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Abstract. Empirical experiments have shown that storing every case
does not automatically improve the accuracy of a CBR system. There-
fore, several retain policies have been proposed in order to select which
cases to retain. However, all the research done in case retention strate-
gies is done in centralized CBR systems. We focus on multiagent CBR
systems, where each agent has a local case base, and where each agent
can interact with other agents in the system to solve problems in a col-
laborative way. We propose several case retention strategies that directly
deal with the issue of being in a multiagent CBR system. Those case re-
tention strategies combine ideas from the CBR case retain strategies and
from the active learning techniques. Empirical results show that strate-
gies that use collaboration with other agents outperform those strategies
where the agents work in isolation. We present experiments in two differ-
ent scenarios, the first one allowing multiple copies of one case and the
second one only allowing one copy of each case. Although it may seem
counterintuitive, we show and explain why not allowing multiple copies
of each case achieves better results.

1 Introduction

Maintaining compact and competent case bases has become a main topic of
Case Based Reasoning research. The main goal is to obtain a compact case base
(with a reduced number of cases) but without losing problem solving accuracy.
Moreover, empirical experiments have shown that storing every case does not
automatically improve the accuracy of a CBR system [13]. The last process in
the CBR cycle (retrieve, reuse, repair and retain) [1] is in charge of deciding
which new cases must be retained. When a case is decided to be retained, it is
incorporated into the case base and will be accessible for solving new problems
in the future.

Deciding which cases to retain (or to select which cases to learn from) is a
concern not only in CBR. A main issue on machine learning is to select which
are the examples of the target problem to learn from. Each time a learning
system receives a new example, it has two options: use the example to learn
(retain) or discard it. When a learner retains every example it observes, we are



talking of passive learning. But when the learner has some strategy to select
which are the examples that it is going to learn from, we are talking of active
learning [4]. The basic idea in active learning is that the learner receives a set
of unlabeled examples and decides which of them are interesting to learn from;
then the teacher labels the examples that the learner has found interesting and
they are used for learning. The main goal of active learning is to minimize the
number of examples needed to learn any task without appreciably degrading the
performance.

Therefore, we have two different approaches to the problem of selecting which
are the most interesting examples (cases) to learn from: the CBR approach and
the active learning approach. The basic idea of both is to perform an active
selection process through the instance space with the goal of selecting the best
examples (cases) to learn from. However, there are also fundamental differences
between them. Specifically, active learning strategies try to minimize the number
of questions to the teacher, i.e. active learning strategies try to select which
are the interesting examples before knowing their solution, to avoid the cost
associated with labeling them (asking for the right solution from a teacher).
CBR case retention strategies do not try to minimize the cost of asking for the
solution of the cases, but assumes that this solution is known, since the retain
process is performed after the revise process in the CBR cycle. However, we will
show that both approaches can be seen under a common framework.

This work extends our previous work on Ensemble CBR [11]. Ensemble CBR
focuses on Multiagent CBR Systems (MAC) where the agents are able to solve
problems individually using CBR methods and where only local case bases are
accesible to each individual agent. Problems to be solved by an agent can be
sent by an external user or by another agent. The main issue is to find good col-
laboration strategies among selfinterested CBR agents that can help improving
classification accuracy without compromising case base privacy. In this paper we
focus on case retention strategies for Ensemble CBR.

When dealing with a multiagent system both CBR case retention and active
learning must be reconsidered. If individual CBR agents apply case retention as
if they were in isolation they can be losing relevant information. In a multiagent
scenario several learning opportunities arise from the collaboration with other
agents. Imagine the following situation: an agent Ai has the opportunity to
learn a new example P , but decides that P is not interesting to him. But there
is another agent Aj in the system that could obtain a great benefit from learning
example P . Both agents would benefit from the fact that the agent Ai does not
discard the case but instead gives it or sells it to Aj . Moreover, when an agent
retains a new example, the agent can poll the other agents to see if there is
anyone else also interested in the new example.

