
1

Refinement-based Disintegration:
An Approach to Re-representation in
Relational Learning

Santiago Ontañón a and Enric Plaza b

a Computer Science, Drexel University
Philadelphia 19104, PA, USA,
e-mail: santi@cs.drexel.edu
b IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia (Spain),
e-mail: enric@iiia.csic.es

We present a new approach lo learn from relational data
based on re-representation of the examples. This approach,
called property-based re-representation is based on a new
analysis of the structure of refinement graphs used in ILP
and relational learning in general. This analysis allows the
characterization of relational examples by a set of multi-
relational patterns called properties. Using them, we per-
form a property-based re-representation of relational ex-
amples that facilitates the development of relational learn-
ing techniques. Additionally, we show the usefulness of re-
representation with a collection of experiments in the context
of nearest neighbor classification.

Keywords: Relational Learning, Re-representation, Refine-
ment Operators, Feature Terms, Propositionalization

1. Introduction

Relational Machine Learning (RLM) studies how
to design machine learning algorithms for domains
where data is structured, or relational. Moreover, con-
ventional machine learning approaches [15] assume
data is represented in a propositional (feature-vector)
approach. Two approaches are commonly used to ad-
dress this problem: the definition of machine learning
approaches that can deal directly with relational rep-
resentations, and propositionalization approaches [11]
that translate relational data to a feature-vector rep-
resentation where conventional machine learning ap-
proaches can be used.

In this paper we present a new approach lo learn
from relational data, similar to propositionalization,
based on re-representation of the examples. While
propositionalization convert relational data to a vec-
tor of propositional features, our new approach con-
verts relational data to a collection of properties, that
can be shown not to lose any information under certain
circumstances. This approach, called property-based
re-representation is based on a new analysis of the
structure of refinement graphs used in Inductive Logic
Programming (ILP) and relational learning in general.
This analysis allows the characterization of relational
examples by a set of multi-relational patterns called
properties, with which we perform a property-based
re-representation of relational examples that facilitates
the development of relational learning techniques.

Our approach is based on the notion of refinement
graphs [12], which are commonly used in ILP [13] and
other areas, such as Description Logics, for perform-
ing inductive relational learning [4,19,20]. A refine-
ment graph in the space of generalizations is built by
defining a suitable refinement operator, which can spe-
cialize a given description to form more specific de-
scriptions. Given the most general description that can
be expressed in a given representation language, re-
finement operators can generate the whole space of ex-
pressions in such language by iteratively refining (i.e.
specializing or generalizing) such description.

The approach and techniques presented here can be
used to apply any propositional machine learning al-
gorithm to relational data, and are, in principle, appli-
cable to any representation language for which we can
define a refinement operator that satisfies certain prop-
erties, namely they have to be complete and locally fi-
nite. For reasons of space an clarity, however, this pa-
per will focus on a particular representation formalism,
namely feature terms (presented in the next section).
Then, we present the notion of a property (a multi-
relational pattern) of a relational example, and the dis-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2 Ontañón and Plaza / Refinement-based Disintegration

integration operation, which splits a given relational
example in a collection of properties. These properties
can later be integrated again if need be to reconstruct
the original example. Moreover, we introduce the way
to re-represent an example as a set of properties and the
building of a vocabulary of properties to represent ex-
amples in a given data set. The reason to present this re-
representation is that it allows to use classical proposi-
tional machine learning techniques (with a small adap-
tation) to relational data, as discussed in Section 8. Af-
ter showing the usefulness of our approach with an
empirical evaluation in the context of nearest-neighbor
classification, we discuss the relation of our approach
with existing approaches such as propositionalization.
The paper closes with related work and conclusions.

2. Preliminaries

This section introduces the formalism of feature
terms, and the basic notions of refinement operators,
over which we based the work presented in this paper.

2.1. Feature Terms

Feature terms [2,6] (also called typed feature struc-
tures, or Ψ-terms) are a generalization of first-order
terms, introduced in theoretical computer science to
formalize object-oriented declarative languages. Fea-
ture terms correspond to a different subset of first-order
logics than Description Logics. However, they have the
same expressive power —only differing in their basic
reasoning mechanisms [1].

Feature terms are defined by its signature: Σ =
〈S ,F ,≤,V 〉. S is a set of sort symbols, including ⊥
representing the most general sort (“any”), and > rep-
resenting the most specific sort (“none”); ≤ is an or-
der relation inducing a single inheritance hierarchy in
S , and where ⊥ ≤ s ≤ > for each sort s ∈ S . Specifi-
cally, s ≤ s′ means s is more general than or equal to
s′, for any s,s′ ∈ S (“any” is more general than any s
which, in turn, is more general than “none”). F is a set
of feature symbols, and V is a set of variable names.
We define a feature term ψ as,

ψ ::= X : s [f1
.
= Ψ1, ..., fn

.
= Ψn]

where ψ points to the root variable X (that we will note
as root(ψ)) of sort s; X ∈V , s ∈ S , fi ∈ F , and Ψi is a
set of variables {X1, ...,Xm} (when the size of this set is
larger than 1, we say that there is a set-valued feature).

