
An Approach to Re-representation in
Relational Learning

Santiago Ontañón a and Enric Plaza b

a Computer Science Department, Drexel University
Philadelphia 19104, PA, USA, e-mail: santi@cs.drexel.edu

b IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain), e-mail: enric@iiia.csic.es

Abstract. We present a new approach lo learn from relational data based

on re-representation of the examples. This approach, called property-
based re-representation is based on a new analysis of the structure of

refinement graphs used in ILP and relational learning in general. This
analysis allows the characterization of relational examples by a set of

multi-relational patterns called properties. Using them, we perform a

property-based re-representation of relational examples that facilitates
the development of relational learning techniques.

1. Introduction

Relational Machine Learning (RLM) studies how to design machine learning al-
gorithms for domains where data is structured, or relational. In order to address
this problem, in this paper we present a new approach lo learn from relational
data based on re-representation of the examples. This approach, called property-
based re-representation is based on a new analysis of the structure of refinement
graphs used in Inductive Logic Programming (ILP) and relational learning in
general. This analysis allows the characterization of relational examples by a set
of multi-relational patterns called properties, with which we perform a property-
based re-representation of relational examples that facilitates the development of
relational learning techniques1.

Our approach is based on the notion of refinement graphs [9], which are
used in ILP and other techniques performing inductive relational learning, e.g in
Description Logics [3,11,12]. A refinement graph in the space of generalizations
is built by defining a suitable refinement operator. The approach and techniques
presented here are, in principle, applicable to any refinement graph where the
refinement operator satisfies certain properties, namely they have to be complete
and locally finite. For reasons of space an clarity, however, this paper will focus on

1This paper has been selected by the CCIA’2013 scientific committee for an extended version

in a special issue on AICommunications journal



a particular representation formalism, namely feature terms (presented in the next
section), for which we will define its own refinement graph. Then, we present the
notion of a property (a multi-relational pattern) of a relational example, and the
disintegration operation, which splits a given relational example in a collection of
properties. These properties can later be integrated again if need be to reconstruct
the original example. Moreover, we introduce the way to re-represent an example
as a set of properties and the building of a vocabulary of properties to represent
examples in a given data set. The reason to present this re-representation is that
it allows to use classical propositional machine learning techniques (with a small
adaptation) to relational data, as discussed in Section 6.

2. Preliminaries

This section introduces the formalism of feature terms, and the basic notions of
refinement operators and graphs.

2.1. Feature Terms

Feature terms [2,5] (also called feature structures, or Ψ-terms) are a generaliza-
tion of first-order terms, introduced in theoretical computer science to formal-
ize object-oriented declarative languages. Feature terms correspond to a different
subset of first-order logics than Description Logics. However, they have the same
expressive power —only differing in their basic reasoning mechanisms [1].

Feature terms are defined by its signature: Σ = 〈S,F ,≤,V〉. S is a set of
sort symbols, including ⊥ representing the most general sort (“any”), and >
representing the most specific sort (“none”); ≤ is an order relation inducing a
single inheritance hierarchy in S, where s ≤ s′ means s is more general than or
equal to s′, for any s, s′ ∈ S (“any” is more general than any s which, in turn,
is more general than “none”). F is a set of feature symbols, and V is a set of
variable names. We define a feature term ψ as,

ψ ::= X : s [f1
.
= Ψ1, ..., fn

.
= Ψn]

where ψ points to the root variable X (that we will note as root(ψ)) of sort s;
X ∈ V, s ∈ S, fi ∈ F , and Ψi is either a variable Y ∈ V, or a set of variables
{X1, ..., Xm}.

An example feature term appears in Figure 1. It is a train (variable X1)
composed of three cars (variables X2, X3 and X4). This term has 10 variables,
and one set-valued feature (its values enclosed in a dashed line): cars of X1. There
are also several variable equalities, e.g. equality X3.infront = X4. means that the
car in front of car X3 is car X4. The set of variables of a term ψ is vars(ψ), the
set of features of a variable X is features(X), and sort(X) is its sort.

The basic relation over feature terms is subsumption (v), i.e. whether a term
is more general (or equal) than another2.

2In description logics notation, subsumption is written in the reverse order since it is seen as

“set inclusion” of their interpretations. In ML terms, A v B means that A is more general than
B, while in description logics it has the opposite meaning.



X1 : train

X2 : car

X3 : car

X4 : car

X5 : 4

X6 : long

X7 : engine

X8 : closedrect

X9 : short

X10 : openrect

cars

infront

infront

nwheels
ln
shape

nwheels
shape

ln

nwheels

ln
shape

ψ ::=

Figure 1. A train represented as a feature term.

Definition 1 (Subsumption) A feature term ψ1 subsumes another one ψ2 (ψ1 v
ψ2) when there is a total mapping m: vars(ψ1)→ vars(ψ2) such that:

1. root(ψ2) = m(root(ψ1)), and
2. ∀X ∈ vars(ψ1)

(a) sort(X) ≤ sort(m(X)), and
(b) ∀f ∈ features(X), where X.f = Ψ1 and m(X).f = Ψ2, we have that:

i. ∀Y ∈ Ψ1,∃Z ∈ Ψ2 : m(Y ) = Z,
ii. ∀Y,Z ∈ Ψ1, Y 6= Z ⇒ m(Y ) 6= m(Z)

i.e. each variable in the set Ψ1 is mapped to a variable in Ψ2, and each
different variable in Ψ1 has a different mapping.

If ψ1 v ψ2 and ψ2 v ψ1, we say that they are equivalent: ψ1 ≡ ψ2.
Subsumption induces a partial order over the set of all feature terms, i.e. the

pair 〈L,v〉 is a poset, where L is the set of all feature terms that can be formed
given a signature, and that contain the infimum ⊥ and the supremum > with
respect to the subsumption order. The subsumption relation allows us to view the
space of feature terms as a directed graph (called the subsumption graph) where
nodes are feature terms and directed edges indicate subsumption.

The two basic operations over the subsumption graph are unification and
antiunification.

Definition 2 (Unification) The unification ψ1 t ψ2 of two terms ψ1 and ψ2 is the
most general term subsumed by both. A term ψ is called the unifier whenever:

ψ1 t ψ2 = ψ : (ψ1 v ψ ∧ ψ2 v ψ) ∧
(@ψ′ @ ψ : ψ1 v ψ′ ∧ ψ2 v ψ′)

When two terms have contradictory information then they have no unifier —
equivalently we write ψ1 tψ2 = >. The antiunification (ψ1 uψ2) of two terms ψ1

and ψ2 is defined as their least general generalization:

Definition 3 (Antiunification) The antiunification ψ1uψ2 of two terms ψ1 and ψ2

is the most specific term that subsumes both. The term is called the antiunifier.



⊥⊥

ψ1 ! ψ2

ψ1 ! ψ2

a) b) 

Figure 2. a) Illustration of the unification and antiunification concepts, b) refinement graph.

ψ1 u ψ2 = ψ : (ψ v ψ1 ∧ ψ v ψ2) ∧
(@ψ′ A ψ : ψ′ v ψ1 ∧ ψ′ v ψ2)

Both unification and antiunification are operations over the subsumption
graph: antiunification finds the most specific common “parent” (generalization);
unification finds the most general common “descendant” (specialization). More-
over, unification and antiunification are not unique for the subsumption graph of
feature terms. Figure 2.a illustrates unification and antiunification, showing the
entire space of feature terms (with the most general term, ⊥, at the top) and
arrows indicating subsumption.

2.2. Refinement Operators

Let us now define the notion of refinement operator (for a more in depth discussion
of refinement operators, see [9]), which can be used to navigate the subsumption
graph, and, in general, any partially-ordered or quasi-ordered set. In the remainder
of this article we will consider only the case of partially-ordered sets (i.e. in which
two terms which subsume each other are considered equivalent: ψ1 ≡ ψ2).

Definition 4 A downward refinement operator ρ over a partially-ordered set (L,v)
is a function such that ∀ψ ∈ L : ρ(ψ) ⊆ {ψ′ ∈ L|ψ v ψ′}.

Definition 5 An upward refinement operator γ over a partially-ordered set (L,v)
is a function such that ∀ψ ∈ L : γ(ψ) ⊆ {ψ′ ∈ L|ψ′ v ψ}.