The structure of the paper is as follows. We first present in section 2 a more
detailed description of the MAC systems. Then, in section 3 we will present
a common framework encompassing both active learning and CBR retention
strategies. Within this framework, we will present several strategies exploiting
the fact that the agents are inside a multiagent system. Finally, section 4 shows



an empirical evaluation of the strategies presented in this paper. The paper closes
with related work and conclusions section.

2 Multiagent CBR Systems

Formally, a MAC system M = {(Ai, Ci)}i=1...n is composed on n agents, where
each agent Ai has a case base Ci. In this framework we restrict ourselves to
analytical tasks, i.e. tasks (like classification) where the solution is achieved by
selecting from an enumerated set of solutions K = {S1 . . . SK}. A case base
Ci = {(Pj , Sk)}j=1...N is a collection of problem/solution pairs. Each agent Ai

is autonomous and has learning capabilities, i.e. each agent is able to collect
autonomously new cases that can be incorporated to its local case base.

Moreover, since we focus on analytical tasks, there is no obvious decom-
position of the problem in subtasks. However, collaboration is still interesting
because an agent Ai can send a complete problem P to another agent Aj asking
for help to solve it. After Aj answers Ai with its own solution for P , Ai can do
anything with this solution. A simple way for Ai to use this solution is to com-
pare it with the solution found by itself, if both solutions agree Ai can increase
the degree of confidence on the solution found, and if both solutions disagree,
maybe it’s interesting to send the problem to some other agent to have a third
opinion [10].

When an agent Ai asks another agent Aj help to solve a problem the in-
teraction protocol is as follows. First, Ai sends a problem description P to Aj .
Second, after Aj has tried to solve P using its case base Cj , it sends back a
message that is either :sorry (if it cannot solve P) or a solution endorsement
record (SER). A SER has the form 〈{(Sk, Ej

k)}, P, Aj〉, where the collection of

endorsing pairs (Sk, Ej
k) mean that the agent Aj has found Ej

k cases in case base

Cj endorsing solution Sk—i.e. there are a number Ej
k of cases that are relevant

(similar) for endorsing Sk as a solution for P. Each agent Aj is free to send one
or more endorsing pairs in a SER record.

In our framework, agents use a voting mechanism in order to aggregate the
information contained in various SERs coming from other agents. This voting
scheme is explained in the next section.

2.1 Voting Scheme

The principle behind the voting scheme is that the agents vote for solution classes
depending on the number of cases they found endorsing those classes. However,
we want to prevent an agent having an unbounded number of votes. Thus, we
will define a normalization function so that each agent has one vote that can
be for a unique solution class or fractionally assigned to a number of classes
depending on the number of endorsing cases.

Formally, let At the set of agents that have submitted their SERs to the
agent Ai for problem P . We will consider that Ai ∈ At and the result of Ai



trying to solve P is also reified as a SER. The vote of an agent Aj ∈ A
t for class

Sk is

V ote(Sk, Aj) =
Ej

k

c +
∑

r=1...K Ej
r

where c is a constant that on our experiments is set to 1. It is easy to see
that an agent can cast a fractional vote that is always less than 1. Aggregating
the votes from different agents for a class Sk we have ballot Ballott(Sk,At) =∑

Aj∈A
t V ote(Sk, Aj) and therefore the winning solution class is the class with

more votes in total.
This voting scheme can be seen as a variation of Approval Voting [3]. In

Approval Voting each agent vote for all the candidates they consider as possible
solutions without giving any weight to its votes. In our scheme, Approval Voting
can be implemented making V ote(Sk, Aj) = 1 if Ej

k 6= 0 and 0 otherwise. There
are two differences between the standard Approval Voting and our voting scheme.
The first one is that in our voting scheme agents can give a weight to each one
of its votes. The second difference is that the sum of the votes of an agent is
bounded by 1. Thus we call it Bounded-Weighted Approval Voting (BWAV).

The next section presents the Committee collaboration strategy, that uses
this voting scheme.

2.2 Committee Collaboration Strategy

In this collaboration strategy the agent members of a MAC system M are
viewed as a committee. An agent Ai that has to solve a problem P sends it to
all the other agents in M. Each agent Aj that has received P sends a solution

endorsement record 〈{(Sk, Ej
k)}, P, Aj〉 to Ai. The initiating agent Ai uses the

voting scheme above upon all SERs, i.e. its own SER and the SERs of all the
other agents in the multiagent system. The problem’s solution is the class with
maximum number of votes.

Since all the agents in a MAC system are autonomous CBR agents, they will
not have the same problem solving experience (in general, the cases in their case
bases will not be the same). This makes it likely that the errors that each agent
make in the solution of problems will not be very correlated, i.e. each agent
will not err in the same problems. It is well known in machine learning that
the combination of the predictions made by several classifiers with uncorrelated
errors improves over the individual accuracies of those classifiers [5] (“ensemble
effect”). Thus, using the committee collaboration policy an agent can increase its
problem solving accuracy because it matches the preconditions of the “ensemble
effect”.

3 Strategies for Case Retention

In the following sections we will present several strategies that an agent can use
to decide which cases to retain. These strategies are used when an agent has the
opportunity to learn a new case, and has to decide whether to retain it or not.
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Fig. 1. View of the active learning and CBR case retention decision processes.

As we want to create case retention strategies to be used in multiagent scenar-
ios, we divide each full case retention strategy in two subprocesses: the individual
retention process and the offering process. The individual retention process is re-
sponsible of deciding whether a case has to be stored locally or not. The offering
process is the responsible of deciding whether to offer a copy of one case or not
to some other agents. The way we fulfill each one of these two processes is called
a policy. Thus, a retention strategy needs to define an individual case retention
policy and an offering policy. For the individual case retention policy, we have
seen that there are two different approaches: policies coming from the active
learning approach, and policies coming from the CBR case retention approach.

Figure 1 shows the options we have for building a complete case retention
strategy. On the left part, we have two different options for the individual case
retention policy, and on the right part, we can see the offering policy. Figure 1
also shows the main differences between active learning and CBR case retention:
the input to active learning decision policy is a problem with unknown solution,
and the input to CBR case retention is a full case (problem plus solution).

In the following sections we will first propose several policies for the individual
case retention policy. First we will explain an active learning policy that takes
advantage of the fact that the agent is in a multiagent system, and then we will
explain several policies from the CBR case retention approach. Finally we will
explain with detail the full case retention strategies resulting of a combination
of all the previous policies with an appropriate offering policy.

3.1 Active Learning Policy

Active learning addresses the problem of deciding if a new example is interesting
to be learned or not before knowing its solution. Or alternatively, the question
of selecting which are the most interesting examples from a pool of unlabeled
examples. But, which criterion can we use to answer these questions?

The answer to the previous question is easier when we restrict to specific
learning strategies. For example, if we are learning a concept using the Ver-
sion Space algorithm, we will have three regions in the Version Space: a region



containing those problems predicted as positive for all currently consistent ver-
sions, a region containing those problems predicted as negative for all currently
consistent versions, and the so called “region of uncertainty” [4]. In the region
of uncertainty, there are problems that some versions predict as positive and
that some versions predict as negative. Clearly, only examples pertaining to the
uncertainty region will improve our knowledge. Therefore, a good criterion to
assess if a new problem is interesting or not in the version space algorithm is
whether this new problem falls in the region of uncertainty or not.

For other kinds of learning algorithms, such as neural networks, analogous
criteria can be found, Cohn, Atlas and Ladner [4] define strategies to decide
whether a new case will be interesting to retain or not for a neural network clas-
sifier. However, finding a general criterion applicable to any learning algorithm is
difficult. Seung et al. [12], propose the Shannon information measure of the new
example as “suitable guide” for the general case. They also propose the Query
by Committee (QbC) algorithm as an approximation to this measure.

The QbC algorithm suits our framework particularly well, and can be adapted
in a straightforward way to work with lazy learning algorithms in a multiagent
system. We propose to use an adapted version of the QbC algorithm presented
in [12], that uses all the information available in a group of agents to make the
decision. Instead of creating a “virtual committee” as in the original Query by
Committee algorithm, we will use a real committee composed of several agents.
Thus, we propose the following multiagent version of the Query by committee
(MAQbC) algorithm:

1. A new problem P arrives to one agent Ai, and Ai has to decide whether to
retain P or not.

2. Ai sends problem P to a set A of other agents in the system (as in the
Committee collaboration policy).

3. Each agent Aj ∈ A solves the problem and each individual classification
is sent back to Ai reified as a SER. The agent Ai also solves the problem
individually and stores the obtained SER.

4. Ai builds the set S containing all the SERs sent by the agents in A and the
SER built by itself. Then, Ai measures the degree of disagreement between
the SERs contained in S.

5. If the degree of disagreement is high enough, the new problem P is interesting
enough to be retained.

As we will use committees with more than 2 members, we need to measure the
degree of disagreement. Let us define d, the degree of disagreement, as follows:
d = Vr/((K − 1) ∗ Vw), where K is the number of possible solutions, Vw are the
votes for the most voted solution and Vr are the votes for the rest of solutions.
Notice that when there is a clear majority d approaches 0, and that when the
disagreement is maximum (each member of the committee votes for a different
class) d approaches 1 (the reason for using K−1 instead of K is for normalizing
the result between 0 and 1).



In order to decide whether a case is interesting or not, we just have to decide
a threshold d0 for the degree of disagreement d. If d ≥ d0 the case is consid-
ered interesting, and otherwise it is discarded. This policy will be called the
Informative Disagreement policy:

– Informative Disagreement (ID) policy, each time an agent has the oppor-
tunity to retain a new case, the case will be evaluated using the MAQbC
algorithm, and only if the degree of disagreement is high enough (i.e. d ≥ d0),
it will be retained.

Notice that the ID policy is not infallible. In fact, in a situation where most
agents err in the same way the degree of disagreement will be low enough, and
thus the solution will not be asked to the teacher and the case will not be
retained. However, this situation is very unlikely because all or most agents have
to give the same erroneous class for the current problem.

3.2 CBR Case Retention Policies

The main difference of the CBR case retention policies with the active learning
approach is that CBR policies are able to use the solution of the problem to
decide whether to retain the case or not.

Deciding which cases to keep in the case base is one of the main issues in
case base maintenance, and most of the work done is focused on deleting cases
from the case base because the retrieval time has gone beyond the acceptable
limits for an application (swamping problem). One of the first policies proposed
was random deletion proposed by Markovich and Scott [8]. A more complex
approach is taken by Smyth and Keane [14], where a competence preserving
case deletion policy is proposed. Leake and Wilson [7] propose a policy to delete
cases from the cases base using a performance measure. Finally, Zhu and Yang
propose in [15] a technique for selecting a subset of cases from a case base using
case addition instead of case deletion. This last technique has the advantage of
ensuring that the case base coverage will be above a lower bound. However, these
strategies are off-line strategies, i.e. they store all the cases in the case base, and
after doing that, they analyze the content of the case base for selecting which
cases to keep and which cases to delete.

We focus on on-line case retention strategies, i.e. each time a new problem
arrives, the retention strategy is used to decide whether to retain the new case
or not. A more similar approach is taken by Aha et al. [2]. They propose two
policies for case retention to be applied into instance based learners in order
to reduce the number of cases needed to learn. However, they only focus on
centralized systems, and we are dealing with multiagent systems. Our approach
can be viewed as a generalization of on-line retention policies where the cases
that an individual CBR agent decides not to retain can be nonetheless useful for
other CBR agents.

For our experiments, we will use three simple retention policies:



– On Failure Retain (OFR) policy, each new case received by the agent will be
classified individually. Only if this individual classification differs with the
real solution class of the problem, it will be retained.