X1 : train

X2 : car

X3 : car

X4 : car

X5 : 4

X6 : long

X7 : engine

X8 : closedrect

X9 : short

X10 : openrect

cars

infront

infront

nwheels
ln
shape

nwheels
shape

ln

nwheels

ln
shape

ψ ::=

Fig. 1. A train represented as a feature term.

When the value of some feature of two variables Xi. f1
and X j. f2 share some variable, i.e. Xi. f1 ∩X j. f2 6= /0,
we say that there is a variable equality.

An example feature term appears in Figure 1. It is
a train (variable X1) composed of three cars (variables
X2, X3 and X4). This term has 10 variables, and one set-
valued feature (its values enclosed in a dashed line):
There are also several variable equalities, e.g. equality
X3.in f ront = X4. means that the car in front of car X3
is car X4. The set of variables of a term ψ is vars(ψ),
the set of features of a variable X is features(X), and
sort(X) is its sort. The basic relation over feature terms
is subsumption (v), i.e. whether a term is more general
(or equal) than another1.

Definition 1. (Subsumption) A feature term ψ1 sub-
sumes another one ψ2 (ψ1 v ψ2) when there is a total
mapping m: vars(ψ1)→ vars(ψ2) such that:

1. root(ψ2) = m(root(ψ1)), and
2. ∀X ∈ vars(ψ1)

(a) sort(X)≤ sort(m(X)), and
(b) ∀ f ∈ f eatures(X), where X . f = Ψ1 and

m(X). f = Ψ2, we have that:

i. ∀Y ∈Ψ1,∃Z ∈Ψ2 : m(Y) = Z,
ii. ∀Y,Z ∈Ψ1,Y 6= Z⇒ m(Y) 6= m(Z)

i.e. each variable in the set Ψ1 is mapped to a
variable in Ψ2, and each different variable in
Ψ1 has a different mapping.

If ψ1 v ψ2 and ψ2 v ψ1, we say that they are equiv-
alent: ψ1 ≡ ψ2. Subsumption induces a partial order
over the set of all feature terms, i.e. the pair 〈L ,v〉 is a
poset, where L is the set of all feature terms that can be

1In description logics notation, subsumption is written in the re-
verse order since it is seen as “set inclusion” of their interpretations.
In ML terms, A v B means that A is more general than B, while in
description logics it has the opposite meaning.

Ontañón and Plaza / Refinement-based Disintegration 3

formed given a signature, and that contain the infimum
⊥ and the supremum > with respect to the subsump-
tion order. The subsumption relation allows us to view
the space of feature terms as a directed graph (called
the subsumption graph) where nodes are feature terms
and directed edges indicate subsumption. Notice that
the subsumption graph is a theoretical notion, com-
pletely defined by the subsumption relation, and that
such graph is never explicitly constructed.

The two basic operations over the subsumption
graph are unification and antiunification.

Definition 2. (Unification) A unification ψ1 tψ2 of
two terms ψ1 and ψ2 is a most general term subsumed
by both. A term ψ is called the unifier whenever:

ψ1tψ2 = ψ : (ψ1 v ψ ∧ ψ2 v ψ) ∧
(@ψ′ < ψ : ψ1 v ψ′ ∧ ψ2 v ψ′)

When two terms have contradictory information then
they have no unifier — we write ψ1tψ2 =>.

The antiunification (ψ1 uψ2) of two terms ψ1 and
ψ2 is defined as their least general generalization [18]:

Definition 3. (Antiunification) An antiunification ψ1u
ψ2 of two terms ψ1 and ψ2 is a most specific term that
subsumes both. The term is called the antiunifier.

ψ1uψ2 = ψ : (ψv ψ1 ∧ ψv ψ2) ∧
(@ψ′ = ψ : ψ′ v ψ1 ∧ ψ′ v ψ2)

Both unification and antiunification are operations
over the subsumption graph: antiunification finds the
most specific common “parent” (generalization); uni-
fication finds the most general common “descendant”
(specialization). Moreover, unification and antiunifica-
tion are not unique for the subsumption graph of fea-
ture terms. This means that the refinement graph of fea-
ture terms is not a lattice.

2.2. Refinement Operators

Let us now define the notion of refinement operator
(for a more in depth discussion of refinement opera-
tors, see [12]), which can be used to navigate the sub-
sumption graph, and, in general, any partially-ordered
or quasi-ordered set. In the remainder of this article
we will consider only the case of partially-ordered sets
(i.e. in which two terms which subsume each other are
considered equivalent: ψ1 ≡ ψ2).