In other words, upward refinement operators generate terms which are more gen-
eral, whereas downward refinement operators generate terms which are more spe-
cific. Typically, the symbol γ is used to symbolize upward refinement operators,
and ρ to symbolize either a downward refinement operator, or a refinement oper-
ator in general. The following properties of refinement operators are considered
desirable:

1. A refinement operator ρ is locally finite if ∀ψ ∈ L : ρ(ψ) is finite.
2. A downward refinement operator ρ is complete if ∀ψ1, ψ2 ∈ L|ψ1 v ψ2 :
ψ2 ∈ ρ∗(ψ1).

3. An upward refinement operator γ is complete if ∀ψ1, ψ2 ∈ L|ψ1 v ψ2 :
ψ1 ∈ ρ∗(ψ2).

4. ρ is proper if ∀ψ1, ψ2 ∈ L ψ2 ∈ ρ(ψ1)⇒ ψ1 6≡ ψ2.



where ρ∗ stands for the transitive closure of a refinement operator. Intuitively,
locally finiteness means that the refinement operator is computable, completeness
means that all the terms in L can be generated by refinement, and properness
means that a refinement operator does not generate elements which are equivalent
to a given term ψ. A refinement operator is ideal when is locally finite, complete
and proper.

The refinement graph is the graph where each node is one term, and there
is a link between two terms when one is a refinement of the other. Figure 2.b
illustrates a refinement graph, where more general terms are drawn at the top,
and arrows indicate specialization refinement. Notice that the refinement graph
is contained in the subsumption graph.

3. Properties and Disintegration

This section presents the disintegration operation, which disintegrates a given
term (a generalization or an example) into a set of properties. We introduced the
idea of disintegration in our past work for the purposes of similarity assessment (a
more informal definition can be found in [10]). The intuitive idea of disintegration
is that we want to disintegrate a term into the most basic pieces of information
it contains. For example, in the train shown in Figure 1, one property is that the
train has 3 cars, another is that the first car has 4 wheels, another is that the
number of wheels of the second car is the same as in the first car, etc.

3.1. Properties

The disintegration operation defined in this section specifically splits a given
term in a collection of smaller terms, called properties, representing precisely
these most primitive pieces of information. We will also show that, under certain
assumptions, those properties can be integrated again to reconstruct the original
example. Those pieces of information will then be used as the individual features
to be considered when learning subsumption trees.

Before defining the properties of a term, we will first define the remainder of
a generalization refinement operator.

Definition 6 (Remainder) Given a term ψ2 ∈ γ(ψ1), where γ is a generalization
refinement, the remainder r(ψ1, ψ2) of such generalization is a term π such that
π t ψ2 ≡ ψ1 and @ψ′ ∈ L such that ψ′ @ π and ψ′ t ψ2 ≡ ψ1.

That is to say, the remainder of a generalizing refinement γ from ψ1 to ψ2 is the
most general term π such that when unified with the generalization ψ2 obtains
back the original term ψ1. We will call this remainder π a property of ψ1. Notice
that the remainder is the most general term that captures which is the “property”
that ψ1 has and that is not present in ψ2, i.e. the informational content that the
generalization operator removed. Figure 3 illustrates this idea, where a train ψ1

is generalized with a refinement operator to ψ2: the property subtracted is the
fact that the car of that train has 2 wheels. Notice that a property is, in general,
a multi-relational pattern, with relations cars and nwheels in the property of Fig.
3. The remainder of a specialization refinement ρ can be defined similarly.



Algorithm 1 (Disintegrate): D(ψ, γ )

1: D := ∅, t := 0, ψ0 := ψ
2: while ψt 6= ⊥ do
3: ψt+1 ∈ γ(ψt) (random selection)
4: D := D ∪ {r(ψt, ψt+1)}
5: t := t+ 1
6: end while
7: return D

3.2. Disintegration

Now, if we iterate this generalization refinement over the resulting term and keep
generalizing it, we will obtain a collection of properties as remainders of each
step. In the end, the iterative generalization process will reach ⊥, the empty
term, and we will have a collection of properties satisfied by the initial term.
This is the intuitive idea of term disintegration: generalize a term repeatedly until
reaching ⊥ while collecting a property at each step by getting the remainder of
the generalization operation.

Definition 7 (Disintegration) Given a finite refinement path p = ψ1
γ−→ ⊥ consist-

ing of a sequence of terms (ψ1, ..., ψn = ⊥), the set Dp(ψ1) = {r(ψi, ψi+i)}1≤i<n
is a disintegration of the term ψ1.

That is to say, Dp(ψ1) is the set of remainders resulting from each generalization
step performed by the refinement operator γ in the path p from ψ1 to ⊥.

Given a refinement path p = ψ
γ−→ ⊥, and having in mind that refinement

operators represent the most fine-grained steps in which terms can be specialized
or generalized, the remainders obtained from such paths correspond to the most
primitive pieces of information contained in a term ψ. Therefore, the disintegra-
tion of a term is a process that breaks up a term into its most constituent and
primitive pieces of information (with respect to a particular language); each one
of these pieces of information is also represented as a term, and this is what we
call a property.

The disintegration of a term ψ is described in Algorithm 1. Given a term ψ,
and a generalization refinement operator γ, the algorithm proceeds iteratively,
generalizing ψ using γ, until ⊥ is reached. At each iteration t of the algorithm,
a new generalization ψt+1 is generated by taking one of the generalizations (one
can be chosen at random) generated by γ from the current term ψt. Then, the
property set D is expanded by adding the remainder r(ψt, ψt+1) of generalizing
ψt into ψt+1. When ⊥ is reached, the algorithm returns the set D containing all
the properties generated so far, corresponding to a disintegration of the term ψ.

Notice that step 3 in Algorithm 1 is non-deterministic, since any refinement
can be chosen. This means, that depending on the choice of refinements, different
disintegrations might be obtained. It can be shown that under certain conditions
(e.g. the refinement graph being a lattice), then the choice of refinements is irrele-
vant, since all of them will result in the same disintegration. However, in general,
this is not true. As part of our future work, we plan to investigate the possibility
of different disintegration definitions, which produce unique disintegrations.



h l

X1:�train X2:�car

X3:�integer

X4:�long

X5: engine

cars

nwheels

ln

shape
X5:�engine

X1 i X2 X3 2cars nwheels

h l

X1:�train X2:�car X3:�2cars

X1:�train X2:�car

X2:�2

X3:�long

X4: engine

cars

nwheels

ln

shape
X4:�engine

h l

X1:�train X2:�car

X3:�integer

X4:�long

X5: engine

cars

nwheels

ln

shape
X5:�engine

X1 i X2 X3 2cars nwheels

h l

X1:�train X2:�car X3:�2cars

X1:�train X2:�car

X2:�2

X3:�long

X4: engine

cars

nwheels

ln

shape
X4:�engine

h l

X1:�train X2:�car

X3:�integer

X4:�long

X5: engine

cars

nwheels

ln

shape
X5:�engine

X1 i X2 X3 2cars nwheels

h l

X1:�train X2:�car X3:�2cars

X1:�train X2:�car

X2:�2

X3:�long

X4: engine

cars

nwheels

ln

shape
X4:�engine

 2

 1

� �! ⇡

Figure 3. A refinement operator γ that generalizes ψ1 into ψ2 by subtracting a piece of infor-
mation ψ called the remainder of the refinement.

ρs ρvρn ρiρe

L

LsL0

Lc

Le

L
Ls

L0

Lc

Le

Tree

DAG

Graph

Trees+sets

F-terms

Figure 4. Several sublanguages of feature terms generated by different refinement operators

(shown as ρ symbols on the top and defined in [10]).

The integration of a property set is the opposite process of disintegration.
Defined as integrate(D(ψ)) =

⊔
(D(ψ)), it means the unification of all properties

of a disintegrated term ψ. Given that unification of feature terms is not unique,
there might be multiple different integrations of a given set of properties. It can
be easily seen that one of the different integrations of a disintegrated term is
equivalent to (in the sense of ‘≡’) the original term. If another representation
formalism, different from feature terms, were to be used where the refinement
graph was to a partial order but a lattice, then integration would generate a single
term, which would be the same (in the sense of ‘≡’) as the original example.

4. Re-representation with a Taxonomic Vocabulary

The possibility of defining different refinement operators opens the possibility of
defining several different sublanguages of different expressive power and complex-
ity. Consequently, disintegration of examples would yield sets of properties in the
particular sublanguage corresponding to the refinement operator being used. Fig-
ure 4 shows the sublanguages defined in [10] for feature terms. Summarily, L is
the complete feature term as defined here; L0 contains all the feature terms that
do not have any set-valued feature or any variable equality; Le contains all the



terms that do not have any set-valued feature or any circular variable equality
(non-circular variable equalities are allowed); Lc is a super set of Le which allows
terms with circular variable equalities; and Ls is a super set of the base language
L0 which allows set-valued features.

The disintegration operation gives us the capability of re-representing exam-
ples in a vocabulary composed of properties of those examples.

Definition 8 (Vocabulary) A vocabulary V of properties for a set of examples
E = {e1, . . . , en} is a subset V ⊆ ⋃

i=1,...,nD(ei).

Definition 9 (Taxonomic Vocabulary) A taxonomic vocabulary of a set properties
V is the preorder 〈V,v〉, where v is the subsumption relation between properties.

Notice that the union of properties means that there will be no “repeated” prop-
erties in V —i.e. if two properties are equivalent only one is in V. This allows us
to re-represent the set of examples E = {e1, . . . , en} as a binary matrix.

Definition 10 (Re-representation) A re-representation of a set of examples E =
{e1, . . . , en} with a taxonomic vocabulary 〈V,v〉, where V = {π1, ..., πm}, is a
n×m binary matrix M where

M[i, j] =

{
1⇔ πj v ei
0⇔ πj 6@ ei

We call M the Example/Property (or E/P) matrix, as shown in Fig. 5.

Definition 11 (Example Re-representation) The re-represenation of an example
ei in a taxonomic vocabulary 〈V,v〉 is a Boolean vector R(ei) = (b1, · · · , bm) ∈
{0, 1}m such that bj = 1 whenever πj v ei and bj = 0 otherwise.

Moreover, a vocabulary V may also be built using only a subset of all the
available examples E = {e1, . . . , en}. A simple way to do that is sampling the
examples to be disintegrated. Let Σ(E, τ) be a sampling method (such as SRS
or class-stratified sampling) that returns a τ percent of E; the corresponding
vocabulary is V =

⋃
ei∈Σ(E,τ)D(ei). For large data sets, sampling the examples

to collect the properties for a vocabulary clearly diminishes computational cost,
as long as the τ percent examples allow us to build a vocabulary V that is
representative and satisfactory for the purposes at hand.

Re-representation is a process that maps objects described in a formalism to
descriptions on another formalism, often because this second formalism is more
adequate for some specific form of reasoning or inference (e.g. analogical reasoning
[6]). A related notion is that of propositionalization in relational learning and ILP
[8]; from our viewpoint, propositionalization is a specific kind of re-representation
where relational representation of objects is mapped into a propositional language.
In our approach, however, objects represented as feature terms are mapped not
onto propositions but onto sets of feature terms (called properties). These feature
terms (properties) constitute a partially ordered vocabulary whose elements are
not simple propositions, since they have a strong structure based on subsumption.



⇡1 ⇡i ⇡j ⇡k ⇡m

en

e1

ei 0/1

TAXONOMIC
VOCABULARY

⇡1

⇡i

⇡j

⇡k ⇡m

⇡j v ⇡k

⇡j v ⇡i

⇡i v ⇡1

Example/Property Matrix

M[i, j]

Figure 5. Taxonomic vocabulary of properties to re-represent examples and the E/M matrix.

Moreover, properties are also related to the objects (examples) by subsumption,
which is used in the following section to learn binary trees.

5. Related Work

Propositionalization in ILP transforms a relational representation of a learning
problem into a propositional (feature-based, attribute-value) representation [8].
Clearly, propositionalization can be described as a re-representation that trans-
forms examples into vectors of attribute-value pairs, while in our approach the re-
representation transforms examples into sets of properties (multi-relational pat-
terns, not attribute-value pairs).

An example of propositional learning techniques applied to relational data is
adapting decision trees to ILP, e.g. the Tilde system [4]. Tilde presents a logical
representation for decision trees and how to translate them into Prolog programs,
and uses first order logic clauses to represent decisions (nodes) in the tree. MRDT
(Multi-Relational Decision Tree Induction) were introduced in [7]. MRDT adds
decision nodes to the tree through a process of successive refinement. MRDT
defines a so-called selection graph where each node contains a multi-relational
pattern, and a new split in the tree modifies (“refines”) the selection graph.