– Never Retain (NR) policy, the agent never retains the new cases.
– Always (AR) Retain policy, the agent always retains the new cases.

NR policy represents the scenario where no learning is performed by the
learning agent, and AR policy represents the scenario of passive learning (i.e.
when the learning system retains every new example that has the opportunity
to retain). The following section will define complete case retention strategies
using all the previous retention policies (ID, OFR, NR and AR) and several
offering policies.

3.3 Case Retention Strategies

In order to build a complete case retention strategy, we need to provide both
an individual case retention policy and an offering policy. In this section, for
each possible individual case retention policy, we will define one or more offering
policies to form several full case retention strategies.

As Figure 1 shows, the Offering process has several steps. First, the agent
decides whether to offer the case to other agents or not. After the case is offered,
the agent has to decide, from the set of agents that answered positively to the
offer, to which agent (or agents) the case is to be sent (In our experiments
the agents use the individual case retention policy to decide whether they are
interested in retaining a case offered by another agent.

Before defining the full case retention strategies, we will define two different
scenarios. In the first one, we will consider that there are ownership rights over
the cases, and therefore, no copies of the cases can be done. In the second
scenario, the agents will be free to make copies of the cases, and therefore,
multiple agents will be allowed to retain copies of the same case when need be.
We will call the first scenario the non-copy scenario, and the second one the copy
scenario. Several strategies for retaining cases can be defined for each scenario.
We will now define the case retention strategies applicable in each scenario.

Non-Copy Scenario Strategies In this scenario, we can only allow a single
copy of each case in the system. Therefore, only one agent can retain each case.
We propose the following strategies for an agent Ai that receives a new problem
P to learn:

– Informative Disagreement - No Offer strategy (ID-NO): In this strategy, the
MAQbC algorithm is used to decide whether to retain P locally or not. The
case is never offered to other agents.

– Informative Disagreement - Offer strategy (ID-O): The MAQbC algorithm
is used to decide whether to retain locally the case or not. If the case is found
interesting, Ai will ask the teacher for the correct solution of P . After that,
the agent will know which of the agents (including itself) have failed to solve



the problem correctly. If Ai is one of the agents to fail solving P then the
case is retained by Ai. Otherwise, as only one agent can retain P , Ai has to
choose one of them (currently this selection is done randomly).

– Never Retain - No Offer strategy (NR-NO): No retention nor offering process
is done. This represents the case of an agent that has no learning capabilities.

– Always Retain - No Offer strategy (AR-NO): The new problem is always
retained by Ai, and as only a single copy of the case is allowed, no offering
can be made.

– On Failure Retain - No Offer strategy (OFR-NO): In this strategy, P is only
retained by Ai when Ai was not individually capable of solving P correctly.
The case is never offered to other agents.

– On Failure Retain - Offer strategy (OFR-O): In this strategy, P is only
retained by Ai when Ai was not individually capable of solving P correctly.
If the case is not retained, it is offered to the other agents. Then, as we are
in the non-copy scenario, the agent has to choose just one of the agents that
have answered requesting P to send only one copy of it. In our experiments,
this selection is done randomly.

Copy Scenario Strategies All the previous strategies are applicable to this
scenario. For this reason, we will only explain here the different strategies that
can only be applied to the copy scenario:

– Informative Disagreement - Offer (ID-O-copy): The difference of this strat-
egy from ID-O is that, as we are in the copy scenario, no selection process
must be done, and all the agents that have failed to solve P can retain it.
Therefore, this strategy works as follows: the MAQbC algorithm is applied
to decide whether to retain P or not. If the case should be retained, after
asking the solution of P from a teacher, all the agents that have not correctly
solved P receive a copy of it.

– On Failure Retain - Offer (OFR-O-copy): Ai retains the case only when Ai

was not individually capable of solving P correctly. Then, P is also offered
to the other agents. A copy of the case is sent to each agent that answers
requesting a copy. Notice that this is possible only because we are now in
the copy scenario.