Definition 4. A downward refinement operator ρ over
a partially-ordered set (L ,v) is a function such that
∀ψ ∈ L : ρ(ψ)⊆ {ψ′ ∈ L |ψv ψ′}.

Definition 5. An upward refinement operator γ over
a partially-ordered set (L ,v) is a function such that
∀ψ ∈ L : γ(ψ)⊆ {ψ′ ∈ L |ψ′ v ψ}.

Upward refinement operators generate terms which
are more general, whereas downward refinement oper-
ators generate terms which are more specific. The sym-
bol γ is used to symbolize upward refinement opera-
tors, and ρ to symbolize downward refinement opera-
tors. The following properties of refinement operators
are considered desirable:

1. A refinement operator ρ is locally finite if ∀ψ ∈
L : ρ(ψ) is finite.

2. A downward refinement operator ρ is complete if
∀ψ1,ψ2 ∈ L |ψ1 v ψ2 : ψ2 ∈ ρ∗(ψ1).

3. An upward refinement operator γ is complete if
∀ψ1,ψ2 ∈ L |ψ1 v ψ2 : ψ1 ∈ ρ∗(ψ2).

4. ρ is proper if ∀ψ1,ψ2 ∈ L ψ2 ∈ ρ(ψ1)⇒ ψ1 6≡
ψ2.

where ρ∗ stands for the transitive closure of a refine-
ment operator. Intuitively, locally finiteness means that
the refinement operator is computable, completeness
means that all the terms in L can be generated by re-
finement, and properness means that a refinement op-
erator does not generate elements which are equivalent
to a given term ψ. A refinement operator is ideal when
is locally finite, complete and proper. Other interesting
properties, like minimality [4], have been discussed in
the literature but are not relevant for this paper.

The refinement graph is the graph where each node
is one term, and there is a link between two terms when
one is a refinement of the other. Notice that the refine-
ment graph is contained in the subsumption graph.

3. Properties and Disintegration

This section presents the disintegration operation,
which disintegrates a given term (which might repre-
sent an instance or a generalization) into a set of prop-
erties. We introduced the idea of disintegration in our
past work for the purposes of similarity assessment2.
The intuitive idea of disintegration is that we want to
transform a term into a set containing the most basic
pieces of information the original term contains. For
example, in the train shown in Figure 1, one property is
that the train has 3 cars, another is that the first car has

2A less rigorous presentation of disintegration, without a dis-
cussion of it computational complexity, nor procedural definitions of
the remainder operation can be found at [16].

4 Ontañón and Plaza / Refinement-based Disintegration

4 wheels, another is that the number of wheels of the
second car is the same as in the first car, etc. The dis-
integration operation provides with a formal and prin-
cipled way to perform this process, based upon the ex-
istence of a refinement operator.

3.1. Properties

Disintegration splits a given term in a collection of
smaller terms, called properties, representing its most
primitive pieces of information. We will also show that,
under certain assumptions, those properties can be in-
tegrated again to reconstruct the original example.

Let us first define the remainder of a generalization
refinement operator.

Definition 6. (Remainder) Given a term ψ2 ∈ γ(ψ1),
where γ is a generalization refinement, the remainder
r(ψ1,ψ2) of such generalization is a term π such that
πtψ2 ≡ ψ1 and @ψ′ ∈ L such that ψ′ < π and ψ′ t
ψ2 ≡ ψ1.

The remainder of a generalizing refinement γ from
ψ1 to ψ2 is the most general term π such that when uni-
fied with the generalization ψ2 obtains back the origi-
nal term ψ1. We will call this remainder π a property of
ψ1. Notice that the remainder is the most general term
that captures which is the “property” that ψ1 has and
that is not present in ψ2, i.e. the informational content
that the generalization operator removed. Figure 2 il-
lustrates this idea, where a train ψ1 is generalized with
a refinement operator to ψ2: the property subtracted is
the fact that the car of that train has 2 wheels. Notice
that a property is, in general, a multi-relational pattern,
with relations cars and nwheels in the property of Fig.
2. Computationally, a reminder term for a generaliza-
tion refinement γ can be determined using Algorithm
1. This algorithm generalizes a seed term using γ to
find a set of generalizations N such that satisfies the
condition in step 3. One of this generalizations is se-
lected at random an the process is iterated until it can-
not longer find such a generalization, in which case the
last generalization is the remainder. The remainder of
a specialization refinement ρ can be defined similarly.

The computational complexity of Algorithm 1 for
computing the remainder is O(nmΣ+ nmϒ), where n
is the length of the refinement path from ψ1 to ⊥, m
is the average number of refinements generated by γ,
Σ is the complexity of subsumption, and ