships between them. Several methodologies for building ontologies have
been proposed [Gru93, MF95, MAN97, UG96, JBV98, MAN97]. See [Fer99] for a
comparative of diverse methodologies. Nevertheless, ontological engineering[Pre97]
is still immature compared to knowledge engineering and therefore a widely accepted
methodology for this purpose cannot be found yet[SBG00]. To build our ontology we
have followed the V-model methodology proposed by [SBG00]. This methodology
was inspired by the software engineering V-process model [Oul90] and has been used
for instance to build ontologies in fields such as bioinformatics [SBG00].

7.3.1 Purpose and Conceptualization

SOID aims at providing a domain-specific representation language for alert triage in
intrusion detection. At a quick glance, in order to automatize the alert management
task we have identified four key sources of knowledge to be conceptualized (See Fig-
ure 7.7):networks, incidents, vulnerabilities, andalerts. We built a separate ontology
for each of them using the knowledge representation languageNoos [AP96]. Finally,
we have merged these partial ontologies in a more global ontology that we have called
SOID—a Simple Ontology for Intrusion Detection [MP03e]. We did not start to
build each sub-ontology from scratch. Instead, each sub-ontology was built starting
from previous works such as the Network Entity Relationship Database [GHH01b],
the Common Vulnerabilities and Exposures dictionary, the Common Language for
Computer Security Incidents [HL98], andSnort ruleset [Roe99]. Previously, we
consciously analyzed a collection of related works bearing always in mind simplicity
as the driver of our approach. Next, we overview each one of the above-named key
sources of knowledge.

SOID 207

Vulnerability or Exposure

Incident

Network Entity

IDS Alert

Fig. 7.7 SOID sub-ontologies: Networks, Incidents, Vulnerabilities, and Alerts

7.3.2 Networks

A network is the computer system to be protected. We have defined a set of con-
cepts and relationships to model a network based on the Network Entity Relationship
Database (NERD) proposed by Goldman et al [GHH01b]. Properly modelling the
network allows the importance of each alert to be correctly assessed. That is to
say, determining whether a given alert implies or not a peril for the network under
protection requires a specification of the network and the implications of each alert
as well. Remember the relative environment-dependency named in Section 1.2.2
and theCode-Red Worm case mentioned in Example 1. Network models based
on SOID can easily be coded intoNoos and automatically updated translating the
reports provided by network scanners such asNessus, Satan, or OVAL.

7.3.3 Incidents

An incident is a unauthorized use or abuse of the protected system. We have followed
CLCSI [HL98] that defines an incident taxonomy based on three key concepts:events,
attacksand incidents. An event is anaction directed at atarget which is intended
to result in a change of state of thetarget. An attack is defined as a sequence of
actions directed at a target taken by anattackermaking use of some tool exploiting a
computer or network vulnerability. Finally, an incident is defined as a set of attacks
carried out by one or more attackers with one or more goals. Figure 7.9 shows some
of CLCSI concepts represented inNoos.

7.3.4 Vulnerabilities

A vulnerability is a flaw in a target that could allow an unauthorized result. Knowing
the vulnerabilities in our network is the main source of knowledge to automatically
decide if a given alert corresponds to an innocuous attack or not. We have incor-
porated common vulnerabilities and exposures (CVE) dictionary provided by the
MITRE corporation into our ontology. CVE provides a name and a standardized

208 APPLICATION

Fig. 7.8 NERD ontology represented inNoos.

description for each vulnerability or exposure. The aim of CVE is to allow disparate
intrusion detection tools to interoperate and share information. Other well-known
source of knowledge about vulnerabilities is ICAT, a CVE based searchable index of
information on computer vulnerabilities. It provides search capability at a fine gran-
ularity and links users to vulnerability and patch information. A monitor advertises
Alba of new published vulnerabilities.Alba contrasts new vulnerabilities against the
network model (NERD) and pintpoints new security weaknesses for correction.

7.3.5 Alerts

We have conceptualized alerts according to theSnort ruleset [Roe99].Snort alerts
are classified in twenty three classes. Figure 7.11 shows theSOID sorts for repre-
senting them. Each alert is provided with a unique sequential identifier, time and
date, sensor identifier, the signature that triggered the alert, IP and either a TCP, UDP,
or ICMP header and payload. Additionally, some references to sources of informa-

SOID 209

Fig. 7.9 Some of theSOID concepts represented inNoos.

#(1 - 12064) [2002-11-29 18:47:22] WEB-IIS CodeRed v2 root.exe access
IPv4: 80.34.49.201 -> 172.26.0.4

hlen=5 TOS=0 dlen=112 ID=16914 flags=0 offset=0 TTL=118 chksum=37996
TCP: port=3421 -> dport: 80 flags=***AP*** seq=1955827854

ack=1657159142 off=5 res=0 win=17520 urp=0 chksum=44219
Payload: length = 72

000 : 47 45 54 20 2F 73 63 72 69 70 74 73 2F 72 6F 6F GET /scripts/roo
010 : 74 2E 65 78 65 3F 2F 63 2B 64 69 72 20 48 54 54 t.exe?/c+dir HTT
020 : 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A 20 77 77 77 P/1.0..Host: www
030 : 0D 0A 43 6F 6E 6E 6E 65 63 74 69 6F 6E 3A 20 63 ..Connnection: c
040 : 6C 6F 73 65 0D 0A 0D 0A lose....

Fig. 7.10 CodeRed Worm propagation attempt.

tion about the attack are also provided. In Fig. 7.10 an alert corresponding to an
attempt of propagation of the CodeRed worm is shown. This alert corresponds to the
first signature shown in Figure 7.3. Figure 7.13 depicts the same alert such as it is
represented byNoos.

7.3.6 Automatic, Up-to-date Model Keeping

To keep updated the several models thatAlba employed, we used a collection of
scripts to monitor the sources of information described above. Once one of these

210 APPLICATION

Fig. 7.11 Sorts for Snort Alerts

scripts detected a change, it automatically translated the new information intoNoos.
Since CVE is provided in plain text we could easily translate it intoNoos using
a Perl script. Likewise, we created aPerl script to automatically translateSnort
rules intoNoos. Thus, we were able to keepSOID updated at the same pace that
new vulnerabilities and signatures were published. Figure 7.12 sketches how we
automatically kept up-to-date the distinct sources of knowledge thatSOID integrates.

SOID has been coded using theNoos representation language that we oveview in
nex Subsection.

7.3.7 The Noos Representation Language

Noos is an object-centered knowledge representation language [AP96]. An object-
centered system organizes knowledge around the unyfing abstract notion of object
[AFG96b]. In an object-centered system objects are modeled using the following
three basic constructs (that have received similar interpretations in different object-
centered systems such asobject-oriented systems, description logics, entity-relation
data models, frame-based systems, orsemantic networks) [Mac89, Rin89, AFG96b].

SOID 211

SOID

CVE
/home/Alba/CVE/full-cve.txt

Snort Rules
/home/Alba/Snort/*.rules

Snort SIDs
/home/Alba/Snort/sid-msg.map

Nessus Reports
/home/Alba/Nessus/network.map

CVE2Noos.pl

Snort2Noos.pl

sidmsg2Noos.pl

Nessus2NERD.pl

Alert stream

ACID2Noos.pl

CVE
/home/Alba/Noos/full-cve.noos

Alerts
/home/Alba/Noos/*rules.noos

CVE
/home/Alba/Noos/sid-msg.noos

NERD
/home/Alba/Noos/network.noos

Alba

Fig. 7.12 Automatic, up-to-dateSOID models keeping.

Sorts that describe the common features within a collection of terms. Sorts form
a collection of partially ordered symbols. Sorts are also known asclasses,
concepts, entities, frames, or nodes.

Features that describe the relevant properties of terms. Features are also known as
link, properties, role, slot, etc

Terms that describe the indivinduals of a domain. Terms are also known asindivid-
ualsor objects.

Noos is useful for developing knowledge systems that integrate problem solving
and learning [AMS98, Arm97].Noos is formalized usingfeature terms. Feature
terms are a generalization of first order terms and lambda terms. Feature terms con-
stitute theNoos basic data structure and can be seen as extendable records organized
in a subsumptionhierarchy [AP96]. Feature terms are represented graphically by
means of labeled directed graphs (see Figure 7.13). InNoos subsumption is defined
as an informational ordering among feature terms. A feature termΨ is subsumed by
another feature termΨ′ when all information provided byΨ′ is also provided byΨ.
The three basic concepts that underpin theNoos knowledge representation language:
sorts, feature terms, andsubsumptionalso constitute the fundamental concepts on

212 APPLICATION

Fig. 7.13 Alert WEB-IIS CodeRed v2 root.exe access represented inNoos.

top of which we defined our alert model in Chapter 3 and sequential cases in Chap-
ter 5. Noos not only offers representation constructs close to knowledge modeling
frameworks, episodic memory and reflective capabilities but has also been upgraded
with agent-programming constructs. We used these constructs to decompose Cease-
less CBR processes and to separate other concerns such as alert streaming or email
sending and reading in our design such as we will see in next Section. TheNoos
interpreter is implemented on Common Lisp and runs on top of bothDigitool Mac-
intosh Common Lisp9 (MCL) and the ANSI Common LispGNU CLisp10 what
covers a wide number of platforms.

7.4 ALBA , AN ALERT BARRAGE

Alba is an autonomous agent tasked with alert triage that employs Ceaseless CBR
to assist a network administrator’s decision making. Basically, the tasks thatAlba
addresses can be described as follows. Given an alert stream produced by a number
of probes and a collection of models describing the target network under surveillance,
Alba is to:

9www.digitool.com
10clisp.cons.org

ALBA, AN ALERT BARRAGE 213

1. discover new sequences of alerts that are correlated according to a number of
user-defined constraints and proposed them to the user for their proper danger-
ousness assessment.

2. pinpoint multi-stage attacks that are undergoing, anticipating the occurrence of
some of their alerts.

3. minimize the number of alerts that are really suceptible of being notified to her
SSO.

The overall objective ofAlba can be summarized as reducing daily alert load as
much as possible while keeping both false negative and false positive ratios as low
as possible minimizing in turn the number of interactions with her SSO to properly
accomplish her tasks. Figure 7.14 depictsAlba general interaction scheme.Alba
usesSOID to properly reason about the concrete network under protection.SOID
merges and keeps up-to-date information about changes on the network protection,
new published CVE vulnerabilities, and the correspondingSnort signatures.Alba
receives by email sequence of alerts that have been previously stored into aMySQL
database by aSnort output post-processor.Alba interacts with her SSO by email.
Alba sends periodical reports on alert activity as well as prompt notifications on
dangerous attacks and requests for new discovered cases supervision to her SSO.
Alba receives her SSO’s revisions also by email.Alba Notice that we did not aim
at building an invulnerable architecture forAlba. Therefore, many issues should be
addressed before deployingAlba into a mission critical scenario, which range from

Snort
ruleset CLSCI CVE NERD

SOIDSnort

Alba

Sequential
Case Base

ACID/MySQL email email

SSO

Fig. 7.14 Alba interaction model overview.

214 APPLICATION

Alert
Streamer

Email
Reader

Ceaseless
Retriever

Ceaseless
Reviser

Ceaseless
Retainer

Email
Sender

Sequential
Case Base

Al
er

ts
, S

ta
tis

tic
s

Se
qu

en
tia

l
 c

as
es

Sequential Cases

So
lu

tio
ns

Q
ue

st
io

ns
, R

ep
or

ts

Ceaseless
Reuser Explanations Case

Activations

Alerts

User's responses

Panel

PO
P3

 c
on

fig

SMTP configWM, WS

Ev
ide

nc
e t

hre
sh

old
, C

on
str

ain
ts

Fig. 7.15 Alba inner processes.

strengthening of core implementations to authentication and encryption of all critical
interactions.

TheAlba functional architecture consists of the following procesess (agents) that
were implemented usingNoos agent-programming constructs:

Panel provides a user-interface toAlba. Panel allowsAlba to receive SSO input.
Figure 7.16 shows what a simpleAlba panel looks like.Alba provides a number
of parameters that a SSO can use to control or adjustAlba’s inner behavior such
as incoming and outgoing emails accounts, window model and size, minimum
evidence threshold, constraints for sequential case discovery, etc.Alba panel
communicates with other processes to set their corresponding parameters.

Email Reader handles both emails with alerts sent by probes and emails fromAlba
SSO responding to a previously formulated question. Distinct email subjects
allow Alba’s Email Reader to easily forward messages toAlert Streamer or
Ceaseless Reviser depending on whether the message contains new alerts or
a response from the SSO.

ALBA, AN ALERT BARRAGE 215

Fig. 7.16 Alba panel inNoos

Alert Streamer receives and interpret emails containing alerts fromEmail Reader.
Alerts are received inNoos lingo sinceAlba uses aprocmail pre-processor
to conveniently translate them fromACID format such as we described above.
Alert Streamer either groups alert together or divides them into small chunks
according to the specified window model and window size byAlba’s SSO
throughAlba’s Panel.

Ceaseless Retriever upon reception of a new window of alerts fromAlert Strea-
mer seeks sequential cases that best match it.Ceaseless Retriever creates a
number of cases of case activations to explain each and every one of the alerts
in the window at hand. Cases activations that either follow the constraints
indicated by the corresponding sequential cases or do not correspond to any
sequential case but follow the default constraints expressed by the SSO are
fused together. This process sends case activations toCeaseless Reuser.
This process and the three following ones behave on the basis of the Ceaseless
CBR model explained in Chapter 5.

Ceaseless Reuser decides on which alerts should be prioritized right away and
which should be prioritized later on according to the model of urgency explained
in Chapter 5. This process could be also set up to always prioritize alerts as
soon as they are received. The trade-off between performance and efficiency
were analyzed in Chapter 6. OnceCeaseless Reuser selects which alerts
to prioritize it composes a number of explanations that explain all selected
alerts. The explanation with the highest degree of belief is selected and sent to
Ceaseless Reviser for its revision.

216 APPLICATION

Fig. 7.17 SSO mailbox aspect.

Ceaseless Reviser receives an explanation for the current window of alerts and
evaluates whether it can proceed without SSO supervision or not. A SSO
can establish on what basis she wants to be informed or questioned before
Ceaseless Reviser concludes on a final solution and initiates an action. For
example, the SSO can indicate that all those partial explanations that correspond
to innocuous attacks can be sent directly toCeaseless Reviser without SSO
intervention and supervise all new case adaptations for properly assessing their
priority. The SSO can even delegate ontoCeaseless Reviser to initiate some
actions upon the reception of some high-priority explanations. Further details
about the concrete plan recognition model used byAlba is beyond the scope of
this work. It constitutes one of the most important directions of our future work.
Ceaseless Reviser communicates withEmail Reader to send messages to
Alba’s SSO. Once a final solution has been chosen it is sent toCeaseless
Retainer who takes charge of storing it for subsequent reuse.

Ceaseless Retainer finally receives a chosen explanation fromCeaseless Re-
viser and conveniently updates the sequential case base. If the solution corre-
sponds to a new caseCeaseless Reviser stores it into the sequential cases.
However, if it corresponds to a previous sequential case it simply simply updates
the former sequential case occurrences and statistics.

Email Sender interacts withAlba’s SSO in a human readable form.Alba generates
three kind of email message to its user: (i) daily reports containing those alerts of
interest (whose priority is above a user-defined threshold); (ii) new discovered
sequential cases for SSO revision; and (iii) emails signaling imminent peril that
require an immediate response by part ofAlba’s SSO. Figure 7.17 shows what
a daily SSO’s mailbox looks like.

Summarizing we could say thatAlba’s main ability is to supress false alerts.
Moreover,Alba helps to point out complex multi-stage attacks to security managers

ALBA, AN ALERT BARRAGE 217

and detect attacks that are still undergoing. In Chapter 6 we showed promising results
regarding the alert load reduction that Ceaseless CBR can achieve while minimizing
both the number of false negatives and the number of false positives.

This Chapter described a first prototype that allowed us to explore the companion
machinery needed by a ceaseless case-based reasoner to solve real problems. The
appropriateness of intrusion detection alert triage for evaluating the significance of
Ceaseless CBR comes from the compelling challenges that an application in this
domain faces. As a matter of fact, research in the area of intrusion detection systems
is receiving much attention from academia, industry, and government. Since these
systems pose many complex issues, there are many open problems for research and
opportunities for making significant contributions. Notice, however, that the objective
of the application described was to improve the efficiency of current IDSes rather than
providing new substantial detection methods.

8
Conclusion and

Future Work

This Chapter summarizes the contributions of the thesis, benefits of this research,
limitations of the proposed approach, and speculates about profitable directions for
future research. In Section 8.1 we will review the five major directions along which
our research has evolved: (i) development of a representational structure of sequential
cases that support part-of and temporal dependencies; (ii) specification of a dynamic
sequence similarity; (iii) an efficient CBR inference that exploits sequential cases and
probabilities; (iv) a validation framework for alert triage; and (v) a novel agent-aided
intrusion detection tool. In Section 8.2, we succinctly describe three of the main lines
for future work. Firstly, the extension of the basic components offered by our model
to facilitate more elaborate problem solving tasks such adversarial plan recognition.
Secondly, the evolution of our model to contemplate automated monitoring agents
able to communicate and coordinate with each other, enabling in turn higher-level
collaboration. That is to say, a multi-agent approach where Ceaseless CBR agents
cooperate each other to solve more complex problems (e.g., problems that are inher-
ently distributed) or to improve its individual competence and performance. Ceaseless
CBR agents could share information at different levels: ranging from observational
data or case activations to explanations and sequential cases. We have previously
investigated techniques and mechanisms that lay the groundwork of this future line.
For example, DistCBR and ColCBR [PAM96, PAM97, MPA99], conversation pro-
tocols [MPR00b], interagents [MPR98, MPR00a], etc. Thirdly, we will investigate
how completely delegate problem determination tasks to the own computer system.
That is to say, how to evolve our techniques to become part of autonomic problem
determination tools with self-healing capabilities.

219

220 CONCLUSION AND FUTURE WORK

8.1 CONTRIBUTIONS

In a nutshell, the purpose of this thesis was to investigate a new Case-Based Reason-
ing (CBR) model for the analysis of unsegmented sequences of observational data
stemming from multiple coincidental sources in complex multi-agent settings. We
have called this new model Ceaseless CBR.

We argued that there are a number of real-world domains, such as intrusion de-
tection, international event analysis, fault diagnosis, telecommunications alert man-
agement, etc, that require the on-line analysis of temporally-evolving sequences of
observational data. We pointed out that most CBR systems are unable to deal with
the sequential behavior of real world domains and the simultaneous occurrence of
interleaved problems. Since they presuppose individualized problem descriptions
with well-specified boundaries that encompass all the information needed to solve
the current problem in only “one shot”. That is to say, the non-coincidental sources,
full-fledged problem descriptions, and individual case independency assumptions on
which most CBR systems are built make impracticable their direct deployment in the
aforementioned domains. In this thesis we have demonstrated that CBR can be used
in real-world domains where those assumptions cannot be met. We have shown how
the CBR paradigm can be extended to handle efficiently situations that are represented
by in terms of an unsegmented, sparse sequence of complex objects that arrive contin-
uously over time. We think that we have successfully answered the original question
formulated in Chapter 1 and achieved our objective: To enhance the CBR paradigm to
support the analysis of unsegmented sequences of observational data stemming from
multiple coincidental sources. Chapter 2 placed the thesis within the larger research
landscape and served to review in summary form much of the relevant material from
the literature. We showed how our research advances current state-of-the-art in CBR
along several dimensions. Additionally, our work has also adapted and integrated
seamlessly a variety of methods from distinct fields of study, such as knowledge rep-
resentation or decision theory. Nonetheless, we think that we have only given the
first steps to develop a better understanding of what we have coined ascase-based
sequence analysis. Thus, we say that we have only established a first model, called
Ceaseless CBR, for this fascinating undertaking. As we will see later on in this
Chapter, a number of issues still remain open that will surely lead us to some further
interesting research. We performed our research bearing in mind the construction of a
long-lived and highly autonomous agent endowed with advanced reasoning capabil-
ities and entrusted with mission-critical real-time decision-making tasks indynamic,
imprecise, andadversarialenvironments [MPR00a]. Concretely, we have addressed
a very challenging domain, intrusion detection alert triage. We have avoided to in-
troduce a large amount of constraints and assumptions that would have simplified
our problem into a more toy-like one. We have gone beyond theoretical work and
based on our new model, we have developed a first prototype of a practical applica-
tion: an agent-aided intrusion detection tool calledAlba (Alert Barrage) that assists
a network administrator’s decision making. We have also shown experimentally the
performance benefits of our approach. The alert reduction achieved has a direct and

CONTRIBUTIONS 221

measurable impact on manpower requirements needed to handle the unmanageable
output provided by current IDSes.

Our research has evolved along five major directions: (i) development of a repre-
sentational structure of sequential cases that support part-of and temporal dependen-
cies; (ii) specification of a dynamic sequence similarity; (iii) an efficient Ceaseless
CBR inference that exploits sequential cases and probabilities; (iv) a validation frame-
work for alert triage; and (v) a novel agent-aided intrusion detection tool. We list
below some of the major contributions of this thesis.

8.1.1 Sequential Cases

We have addressed the conceptual and representational issues concerned with the
knowledge structures that allow a case-based reasoner to analyze unsegmented se-
quences of complex objects that stem from automated sensors. One of the issues
that we were mostly concerned with was the hierarchical structuring of sequences by
means of compositional hierarchies. Our contribution in this aspect was threefold: an
alert model based on feature terms; actionable trees as predictive compositional hier-
archies for representing sequential cases; andSOID, a simple ontology for intrusion
detection.

First, as a part of this research we have created an unified data model to represent
alerts that are triggered by automated real-time systems that collect and interpret
sensor data in real-time and specially intrusion detection alerts. This has been a
challenging undertaking due to its inherent complexity. The alert model that we have
introduced allows us to keep our techniques independent of particular alert devices.
This model provides a taxonomic hierarchy that allow us to work at a higher level and
use abstraction to address several issues such as the generation of abstract cases that
we saw in Chapter 5. This alert model uses feature terms as the underlying formalism.
This alert model was mostly described in Chapter 3 where we also presented many
other definitions that form the foundations of our approach.

Second, we have introduced the notion of sequential case. A sequential case
is a compositional case where additionally a temporal order is established among
their parts. We have proposed to represent sequential cases by means compositional
hierarchies. Particularly, we have introducedactionable treesto represent sequences
of complex objects and reason in terms of partially observed sequences. An actionable
tree is a a Multi-Rooted Acyclic Graph (MRAG) with the semantics that (i) roots
symbolize alerts (observable symptom events), (ii) intermediate nodes (in the trunk
and crown) embody sequences of alerts (chunks), and (iii) the arcs represent part-
whole relationships as well as the likelihood of occurrence of the whole (sequence)
given the part (subsequence).

We have defined two kinds of temporal relationships: serial parts and parallel parts
that allow us to represent respectively totally-ordered sub-cases and sub-cases whose
order do not mind since they are interchaneable. For domains where reasoning in
terms of temporal intervals is essential, actionable trees could be easily extended to
manage Allen’s temporal logic establishing a node type for each interval type. As a

222 CONCLUSION AND FUTURE WORK

matter of fact, our serial and parallel nodes subsume the rest of interval types. We have
also embodied actionable trees in a representation that facilitates predictive inference.

We used a general model of likelihood that allows several schemes (deterministic,
probabilistic, temporal, etc) to model part-of strengths. This model is based on asso-
ciating a semiring structure with the part-whole relationships entailed by the arcs of
actionable trees. This model provided a simple mechanism for evidence propagation
in compositional hierarchies. Evidence propagation in taxonomic hierarchies was
succinctly introduced by Pearl [Pea88]. However, to the best of our knowledge no
one has provided a detailed model for evidence propagation in compositional hierar-
chies. Perhaps Pfleger’s thesis is the only work that we know that have pointed in that
direction [Pfl02]. The level of conceptual structure that a graphical representation
encodes is fundamental to determine its quality.

The conceptual structure of actionable trees is given by virtue of the homomor-
phism that exists between its graphical representation and the structure of the concepts
that represent (i.e., computer attacks). We have been mainly concerned with com-
positional hierarchies that emphasize the use of decoupled substructures. That is,
each substructure is assigned a local context reflecting independence from the rest
of substructures at the same level in the hierarchy. Actionable trees are well-suited
for representing the hierarchical structure of multi-stage attacks. At a higher level an
attack can be represented by a succession of high-level steps, high-level steps can be
decomposed in lower-level steps or atomic steps, each atomic step is supposed to be
detected automatically by host/network sensors that originate one or more alerts.

Thus, we say that an actionable trees encompass partonomic knowledge about at-
tacks. Reasoning in terms of partonomic knowledge is fundamental for many domains
where parts can be conjugated with other to create new wholes. But this aspect is par-
ticularly interesting in our domain application where often new multi-stage attacks are
created varying some parts of previous well-known attacks. From our point of view,
actionable trees offer two main advantages:local contextandarbitrary inference.
Sub-nodes provide a local context for their parts (alerts). Alerts of a sub-node are
decoupled form other alerts and sub-nodes in a composite multi-stage attack [Uta94].
Instead of simply allowing one-step forward prediction an actionable tree allows one
to predict any position of a sequence given information from one side/and or another
[Pfl02].

We say that actionable trees arehighly intuitive. They are easy-to-craft and un-
derstable by human experts. We address complex domains where sometimes it is
imposible for an agent to statistically/automatically learn/discover new cases, thus it
is desirable that an agent might be taught by being told. This can be achieved using
hand-designed knowledge structures easily understable by both an human expert and
artificial agent. For instance, for an intrusion detection system it is quit difficult to
discover new rare DoS attacks based on exploiting algorithmic deficiencies such as the
worse case of many data structures [Mci99, CW03b] (i.e., Quicksort [Knu98] can be
attacked by constructing worse case inputs that turns its complexity fromO(nlogn)
into O(n2)). Nonetheless, it is easy for a human expert to develop signatures for
detecting such attacks.

CONTRIBUTIONS 223

It also deserves attention to point out that in some sense actionable trees addressed
two main shortcomings of terminological logics or description logics: (i) the lack
of representation and reasoning facilities for part-of relations; and (ii) the limitations
to express uncertainty. Only few works have dealt with managing uncertainty and
description logic within an unified framework [KLP97]. We see our approach as a
first step to extend an object-centered representation language for knowledge mod-
eling such asNoos with compositional hierarchies and probabistic knowledge to
manage uncertainty. Actionable trees offer an admissible trade-off between knowl-
edge expressiveness and knowledge efficiency. Other knowledge structures, such as
context-free grammarsor bayesian networks, are by far much more expressive than
actionable trees. However, it is a price associated with the higher expressivity in
terms of operationability and learnability.

Third, we have introduced a simple ontology for intrusion detection, that allows
one to create a model of the system under protection so that qualified inferences can be
derived [MP03e]. This ontology provides a domain-specific representation language
that allows a sequence of alerts (alert stream) provided by a conventional IDS not
only to be readable but also understandable by a software agent. We have identified
four key sources of knowledge (networks, incidents, vulnerabilities, and alerts) to be
conceptualized and built a separate ontology for each of them using the knowledge
representation languageNoos [AP96]. We have pieced these partial ontologies to-
gether into a more global ontology calledSOID. One of the main obstacles for the
rapid development of higher-levels intrusion detection applications stems from the
absence of a common ontology that not only impedes to deal with computer security
incidents at a higher level of abstraction but also the collaboration among different
intrusion detection systems. Porras et al signaled three key challenges for the alert
management task [PFV02]: the absence of widely available domain expertise, the
time-consuming and expensive effort due to the large number of alerts, and the het-
erogeneity of the information produced by different information security devices.
SOID ontology copes with such challenges establishing well-defined semantics and
providing an homogeneous representation of expertise and facilitating the automation
by part of Alba of the alert management task. In other words,SOID allows Alba
to process information consistently and reason about an IDS alert stream at a higher
level of abstraction.

8.1.2 Dynamic Similarity

We have proposed and described a similarity measure for computing the similarity of
two sequences of objects that continuously adapts to data seen so far. Our dynamic
sequence similarity allows us to compare the input alert stream against the sequences
of alerts yielded by actionable trees. This similarity measure looks for the evidence
that a sequence of alerts in the alert stream and a sequential case are derived from a
common attack pattern (perhaps altered using new undetectable actions or exploit-
ing new vulnerabilities). Our similarity measure has two outstanding characteristics:
continuous adaption to data seen so far and promotion of rareness. We argued that the
context and the history in which comparison occurs is fundamental to pinpoint some

224 CONCLUSION AND FUTURE WORK

aspects of interests (such as rareness) of the sequences being compared. We took a
simple approach to solving this problem. We proposed a semi-global alignment that
uses a time-varying subsumption scoring scheme. This scoring scheme used a taxo-
nomic hierarchy and the frequency of occurrence to compute the score for each pair
of terms in the semi-global alignment. We saw how the score is computed using the
reciprocal of theOddswhat promotes the rareness of terms being compared. There
is a clear justification for this. Rare sequences of alerts can be more dangerous than
frequent ones. Thus, we say that our similarity provides a mechanism to promptly
advert their presence. Additionally, we have defined two operations:abductionand
neglectionthat allow us to deal respectively with lost and spurious alerts in the alert
stream. Another feature that distinguishes our approach is the fact that normalized
and non-normalized versions behave differently. The non-normalized similarity com-
putation gives preference to rare occurrences of alerts that are more indicative that
something new (unknown) is undergoing. When normalized the similarity lies be-
tween 0 and 1 and gives preference to complete occurrences. That is, sequences of
alerts that are completely included in the alert stream are promoted (ranked first) ver-
sus those that only occur partially. In Chapter 4, we provided a number of analyses
about a collection of real-world alerts that served two main purposes: to show how
our dynamic sequence similarity behaved over time and to gain some insights about
the population of alerts that we dealt with.

8.1.3 Ceaseless CBR

We have introduced a new CBR model, Ceaseless CBR, that supports as input a
non-segmented sequence of complex events that arrive over time corresponding to
coincidental problems. A distinguishing feature of our model with respect to the
mainstream CBR model is that instead of considering a sequential process composed
of four tasks to solve a new problem we model those tasks to be performed coinciden-
tally (in parallel). Moreover, in our model a CBR system is not passively awaiting the
arrival of a new problem but ceaselessly active gathering evidence to complete such
parallel tasks. Ceaseless CBR can be seen as a reminding-based explanation model
that facilitates the generation of plausible explanations in dynamic, imprecise, and
adversarial environments when situations are given by unsegmented sequences of ob-
servational data stemming from multiple coincidental sources [Lea95]. The objective
of Ceaseless CBR is to to find the best explanation of the alerts under examination.
In other words, it allows us to know whether an undesired situation (an attack, fault,
etc) has occurred or not and if so to indicate the multiple responsible sources (if more
than one intervened) or at least which ones are the most plausible.

The Ceaseless CBR model enables two types of problem solving tasks. On the
one hand our model facilitates diagnostic inference. That is to say, the isolation and
identification of undesired situations. Comparing the sequence of symptom events
that bring the system to the current situation with past experiences and pinpointing
the most probable causes of an undesired situation. An appropriate diagnostic can
not be provided based only on a single event but on an aggregation function over a
number of events that have to be correlated. Diagnosing what have already happened

CONTRIBUTIONS 225

has crucial importance to obtain insights and understand the causes that conveyed to
an undesired situation and try to prevent them or similar ones from ocurring again in
the future. However, predicting future events is the only way to avoid undesired situ-
ations and gain valuable time to prepare an appropriate response. Thus, on the other
hand, our model enables predictive inference. That is, it allows the transformation of
systems from merely reactive into proactive. Making predictions requires inferring
situations from observed ones. Partially matching a sequential case allows us to en-
gage predictive inference and determine next alerts that should occur promptly. An
important particularity of compositional and sequential cases is that they enable this
kind of arbitrary predictions.

However, in the dynamic, imprecise, and adversarial domains we cope with—
where nothing is certain except change—predictive inference is a so tremendous
difficult task that even surpass human intelligence—the only thing predictable is un-
predictability. These domains are so complex that while we may be able to understand
the present and explain the past, we never be able to predict the future with the same
level of confidence. Even so, our model provides a high preemptive ratio as shown
experimentally in Chapter 7.

Ceaseless CBR provides several capabilities for deriving inferences from a par-
ticular partial problem description that is broken up in small pieces and a sequential
case base. These are basic low level constructs on top of which more elaborate rea-
soning methods can be developed. How to integrate these constructs with high level
reasoning methods constitutes one of the main focus of our future work as we will
see later on. We have also seen the capability of Ceaseless CBR to discover new
sequential cases both creating them from scratch and adapting previously existing
ones (discovered in former iterations). This turns out to be an additional advantage
of our approach since it does not require to be provided with an initial sequential
case-base. That is, Ceaseless CBR automatically acquires sequential cases on-the-fly
as the analysis of the sequence of intrusion alerts proceeds [VC93].

To conclude, we think that this novel CBR model is particularly valuable for real-
world domains where the monitoring of real-time processes have been automated
by means of sensors but (in spite of that automation) they still require continuous
human oversight. Overseeing these processes is often extremely difficult due to the
huge amounts of sequential data that non-intelligent sensor produce. However, fur-
ther understanding of the reasoning processes of expert security analysts, political
researchers, network troubleshooters, etc to correlate events will be needed to pro-
vide more elaborate processes (such as anticipatory planning) able to initiate proper
counter-measures.

8.1.4 Alert Triage Evaluation

We chose alert triage in intrusion detection as the application domain to conduct an
exploratory analysis of the techniques proposed and to evaluate their performance.
In Chapter 1, we enumerated the problems that this domain poses and specified in
detail the problems that our Ceaseless CBR model tackles. This domain requires to
efficiently and incrementally recognize hidden partially ordered plans from multiple

226 CONCLUSION AND FUTURE WORK

concurrent attackers that are represented by large alphabets of complex objects over-
lapped into an on-line sparse stream [GG01]. Assigning the correct priority to alerts
demands the ability to recognize subtle relationships between alerts so that they can
be conveniently correlated and prioritized together. An effective triage implies to be
able to predict the malignancy, the innocuousness or the falsehood of alerts.

The evaluation of intrusion detection systems is specially difficult compared to
other application domains for a number of reasons.

1. First of all, there is no standardized methodology. As a matter of fact, the first
attempts to create a standard evaluation scenario have stirred up some contro-
versy. As we pointed out in Section 2.8, this area needs much more research
and experimentation before a framework for the evalutaion of IDSes can be
widely accepted. We have introduced a formal framework for the evaluation
of alert triage in Chapter 7 [MP03c]. To the best of our knowledge nobody
has provided a formal method of analysis for the evaluation of this particular
component of IDSes. In fact the first experimental validation of correlation
systems was recently published [HRT03].

2. Second, as we also saw in Section 2.8, one of the most difficult issues when
measuring the performance of an IDS is defining a meaningful measure unit.
In alert triage however the unit is clear. It is “alert”. Thus, we measured
the performance of our techniques in terms of the number of alerts correctly
classified. In Chapter 6, we discussed about the inappropriateness of accuracy
as performance measure, reviewed other performance measures, and introduced
t-areameasure.

3. Third, practically there is no data-sets available for the evaluation of intrusion
detection systems. Except for the polemic ones provided by MIT Lincoln
Laboratory [LFG00, McH00] and the attack-intensiveDefCon capture the flag
[CAB03]. These data-sets compile traffic that includes multiple attacks but
not the corresponding alerts provided by an IDS. We have collected three alert
databases (Rustoord, Naxpot, andHuckleberry) in real environments along
more than 15 months (in total) of continuous vigilance.

4. Four, labeling exemplars is extremely complex. Assigning the proper malig-
nancy, innocuousness, or falsehood of alerts is a hard task given the relative
environment-dependency of alerts that we mentioned in Chapter 1. Thus, to
guarantee the repeatability (and diversity) of our experiments we devised a
method that assigns the malignancy of each alert emulating a level of exposure
of the system under surveillance.

Our evaluation framework not only allows one to select the best alert triage system
but also to make practical choices when assessing different components of alert triage.
We have characterized alert triage as a detection task such that for each alert in
the alert stream an action is taken{notification,¬notification} in function of
a previous judgement on its malignancy. ROC analysis constitutes the basis of our

CONTRIBUTIONS 227

framework. Thus, we tried to provide a compact explanation of ROC elements and
some alternatives in Chapters 7 and 2 respectively. ROC analysis allows one to
establish when a detection system has the best performance indepently of distribution
of the condition of interest and the cost of misdetections. We have seen how in
these circumstances choosing among certain alternatives is difficult because different
measures to estimate the accuracy do not agree. We introduced thet-areameasure
for this purpose. T-area is the area of the quadrilateral formed by the segments
connecting the ROC point of interest and all the singular points of the ROC space
except the perfect detection system. We compute t-area using Heron’s formula for
calculating the area of a triangle.

Then, we have also shown that when misdetection costs are known a proper de-
cision can be made using alternatives such as explicitly representing expected cost.
Finally, we also saw that when we dealt with imprecise environments then the optimal
alert triage detection system lain on the edge of the convex hull of ROC points that
represented the detection system in a ROC space. The convex hull that dominated
all the ROC points of a set of alert triage systems determined the group of best alert
triage systems to confront imprecise environments.

The experiments conducted were designed to determine the influence of urgency
in the performance of Ceaseless CBR. We have conducted two main blocks of exper-
iments. In the first one, we did not consider urgency at all. That is, Ceaseless CBR
was configured to explain all alerts in the current window right away. In the second
block we analyzed the influence of urgency. We measured the efficiency of Cease-
less CBR along five dimensions: (i) performance according to the formal framework
explained above; (ii) applicationÕs CPU time requirement; (iii) multi-stage corre-
lation (i.e., new sequential cases discovered) (iv) predictiveness or preemptive ratio
(i.e., number of alerts whose subsequent occurrence is properly predicted); and alert
reduction (i.e., weekly alert load reduction). We have also obtained promising results
after performing some preliminary experiments triaging the alerts generated bySnort
standard configuration using thecapture the flagdata-set1 [CAB03].