There is another combination of policies that generates a new strategy: Al-
ways Retain - Offer strategy, where the cases are always retained by every agent.
However, this is not an interesting strategy because all the agents in the system
will have access exactly to the same cases and will retain all of them.

4 Experimental results

In this section we want to compare the classification accuracy of the Committee
collaboration policy using all the strategies presented in this chapter. We also
present results concerning the resulting size of the case bases.



We use the marine sponge classification problem as our test bed. We have de-
signed an experimental suite with a case base of 280 marine sponges pertaining
to three different orders of the Demospongiae class (Astrophorida, Hadromerida
and Axinellida). In each experimental run the whole collection of cases is divided
in two sets, a training set (containing a 10% of the cases), and a test set (con-
taining a 90% of the cases). The training set is distributed among the agents,
and then incremental learning is performed with the test set. Each problem in
the test set arrives randomly to one agent in the MAC. The goal of the agent re-
ceiving a problem is to identify the correct biological order given the description
of a new sponge. Once an agent has received a problem, the Committee collab-
oration policy will be used to obtain the identification. Since our experiments
use supervised learning, after the committee has solved the problem, there is a
supervisor that tells the agent receiver of the problem which was the correct so-
lution. After that, the retention policy is applied. Each agent applies the nearest
neighbor rule to solve the problems. The results presented here are the average
of 50 experimental runs.

As these experiments try to evaluate the effectiveness of the collaborative
learning policies, it is important that the agents really have an incentive to
collaborate. If every agent receives a representative (not biased) sample of the
data, they will have a lower incentive to ask for cases to other agents since they
already have a good sample. For this reason, for experimentation purposes, the
agents do not receive the problems randomly. We force biased case bases in every
agent by increasing the probability of each agent to receive cases of some classes
and decreasing the probability to receive cases of some other classes. This is done
both in the training phase and in the test phase. Therefore, each agent will have
a biased view of the data.

4.1 Accuracy Comparison

Figures 2 and 3 show the learning curves for two multiagent systems using all the
retain strategies that we have presented. For each multiagent system, 8 strategies
have been tested: NR-NO, AR-NO, OFR-NO, ID-NO, OFR-O, ID-O, OFR-O-
copy and ID-O-copy. The figures show the learning curve for each strategy. The
horizontal axis of the figures represents the number of problems that the agents
have received of the test set. The baseline for comparison is the NR-NO strategy,
where the agents do not retain any cases, and therefore (as we can see in the
figures) they do not learn, resulting in an horizontal learning curve around an
accuracy of about 50% in all the settings. This is because the training set is
extremely small, containing just 28 cases to be distributed between the agents
(The Committee collaboration policy has proven to obtain results above 88% in
this dataset when the agents have a reasonable number of cases [9]). For the
experiments that use the ID policy, we have set the parameter d0 = 0.3 for the
5 agent scenario and d0 = 0.25 for the 8 agent scenario.

Considering the other seven strategies we can see that they fall in two groups.
The first one containing all the non-offering strategies (AR-NO, OFR-NO and
ID-NO) and the second one containing all the offering policies (OFR-O, ID-O,



Fig. 2. Accuracy comparison for a MAC system composed of 5 agents.

OFR-O-copy and ID-O-copy). Notice also that all the strategies in the offering
group have higher accuracies than the strategies in the non-offering group. Let
us now analyze them in turn.

Concerning the non-offering strategies, in the 5 agent scenario (Figure 2),
they are practically indistinguishable in terms of classification accuracy. They
all start with an accuracy of about 55% and reach (after receiving all the cases
of the test set) an accuracy of about 80%. If we look at the 8 agent scenario on
Figure 3, we can see that we have nearly the same situation. All the non-offering
policies start with an accuracy of about 53% and end with an accuracy of about
82%. In this scenario the ID-NO strategy seems to work a little better than
AR-NO and OFR-NO. Summarizing, we can say that they all are significantly
better than the NR-NO strategy but to distinguish between them we have to
take in consideration more factors than only accuracy (see section 4.2).