While properties are also multi-relational patterns, they are defined by and
obtained from the refinement graph of the generalization space, not a selection
graph. Neither Tilde nor MRDT use re-representation of examples, and they
focus on logical representations, while our approach can be used in any represen-
tation formalism where an adequate refinement graph could be defined.

6. Conclusions

This paper has introduced two key ideas. First we presented the idea of disinte-
gration, which allows us to define a property-based vocabulary and to re-represent
relational examples in this vocabulary. The second is that the E/P matrix M
relating properties to examples can be used for any classical approach of propo-
sitional learning to relational data. The reason is that the E/P matrix M re-
represents the relational examples into a Boolean vector of properties that each



example satisfy or not. The only difference is that the values in that vector are
relational patterns (properties) that can be obtained in a principled way after
a refinement graph is specified. The E/P matrix M could be used for different
purposes, like calculating the similarity among examples, using M to perform
clustering, or finding the minimal set of properties that discriminate the positive
examples belonging to a class with respect to the negative examples.

These two approaches are as yet future work, but re-representation into a
property-based vocabulary has been used by the authors in estimating similarity
for k-Nearest Neighbour [10] and we are developing property-based decision trees.
Future work will also explore how to use the several distinct sublanguages Lx
of Fig. 4 in machine learning techniques; the goal would be to find the simplest
sublanguage that fulfills the requirement of a specific ML technique for a given
set of examples. Moreover, we intend to investigate the use of properties on other
representation formalisms for which complete and locally finite refinement oper-
ators have been defined in the literature, such as ILP-restricted Horn Clauses [9]
or some Description Logics [3].

Acknowledgements. Research partially supported by Projects Next-CBR (TIN2009-
13692-C03-01) and Cognitio (TIN2012-38450- C03-03) and by the Generalitat de
Catalunya under the grants 2009-SGR-1434.

References

[1] Aı̈t-Kaci, H.: Description logic vs. order-sorted feature logic. In: Proc. 20th International
Workshop on Description Logics. pp. 147–154 (2007)

[2] Aı̈t-Kaci, H., Podelski, A.: Towards a meaning of LIFE. Tech. Rep. 11, Digital Research
Laboratory (1992)

[3] Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description logics. In: Cussens,
J., Frisch, A. (eds.) Inductive Logic Programming. pp. 40–59. No. 1866 in Lecture Notes
in Computer Science, Springer (1999)

[4] Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Arti-
ficial Intelligence 101, 285–297 (May 1998)

[5] Carpenter, B.: The Logic of Typed Feature Structures, Cambridge Tracts in Theoretical
Computer Science, vol. 32. Cambridge University Press (1992)

[6] Falkenhainer, B., Forbus, K., Gentner, D.: The structure mapping engine: algorithm and
examples. Artificial Intelligence 41, 1–63 (1990)

[7] Knobbe, A.J., Siebes, A., Wallen, D.V.D., V, S.B.: Multi-relational decision tree induction.
In: Principles of Data Mining and Knowledge Discovery. pp. 378–383. Springer (1999)

[8] Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational data min-
ing. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 262–286. Springer
(2000)

[9] van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Completeness and properness of refinement
operators in inductive logic programming. J. Log. Program. 34(3), 201–225 (1998)

[10] Ontañón, S., Plaza, E.: Similarity measures over refinement graphs. Machine Learning
87(1), 57–92 (Apr 2012)

[11] Sánchez, A., Ontañón, S., Calero, P.A.G., Plaza, E.: Measuring similarity in description
logics using refinement operators. In: Ram, A., Wiratunga, N. (eds.) ICCBR’11: Proc.
19th International Conference on Case-Based Reasoning. Lecture Notes in Artificial Intel-
ligence, vol. 6880, pp. 289 – 303 (2011)

[12] Sánchez-Ruiz-Granados, A.A., Ontañón, S., González-Calero, P.A., Plaza, E.: Refinement-
based similarity measure over DL conjunctive queries. In: Delany, S.J., Ontañón, S. (eds.)
ICCBR-13: Proc. 21st International Conference on Case-Based Reasoning. Lecture Notes
in Computer Science, vol. 7969, pp. 270–284. Springer (2013)