8.1.5 Agent-Aided Intrusion Detection

We have also investigated how human diagnostic performance can be improved by
means of a software agent that makes decisions on behalf of a human diagnostician
(security manager or SSO). We developed a first prototype of a cognitive assistant,
Alba, that helps to reduce the burdensome output produced by current IDSes and
contributes to minimize the number of false positives due to innocuous attacks and
to increase the predictive power for malicious multi-stage attacks.

Ideally, the ultimate goal of secure network administration is to make the three
windows (vulnerability, penetrability and compromisibility) of each possible intru-
sion converge into a single point in time [MP03a]. Pursuing that objective is a
manpower intensive process. Moreover, the astounding growth of networks and the

1www.defcon.org

228 CONCLUSION AND FUTURE WORK

speed at which Internet software has been developed and released inevitably has led
to an exponential growth in the number of current vulnerabilities and exposures and
therefore in the complexity of network administration. Only the smart automation of
network administration tasks will alleviate the ever increasing manpower needed for
secure network administration.

Using current generation of IDSes, SSOs are continuously overwhelmed with a
vast amount of log information and bombarded with countless alerts. The capacity
to tolerate false positives of a human SSO and correctly respond to the output of
current IDSes is questionable. There are those who even postulate that traditional
IDS not only have failed to provide an additional layer of security but have also added
complexity to the security management task. Therefore, there is a compelling need
for developing a new generation of tools that help to automatize security management
tasks such as the interpretation and correct diagnosis of IDSes output. The fact of
the matter is that as long as the number of networked organizations proliferates and
the number of computer security threats increases this need accentuates. To make the
aforementioned tasks more bearable we have envisaged a new generation of intrusion
detection tools under the heading ofagent-aided intrusion detection. Some recent
works can be seen as the prelude of this tendency [SZ00, CHS00, GPK99]. As we will
see below, agent-aided systems (also known as agent-based systems or multi-agent
systems) constituted an active area of our previous research.Alba can be seen as a
first example of an agent-aided intrusion detection tool.Alba mediates between the
alarm element—such as is considered in a generic architectural model of an IDS—
and the corresponding SSO.

As a matter of fact, more and more artificially intelligent systems are being struc-
tured as autonomous agents operating in complex, real-world environments, where
each agent has some independent capability for acting, reasoning, and learning. How-
ever, understanding the requirements of autonomous agents operating in complex,
real-world environments, and developing a science of agent design grounded in this
understanding is still an incipient area of research. In Chapter 7, we have described
the companion machinery needed by a ceaseless case-based reasoner to solve real
problems and that allowed us to explore our techniques.

The appropriateness of intrusion detection alert triage for evaluating the signifi-
cance of Ceaseless CBR comes from the compelling challenges that an application in
this domain faces. As a matter of fact, research in the area of intrusion detection sys-
tems is receiving much attention from academia, industry, and government. ÊSince
these systems pose many complex issues, there are many open problems for research
and opportunities for making significant contributions. Finally, let us to express two
interrelated considerations of interest:

1. We did not aim at developing more systematic IDSes but at using existing ones
more efficiently, reducing the burden that they produce in terms of false alerts
and providing an early warning on dangerous multi-stage attacks. Similarly to
Julisch and Dacier’s recent work [JD02].

2. To improve overall system security, our techniques should form part of larger
ensemble. Namely, the success of Ceaseless CBR for the diagnosis and predic-

FUTURE WORK 229

tion of undesired situations not only depends on the proposed CBR processes
but also on effectively integrating them with other supplementary techniques
into a larger information security ensemble.

Although the usefulness of our approach has been shown in a concrete domain
application we think that there are a number of domains that could also benefit from
the techniques proposed.

8.2 FUTURE WORK

We envision three main lines of research. Firstly, the extension of the basic compo-
nents offered by our model to facilitate more elaborate problem solving tasks such
adversarial plan recognition. Secondly, the evolution of our model to contemplate au-
tomated monitoring agents able to communicate and coordinate each other enabling
in turn high-level collaboration. Thirdly, we will investigate how completely delegate
problem determination tasks to the own computer system. Next, we describe these
research lines in further detail.

8.2.1 Adversarial Plan Recognition

We think that at a higher level of abstraction our Ceaseless CBR model establishes
the foundations for the construction of plan recognition systems in multi-agent set-
tings. Plan recognition is the process of deducing an agent’s intentions from observed
actions. Plan recognition hypothesizes the most likely goals an agent may have and
tries to gather evidence that corroborate or refute them. To facilitate this task, an
agent’s goals are decomposed into sub-goals that correspond to plans that are easily
recognizable. Part of the process of recognition implies reasoning in terms of which
plans enable the consecution of others and how compounding distinct plans together
to achieve composite goals. Three kinds of plan recognition can be distinguished
[CPA82, GG01]:

Keyhole Plan Recognition. In this kind a recognizer agent watches an observed
agent that is not aware or simply is not obstructing the observation of his
actions.

Intended Plan Recognition. In this case, the observed agent cooperates facilitating
the recognition. Namely, the observer actively collaborates so that the recog-
nizer agent understands his actions.

Adversarial Plan Recognition. In this modality, the observed agent is considered
hostile since he aims actively at interfering the recognition of his actions. This
kind of plan recognition violates the assumptions required by the the other two
kinds. In spite of their apparent applicability in domain such as military coun-
terplanning, game-playing, or computer security, adversarial plan recognition
systems have been rarely investigated [DR98, GG01, Ker03].

230 CONCLUSION AND FUTURE WORK

There exist several plan recognition approaches:

Deductive approaches use rules to capture the steps of plans. This approach was used
in the very beginning of plan recognition research by Schmidt et al [SSG78].

Abductive approaches see plan recognition as a specific form of the general problem
of abductionsuch as Charniak proposed [CM85, GG01]. We briefly overview
abductive reasoning in Section 2.6.2.

Graph covering approaches represent plans by means of graphs. Kauz and Allen
proposed to recognize plans computing the minimum set cover of the plan
graphs [KA86]. Their work laid the groundwork of most of the plan recogni-
tion approaches in the literature. As we viewed respectively in Sections 2.6.1
and 2.6.2, Katzela and Schwartz designed a collection of fault localization al-
gorithms to find the best explanation of a set of alerts [KS95]; and Peng and
Reggia introduced a formal theory of diagnostic inference namedparsimonious
covering theory[PR90] both based on the samecoveringconcept.

Stochastic approaches were introduced by Charniak and Goldman who proposed
to carried out the abductive process involved by plan recognition by means of
probabilistic inference [CG93]. Albrecht et al also proposed a bayesian model
in the context of aventure games [AZN98]. Pynadath and Wellman introduced
probabilistic state-dependent grammars(PSDG) to represent an agent’s plan
generation process in the context of traffic monitoring and air combat [PW00].
A problem of many plan recognition approaches is that they only consider a list
of equally plausible hypotheses. That is, all hypotheses that are compatible with
the events observed so far are treated all the same. However, certain domains
require a mechanism that allows one to finally come to a suitable explanation.
Stochastic approaches overcome this issue assigning a measure that indicates
the likelihood that a given hypothesis (explanation) represents the correct plan
[CG93, Bau96].

Grammatical parsing approaches model plan recognition establishing a correspon-
dence between plans and context free grammars and then casting the plan recog-
nition problem as parsing in a grammar [Sid85, Vil90]. The main advantage
of parsing approaches stems from their efficient implementations. However,
when the input corresponds to an interleaving of actions such efficiency de-
creases significantly. The major drawback of parsing based approaches is that
plans must be totally ordered. This causes an exponential increase in the size
of the plan library (since all total orderings over a partially ordered plan have
to be represented) [GG01].

Plan execution The above plan recognition models are unable to satisfactorily: (i)
deal with interleaving of actions stemming from multiple agents; (ii) recognize
partial-ordered plans; and (iii) handle situations where actions have not been
observed yet. To overcome such shortcomings Goldman et al introduced a
new theory of plan recognition centered around a model of plan execution

FUTURE WORK 231

rather than on plans as static objects or rules that describe the recognition
process [GGM99]. This approach is able to handle unsegmented sequences of
observational data stemming from multiple coincidental sources (sequences of
observations of partially-ordered, interleaved plans). This approach is closely-
related to Ceaseless CBR. We practically address the same issues (multiple
agents, interleaving of actions, adversarial situations, etc). As we saw in further
detail in Chapter 5 of the thesis, actionable trees behave according to Goldman
et al’s theory. Moreover, Geib and Goldman have also put their theory into
practice in the context of intrusion detection [GG01]. They proposed to extend
IDS with artificial intelligence methods for plan recognition [GG01]. They
argued that plan recognition is of paramount importance for predicting the
future actions of attackers and timely planning convenient responses. Plan
recognition can provide current IDSes with the capabilities of predicting attacks
and facilitating an early warning. They modeled adversarial plan recognition
as opposed to keyhole and intended plan recognition [SSG78, CPA82]. In
adversarial plan recognition, as we mentioned above, the presence of hostile
agents instead of cooperative agents make much more complex recognizing
other agents’ intentions. They have extended their previous work on plan
recognition [CG93, GGM99] and provided an algorithm that coped with the
severe conditions of the network security domain [GG01].

Case-basedMany plan recognition systems require complete plan libraries that have
to be handcrafted by human experts beforehand [KA86]. This manual con-
struction of plan goes unmanageable in real-word scenarios. Case-based plan
recognition has two main advantages: (i) the utilization of a case-base contain-
ing previous recognized plans avoids the construction of plans starting from
scratch; and (ii) the plan library can be lazily constructed from actual data as the
recognizer observes other agent(s). A number of CBR approaches have dealt
with plan recognition [BCD94, CKD94, KC01, Ker03, FC03a]. However, to
the best of our knowledge they have addressed neither adversarial conditions
nor the issues that we mention below.

Devaney and Ram have proposed a plan recognition system in a real-world domain
involving multiple agents performing maneuvers in training battles [DR98]. Devaney
and Ram have noted that current plan recognition systems make three major assump-
tions that make them unsuitable for very complex real-world domains such as training
battles or intrusion detection [DR98]: (i) the observed actions stem from a single agent
that acts alone rather than multiple autonomous agents that act autonomously; (ii) the
observations are complete and correct instead of noisy and incomplete; (iii) the ac-
tions occur over relatively short period of times; and (iv) the agents under observation
only can perform a limited number of actions. These assumptions cause that many
approaches use exhaustive search or probabilistic methods that are computationally
intensive [DR98]. As we saw in Chapter 1, a number of real-world domains violate
all these assumptions. Ceaseless CBR is well-suited to cope with those real-world do-
mains. In fact, the relevance of our undertaking stems in part from the small number
of approaches that have explore those challenging domains before.

232 CONCLUSION AND FUTURE WORK

Our proposal not only aims at extending Ceaseless CBR to recognize an adver-
sary’s intentions but also at using CBR to dynamically construct plans that obstruct
adversary’s actions. That is to say, to extend Ceaseless CBR for anticipatory planning
purposes.

8.2.2 Distributed Ceaseless CBR

Intelligent agents that cooperate in dynamic, imprecise, and adversarial domains re-
quire representation, inference, and learning mechanisms that currently are unavail-
able under a unified framework or are still very much in their infancy. We propose
to address this compelling need extending our CBR model to a multi-agent scenario.
That is to say, a multi-agent approach where Ceaseless CBR agents could cooperate
each other to solve more complex problems (e.g., problems that are inherently dis-
tributed) or to improve its individual competence and performance. Ceaseless CBR
agents could share information at different levels: ranging from observational data
or case activations to explanations and sequential cases. We have previously inves-
tigated techniques and mechanisms that lay the groundwork of this future line. For
example, DistCBR and ColCBR [PAM96, PAM97, MPA99], conversation protocols
[MPR00b], interagents [MPR98, MPR00a], etc.

Agent-based systems provide a way of conceptualizing sophisticated software
applications that face problems involving multiple and (logically and often spatially)
distributed sources of knowledge. In this way, they can be thought of as computational
systems composed of several agents that interact with one another to solve complex
tasks beyond the capabilities of an individual agent.

The development of agent-based systems can be regarded as a process composed
of two well-defined, separate stages concerning respectively:

the agents’ logics from the agents’ inner behavior (knowledge representation, rea-
soning, learning, etc.) to the agents’ social behavior responsible for high-level
coordination tasks (the selection, ordering, and communication of the results
of the agent activities so that an agent works effectively in a group setting
[Les98, Jen95]).

the agents’ interactions taking place at several levels: content level, concerned with
the information content communicated among agents; intentional level, ex-
pressing the intentions of agents’ utterances, usually as performatives of an
agent communication language (ACL), e.g., KQML, FIPA ACL, etc.; conver-
sational level, concerned with the conventions shared between agents when
exchanging utterances; transport level, concerned with mechanisms for the
transport of utterances; and connection level, contemplating network protocols
(TCP/IP, HTTP, etc.).

Notice that nowadays a large amount of time during the development of agent-
based systems is devoted to the management of the aforementioned time-consuming,
complex agents’ interactions. Since most of these appear to be domain-independent,
it would be desirable to devise general solutions at this development stage that can

FUTURE WORK 233

be subsequently reused for the deployment of other multi-agent systems. In our
previous work we proposed an infrastructure that eases the construction of agent-based
systems by taking charge of the cumbersome interaction issues inherent to this type
of systems [MPR00b, MPR00a]. Such infrastructure relied upon two fundamental
elements: conversation protocols, coordination patterns that impose a set of rules on
the communicative acts uttered by the agents participating in a conversation (what
can be said, to whom, and when), and interagents, autonomous software agents that
mediate the interaction between each agent and the agent society wherein this is
situated. Very importantly, interagents employ conversation protocols for mediating
conversations among agents, and so the management of conversation protocols is in
fact their raison d’être.

It could be said that our former research addressed agents’ social behavior and
interactions whereas the research presented throughout this thesis tackles with agents’
inner behavior.

8.2.3 Autonomous Problem Determination

We hope that our work contributes to the development of automated networked sys-
tems that shift problem determination and resolution from endpoints (human users) to
the network itself. More and more information systems are currently being devised
to be survivable (i.e., to be able to provide basic services in spite of the presence
of attacks and failures and recover full services gracefully [EFL97, EFL99, LF99]).
The goal of this future research will be to enable a computer network to become self-
healing (self-diagnosing and self-configuring) so that the network is more efficient,
more reliable and responds better to unanticipated problems. This model has also
coined by the industry as autonomic computing for its resemblance with the human
body’s autonomic nervous system2. We will investigate how to evolve our techniques
to become part of autonomic problem determination tools with self-healing capa-
bilities. Specifically, Ceaseless CBR could be suitable to perform the analysis of
sensed event data within an autonomic manager control loop architecture as well as
a symptom service able to compile sequential cases that indicate problems and their
possible causes and remedies. Automatic problem determination provides at least
two clear advantages: it increases IT personnel productivity and reduces downtime
and corresponding revenue losses.

This thesis has examined fundamental issues for enhancing CBR systems. Particu-
larly, some of the issues that arise when a case-based reasoner has to solve problems
that are described in terms of unsegmented sequences of events that partially reflect
the state of a dynamically changing environment. The major contribution of this thesis
is a new CBR model for dealing with temporally-evolving unsegmented sequences
of sensor data. The most salient features of this model are a novel representation
of sequential cases, a dynamic similarity between sequences, and a ceaseless CBR

2www.alphaworks.ibm.com/autonomic

234 CONCLUSION AND FUTURE WORK

process that uses a decision theoretic approach to establish the urgency of each alert
and prioritize it in accordance. We have also provided an exploratory analysis of a
real-world domain.

Ceaseless CBR is specially useful for the construction of correlation and aggre-
gation components—software components that handle alerts triggered by automated
real-time processes. Moreover, we have developed a formal framework for the eval-
uation of alert triage and presented a first research prototype that incorporates the
techniques devised throughout the thesis. We have also compiled real-world data
during almost a year and created 3 data-sets that have allowed us to test satisfactory
our approach.

We think that the research provided throughout this thesis accomplish satisfac-
tory our initial objective: to enhance the CBR paradigm to solve situations that are
expressed by means of unsegmented, noisy sequences of complex events that arrive
continuously over time. The knowledge structures, methods and techniques proposed
contribute to wide the spectrum where the CBR paradigm can be applied. Our em-
pirical study demonstrates the feasibility of our approach and the adequacy of CBR.
Part of our future work will expand on our previous research on communication and
coordination among multiple agents and cooperative case-based reasoning. We en-
vision a cooperative framework where severalAlba assistants exchange sequential
cases to improve overall performance. We have already established the basis for such
framework on our previous work [PAM97, MPA99].

This Chapter pinpointed the novelty and contributions of the work developed, de-
scribed the cutting-edge boundaries of our research, and speculated about future
research lines.

Appendix A
Data sets

This Appendix describes the data used for experiments in the thesis. The three real-
world scenarios where our data-sets where compiled are:

Rustoord Local area network composed of 5 computers (3 running Windows OS, 1
running Linux RedHat, 1 running Mac OS X) with a permanent DSL connection
managed by a 3com router. We used 1 Snort sensor protected by the router
port-map configuration.

Naxpot This scenario consisted of a target network with more than 200 hosts segre-
gated into 3 sites with one local are network each. A wide area network shared
between 3 cooperating offices, internal corporate network, offering multiple
services to the Internet. 2 IDS sensors: one on a perimeter network that is
protected by a firewall and offered services to the Internet and one before the
external firewall on a direct link to the Internet.

Huckleberry Local area network composed of 3 iMac computers with a perma-
nent cable-modem connection. Originally the IDS sensor was deployed in a
perimeter network protected by a firewall but due to a misconfiguration error
the sensor was finally on a direct link to the Internet.