Concerning the group of offering strategies, both Figures 2 and 3 show that
the non-copy strategies obtain higher accuracies than their respective copy sce-
nario versions (i.e. OFR-O obtains higher accuracies than OFR-O-copy and ID-
O obtains higher accuracies than ID-O-copy). Concerning the copy strategies,
OFR-O-copy obtains higher accuracies than ID-O-copy. This difference is not so
clear with the non-copy strategies, because in the 5 agent scenario OFR-copy ob-
tains higher accuracies than ID-O, but they both reach accuracies of about 89%
in the 8 agent scenario. Summarizing, we can say that OFR-O is slightly better
than ID-O and that both are clearly better than their copy scenario versions.
The explanation is that if we allow multiple copies of a case in the system, we are
increasing the error correlation between the agents. Moreover, the “ensemble ef-
fect” [6] states that the combination of uncorrelated classifiers has better results
that the combination of correlated ones; increased correlation is the cause of
OFR-O-copy and ID-O-copy achieving lower accuracies than OFR-O and ID-O.



Fig. 3. Accuracy comparison for a MAC system composed of 8 agents.

5 Agents 8 Agents

ID-O-copy 35.93 30.81

OFR-O-copy 56.81 56.18

ID-O 23.96 17.65

OFR-O 34.26 25.70

ID-NO 39.21 28.24

OFR-NO 16.09 11.00

AR-NO 56.00 35.00

NR-NO 5.60 3.50
Table 1. Average case base size of each agent at the end of the learning process.

Comparing both groups of strategies, all the offering strategies obtain al-
ways higher accuracies than all the non-offering strategies. Therefore, we can
conclude that it is always better for the Committee collaboration policy that the
agents offer cases to the other agents; the reason is that cases not interesting
for some agents can be found interesting by some other agents. In other words,
collaboration is better than non collaboration for the retention policies.

4.2 Case Base Size Comparison

Table 1 shows the average size of each individual case base at the end of the
learning process (i.e. when all the 252 cases of the test set have been sent to
the agents). In all the experiments the size of the initial case base (distributed
among the agents) is just 28 cases (the training set). When the agents use the
NR-NO strategy, since they do not retain any new cases, they just keep the
initial cases. For instance, we can see in the 5 agents scenario (where the agents



have in average a case base of 5.60 cases) that 5 times 5.60 is exactly 28 —
exactly the number of cases in the training set.

Comparing the case base sizes reached by the non offering strategies (AR-NO,
OFR-NO and ID-NO) that achieved nearly indistinguishable accuracies, we can
see that there is a great difference among their case base sizes. The strategy that
obtained smaller case base sizes was OFR-NO, with 16.09 average cases per case
base in the 5 agent scenario, and 11.00 average cases per case base in the 8 agent
scenario. The next one is ID-NO, and the one that obtained the biggest case
base sizes was AR-NO. Thus, OFR-NO is better than the other two, because
has the same accuracy but with a smaller case base size. However, we have to
take into consideration that the ID-NO strategy uses less information, because
it doesn’t need to ask the solution of the problems before deciding whether to
retain them or not.

In the case of the offering strategies, the strategies working in the non-copy
scenario obtain smaller case base sizes than the strategies working in the copy
scenario. This is not surprising, because in the copy scenario we allow multiple
copies of each case to be retained, thus increasing the amount of cases retained
by the agents. Since they also obtain better accuracies this result still reinforces
the fact that the strategies working in the non-copy scenario obtain better results
than the strategies working in the copy scenario. These strategies obtain higher
accuracies because the error correlation is lower and then the ensemble effect is
stronger.

Comparing the strategies based in active learning (ID-O and ID-O-copy)
with the strategies based in CBR case retention (OFR-O and OFR-O-copy), we
see that active learning strategies obtain smaller case base sizes. However, we are
unable to say that ID-O-copy is better than OFR-O-copy because OFR-O-copy
obtained higher classification accuracies. Comparing ID-O with OFR-O, we can
see that ID-O obtains smaller case base sizes, but OFR-O obtained slightly
higher accuracies.