235

236 DATA SETS

Rustoord data set characteristics

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Days

N
um

be
r

of
 a

le
rt

s

Alert occurrence time graph

Alerts 31483
First alert Oct 6th, 2002 at 22:48:04
Last alert Jan 26th, 2003 at 14:25:06
Time interval 111d:15h:37m:02s
Average frequency 283.63 alerts/day
Unique alerts 90
Source IP addresses 650
Destination IP addresses 230
Unique IP links 934
TCP source ports 5446
UDP source ports 0
TCP destination ports 1780
UDP destination ports 0
TCP traffic 95%
UDP traffic 0%
ICMP traffic 5%

Fig. A.1 Rustoord data set characteristics

237

Rustoord most frequent alerts

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

x 10
4

0%

16%

32%

48%

64%

79%

95%

Rank

F
re

qu
en

cy

1 WEB-IIS cmd.exe access 12050 38%
2 WEB-ATTACKS netcat command attempt 3643 12%
3 WEB-CGI redirect access 3145 10%
4 sppstream4: STEALTH ACTIVITY (nmap XMAS scan) detection 3084 10%
5 ICMP Destination Unreachable (Communication Administratively Prohibited)1636 5%
6 WEB-ATTACKS cc command attempt 1510 5%
7 WEB-IIS CodeRed v2 root.exe access 1279 4%
8 WEB-CGI calendar access 1198 4%
9 X11 outbound client connection detected 766 2%

10 WEB-MISC /doc/ access 606 2%

Fig. A.2 Rustoord most frequent alerts

238 DATA SETS

Naxpot data set characteristics

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

Days

N
um

be
r

of
 a

le
rt

s

Alert occurrence time graph

Alerts 204977
First alert Nov 11th, 2002 at 12:11:52
Last alert Jul 18th, 2003 at 20:06:53
Time interval 242d:07h:55m:01s
Average frequency 847 alerts/day
Unique alerts 331
Source IP addresses 22112
Destination IP addresses 394
Unique IP links 45429
TCP source ports 27915
UDP source ports 3825
TCP destination ports 3974
UDP destination ports 6
TCP traffic 87%
UDP traffic 13%
ICMP traffic 0%

Fig. A.3 Naxpot data set characteristics

239

Naxpot most frequent alerts

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Rank

F
re

qu
en

cy

0%

10%

20%

29%

39%

49%

59%

68%

78%

88%

98%

1 WEB-MISC http directory traversal 96149 47%
2 MS-SQL Worm propagation attempt 25510 12%
3 SCAN SOCKS Proxy attempt 25437 12%
4 (spprpc decode) Incomplete RPC segment 17147 8%
5 SCAN Proxy (8080) attempt 9380 5%
6 SCAN Squid Proxy attempt 7719 4%
7 (spprpc decode) Fragmented RPC Records 4154 2%
8 ATTACK RESPONSES 403 Forbidden 3198 2%
9 SCAN nmap TCP 1945 1%

10 WEB-MISC intranet access 1711 1%

Fig. A.4 Naxpot most frequent alerts

240 DATA SETS

Huckleberry data set characteristics

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3
x 10

4

Days

N
um

be
r

of
 a

le
rt

s
Alert occurrence time graph

Alerts 219886
First alert Apr 20th, 2003 at 17:14:51
Last alert Aug 10th, 2003 at 13:53:04
Time interval 111d:20h:38m:13s
Average frequency 1980.95 alerts/day
Unique alerts 203
Source IP addresses 573
Destination IP addresses 90
Unique IP links 687
TCP source ports 15731
UDP source ports 1273
TCP destination ports 30
UDP destination ports 7
TCP traffic 10%
UDP traffic 90%
ICMP traffic 0%

Fig. A.5 Huckleberry data set characteristics

241

Huckleberry most frequent alerts

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Rank

F
re

qu
en

cy

0%

9%

18%

27%

36%

45%

55%

64%

73%

82%

91%

1 MISC UPNP malformed advertisement 166534 75.8%
2 WARNING: Not IPv4 datagram! 29158 13.3%
3 SCAN FIN ÊÊ ÊÊ attempted-recon 18912 8.6%
4 WEB-IIS cmd.exe access 1108 0.5%
5 SNMP public access udp 1045 0.5%
6 WEB-IIS ISAPI .ida attempt 513 0.2%
7 MS-SQL Worm propagation attempt 293 0.1%
8 BAD TRAFFIC 0 ttl 254 0.1%
9 WEB-MISC /doc/ access 189 0.1%

10 WEB-IIS CodeRed v2 root.exe access 179 0.1%

Fig. A.6 Huckleberry most frequent alerts

242 DATA SETS

Oct02 Nov02 Dec02 Jan03 Feb03
0

200

400

600

800

1000

1200

1400

1600

1800
Rustoord

Time

S
N

O
R

T
 S

ig
na

tu
re

 ID

Fig. A.7 Scatter plot of alert signature identifier against time forRustoord data-set.

243

Jan03 Apr03 Jul03
0

500

1000

1500

2000

2500
Naxpot

Time

S
N

O
R

T
 S

ig
na

tu
re

 ID

Fig. A.8 Scatter plot of alert signature identifier against time forNaxpot data-set.

244 DATA SETS

May03 Jun03 Jul03 Aug03
0

500

1000

1500

2000

2500
Huckleberry

Time

S
N

O
R

T
 S

ig
na

tu
re

 ID

Fig. A.9 Scatter plot of alert signature identifier against time forHucklebery data-set.

245

Oct02 Jan03 Apr03 Jul03
0

500

1000

1500

2000

2500
Rustoord, Naxpot, and Huckleberry

Time

S
N

O
R

T
 S

ig
na

tu
re

 ID

Rustoord
Huckleberry
Naxpot

Fig. A.10 Scatter plot of alert signature identifier against time for all data-sets.

246 DATA SETS

Checking Zipf’s Law in Rustoord, Naxpot, and Huckleberry data sets

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

12000

14000

Rank

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

10

Rank

F
re

qu
en

cy

(a) (b)

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Rank

F
re

qu
en

cy

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Rank

F
re

qu
en

cy

(c) (d)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18
x 10

4

Rank

F
re

qu
en

cy

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Rank

F
re

qu
en

cy

(e) (f)

Fig. A.11 Checking Zipf’s Law in Rustoord, Naxpot, and Huckleberry data sets. (a), (c),
and (e) plot the alert frequency in rank order for Rustoord, Naxpot, and Huckleberry data sets
respectively obtaining a charateristic hyperbolic shape for the three of them. (b), (d), and (f)
show the same data plotted on logarithmic scales.

2
Acronyms

ACBARRS A Case-Based Reactive Robotic System

ACCs Aggregation and Correlation Components

ACID Analysis Console for Intrusion Databases

ACL Agent Communication Language

Alba ALert BArrage

AI Artificial Intelligence

AOI Attribute-Oriented Induction

AT Actionable Tree

ATTG Automatic Trouble Ticket Generator

AUC Area Under the Curve

BN Bayesian Network

CH Compositional Hierarchy

CBR Case-Based Reasoning

CVE Common Vulnerabilities and Exposures

DBN Dynamic Bayesian Network

247

248 ACRONYMS

DET Detection Error Tradeoff

DM Decision Maker

DoS Denial of Service

EM Expectation Maximization

FN False Negatives

FNF False Negative Fraction

FP False Positives

FPF False Positive Fraction

HMM Hidden Markov Model

HTN Hierarchical Transition Network

IAM Interactive Activation Model

ICUs Intensive-Care Units

IID Identically Independently Distributed

IDS Intrusion Detection System

IDWG Intrusion Detection Working Group

KB Knowledge-Based

MAFTIA Malicious and Accidental Fault Tolerance for Internet Applications

MAP Maximum A-Posteriori Probability

MCL Macintosh Common Lisp

MDL Minimum Description Length

MEP Most-Probable Explanation

Meta-XP Meta-Explanation Patterns

ML Machine Learning

MCI Mass Casualty Incidents

MRAG Multi-Rooted Acyclic Graph

NERD Network Entity Relationship Database

NLP Natural Language Processing

249

NN Neural Network

NPV Negative Predictive Value

NR Negotiation Retrieval

ORFs Open-reading Frames

PAT Predictive Actionable Tree

PCH Predictive Compositional Hierarchies

PFSM Probabilistic Finite State Machine

Poset Partially Ordered Set

PSDG Probabilistic State-Dependent Grammars

PPV Positive Predictive Value

PPS Prediction by Partial Subsumption

PR Preemptive Ratio

RL Reinforcement Learning

ROC Receiver Operating Characteristic

SINS Self-Improving Navigation System

SOID Simple Ontology for Intrusion Detection

SSO Site Security Officer

TN True Negatives

TNF True Negative Fraction

TP True Positives

TPF True Positive Fraction

TTSs Trouble Ticket Systems

UUUP Unbounded Unsegmented Unsupervised Prediction

XPs Explanation Patterns

References

AAD03. Thomas A. Alspaugh, Annie I Antón, and Laura J. Davis. “An Empirical
Study of Scenario Similarity Measures.” Technical Report UCI-ISR-03-7,
Institute for Software Research, 2003.

Aam91. Agnar Aamodt.A Knowledge-Intensive Approach to Problem Solving
and Sustained Learning. PhD thesis, Norwegian Institute of Technology,
Univesity of Trondheim, 1991.

Aam94. Agnar Aamodt. “Explanation-Drive Case-Based Reasoning.” In S. Wess,
K.D. Althoff, and M. Richter, editors,Topics in Case-Based Reason-
ing, number 837 in Lecture Notes in Artificial Intelligence, pp. 274–288.
Springer-Verlag, 1994.

Aam95. Agnar Aamodt. “Knowledge Acquisition and Learning by Experience:
The Role of Case-Specific Knowledge.” In Y. Kodratoff and G. Tecuci,
editors,On Integration of Knowledge Acquisition and Machine Learning.
Academic Press, 1995.

AB95. J. Anigbogu and A. Belaid. “Hidden Markov Models in Text Recognition.”
International Journal of Pattern Recognition and Artificial Intelligence
(IJPRAI), 9(6):925–958, 1995.

ABM01. David W. Aha, Len Breslow, and Hector Muñoz-Avila. “Conversational
Case-Based Reasoning.”Applied Intelligence, 14(1):9–32, 2001.

251

252 REFERENCES

Abr96. J. R. Abrial.The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

ABT99. R. Agarwal, G. Bruno, and M. Torchiano. “Modeling Complex Systems:
Class models and instance models.” InProceedings International Confer-
ence on Information Technology (CIT’99), 1999.

ACD01. Dominique Alessandri, Christian Cachin, Marc Dacier, Oliver Deak, Klaus
Julish, Brian Randell, James Riordan, Andreas Tscharner, Andreas Wespi,
and Candid Wüest. “Towards a Taxonomy of Intrusion Detection Systems
and Attacks.” Technical report, MAFTIA deliverable D3. Project IST-
1999-11583, 2001.

ACF99. Julia Allen, Alan Christie, William Fithen, John McHugh, Jed Pickel,
and Ed Stoner. “State of Practice of Intrusion Detection Technologies.”
Technical Report CMU/SEI-99-TR-028, CERT, 1999.

Ada00. Jean-Marc Adamo.Data Mining for Association Rules and Sequential
Patterns. Springer-Verlag, 2000.

AFG96a. A. Artale, E. Franconi, and N. Guarino. “Open problems with part-whole
relations.” InProceedings of 1996 International Workshop on Description
Logics, Boston, MA, pp. 70–73, 1996.

AFG96b. Alessandro Artale, Enrico Franconi, Nicola Guarino, and Luca Pazzi.
“Part-Whole Relations in Object-Centered Systems: An Overview.”Data
Knowledge Engineering, 20(3):347–383, 1996.

AFV02. D. Andersson, M. Fong, and A. Valdes. “Heterogeneous Sensor Corre-
lation: A Case Study of Live Traffic Analysis.” InIEEE Information
Assurance Workshop, 2002.

AGM03. Josep Lluı́s Arcos, Maarten Grachten, and Ramon López de Mántaras.
“Extracting Performers’ Behaviors to Annotate Cases in a CBR System
for Musical Tempo Transformations.” InFifth International Conference
on Case-Based Reasoning, pp. 20–34, 2003.

AHH93. K. Asai, S. Hayzmizu, and K. Handa. “Prediction of protein secondary
structure by the hidden Markov model.”Computer applications in the
biosciences, 9(2), 1993.

All83. James F. Allen. “Maintaining Knowledge About Temporal Intervals.”
Communications of the ACM, 26(11):832–843, 1983.

AMB98. David W. Aha, Tucker Maney, and Leonard A. Breslow. “Supporting
Dialogue Inferencing in Conversational Case-Based Reasoning.”Lecture
Notes in Computer Science, 1488:262–266, 1998.

REFERENCES 253

AMS98. Josep Lluı́s Arcos, Ramón López de Mántaras, and Xavier Serra. “SaxEx:
A Case-Based Reasoning System for Generating Expressive Musical Per-
formances.”Journal of New Music Research, 27(3), 1998.

And80. James P. Anderson. “Computer Security Threat Monitoring and Surveil-
lance.” Technical report, James P. Anderson Co, Fort Whanington, PA,
USA, 1980.

AP94. Agnar Aamodt and Enric Plaza. “Case-Based Reasoning: Foundational
Issues, methodological variations, and system approaches.”Artificial In-
telligence Communications, 7(1):39–59, 1994.

AP96. Josep Lluı́s Arcos and Enric Plaza. “Inference and Reflection in the object-
centered representation language Noos.”Journal of Future Generation
Computer Systems, 12:173–188, 1996.

Ark89. R. C. Arkin. “Motor Schema-Based Mobile Robot Navigation.”The In-
ternational Journal of Robotics Research, 8(4):92–112, 1989.

Arm97. Eva Armengol.A Framework for Integrated Learning and Problem Solv-
ing. PhD thesis, Universitat Politècnica de Catalunya, 1997.

AS95. Rakesh Agrawal and Ramakrishnan Srikant. “Mining sequential patterns.”
In Philip S. Yu and Arbee S. P. Chen, editors,Eleventh International Con-
ference on Data Engineering, pp. 3–14, Taipei, Taiwan, 1995. IEEE Com-
puter Society Press.

AW92. T. Acorn and S. Walden. “SMART: Support Management Automated
Reasoning Technology for Compaq Customer Service.”Innovative Appli-
cations of Artificial Intelligence, 4, 1992.

Axe98. Stefan Axelsson. “Research in Intrusion-Detection Systems: A Sur-
vey.” Technical Report TR: 98-17, Department of Computer Engineering.
Chalmes University of Technology, Göteborg, Sweden, December 1998.

Axe00. Stefan Axelsson. “The Base-Rate Fallacy and the Difficulty of Intru-
sion Detection.”ACM Transactions on Information and System Security,
3(3):186–205, August 2000.

AZN98. David W. Albrecht, Ingrid Zukerman, and Anne E. Nicholson. “Bayesian
Models for Keyhole Plan Recognition in an Adventure Game.”User Mod-
eling and User-Adapted Interaction, 8(1-2):5–47, 1998.

BA95. L.K. Branting and D.W. Aha. “Stratified Case-Based Reasoning: Reusing
Hierarchical Problem Solving Episodes.” InProceedings of 14th Interna-
tional Joint Conference on Artificial Intelligence, pp. 384–390, 1995.

Bau96. Mathias Bauer. “Justification of Plan Recognition Results.” InProceedings
of European Conference on Artificial Intelligence, 1996.

254 REFERENCES

Bay03. Valentina Bayer.Learning Cost-Sensitive Diagnostic Policies from Data.
PhD thesis, Department of Computer Science, Oregon State University,
2003.

BBM89. Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and
Lori Alperin Resnick. “CLASSIC: A Structural Data Model for Objects.”
In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, pp. 59–67, 1989.

BC96. I. Bichindaritz and E. Conlon. “Temporal knowledge representation and
organization for case-based reasoning.” In3rd Workshop on Temporal
Representation and Reasoning (TIME’96), 1996.

BCD94. M. Barès, D. Cañamero, J.-F. Delannoy, and Y. Kodratoff. “XPlans: Case-
Based Reasoning for Plan Recognition.”Applied Artificial Intelligence,
8:61–643, 1994.

BCF94. A. T. Bouloutas, S. Calo, and A. Finkel. “Alarm correlation and fault
identification in communication networks.”IEEE Transactions on Com-
munications, 42(2/3/4), 1994.

BCF99. Lee Breslau, Pei Cao, Li Fan, Graham Philips, and Scott Shenker. “Web
Caching and Zipf-like Distributions: Evidence and Implications.” InPro-
ceedings of IEEE Infocom ’99, pp. 126–134, 1999.

Ber96. J. Bernauer. “Analysis of part-whole relation and subsumption in the med-
ical domain.”Data & Knowledge Engineering, 20(3):259–286, 1996.

BET99. Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph Drawing: Algortihms for the Visualization of Graphs. Prentice Hall,
1999.

BH95. John S. Breese and David Heckerman. “Decision Theoretic Case-Based
Reasoning.” Technical Report MSR-TR-95-03, Microsoft Research, Ad-
vanced Technology Division, 1995.

Bil02. Jeff Bilmes. “What HMMs can do.” Technical Report UWEETR-2002-
0003, University of Washington, 2002.

BKS96. Mark Benson, Kristi L. Koenig, and Carl H. Schultz. “ Disaster triage:
START, then SAVE-A new method of dynamic triage for victims of a
catastrophic earthquake.”Prehospital and Disaster Medicine, 11(2):117–
124, 1996.

BL91. S. Brown and L. Lewis. “A Case-Based Reasoning Solution to the Problem
of Redundant Resolutions of Nonconformances in Large-Scale Manufac-
turing.” Innovative Applications of Artificial Intelligence, 3, 1991.

BLB99. Leliane Nunes de Barros, Marilza Lemos, Volnys Bernal, and Jacques
Wainer. “Model Based Diagnosis for Network Communication Faults.”

REFERENCES 255

In Proceedings of International Workshop on Artificial Intelligence for
Distributed Information Networking (AIDIN’99), pp. 57–62. AAAI Press,
1999.

BM88. R. Barletta and W. Mark. “Breaking Cases Into Pieces.” InAAAI-88
Case-Based Reasoning Workshop, pp. 12–16, 1988.

BM93. J. Britanik and M. Marefat. “Distributed Case-Based Planning: Multi-
Agent Cooperation for High Autonomy.” InProceedings of the Fourth
Annual Conference on AI, Simulation, and Planning in High Autonomy
Systems, Tucson, 1993.

BMM93. S. Brugnoni, R. Manione, E. Montariolo, E. Paschetta, and L. Sisto. “An
Expert System for Real-Time Fault Diagnosis of the Italian telecommuni-
cations network.” InProceeding of the 3rd International Symposium on
Integrated Network Management, pp. 617–628, 1993.

BMR97. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. “Semiring-
Based Constraint Satisfaction and Optimization.”Journal of the ACM,
44(2):201–236, 1997.

BMV98. R. Bergmann, H. Muñoz-Avila, M.M. Veloso, and E. Melis. “Case-based
reasoning applied to planning.” In M. Lenz, B. Bartsch-Sporl, H.-D.
Burkhard, and S. Wess, editors,Case-Based Reasoning Technology from
Foundations to Applications,, number 1400 in Lecture Notes on Artificial
Intelligence (LNAI), pp. 169–200. Springer, 1998.

Bra83. Ronald J. Brachman. “What IS-A is and isn’t: an analysis of taxonomic
links in semantic networks.”IEEE Computer, 16(10):30–36, 1983.

BRM02. M. Brodie, I. Rish, and S. Ma. “Intelligent probing: A cost-effective
approach to fault diagnosis in computer networks.”IBM Systesms Journal,
41(3), 2002.

BS84. B. C. Buchanan and E. H. Shortliffe.Rule-Based Expert Systems The
MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley Publishing Company, 1984.

BW96. Ralph Bergmann and Wolfgang Wilke. “On the Role of Abstraction in
Case-Based Reasoning.” InEWCBR, pp. 28–43, 1996.

CAB03. Crispin Cowan, Seth Arnold, Steve Beattie, Chris Wright, and John Viega.
“Defcon Capture the Flag: Defending Vulnerable Code from Intense At-
tack.” In DARPA Information Survivability Conference and Exposition -
Volume I, pp. 120–129, 2003.