5 Conclusions

As we have seen, some retention strategies for Ensemble CBR are clearly better
than others. For instance, offering strategies always obtain greater case base sizes
than non-offering strategies. But this increase in case base size is highly justified
by a large increase in classification accuracy. Therefore, we can conclude that for
MAC systems using the committee policy it is better for an agent to offer cases
to other agents.

Strategies working in the copy scenario have an increased case base size with
a lower accuracy. Therefore they are clearly worse than the non-copy strategies.
This may seem not intuitive, but it’s an expected issue of the “ensemble effect”
since copied cases increase the error correlation between agents.

Comparing strategies coming from active learning and strategies coming from
CBR case retention, there is no clear winner. Strategies based on CBR case
retain (OFR-NO, OFR-O and OFR-O-copy) usually obtain higher accuracies,



but strategies based on active learning (ID-NO, ID-O and ID-O-copy) obtain
smaller case bases (except for ID-NO, that obtains relatively large case bases).
Moreover, while comparing active learning strategies with CBR case retention
strategies we have to take into consideration more factors. The first one is that
active learning strategies do not need to ask for the right solution for every
problem before deciding whether to retain it or not. Thus, they can avoid a lot
of questions to the teacher. Moreover, we also have to take into consideration that
the Informative Disagreement (ID) policy has to be tuned to each system with
the adequate threshold d0. In our experiments we have found that this is very
easy when the committee has a not too small number of members. However,
when the committee is very small (for instance we have experimented with a
committee of 3 agents), it’s not possible to find a d0 that obtains good results,
because there are very few possible values for the degree of disagreement d.

At the beginning of the experiments section we have said that, in order to
give the agents an incentive to collaborate, we have forced biased case bases in
every agent by increasing the probability of each agent to receive cases of some
classes and decreasing the probability to receive cases of some other classes. To
see the effect of retention policies under unbiased conditions, we have performed
all the experiments presented in this section but randomly distributing the cases
in the agents rather than forcing biased case bases. We found that the difference
between offering and non-offering strategies is smaller than in the scenario of bi-
ased case bases, but that offering strategies still improve the performance. This
result was expected, since when the agents receive the problems randomly, each
agent receives a representative sample of examples, reducing the need of obtain-
ing cases from other agents. In the unbiased scenario both non-offering strategies
(OFR-NO and AR-NO) obtain slightly (but significantly) lower accuracies than
OFR-O, and the same happens with ID-NO respect to ID-O. The reason for the
small increment in accuracy of the offering policies (OFR-O and ID-O) is that
when agents use offering policies, all the agents in the system have access to a
greater amount of cases, and thus they retain more cases on average, leading to a
slightly higher individual accuracy. This increment in individual accuracy is the
cause of the small increment in accuracy of the offering policies in the unbiased
scenario.

Summarizing, there are two main conclusions. The first one is that for case
retention cooperating with other agents is always beneficial, since the offering
policies always perform better than non-offering policies and committee collabo-
ration policy works better than individual problem solving. The second conclu-
sion is that working in the non-copy scenario to avoid error correlation between
the agents’ case bases is preferable, since we can obtain more benefits from the
committee collaboration policy. This second result is quite interesting, because
it could seem intuitive to think that the more cases each agent is allowed to
retain, the greater classification accuracy the committee will obtain. Moreover,
the restriction introduced by the non-copy scenario (only one copy of each case
allowed in the system) could seem arbitrary, but the reduction of the error cor-
relation between the agents obtained has a strong enough effect to prefer it to



the copy scenario. It remains as future work to explore intermediate scenarios
between the copy and non-copy, to see if a better tradeoff between individual
accuracy and error correlation can be found.

Finally, notice that the ID policy (used in active learning) takes into account
information obtained from other agents. As a future work, we plan to develop
new CBR case retention policies that also take advantage of information obtained
from other agents.
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