Cal89. P. H. Callahan. “Expert Systems for AT&T Switched Network Mainte-
nance.” In E. C. Ericson, L. T. Ericson, and D. Minoli, editors,Expert

256 REFERENCES

Systems Applications in Integrated Network Management, pp. 263–273.
Artech House, 1989.

CAM02. Frédéric Cuppens, Fabien Autrel, Alexandre Miège, and Salem Benferhat.
“Correlation in an Intrusion Detection Process.” InSécurité des Commu-
nications sur Internet, 2002.

Cap01. Olivier Cappé. “Ten years of HMMs.”, March 2001.

Car86. J. G. Carbonell. “Derivational Analogy: A theory of reconstructive prob-
lem solving and expertise acquisition.” In R.S. Michalski, J. G. Carbonell,
and T. M. Michell, editors,Machine Learning: An Artificial Intelligence
Approach (Volume II), pp. 371–392. Morgan Kaufmann, 1986.

CBF03. Brian Caswell, Jay Beale, James C. Foster, and Jeremy Faircloth.Snort
2.0 Intrusion Detection. SYNGRESS, 2003.

CD03. D. Curry and H. Debar. “Intrusion Detection Message Exchange Format
Data Model and Extensible Markup Language (XML) Document Type
Definition.” Internet-Draft, expired: July 31, 2003, 2003.

CG93. Eugene Charniak and Robert P. Goldman. “A Bayesian Model of Plan
Recognition.”Artificial Intelligence, 64:53–79, 1993.

CHS00. Curtis A. Carver, John M.D. Hill, John R. Surdu, and Udo W. Pooch. “A
Methodology for Using Intelligent Agents to Provide Automated Intrusion
Response.” InProc. of the IEEE WIAS, pp. 110–116, 2000.

Chu89. G. A. Churchill. “Stochastic Models for Heterogeneous DNA Sequences.”
Bulletin of Mathematical Biology, 5:79–94, 1989.

CKD94. D. Cañamero, Y. Kodratoff, J.-F. Delannoy, and M. Barès. “Case-Based
Plan Recognition.” InWorking Notes of the Workshop on Planning and
Learning: On to Real Applications, AAAI-94 Fall Symposium Series, pp.
16–22, 1994.

CKF02. Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric
Brewer. “Pinpoint: Problem Determination in Large, Dynamic Internet
Services.” InProceedings of 2002 International Conference on Depend-
able Systems and Networks, pp. 595–564, 2002.

CL02. R. Coolen and H.A.M. Luiijf. “Intrusion Detection: Generics and State-
of-the-Art.” Technical Report RTO-TR-049, North Atlantic Treaty Organ-
isation, Research and Technology Organisation, 2002.

CM85. Eugene Charniak and D. McDermott.Introduction to Artificial Intelli-
gence. Addison Wesley, 1985.

REFERENCES 257

CM02. Frédéric Cuppens and Alexandre Miège. “Alert correlation in a coopera-
tive intrusion detection framework.” InIEEE Symposium on Research in
Security and Privacy, 2002.

CMC00. U. Cortés, M. Sànchez Marrè, L. Ceccaroni, I. R-Roda, and M. Poch. “Arti-
ficial Intelligence and Environmental Decision Support Systems.”Applied
Intelligence, 13(1):77–91, 2000.

CMG02. Joan Colomer, Joaquim Meléndez, and F. Ignacio Gamero. “Pattern recog-
nition based on episodes and DTW: Application to diagnosis of a level
control system.” InSixteenth International Workshop on Qualitative Rea-
soning, 2002.

CPA82. Philip R. Cohen, C. Raymond Perrault, and James F. Allen. “Beyond
question answering.” In Wendy G. Lehnert and Martin H. Ringle, edi-
tors,Strategies for Natural Language Processing, chapter 9, pp. 245–274.
Lawrence Erlbaum Associates, 1982.

CS94. Eugene Charniak and Solomon Eyal Shimony. “Cost-Based Abduction
and MAP Explanation.”Artificial Intelligence, 66:345–374, 1994.

Cup01. Frédéric Cuppens. “Managing Alerts in a Multi-Intrusion Detection En-
vironment.” In17th Annual Computer Security Applications Conference
(ACSAC’01), 2001.

CV02. Roberto Casati and Achille C. Varzi.Parts and Places: The Structures of
Spatial Representation. The MIT Press, 2002.

CW03a. Edwin Costello and David C. Wilson. “A Case-Based Approach to Gene
Finding.” In Workshop on Case-Based Reasoning in the Health Sciences.
The Fifth International Conference on Case-Based Reasoning (ICCBR-
03), pp. 19–28, 2003.

CW03b. Scott A Crosby and Dan S Wallach. “Denial of Service via Algorithmic
Complexity Attacks.” InUSENIX Security, 2003.

CYA99. Christina Carrick, Qiang Yang, Irene Abi-Zeid, and Luc Lamontagne. “Ac-
tivating CBR Systems through Autonomous Information Gathering.” In
Case-Based Research and Development: Third International Conference
on Case-Based Reasoning (ICCBR’99), volume 1650 ofLecture Notes in
Computer Science. Springer-Verlag, 1999.

DAN02. Jürgen Dix, Héctor Mu noz Avila, Dana Nau, and Lingling Zhang. “Plan-
ning in a multi-agent environment: theory and practice.” InProceedings
of the first international joint conference on Autonomous agents and mul-
tiagent systems, pp. 944–945. ACM Press, 2002.

DCH02. Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Hor-
rocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea

258 REFERENCES

Stein. “OWL Web Ontology Language 1.0 Reference.” Technical report,
W3C World-Wide Web Consortium, 2002.

DCW99. Robert Durst, Terrence Champion, Brian Witten, Eric Miller, and Luigi
Spagnuolo. “Testing and evaluating computer intrusion detection sys-
tems.” Communications of the ACM, 42(7):53–61, 1999.

Dec98. R. Dechter. “Bucket Elimination: A Unifying Framework for Probabilistic
Inference.” In Michael I. Jordan, editor,Learning in Graphical Models,
pp. 75–104. The MIT Press, 1998.

DEK98. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological Sequence
Analysis. Cambridge University Press, 1998.

DG01. Dipankar Dasgupta and Fabio A. Gonzalez. “An Intelligent Decision Sup-
port System for Intrusion Detection and Response.” InProceedings of
International Workshop on Mathematical Methods, Models and Architec-
tures for Computer Networks Security (MMM-ACNS), St.Petersburg, 2001.
Springer-Verlag.

DH00. Chris Drummong and Robert C. Holte. “Explicity Representing Expected
Cost:Ê An Alternative to ROC Representation.” InSixth ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2000.

Die02. Thomas G. Dietterich. “Machine Learning for Sequential Data: A Re-
view.” In Structural, Syntactic, and Statistical Pattern Recognition, vol-
ume 2396 ofLecture Notes in Computer Science, pp. 15–30. Springer-
Verlag, 2002.

DK93. Eric Domeshek and Janer Kolodner. “Using the Points of Large Cases.”
AI EDAM, 7(2):87–96, 1993.

DKL01. Jon Doyle, Isaac Kohane, Willian Long, Howard Shrobe, and Peter
Szolovits. “Event Recognition Beyond Signature and Anomaly.” InSec-
ond IEEE-SMC Information Assurance Workshop, West Point, New York,
June 5-6, 2001.

DLD02. Kristopher Daley, Ryan Larson, and Jerald Dawkins. “A Structural Frame-
work for Modeling Multi-Stage Network Attacks.” InProceedings of the
International Conference on Parallel Processing Workshops, 2002.

DM02a. Mayur Datar and S. Muthukrishnan. “Estimating Rarity and Similarity
over Data Stream Windows.” Technical report, DIMACS Technical Report
2002-21, 2002.

DM02b. Hervé Debar and Benjamin Morin. “Evaluation of the Diagnostic Capa-
bilities of Commercial Intrusion Detection Systems.” InProc. of the RAID
2002, number 2516 in Lecture Notes in Computer Science, pp. 177–198.
Springer, 2002.

REFERENCES 259

DPV02. Carlotta Domeniconi, Chang shing Perng, Ricardo Vilalta, and Sheng Ma.
“A Classification Approach for Prediction of Target Events in Temporal
Sequences.” InProceedings of the 13th European Conference on Machine
Learning, 2002.

DR98. Mark Devaney and Ashwin Ram. “Needles in a Haystack: Plan Recogni-
tion in Large Spatial Domains Involving Multiple Agents.” InProceedings
of the fifteenth National Conference on Artificial Intelligence, pp. 942–947,
1998.

DSS00. Jon Doyle, Howard Shrobe, and Peter Szolovits. “On Widening the Scope
of Attack Recognition Languages.” Massachussets Institute of Technol-
ogy, 2000.

DV95. Gabi Dreo and Rober Valta. “Using Master Tickets as a Storage for
Problem-Solving Expertise.” InProceedings of thee IFIP/IEEE Inter-
national Symposium on Integrated Network Management, pp. 697–708,
1995.

DW01. Hervé Debar and Andreas Wespi. “Aggregation and Correlation of Intru-
sion Detection Alerts.” InProceedings of the 4th symposium on Recent
Advances in Intrusion Detection (RAID 2001), 2001.

Dyl76. Bob Dylan. “One More Cup of Coffee (Valley Below).” InDesire. Sony,
1976.

EFL97. Robert J. Ellison, David A. Fisher, Richard C. Linger, Howard F. Lipson,
Thomas Longstaff, and Nancy R. Mead. “Survivable Network Systems:
An Emerging Discipline.” Technical Report CMU/SEI-97-TR-013, CERT
Coordination Center, 1997.

EFL99. Robert J. Ellison, David A. Fisher, Richard C. Linger, Howard F. Lipson,
Thomas Longstaff, and Nancy R. Mead. “Survivability: Protecting Your
Critical Systems.”IEEE Internet Computing, November/December 1999.

Ega75. J. P. Egan.Signal Detection Theory and ROC Analysis. Academic Press,
1975.

EGG93. David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano.
“Efficient algorithms for sequence analysis.” In Renato M. Capocelli,
Alfredo De Santis, and Ugo Vaccaro, editors,Sequences II: Communi-
cation, Security, and Computer Science, pp. 225–244. Springer-Verlag,
1993. From Int. Advanced Worksh. Sequences, Positano, Italy, June 1991.

ESB96. Mansour Emaili, Rei Safavi-Naini, Bala Balachandran, and Josef Pier-
przyk. “Case-Based Reasoning for Intrusion Detection.” In12th Annual
Computer Security Applications Conference, 1996.

260 REFERENCES

Esk02. Eleazar Eskin.Sparse Sequence Modeling with Applications to Computa-
tional Biology and Intrusion Detection. PhD thesis, Columbia University,
2002.

FC03a. Michael Fagan and Pádraig Cunningham. “Case-Based Plan Recognition
in Computer Games.” In K. D. Ashley and D. G. Bridge, editors,The
Fifth International Conference on Case-Based Reasoning (ICCBR-03),
number 2689 in Lecture Notes in Artificial Intelligence (LNAI), pp. 161–
170. Springer, 2003.

FC03b. Florentino Fdez-Riverola and Juan M. Corchado. “Using Instance-Based
Reasoning Systems for Changing Environments Forecasting.” InWork-
shop on Applying CBR to Time Series Prediction. The Fifth International
Conference on Case-Based Reasoning, pp. 219–230, 2003.

Fer99. Mariano Fernández-López. “Overview of Methodologies for Building
Ontologies.” InWorkshop on Ontologies and Problem-Solving Methods:
Lessons Learned and Future Trends., 1999.

FFH02. Cèsar Ferri, Peter Flach, and José Hernández-Orallo. “Learning Decision
Trees Using the Area Under the ROC Curve.” In Claude Sammut and
Achim Hoffmann, editors,Proceedings of the 19th International Confer-
ence on Machine Learning, pp. 139–146. Morgan Kaufmann, July 2002.

FGK99. Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. “Learning
Probabilistic Relational Models.” InProceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1300–1307, 1999.

FGS01. Philippe Flajolet, Yves Guivarc’h, Wojciech Szpankowski, , and Brigitte
Vallee. “Hidden Pattern Statistics.”LNCS 2076, pp. 152–165, 2001. CE-
RIAS TR 2002-06.

FGS02. Alan Fern, Robert Givan, and Jeffrey Mark Siskind. “Specific-to-General
Learning for Temporal Events.” InEighteenth National Conference on
Artificial Intelligence (AAAI-2002), 2002.

FGT91. M. Frontini, J. Griffin, and S. Towers.A Knowledge-Based System for
Fault Localization in Wide Area Networs, pp. 510–530. North Holland,
1991.

FMW03. B. Feinstein, G. Matthews, and J. White. “The Intrusion Detection Ex-
change Protocol (IDXP).” Internet-Draft, expired: April 22, 2003, 2003.

Fol01. Ben Folds. “Still Fighting It.” InRockin’ the Suburbs. EPI, 2001.

FP97. Tom Fawcett and Foster J. Provost. “Adaptive Fraud Detection.”Data
Mining and Knowledge Discovery, 1(3):291–316, 1997.

Fra93. E. Franconi. “A treatment of plurals and plural quantification based on a
theory of collections.”Minds and Machines, 3(4):453–474, 1993.

REFERENCES 261

Fra94. Jeremy Frank. “Artificial Intelligence and Intrusion Detection: Current
and Future Directions.” In17th National Computer Security Conference,
National Institute of Standards and Technology, Washington,D.C., pp. 22–
33, 1994.

Fyo97. Fyodor. “The Art of Port Scanning.”Phrack Magazine, 7(51), 1997.

G 73. Jr. G. D. Forney. “The Viterbi algorithm.”Proceedings of IEEE, 61:268–
278, 1973.

G00. Peter Gärdenfors.Conceptual Spaces. The MIT Press, 2000.

GAD94. Ashok Goel, Khaled Ali, Michael Donnellan, Andres Gomez, and Todd
Callantine. “Multistrategy Adaptive Navigational Path Planning.”IEEE
Expert, 9(6):57–65, 1994.

Gas72. Joseph L. Gastwirth. “The Estimation of the Lorenz Curve and Gini Index.”
The Review of Economics & Statistics, 54(3):306–316, 1972.

GD02. Dominique Gro§ and Tom Lenaerts Towards a Definition of Dynam. “To-
wards a Definition of Dynamical Hierarchies.” InALifeVIII Workshop
Proceedings: Modeling Dynamical Hierarchies in Artificial Life, pp. 45–
54, 2002.

Geb96. Friedrich Gebhardt. “Structure oriented Case Retrieval.” In4th German
Workshop on CBR, 1996.

Gem99. Stuart Geman. “Compositionality.” Technical report, Brown University
Faculty Bulletin, Spring, 1999.

GG01. Christopher W. Geib and Robert P. Goldman. “Plan Recognition in Intru-
sion Detection Systems.” InDARPA Information Survivability Conference
and Exposition, 2001.

GGM99. Robert P. Goldman, Christopher W. Geib, and C. A. Miller. “A New
Model of Plan Recognition.” InProceedings of the 1999 Conference on
Uncertainty in Artificial Intelligence, 1999.

GHH01a. Robert P. Goldman, Walter Heimerdinger, Steven A. Harp, Christopher W.
Geib, Vicraj Thomas, and Robert L. Carter. “Information Modeling for
Intrusion Report Aggregation.” InDICEX, pp. 329–342. IEEE Computer
Society, 2001.

GHH01b. Robert P. Goldman, Walter Heimerdinger, Steven A. Harp, Christopher W.
Geib, Vicraj Thomas, and Robert L. Carter. “Information Modeling for
Intrusion Report Aggregation.” InDICEX. IEEE Computer Society, 2001.

GM03. Aristides Gionis and Heikki Mannila. “Finding Recurrent Sources in Se-
quences.” InProceedings of RECOMB’03, 2003.

262 REFERENCES

Goo91. M. Goodman. “PRISM: A Case-Based Telex Classifier.”Innovative Ap-
plications of Artificial Intelligence, 2, 1991.

GPK99. V. I. Gorodetski, L. J. Popyack, I. V. Kotenko, and V. A. Skormin.
“Ontology-based Multi-agent Model of Information Security System.” In
7th RSFDGrC, number 1711 in LNAI, pp. 528–532. Springer, 1999.

Gru93. T. R. Gruber. “Towards Principles for the Design of Ontologies Used for
Knowledge Sharing.” In N. Guarino and R. Poli, editors,Formal Ontology
in Conceptual Analysis and Knowledge Representation, Deventer, The
Netherlands, 1993. Kluwer Academic Publishers.

Gru98. Boris Gruschke. “Integrated Event Management: Event Correlation Using
Dependency Graphs.” InProceedings of Distributed Systems Operations
and Management (DSOM’98), 1998.

GS01. Itzhak Gilboa and David Schmeidler.A Theory of Case-Based Decisions.
Cambridge, 2001.

GTD01. Albert Güveni, Tolga Taner, and Irini Dimitriyadis. “Evaluation of
Taguchi and ROC Techniques for the Quality Assessment of Bi-
nary Decision Models in Health Care and Industrial Aplications.”
http://www.bme.boun.edu.tr/guvenis/taguchi.htm, 2001.

GU01. John E. Gaffney and Jacob W. Ulvila. “Evaluation of Intrusion Detectors:
A Decision Theory Approach.” InThe IEEE Symposium on Security and
Privacy, 2001.

Gup98. Kalyan Moy Gupta. “Knowledge-Based System For Troubleshooting
Complex Equipment.”International Journal of Information and Com-
puting Science, 1(1):29–41, 1998.

Gus97. Dan Gusfield.Algortithms on Strings, Trees, and Sequences.The Press
Syndicate of the University of Cambridge, 1997.

GVP90. D. Geiger, T. S. Verma, and J. Pearl. “Identifying independence in bayesian
networks.”Networks, 20:507–534, 1990.

Ham89. K. Hammond.Case-Based Planning: Viewing Planning as a Memory
Task. Academic Press, 1989.

Han00. B. Hansen. “Weather Prediction Using Case-Based Reasoning and Fuzzy
Set Theory.” Technical report, Technical University of Nova Scotia, 2000.
Master of Computer Science Thesis.

Har02. Verity Harte.Plato on Parts and Wholes. Oxford, 2002.

HBR94. David Heckerman, John S. Breese, and Koos Rommelse. “Troubleshoot-
ing under Uncertainty.” Technical Report MSR-TR-94-07, Microsoft Re-
search, Advanced Technology Division, 1994.

REFERENCES 263

HBR95. David Heckerman, John S. Breese, and Koos Rommelse. “Decision-
theoretic troubleshooting.”Communications of the ACM, 38(3):49–57,
1995.

Her99. Josefina López Herrera.Time Series Prediction Using Inductive Reasoning
Techniques. PhD thesis, Technical University of Catalonia, 1999.

HGF02. Howard Hamilton, Ergun Gurak, Leah Findlater, and Wayne Olive.
“Computer Science 831: Knowledge Discovery in Databases.”
http://www2.cs.uregina.ca/h̃amilton/courses/831/index.html, 2002.

HH02. Karim O. Hajian-Tilaki and J. A. Hanley. “Comparisson of Three Methods
for Estimating the Standard Error of the Area under the Curve in ROC
Analysis of Quantitative Data.”Acad Radiol, 9:1278–1285, 2002.

HHJ97. Karim O. Hajian-Tilaki, J. A. Hanley, L. Joseph, and J. P. Collet. “A
Comparison of Parametric and nonparametric approaches to ROC analysis
of Quantitative Diagnostic Tests.”Medical Decision Making, pp. 94–102,
1997.

HHM90. B. Hubbards, T. Haley, N. McAuliffe, L. Schaefer, N. Kelem, D. Walcott,
R. Feiertag, and M. Schaefer. “Computer System Intrusion Detection.”
Technical Report RADC-TR-90-413, Trusted Information Systems, Inc,
December 1990.

Hil01. Ralf Hildebrandt. “Cain and Abel: Snort and Nmap—two sides of the
same coin.”Linux Journal, 4:46–53, 2001.

Hin92. T. R. Hinrichs.Problem solving in open worlds: a case study in design.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1992.

HKS95. Kathleen Hanney, Mark T. Keane, Barry Smyth, and Padraig Cunningham.
“Systems, Tasks and Adaptation Knowledge: revealing some revealing de-
pendencies.” In M. Veloso and A. Aamodt, editors,Case-Based Reasoning
Research and Development, Lecture Notes in Artificial Intelligence, LNAI
1010, pp. 461–470. Springer-Verlag, 1995.

HL98. John Howard and Thomas Longstaff. “A Common Language for Computer
Security Incidents.” Technical Report SAND98-8667, SNL, 1998.

HLF01. Joshua W. Haines, Richard P. Lippmann, David J. Fried, Eushiuan Tran,
Steve Boswell, and Marc A. Zissman. “1999 DARPA Intrusion Detec-
tion System Evaluation: Design and Procedures.” Technical report, MIT
Lincoln Laboratory, 2001.

HLM90. Richard Heady, George Luger, Arthur Maccabe, , and Mark Servilla. “The
architecture of a network level intrusion detection system.” Technical
Report CS90-20, Department of Computer Science, University of New
Mexico, 1990.

264 REFERENCES

HM82. J. A. Hanley and B. J. McNeil. “The meaning and use of the area under
a receiver operating characteristic ROC curve.”Radiology, 143:29–36,
1982.

HMP02. J. L. Hellerstein, S. Ma, and C. S. Perng. “Discovering Actionable Patterns
in Event Data.”IBM Systems Journal, 41(3):475–492, 2002.

HRT03. Joshua Haines, Dorene Kewley Ryder, Laura Tinnel, and Stephen Tay-
lor. “Validation of Sensor Alert Correlators.”IEEE Security & Privacy,
1(1):46–56, 2003.

HS97. Cecil Huang and Ross Schachter. “Alarms for Monitoring: A Decision-
Theoretic Framework.” Technical Report SMI-97-0664, Section on Med-
ical Informatics, Stanford University School of Medicine, 1997.

HSV99. Masum Hasan, Binary Sugla, and Ramesh Viswanathan. “A Conceptual
Framework for Network Mangement Event Correlation and Filtering Sys-
tems.” In Proceedings of IEEE/IFIP International Symposium on Inte-
grated Network Management, 1999.

HT01a. David J. Hand and Robert J. Till. “A Simple Generalisation of the Area Un-
der the ROC Curve for Multiple Class Classification Problems.”Machine
Learning, 45:171–186, 2001.

HT01b. Trevor Hastie and Robert Tibshirani.The Elements of Statistical Learning.
Springer Series in Statistics. Springer, 2001.

Ilg93. K. Ilgun. “USTAT: A real-time intrusion detection system for Unix.” In
Proceedings of the IEEE Symposium on Research in Security and Privacy,
pp. 16–28, May 1993.

Jac97. Michel Jacynski. “A Framewok for the Management of Past Experiences
with Time-Extended Situations.” InSixth ACM Conference on Information
and Knowledge Management, 1997.

Jac99. Kathlee A. Jackson. “Intrusion Detection System (IDS) Product Survey.”
Technical Report LA-UR-99-3883, Computer Research and Applications
Group, Los Alamos National Laboratory, 1999.

Jan94. Klaus P. Jantke. “Nonstandard concepts of similarity in case-based reason-
ing.” In Hans-Hermann Bock, Wolfgang Lenski, and Michael M. Richter,
editors,Information Systems and Data Analysis: Prospects, Foundations,
and Applications, Proceedings of the 17th Annual Conference of the GfKl,
Univ. of Kaiserslautern, pp. 28–43, Kaiserslautern, 1994. Springer, Berlin.

JAS02. Martha Dorum Jaere, Agnar Aamodt, and Pal Skaalle. “Representing
temporal knowledge for case-based prediction.” InAdvances in case-
based reasoning; 6th European Conference, ECCBR 2002, Lecture Notes
in Artificial Intelligence, LNAI 2416, pp. 174–188. Springer, 2002.

REFERENCES 265

JBV98. D. Jones, T. Bench-Capon, and P. Visser. “Methodologies for Ontology
Development.”, 1998.

JC. Guofei Jiang and George Cybenko. “Temporal and Spatial Distributed
Event Correlation for Network Security.”.

JD02. Klaus Julisch and Marc Dacier. “Mining Intrusion Detection Alarms for
Actionable Knowledge.” InACM SIGKDD, Edmonton, Alberta, Canada,
2002.

Jel97. Frederick Jelinek.Statistical Methods for Speech Recognition. The MIT
Press, 1997.

Jen95. Nick R. Jennings. “Commitments and Conventions: The foundation of co-
ordination in multi-agent systems.”The Knowledge Engineering Review,
8(3):223–250, 1995.

JJ94. John R. Josephson and Susan G. Josephson.Abductive Inference: Com-
putation, Philosophy, and Technology. Cambridge, 1994.

JN98. Marko Junkkari and Marko Niinimäki. “A Path-Oriented Approach to Hi-
erarchical Concept Structures.” Technical Report A-1998-4, Department
of Computer Science, University of Tamper, 1998.

JS00. Anita K. Jones and Robert S. Sielken. “Computer System Intrusion De-
tection: A Survey.” Technical report, Department of Computer Science.
University of Virginia, 2000.

JT97a. Michel Jacynski and B. Trousse. “CBR*Tools: an object oriented library
for indexing cases with behavioral situation.” Technical Report 3215,
INRIA, 1997.

JT97b. Michel Jaczynski and Brigitte Trousse. “BROADWAY: A World Wide Web
Browsing Advisor Reusing Past Navigations from a Group of Users.” In
Proceedings of the 3rd UK Worksop on Case-Based Reasoning, Manch-
ester, September, 1997.

Jun99. Dieter Jungnickel.Graphs, Networks, and Algorithms. Springer, 1999.

JW93. Gabriel Jakobson and Mark . Weissman. “Alarm Correlation: Corre-
lating Multiple Network Alarms Improves Telecommunications Network
Surveillance and Fault Management.”IEEE Network, November 1993.

KA86. Henry Kautz and James Allen. “Generalized plan recognition.” InProceed-
ings of the Fifth National Conference on Artificial Intelligence (AAAI-86),
pp. 32–37, 1986.

Kad02. Mohammed Waleed Kadous.Temporal Classification: Extending the
Classification Paradigm to Multivariate Time Series. PhD thesis, School of

266 REFERENCES

Computer Science and Engineering, The University of New South Wales,
2002.

Kas94. Ales Kass. “Tweaker: Adapting Old Explanations to New Situations.” In
Roger C. Schank, Alex Kass, and Christopher K. Riesbeck, editors,In-
side Case-Based Explanation, chapter 8, pp. 263–296. Lawrence Erlbaum
Associates, 1994.

KBL88. L. Kopeikina, R. Brandau, and A. Lemmon. “Case-Based Reasoning for
Continuous Control.” InProceedings of a Workshop on Case-Based Rea-
soning, pp. 250–259, 1988.

KC01. Boris Kerkez and Michael T. Cox. “Incremental Case-based Keyhole Plan
Recognition Using State Indices.” InCase-Based Reasoning Research
and Development: Proceedings of the Fourth International Conference on
Case-Based Reasoning, ICCBR-01, 2001.

KCH04. Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. “Segment-
ing Time Series: A Survey and Novel Approach.” In Mark Last, Abraham
Kandel, and Horst Bunke, editors,Data Mining in Time Series Databases,
volume 57 ofSeries in Machine Perception and Artificial Intelligence.
World Scientific, 2004.

Ker03. Boris Kerkez.Incremental Case-Based Plan Recognition With Incomplete
Plan Libraries. PhD thesis, Wright State University, 2003.

KH97. Andrew P. Kosoresow and Steven A. Hofmeyr. “Intrusion Detection via
System Call Traces.”IEEE Software, 14(5):35–42, 1997.

KHM97. Miroslav Kubat, Robert Holte, and Stan Matwin. “Learning when Negative
Examples Abound.” InEuropean Conference on Machine Learning, 1997.

KJN94. K.ÊErol, J.ÊHendler, and D.ÊS. Nau. “HTN planning: Complexity and
expressivity.” InProceedings of the National Conference on Artificial
Intelligence, 1994.

Kle99. Mika Klemettinen.A Knowledge Discovery Methodology for Telecommu-
nication Network Alarm Databases. PhD thesis, Deparment of Computer
Science. University of Helsinki, 1999.

KLP97. Daphne Koller, Alon Levy, and Avi Pfeffer. “P-CLASSIC: A tractable
probabilistic Description Logic.” InProceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence (AAAI-97), pp. 390–397, 1997.

Knu98. Donald E. Knuth.The Art of Computer Programming. Volume 3. Sorting
and Searching. Second Edition. Addison Wesley, 1998.

Kol88. Janet Kolodner. “Retrieving events from a case memory: a parallel im-
plementation.” InProceedings of a Workshop on Case-Based Reasoning,
San Mateo, CA, 1988.

REFERENCES 267

Kol93. Janet Kolodner.Case-Based Reasoning. Morgan Kaufmann Publishers,
Inc., 1993.

Koz03. Jack Koziol.Intrusion Detection with Snort. SAMS, 2003.

Kru83. Joseph B. Kruskal. “An Overview of Sequence Comparison.” InTime
Warps, String Edits, and Macromolecules. The Theory and Practice of
Sequence Comparisson. Addison-Wesley, 1983.

KS95. Irene Katzela and Misha Schwartz. “Schemes for Faul Identification in
Communication Networks.”IEEE Transactions on Networking, 3(6):753–
764, 1995.

KS01. Mark T. Keane and Barry Smyth. “Dynamic Similarity: A Processing
Perspective on Similarity.” InSimilarity and Categorisation. Oxford Uni-
versity Press, 2001.

Kum95. S. Kumar. Classification adn Detection of Computer Intrusions. PhD
thesis, Department of Computer Science, Purdue University, 1995.

KW87. Johan de Kleer and Brian C. Willians. “Diagnosing Multiple Faults.”
Artificial Intelligence, 32:97–130, 1987.

KYY95. S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. “A Coding
Approach to Event Correlation.” InProceedings of 4th International Sym-
posium on Integrated Network Management (IFIP/IEEE), May 1995.

KZ03. Tomas Kocka and Nevin L. Zhang. “Effective Dimensions of Partially Ob-
served Polytrees.” InEuropean Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, 2003.

LA01. Maxim Likhachev and Ronald C. Arkin. “Spatio-Temporal Case-Based
Reasoning for Behavioral Selection.” InProceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), volume 2, pp.
1627–1634, 2001.

Lam00. Patrick Lambrix.Part-Whole Reasoning in an Object-Centered Frame-
work. Lecture Notes in Artificial Intelligence 1771. Springer, 2000.

Lan00. Terran Lane.Machine Learning Techniques for the Computer Security
Domain of Anomaly Detection. PhD thesis, Purdue University, 2000.

LB99. Terran Lane and Carla E. Brodley. “Temporal Sequence Learning and Data
Reduction for Anomaly Detection.”ACM Transactions on Information and
System Security, 2(3):295–331, 1999.

Lea92. David B. Leake.Evaluating Explanations: A Content Theory. Lawrence
Erlbaum Associates, 1992.

268 REFERENCES

Lea94. David B. Leake. “Accepter: Evaluating Explanations.” In Roger C.
Schank, Alex Kass, and Christopher K. Riesbeck, editors,Inside Case-
Based Explanation, chapter 6, pp. 167–206. Lawrence Erlbaum Asso-
ciates, 1994.

Lea95. D.B. Leake. “Abduction, experience, and goals: A model of everyday
abductive explanation.”Journal of Experimental and Theoretical Artificial
Intelligence, 1995.

Lea96. David B. Leake, editor.Case-Based Reasoning: Experiences, Lessons,
and Future Directions. AAAI Press/The MIT Press, 1996.

Les98. Victor R. Lesser. “Reflections on the Nature of Multi-Agent Coordination
and Its Implications for an Agent Architecture.”Autonomous Agents and
Multi-Agent Systems, 1:89–111, 1998.

Lev66. V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals.”Cybernetics and Control Theory, 10(8):707–710, 1966.

Lew93. L. Lewis. “A Case Base Reasoning Approach to the Resolution of Faults
in Communications Networks.” InProceedings of Third International
Symposium on Integrated Network Management, 1993.

Lew95. Lundy Lewis.Managing Computer Networks. A Case-Based Reasoning
Approach. Artech House Publishers, 1995.

LF93. A. Leinwand and K. Fang.Network Management: A Practical Perspective.
Addison Wesley, 1993.

LF99. Howard F. Lipson and David A. Fisher. “Survivability - A New Technical
and Business Perspective on Security.” InProceedings of the 1999 New
Security Paradigms Workshop, October 1999.

LFG00. Richard Lippmann, David Fried, Isaac Graf, Joshua Haines, Kristopher
Kendall, David McClung, Dan Weber, Seth Webster, Dan Wyschogrod,
Robert Cunningham, and Marc Zissman. “Evaluating Intrusion Detection
Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation.” In
Proceedings of the DARPA Information Survivability Conference and Ex-
position, Los Alamitos, CA, 2000. IEEE Computer Society Press.

LG94. David D. Lewis and William A. Gale. “A sequential algorithm for training
text classifiers.” InProceedings of the 17th annual international ACM
SIGIR conference on Research and development in information retrieval,
pp. 3–12. Springer-Verlag New York, Inc., 1994.

LGW02. Tom Lenaerts, Dominique Gro§, and Richard Watson. “On the Modelling
of Dynamical Hierarchies: Introduction to the Workshop WDH 2002.”
In ALifeVIII Workshop Proceedings: Modeling Dynamical Hierarchies in
Artificial Life, pp. 37–44, 2002.

REFERENCES 269

Lie89. J. Liebowitz, editor.Expert System Applications to Telecommunications.
John Wiley and Sons, 1989.

LMP01. John Lafferty, Andrew McCallum, and Fernando Pereira. “Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data.” InProceedings of 18th International Conference on Ma-
chine Learning, pp. 282–289. Morgan Kaufmann, San Francisco, CA,
2001.

LMY99. G. Liu, K. Mok, and E. J. Yang. “Composite Events for Network Event
Correlation.” InProceedings of IEEE/IFIP International Symposium on
Integrated Network Management, 1999.

LP93. Beatriz López and Enric Plaza. “Case-Based Planning for Medical Diagno-
sis.” In Proceeding of 7th International Symposium on Methodologies for
Intelligent Systems (ISMIS-93), volume 689 ofLecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, 1993.

LP95. Pat Langley and Karl Pfleger. “Case-Based Acquisition of Place Knowl-
edge.” InProceedings of the Twelfth International Conference on Machine
Learning, pp. 344–352, 1995.

LS97. Cyril Lattimer and Chatherine Stevens. “Some Remarks on Wholes, Parts
and their Perception.”Psycoloquy, 8, 1997.

LS01. David B. Leake and Raja Sooriamurthi. “When Two Case Bases are Better
Than One: Exploiting Multiple Case Bases.” InCase-Based Reasoning
Research and Development: Proceedings of the Fourth International Con-
ference on Case-Based Reasoning, ICCBR-01, 2001.

LS03. David B. Leake and Raja Sooriamurthi. “Dispatching Cases Versus Merg-
ing Case-Bases: When MCBR Matters.” InProceedings of the Sixteenth
International Florida Artificial Intelligence Research Society Conference
(FLAIRS-2003), pp. 129–133, 2003.

Lun90. Teresa F. Lunt. “IDES: An intelligent System for Detecting Intruders.” In
Proceedings of the Symposium on Computer Security, Threat and Coun-
termeasures, 1990.

LZ99. Sushil J. Louis and Yongmian Zhang. “A Sequential Similarity Metric for
Case Injected Genetic Algorithms applied to TSPs.” In Wolfgang Banzhaf,
Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark
Jakiela, and Robert E. Smith, editors,Proceedings of the Genetic and
Evolutionary Computation Conference, volume 1, pp. 377–384, Orlando,
Florida, USA, 13-17 1999. Morgan Kaufmann.

Mac89. Damian Mac Randal. “Semantic Networks.” In G. A. Ringland and D. A.
Duce, editors,Approaches to Knowledge Representation, pp. 45–80. John
Wiley & Sons, New York, 1989.

270 REFERENCES

MAN97. M.ÊFernandez, A.ÊGomez-Perez, and N.ÊJuristo. “METHODONTOL-
OGY: From Ontological Art to Ontological Engineering.” InIn Workshop
on Knowledge Engineering: Spring Symposium Series (AAAI’97), pp. 33–
44, 1997.

MAN01. Hector Muñoz-Avila, David W. Aha, Dana S. Nau, Rosina Weber, Len
Breslow, and Fusun Yamal. “SiN: Integrating Case-based Reasoning with
Task Decomposition.” InSeventeenth International Joint Conference on
Artificial Intelligence, pp. 999–1004, 2001.

Mar89. T. D. Marques. “A symptom-driven expert system for isolating and cor-
recting network faults.” In E. C. Ericson, L. T. Ericson, and D. Minoli,
editors,Expert Systems Applications in Integrated Network Management,
pp. 251–258. Artech House, 1989.

McH00. John McHugh. “Testing Intrusion Detection Systems: A Critique of the
1998 and 1999 DARPA Intrusion Detection System Evaluations as Per-
formed by Liconln Laboratory.”ACM Transactions on Information and
System Security, 3(4):262–294, November 2000.

Mci99. M. D. Mcilroy. “A Killer Adversary for Quicksort.” Software–practice
and experience, 29(0):1–4, 1999.

MCM83. Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors.
Machine Learning, An Artificial Intelligence Approach. Tioga Publishing
Company, 1983.

MCV89. R. Mathonet, H. V. Cotthem, and L. Vanryckeghem. “DANTES: An Expert
System for Real-Time Network Troubleshooting.” In E. C. Ericson, L. T.
Ericson, and D. Minoli, editors,Expert Systems Applications in Integrated
Network Management, pp. 259–262. Artech House, 1989.

MDK97. Alvin Martin, George Doddington, Terri Kamm, Mark Ordowski, and
Mark Przybocki. “The DET Curve in Assessment of Detection Task Per-
formance.” InProc. Eurospeech ’97, pp. 1895–1898, Rhodes, Greece,
1997.

Mei97. Dilmar Malherios Meira.A Model for Alarm Correlation in Telecommuni-
cations Networks. PhD thesis, Federal University of Minas Gerais, 1997.

MF95. M.ÊGruninger and M.ÊS. Fox. “Methodology for the Design and Evalu-
ation of Ontologies.” InIn IJCAI Workshop on Basic Ontological Issues
in Knowledge Sharing, 1995.

MG01. Arthur B. Markman and Dedre Gentner. “Thinking.”Annual Reviews
Psychology, 52:223–247, 2001.

MK96. Geoffrey McLachlan and Thriyambakam Krshnan.The EM Algorithm and
Extensions. John Wiley & Sons, 1996.

REFERENCES 271

MM01. Cédric Michel and Ludovic Mé. “ADeLe: an Attack Description Language
for Knowledge-based Intrusion Detection.” InProceedings of the 16th
International Conference on Information Security (IFIP/SEC 2001), pp.
353–365, June 2001.

MMA90. E. W. Myers, W. Miller, S. F. Altschul, W. Gish, and D. Lipman. “Basic
Local Alignment Search Tool.”Journal of Molecular Biology, 214, 1990.

MMD02. Benjamin Morin, Ludovic Mé, Herveé Debar, and Mireille Ducassé.
“M2D2: A Formal Data Model for IDS Alert Correlation.” InProc. of the
RAID 2002, 2002.

Mor98. Chris Mortensen. “Perceptual Cognition, Parts and Wholes.”Psycoloquy,
9, 1998.

MP01. Sofus A. Macskassy and Foster Provost. “Intelligent Information Triage.”
In The 24th Annual International Conference on Research and Develop-
ment in Information Retrieval, 2001.

MP03a. Francisco J. Martin and Enric Plaza. “Alba: A cognitive assistant for net-
work administration.”Artificial Intelligence Research and Development.
Frontiers in Artificial Intelligence and Applications, 100:341–352, 2003.

MP03b. Francisco J. Martin and Enric Plaza. “Alert Triage on the ROC.” Tech-
nical report, IIIA-CSIC Technical Report 2003-06, 2003. This report is
an extended version of the paper published in MMM-ACNS-2003: The
Second International Workshop on Mathematical Methods, Models, and
Architectures for Computer Networks Security.

MP03c. Francisco J Martin and Enric Plaza. “Alert Triage on the ROC.” InSub-
mitted, 2003.

MP03d. Francisco J. Martin and Enric Plaza. “Case-based Sequence Analysis for
Intrusion Detection.” InWorkshop on Applying CBR to Time Series Pre-
diction. The Fifth International Conference on Case-Based Reasoning, pp.
231–241, 2003.

MP03e. Francisco J. Martin and Enric Plaza. “SOID: an Ontology for Agent-Aided
Intrusion Detection.” In Vasile Palade, Robert J. Howlett, and Lakhmi
Jain, editors,7th International Conference on Knowledge-based Intelligent
Information & Engineering Systems, volume 2773 ofLecture Notes in
Artificial Intelligence, pp. 1222–1229. Springer, 2003.

MPA99. Francisco J. Martin, Enric Plaza, and Josep L. Arcos. “Knowledge
and Experience Reuse through Communication among Competent (Peer)
Agents.” International Journal of Software Engineering and Knowledge
Engineering, 9(3):319–341, 1999.

272 REFERENCES

MPG96. Luı́s Macedo, Francisco C. Pereira, Carlos Grilo, and Amı́lcar Cardoso.
“Plans as structured networks of hierarchically and temporally related
case pieces.” InThird European Workshop on Case-Based Reasoning
(EWCBR’96), Lausanne, Switzerland, 1996.

MPR98. Francisco J. Martin, Enric Plaza, Juan A. Rodriguez-Aguilar, and Jordi
Sabater. “Java Interagents for Multi-Agent Systems.” InAAAI-98 Work-
shop on Software Tools for Developing Agents, 1998.

MPR00a. Francisco J. Martin, Enric Plaza, and Juan A. Rodriguez. “An Infrastructure
for Agent-Based Systems: an Interagent Approach.”International Journal
of Intelligent Systems, 15(3):217–240, 2000.

MPR00b. Francisco J. Martin, Enric Plaza, and Juan A. Rodrı́quez-Aguilar. “Con-
versation Protocols: Modeling and Implementing Conversation in Agent-
Based Systems.” In Frank Dignum and Mark Greaves, editors,Issues in
Agent Communication, pp. 249–263. Springer-Verlag: Heidelberg, Ger-
many, 2000.

MR97. H. Mannila and P. Ronkainen. “Similarity of Event Sequences.” InFourth
International Workshop on Temporal Representation and Reasoning, pp.
136–139, 1997.

MS99. Chris Manning and Hinrich Schutze.Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

MS02. Kevin D. Mitnick and William L. Simon.The Art of Deception: Control-
ling the Human Element of Security. John Wiley & Sons, 2002.

MSL76. C. Metz, S. Starr, and L. Lusted. “Observer performance in detecting
multiple radiographic signals: Prediction and analysis using a generalized
ROC approach.”Radiology, pp. 337–347, 1976.

MT00. C. Melchiors and L.M.R. Tarouco. “Troubleshooting Network Faults Us-
ing Past Experience.” InIEEE/IFIP Network Operations and Management
Symposium (NOMS), pp. 549–562, 2000.

MTV97. Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkano. “Discovery of
Frequent Episodes in Event Sequences.” Technical report, University of
Helsinki, 1997.

MV03. Joaquim Meléndez and Raúl Vilcahuamán. “Refinement of Electric Load
Forecasting Reusing Past Instances and Contextual Based Adaptation.” In
Workshop on Applying CBR to Time Series Prediction. The Fifth Interna-
tional Conference on Case-Based Reasoning, pp. 242–251, 2003.

MWA02. Ratul Mahajan, David Wetherall, and Tom Anderson. “Understanding
BGP Misconfiguration.” InProceedings of ACM SIGCOMM 2002, 2002.

REFERENCES 273

Nak94. G. Nakhaeizadeh. “Learning Prediction from Time Series: A Theoretical
and Empirical Comparison of CBR with some other approaches.” InTopics
in Case-Based Reasoning, Lecture Notes in Artificial Intelligence, LNAI
837, pp. 65–76. Springer-Verlag, 1994.

NC02. Peng Ning and Yun Cui. “An Intrusion Alert Correlator Based on Pre-
requisites of Intrusions.” Technical Report TR-2002-01, Department of
Computer Science, North Carolina State University, 2002.

NCR02. Peng Ning, Yun Cui, and Douglas S. Reeves. “Analyzing Intesive Intrusion
Alerts via Correlation.” In Andreas Wespi, Giovanni Vigna, and Luca Deri,
editors,Proceedings of the RAID 2002, number 2516 in Lecture Notes in
Computer Science, pp. 74–94. Springer, 2002.

Ney92. H. Ney. “Stochastic Grammars and Pattern Recognition.” In P. Laface
and R. De Mor, editors,Speech Recognition and Understanding: Recent
Advances, Trends and Applications, pp. 319–344. Springer, 1992.

NJW01. Peng Ning, Sushil Jajodia, and Xiaoyang Sean Wang. “Abstraction-Based
Intrusion Detection In Distributed Environments.”ACM Transactions on
Information and System Security, 4(4):407–452, November 2001.

Noe01. Steven Noel. “Development of a Cyber-Defense Ontology.” Center for
Secure Information Systems George Mason University, Fairfax, Virginia,
2001.

Nor99. Stephen Northcutt.Network Intrusion Detection. An Analyst’s Handbook.
New Riders, 1999.

NWY02. Steven Noel, Duminda Wijesekera, and Charles Youman. “Modern In-
trusion Detection, Data Mining, and Degrees of Attack Guilt.” In Daniel
Barbará and Sushil Jajodia, editors,Applications of Data Mining in Com-
puter Security, chapter 1, pp. 1–31. Kluwer Academic Publishes, 2002.

OB97. H. Osborne and D. Bridge. “Models of Similarity for Case-Based Reason-
ing.” In Proceedings of the Interdisciplinary Workshop on Similarity and
Categorization, 1997.

OK94. David Oshie and Shmuel Kliger. “Network Event Management Survey.”
Technical report, System Management Arts (SMARTS), 1994.

OMS03. Dirk Ourston, Sara Matzner, William Stump, and Bryan Hopkins. “Ap-
plications of Hidden Markov Models to Detecting Multi-Stage Network
Attacks.” In In Proceedings of 2003 HAWAII INTERNATIONAL CON-
FERENCE ON SYSTEM SCIENCES, 2003.

OP03. Santiago Ontañón and Enric Plaza. “Collaborative Case Retention Strate-
gies for CBR Agents.” In D. Bridge and K. Ashley, editors,Advances

274 REFERENCES

in Case-Based Reasoning. Proc. ICCBR 2003, Lecture Notes in Artificial
Intelligence, LNAI 2689, pp. 392–406. Springer-Verlag, 2003.

Oul90. M.A. Ould. Strategies for Software Engineering : The Management of
Risk and Quality.John Wiley, 1990.

Owe94. Christopher C. Owens. “Retriever and Anon: Retrieving Structures From
Memory.” In Roger C. Schank, Alex Kass, and Christopher K. Riesbeck,
editors,Inside Case-Based Explanation, chapter 4, pp. 89–126. Lawrence
Erlbaum Associates, 1994.

PA96. Enric Plaza and Josep-Lluı́s Arcos. “Constructive Adaptation.” In S. Craw
and A. Preece, editors,Case-based Reasoning Research and Development
(ECCBR’2002). Springer-Verlag, 1996.

PAM96. Enric Plaza, Josep L. Arcos, and Francisco J. Martin. “Cooperation Modes
among Case-Based Reasoning Agents.” InECAI’96 Workshop on Learn-
ing in Distributed AI Systems, 1996. Also as IIIA-CSIC Technical Report
96-10.

PAM97. Enric Plaza, Josep L. Arcos, and Francisco J. Martin. “Cooperative Case-
Based Reasoning.” In Gerhard Weiss, editor,Distributed Artificial Intel-
ligence Meets Machine Learning. Learning in Multi-agent Environments,
number 1221 in Lecture Notes in Artificial Intelligence. Springer-Verlag,
1997.

Pea88. Judea Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
man, 1988.

Pea95. Barak A. Pearlmutter. “Gradient calculation for dynamic recurrent neural
networks: a survey.”IEEE Transactions on Neural Networks, 6(5):1212–
1228, 1995.

Pei48. Charles S. Peirce. “Abduction and Induction.” In J. Buchler, editor,The
Philosophy of Peirce: Selected Writings, chapter 11. Harcourt, Brace and
Company, 1948.

PF01. Foster Provost and Tom Fawcett. “Robust Classification for Imprecise
Environments.”Machine Learning Journal, 42(3), 2001.

PFK98. Foster Provost, Tom Fawcett, and Ron Kohavi. “The Case Against Ac-
curacy Estimation for Comparing Induction Algorithms.” InFifteenth
International Conference on Machine Learning, 1998.

Pfl02. Karl R. Pfleger.On-Line Learning of Predictive Compositional Hierar-
chies. PhD thesis, Stanford University, 2002.

PFV02. Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. “A Mission-
Impact-Based Approach to INFOSEC Alarm Correlation.” InProc. of

REFERENCES 275

the RAID 2002, number 2516 in Lecture Notes in Computer Science, pp.
95–114. Springer, 2002.

PL94. Lin Padgham and Patrick Lambris. “A Framework for Part-of Hierar-
chies in Terminological Logics.” In Jon Doyle, Erik Sandewall, and Pietro
Torasso, editors,KR’94: Principles of Knowledge Representation and
Reasoning, pp. 485–496. Morgan Kaufmann, San Francisco, California,
1994.

Pla95. Enric Plaza. “Cases as terms: A feature term approach to the structured
representation of cases.” In M. Veloso and A. Aamodt, editors,Case-
Based Reasoning, ICCBR-95, number 1010 in Lecture Notes in Artificial
Intelligence, pp. 265–276. Springer-Verlag, 1995.

PLL95. M. V. Nagendra Prasad, Victor R. Lesser, and Susan E. Lander. “Retrieval
and Reasoning in Distributed Case Bases.”Journal of Visual Commu-
nication and Image Representation, Special Issue on Digital Libraries,
7:74–87, 1995. Also as UMASS CS Technical Report 95-27.

PN97. Philip A. Porras and Peter G. Neumann. “EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances.” InProceedings of
1997 National Information Systems Security Conference, 1997.

PNM99. G. Penido, J. M. Nogueira, and C. Machado. “An automatic fault diagno-
sis and correction system for telecommunications management.” InPro-
ceedings of the Sixth IFIP/IEEE International Symposium on Integrated
Network Management, pp. 777–791, 1999.

Por89. B. W. Porter. “Similarity Assessment: Computation vs. Representation.”
In Proceedings of DARPA Case-Based Reasoning Workshop, pp. 82–84,
1989.

Por92. P. A. Porras.STAT: A State Transition Analysis Tool for Intrusion Detection.
PhD thesis, University of California - Santa Barbara, 1992.

PR87. Yung Peng and James A. Reggia. “A Probabilistic Causal Model for Di-
agnostic Problem Solving-Part I: Integrating Symbolic Causal Inference
with Numeric Probabilistic Inference.” InIEEE Transactions on Systems,
Mans, and Cybernetics, 1987.

PR90. Yung Peng and James A. Reggia.Abductive Inference Models for Diag-
nostic Problem-Solving. Springer-Verlag, 1990.

Pre97. AAAI Press, editor.Proceedings of the AAAI Spring Symposium on On-
tological Engineering, 1997.

Pta98. Thomas H. Ptacek. “Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection.” Technical report, Secure Networks, Inc.,
1998.

276 REFERENCES

PW00. D.V. Pynadath and M.P. Wellman. “Probabilistic State-Dependent Gram-
mars for Plan Recognition.” InProceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence (UAI-2000), pp. 507–514, 2000.

RA96. Ashwin Ram and Jr. Anthony G. Francis. “Multi-Plan Retrieval and Adap-
tation in an Experience-Based Agent.” In David B. Leake, editor,Case-
Based Reasoning: Experiences, Lessons, and Future Directions, chap-
ter 10, pp. 167–183. AAAI Press/The MIT Press, 1996.

Rab89. Lawrence R. Rabiner. “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition.”IEEE, 77(2):257–286, 1989.

RAM92. A. Ram, R. C. Arkin, K. Moorman, and R. J. Clark. “Case-Based Reactive
Navigation: A Case-Based method for on-line Selection and Adaptation
of Reactive Control Parameters in Autonomous Robotic Systems.” Tech-
nical Report GIT-CC-92/57, College of Computing, Georgia Institute of
Technology, 1992.

Ram94. Anshim Ram. “AQUA: Question that Drive the Explanation Process.” In
Roger C. Schank, Alex Kass, and Christopher K. Riesbeck, editors,In-
side Case-Based Explanation, chapter 7, pp. 207–262. Lawrence Erlbaum
Associates, 1994.

Ran01. Marcus J. Ranum. “Experiences Benchmarking Intrusion Detection Sys-
tems.” Technical report, NFR Security, 2001.

RB91. R. Rimey and C. Brown. “Controlling Eye Movements with Hidden
Markov Models.” International Journal of Computer Vision, 7(1):47–66,
1991.

Red90. Michael Redmond. “Distributed Cases for Case-Based Reasoning; Fa-
cilitating Use of Multiple Cases.” InProceedings of AAAI-90. AAAI
Press/MIT Press, 1990.

Reh03. Rafeeq Rehman.Intrusion Detection with SNORT: Advanced IDS Tech-
niques Using SNORT, Apache, MySQL, PHP, and ACID. Prentice Hall,
2003.

RH95. Isabelle Rouvellou and George W. Hart. “Automatic Alarm Correlation for
Fault Identification.” InFourteenth Annual Joint Conference of the IEEE
Computer and Communication Societies, pp. 553–561, 1995.

RHT01. Victor Raskin, Christian F. Hempelmann, Katrina E. Triezenberg, and
Sergei Nirenburg. “Ontology in information security: a useful theoretical
foundation and methodological tool.” InProc Workshop on New Security
Paradigms, pp. 53–59. ACM Press, 2001.

Ric92. M. M. Richter.Classification and Learning of Similarity Measures. Studies
in Classification, Data Analysis, and Knowledge Organization. Springer,
1992.

REFERENCES 277

Rie93. M. Riese.Model-Based Diagnosis of Communication Protocols. PhD
thesis, Swiss federal Institute of Technology at Lausanne, 1993.

Rin89. G. A. Ringland. “Structured Object Representation: Schemata and
Frames.” In G. A. Ringland and D. A. Duce, editors,Approaches to Knowl-
edge Representation, pp. 81–100. John Wiley & Sons, New York, 1989.

RK91. Elaine Rich and Kevin Knight.Artificial Intelligence. McGraw-Hill, 1991.

RN95. Stuart J. Russell and Peter Norvig.Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 1995.

RN03. Stuart J. Russell and Peter Norvig.Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2003.

RNC93. Ashwin Ram, S. Narayanan, and Michael T. Cox. “Learning to Trou-
bleshoot: Multistrategy Leaning of Diagnostic Knowledge for A real-
world Problem-Solving Task.”Cognitive Science, 19:289–340, 1993.

Roe99. Martin Roesch. “Snort - Lightweight Intrusion Detection for Networks.” In
Proceedings of LISA ’99: 13th Systems Administration Conference Seattle,
Washington, USA, November 1999.

Ron98. Pirjo Ronkainen. “Attribute Similarity and Event Sequence Similarity in
Data Mining.” Technical report, University of Helsinki, 1998.

Ros98. A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall,
1998.

Rou94. S. Rougegrez. “Similarity evaluation between observed behaviors for the
prediction of processes.” InTopics in Case-Based Reasoning, Lecture
Notes in Artificial Intelligence, LNAI 837, pp. 155–166. Springer-Verlag,
1994.

RR91. M. Register and A. Rewari. “CANASTA: The Crash Analysis Trou-
bleshooting Assistant.”Innovative Applications of Artificial Intelligence,
3, 1991.

RS89. Christopher K. Riesbeck and Roger C. Schank.Inside Case-Based Rea-
soning. Lawrence Erlbaum Associates, publishers, 1989.

RS93a. Ashwin Ram and Juan Carlos Santamarı́a. “Continuous Case-Based Rea-
soning.” InProceedings of the AAAI-93 Workshop on Case-Based Rea-
soning, pp. 86–93, 1993.

RS93b. Ashwin Ram and Juan Carlos Santamarı́a. “A Multistrategy Case-Based
and Reinforcement Learning Approach to Self-Improving Reactive Con-
trol Systems for Autonomous Robotic Navigation.” In R. S. Michalski and
G. Tecuci, editors,Proceedings of the Second International Workshop on
Multistrategy Learning, 1993.

278 REFERENCES

RTT96. P.R. Roberge, M.A.A. Tullmin, and K.R. Trethewey. “Failure Analysis
by Case-Based Reasoning.” InOn-line proceeding of Intercorr-96 the 1st
online corrosion conference, 1996.

SA77. Roger Schank and Robert Abelson.Scripts, Plans, Goals, and Under-
standing. An Inquiry into Human Knowledge Structures. Lawrence Erib-
aum Associates, Inc, 1977.

SAB94. Gerard Salton, James Allan, and Chris Buckley. “Automatic structuring
and retrieval of large text files.”Communications of the ACM, 37(2):97–
108, 1994.

Sat95. U. Sattler. “A concept language for an engineering application with part-
whole relations.” InProceedings of the international workshop on de-
scription logics, pp. 119–123, 1995.

Sat00. U. Sattler. “Description Logics for the Representation of Aggregated Ob-
jects.” In W. Horn, editor,Proceedings of the 14th European Conference
on Artificial Intelligence. IOS Press, Amsterdam, 2000.

SBG00. Robert Stevens, Sean Bechhofer, and Carole Goble. “Ontology-based
Knowledge Representation for Bioinformatics.”Briefings in Bioinformat-
ics, 1(4), Nov 2000.

SCC96. S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. “GrIDS – A Graph-
based Intrusion Detection System for Large Networks.” InProceedings of
the 19th National Information Systems Security Conference, 1996.

Sch86. Roger Schank.Explanation Patterns: Understanding Mechanically and
Creativel. Lawrence Eribaum Associates, Inc, 1986.

Sch95. Philip A. Schrodt. “Patterns, Rules And Learning: Computational Models
Of International Behavior.” Technical report, University of Michigan,
1995.

Sch99. Roger C. Schank.Dynamic Memory Revisited. Cambridge University
Press, 1999.

Sch00. Philip A. Schrodt. “Pattern Recognition of International Crises using Hid-
den Markov Models.” In Diana Richards, editor,Political Complexity:
Nonlinear Models of Politics, pp. 296–328. University of Michigan Pres,
2000.

SCR98. Miquel Sànchez-Marré, Ulises Cortés, Ignasi R.-Roda, and Manel Poch.
“L’Eixample Distance: a New Similarity Measure for Case retrieval.” In
1st Catalan Conference on Artificial Intelligence(CCIA’98). ACIA Bul-
letin, volume 14-15, pp. 246–253, 1998.

REFERENCES 279

SCR99. Miquel Sànchez-Marré, Ulises Cortés, Ignasi R.-Roda, and Manel Poch.
“Sustainable case learning for continuos domains.”Environmental Mod-
elling and Software, 14(5):349–357, 1999.

SDM00. John A. Swets, Robyn M. Dawes, and John Monahan. “Psychological
Science can Improve Diagnostic Decisions.”Psychological Science in the
Public Interest, 1(1), 2000.

SDW03. S. Sanghai, P. Domingos, and D. Weld. “Dynamic Probabilistic Relational
Models.” InProceedings of the Eighteenth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, 2003.

SFL00. Sal Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan.
“Cost-based Modeling for Fraud and Intrusion Dectection: Results from
the JAM Project.” InProceedings of DISCEX, 2000.

SG01a. Ron Sun and C. Lee Giles. “Sequential Learning: From Recognition and
Prediction to Sequential Decision Making.”IEEE Intelligent Systems, pp.
2–5, July/August 2001.

SG01b. Ron Sun and G. Lee Giles.Sequence Learning: Paradigms, Algorithms,
and Applications. Springer, 2001. Lecture Notes in Artificial Intelligence
1828.

SG03. Rainer Schmidt and Lothar Gierl. “Prognosis of Approaching Infectious
Diseases.” InWorkshop on Applying CBR to Time Series Prediction. The
Fifth International Conference on Case-Based Reasoning, pp. 252–259,
2003.

SGK92. K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navinchandra.
“CADET: a Case-based Synthesis Tool for Engineering Design.”Interna-
tional Journal of Expert Systems, 4(2), 1992.

Sha90. Jude W. Shavlik. “Case-Based Reasoning with Noisy Case Boundaries:
An Application in Molecular Biology.” Technical report, University of
Wisconsin Computer Sciences Technical Report 988, 1990.

SHP96. R. Schmidt, B. Heindl, B. Pollwein, and L. Gierl. “Abstration of Data
and Time For Multiparametric Time Course Prognoses.” In I. Smith and
B. Faltings, editors,Advances in Case-Based Reasoning, Lecture Notes in
Artificial Intelligence, LNAI 1168, pp. 377–391. Springer-Verlag, 1996.

Sid85. C. L. Sidner. “Plan Parsing for Intended Response Recognition in Dis-
course.”Computational Inelligence, 1(1):1–10, 1985.

Sim87. Peter Simons.Parts: A Study in Ontology. Oxford, 1987.

Sim92. E. Simoudis. “Using Case-Based Retrieval for Customer Technical Sup-
port.” IEEE Expert, 7(5):7–13, 1992.

280 REFERENCES

SK83. David Sankoff and Joseph B. Kruskal.Time Warps, String Edits, and
Macromolecules. The Theory and Practice of Sequence Comparisson.
Addison-Wesley, 1983.

SK96. Barry Smith and Mark T. Keane. “Design à la Déjà Vu: Reducing the
Adaptation Overhead.” In David B. Leake, editor,Case-Based Reasoning:
Experiences, Lessons, and Future Directions, chapter 9, pp. 151–166.
AAAI Press/The MIT Press, 1996.

SKR94. Roger C. Schank, Alex Kass, and Christopher K. Riesbeck.Inside Case-
Based Explanation. Lawrence Erlbaum Associates, 1994.

SL89. Roger Schank and David B. Leake. “Creativity and Learning in a Case-
Based Explainer.”Artificial Intelligence, 40(1–3):353–385, 1989.

SM96. Tsutomu Shimomura and John Markoff.Takedown: The Pursuit and
Capture of Kevin Mitnick, America’s Most Wanted Computer Outlaw-By
the Man Who Did it. Warner Books, 1996.

Spa01. Luca Spalazzi. “A Survey on Case-Based Planning.”Artificial Intelligence
Review, 16(1):3–36, 2001.

Spi92. M. Spivey.The Z Notation: A Reference Manual. Prentice-Hall, 1992.

Sri99. Ashwin Srinivasan. “Note on the Location of Optimal Classifiers in N-
Dimensional ROC Space.” Technical Report PG-TR-2-99, Oxford Uni-
versity Computing Laboratory, 1999.

SS98. S. Staniford-Chen and D. Schnackenberg. “The Common Intrusion Detec-
tion Framework (CIDF).” InInformation Survivability Workshop, October
1998.

SS01a. M. Steinder and A. Sethi. “The present and future of event correlation: A
need for end-to-end service fault localization.”, 2001.

SS01b. M. Steinder and A. S. Sethi. “Non-deterministic diagnosis of end-to-end
service failures in a multi-layer communication system.” InProceedings
of IEEE International Conference on Computer Communications and Net-
works (ICCCN), pp. 374–379, 2001.

SS02a. M. Steinder and A. Sethi. “Increasing robustness of fault localization
through analysis of lost, spurious, and positive symptoms.” InProceedings
of IEEE INFOCOM, 2002.

SS02b. M. Steinder and A. S. Sethi. “End-to-End Service Failure Diagnosis Using
Belief Networks.” InProceedings of Network Operations and Manage-
ment Symposium (NOMS), pp. 374–379, 2002.

REFERENCES 281

SS03. M. Steinder and A. S. Sethi. “Probabilistic Event-Driven Fault Diagnosis
through Incremental Hypothesis Updating.” InProceedings of IFIP/IEEE
Symposium on Integrated Network Management, 2003.

SSG78. C. F. Schmidt, N. S. Sridharan, and J. L. Goodson. “The plan recogni-
tion problem: An intersection of psychology and artificial intelligence.”
Artificial Intelligence, 11:45–83, 1978.

SSH88. M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. A. Whitehurst. “Expert
Systems in Intrusion Detection: A Case Study.” InProceedings of the 11th
National Computer Security Conference, pp. 74–81, October 1988.

SSR96. Juan Carlos Santamarı́a, R. S. Sutton, and Ashwin Ram. “Experiments with
Reinforcement Learning in Problems with Continuous State and Action
Spaces.” Technical Report UM-CS-1996-088, Department of Computer
Science, University of Massachusetts, 1996.

SSY02. D. Schwartz, S. Stoecklin, and E. Yilmaz. “A Case-Based Approach to
Network Intrusion Detection.” InFifth International Conference on Infor-
mation Fusion, IF’02, Annapolis, MD, July 7-11, pp. 1084–1089, 2002.

Str98. Matthew R. Streger. “Prehospital Triage.”Emergency Medical Services,
1998:21–21, 1998.

Str02. Oliver Streiter. “Abduction, Induction, and Memorizing in Corpus-based
Parsing.” InProceedings of the ESSLLI-2002 Workshop on Machine
Learning Approaches in Computational Lingusistics, 2002.

SU98. A. Seitz and A.M. Uhrmacher. “The Treatment of Time in a Case-Based
Analysis of Experimental Medical Studies.” In O. Herzog and A. Guenter,
editors,KI-98: Advances in Artificial Intelligence, number 1504 in Lecture
Notes in Computer Science, pp. 213–222. Springer, 1998.

Sug95. Toshiharu Sugawara. “Reusing past plans in distributed planning.” In
Victor Lesser, editor,Proceedings of the First International Conference
on Multi–Agent Systems, pp. 360–367, San Francisco, CA, 1995. MIT
Press.

Swe96. John A. Swets.Signal Detection Theory and ROC Analysis in Psychology
and Diagnostics. Collected Papers. Lawrence Erlbaum Associates, 1996.

SZ00. Eugene H. Spafford and Diego Zamboni. “Intrusion detection using au-
tonomous agents.”Computer Networks, 34:547–570, 2000.

TAK02. B. Taskar, P. Abbeel, and D. Koller. “Discriminative Probabilistic Models
for Relational Data.” InEighteenth Conference on Uncertainty in Artificial
Intelligence (UAI02), 2002.

TCW97. Costas Tsatsoulis, Qing Cheng, and Hsin-Yen Wei. “Integrating Case-
Based Reasoning and Decision Thoeory.”IEEE Expert, 1997.

282 REFERENCES

TD97. Prasad Tadepalli and Thomas G. Dietterich. “Hierarchical Explanation-
Based Reinforcement Learning.” InProceedings of 14th International
Conference on Machine Learning, pp. 358–366. Morgan Kaufmann, 1997.

THC02. Sapon Tanachaiwiwat, Kai Hwang, and Yue Chen. “Adaptive Intrusion
Response to Minimize Risk over Multiple Network Attacks.” InSubmitted,
2002.

TJK99. B. Trousse, M. Jaczynski, and R. Kanawati. “Using User Behavior Simi-
larity for Recommandation Computation : The Broadway Approach.” In
Proceedings of 8th international conference on human computer interac-
tion (HCI’99), 1999.

TK70. A. Tversky and D. H. Krantz. “The dimensional representation and the
metric structure of similarity data.”Journal of Mathematical Psychology,
7:572–596, 1970.

TL00. Steven J. Templeton and Karl Levitt. “A Requires/Provides Model for
Computer Attacks.” InProceedings of the New Security Paradigms Work-
shop 2000, pp. 19–21, September 2000.

Tro00. B. Trousse. “Evaluation of the Prediction Capability of a User Behaviour
Mining Approach For Adaptive Web Sites.” InProceedings of the 6th
RIAO Conference—Content-Based Multimedia Information Access, Paris,
France, 2000.

Tve77. A. Tversky. “Features of Similarity.”Psychological Review, 84:327–352,
1977.

UG96. Mike Uschold and Michael Grüninger. “Ontologies: principles, methods,
and applications.”Knowledge Engineering Review, 11(2):93–155, 1996.

UP02. Jeffrey Undercoffer and John Pinkston. “Modeling Computer Attacks: A
Target-Centric Ontology for Intrusion Detection.” InCADIP Research
Symposium, 2002.

Uta94. Joachim Utans. “Learning in Compositional Hierarchies: Inducing the
Structure of Objects from Data.”Advances in Neural Information Pro-
cessing Systems, 6, 1994.

Var96. A. Varzi. “Parts, Wholes, and Part-Whole Relations: The Prospects of
Mereotopology.” Data and Knowledge Engineering. Special Issue on
Modeling Parts and Wholes, 20(3):259–286, 1996.

VC93. Manuela M. Veloso and Jaime G. Carbonell. “Derivational analogy in
PRODIGY: Automating case acquisition, storage, and utilization.”Ma-
chine Learning, 10:249–278, 1993.

VC98. Mark Venguerov and Padraig Cunningham. “Generalised Syntactic Pattern
Recognition as a Unifying Approach in Image Analysis.” In Adnan Amin,

REFERENCES 283

Dov Dori, Pavel Pudil, and Herbert Freeman, editors,Advances in Pattern
Recognition, Joint IAPR International Workshops SSPR ’98 and SPR ’98,
Sydney, NSW, Australia, August 11-13, 1998, Proceedings, volume 1451
of Lecture Notes in Computer Science, pp. 913–920. Springer, 1998.

VEK00. G. Vigna, S. Eckmann, and R. Kemmerer. “Attack Languages.” InPro-
ceedings of the IEEE Information Survivability Workshop, 2000.

Vel92. Manuela M. Veloso.Learning by Analogical Reasoning in General Prob-
lem Solving. PhD thesis, School of Computer Science, Carnigie Mellon
University, 1992.

Vel96. Manuela M. Veloso. “Flexible Strategy Learning: Analogical Replay of
Problem Solving Episodes.” In David B. Leake, editor,Case-Based Rea-
soning: Experiences, Lessons, and Future Directions, chapter 8, pp. 137–
149. AAAI Press/The MIT Press, 1996.

Vig03. G. Vigna. “A Topological Characterization of TCP/IP Security.” InPro-
ceedings of the12th International Symposium of Formal Methods Europe
(FME ’03), number 2805 in LNCS, pp. 914–940, Pisa, Italy, September
2003. Springer-Verlag.

Vil90. Marc Vilain. “Getting serious about parsing plans: a grammatical analysis
of plan recognition.” InProceedings of the Eighth National Conference
on Artificial Intelligence, pp. 190–197, 1990.

VS00. Alfoson Valdes and S. Skinner. “Blue Sensors, Sensor Correlation, and
Alert Fusion.” In Hervé Debar, Ludovic Mé, and Shyhtsun Felix Wu,
editors,Proceedings of Recent Advances in Intrusion Detection Interna-
tional Workshop (RAID 2000), volume 1907 ofLecture Notes in Computer
Science. Springer, 2000.

VS01. Alfonso Valdes and Keith Skinner. “Probabilistic Alert Correlation.” In
W. Lee, L. Mé, and A. Wespi, editors,Proceedings of the 4th International
Symposium Recent Advances in Intrusion Detection (RAID 2001), Davis,
CA, USA, number 2212 in Lecture Notes in Computer Science. Springer,
2001.

Wat97. Ian Watson.Applying case-based reasoning: techniques for enterprise
systems. Morgan Kaufmann, 1997.

WB98. Wolfgang Wilke and Ralph Bergmann. “Techniques and Knowledge Used
for Adaptation During Case-Based Problem Solving.” InIEA/AIE (Vol.
2), pp. 497–506, 1998.

WCH87. Morton E. Winston, Roger Chafin, and Douglas Hermann. “A taxonomy
of part-whole relations.”Cognitive Science, 11(4):417–444, 1987.

284 REFERENCES

WE02. M. Wood and M. Erlinger. “Intrusion Detection Message Exchange Re-
queriments.” Internet draft (Work in Progress), 2002.

WE03. M. Wood and M. Erlinger. “Intrusion Detection Message Exchange Re-
quirements.” Internet-Draft, expired: April 22, 2003, 2003.

WF02. S. Wu and P. A. Flach. “Model selection for dynamic processes.” In M. Bo-
hanec, B. Kašek, N. Lavrač, and D. Mladenic, editors,ECML/PKDD’02
workshop on Integration and Collaboration Aspects of Data Mining, De-
cision Support and Meta-Learning, pp. 168–173. University of Helsinki,
August 2002.

WFP96. Maj. White, Eric Fisch, and Udo Pooch. “Cooperating Security Managers:
A Peer-based Intrusion Detection System.”IEEE Network, 10:20–23,
1996.

WG75. Roger Waters and David Gilmour. “Wish You Were Here.” InWish You
Were Here. EMI, 1975.

WH98. Gary M. Weiss and Haym Hirsh. “Learning to Predict Rare Events in Cat-
egorical Time-Series Data.” InAAAI Workshop, Predicting the Future: AI
Approaches to Time-Series Problems, Technical Report WS-98-07, 1998.

Why69. Lancelot Law Whyte. “Structural Hierarchies: A Challenging Class of
Physical and Biological Problems.” In Lancelot L. Whyte, Albert G. Wil-
son, and Donna Wilson, editors,Hierarchical Structures. Elsevier Pub-
lishing Company, 1969.

Woo91. W. A. Woods. “Understanding Subsumption and Taxonomy: A framework
for progress.” In J. F. Sowa, editor,Principles of Semantic Networks.
Morgan Kaufman Publishers, San Mateo, California, 1991.

WTM95. Andrew J. Weiner, David A. Thurman, and Christine M. Mitchell. “Ap-
plying Case-Based Reasoning to Aid Fault Management in Supervisory
Control.” In Proceedings of the 1995 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 4213–4218, 1995.

YKM96. S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. “High Speed &
Robust Event Correlation.”IEEE Communications Magazine, May 1996.

YKP00. J. Ying, T. Kirubarajan, and A. PattersonHine. “A Hidden Markov Model-
Based Algorithm for Fault Diagnosis with Partial and Imperfect Tests.”
IEEE transactions on systems, man and cybernetic, 30(4), 2000.

Zeh03. Farida Zehraoui. “CBR System for Sequence Prediction "CASEP".” In
Workshop on Applying CBR to Time Series Prediction. The Fifth Interna-
tional Conference on Case-Based Reasoning, pp. 260–269, 2003.

REFERENCES 285

ZGT02. Cliff Changchun Zou, Weibo Gong, and Don Towsley. “Code red worm
propagation modeling and analysis.” InProceedings of the 9th ACM con-
ference on Computer and communications security, pp. 138–147. ACM
Press, 2002.

ZPW02. Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey, Allison Mankin, S. Felix
Wu, and Lixia Zhang. “Detection of Invalid Routing Announcement in
the Internet.” InInternational Conference on Dependable Systems and
Networks (DSN’02), 2002.

ZS03a. Y. Zhu and D. Shasha. “Efficient Elastic Burst Detection in Data Streams.”
In The Ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD-2003), 2003.

ZS03b. Yunyue Zhu and Dennis Shasha. “Efficient Elastic Burst Detection in Data
Streams.” InSIGKDD’03, 2003.

ZXL02. Qingguo Zheng, Ke Xu, Weifeng Lv, and Shilong Ma. “Intelligent Search
of Correlated Alarms from Database Containing Noise Data.” InProceed-
ings of the 8th IEEE/IFIP Network and Operations Management Sympo-
sium, pp. 405–419, 2002.

ZZ02. Chengqu Zhang and Shichao Zhang.Association Rule Mining. Springer,
2002.

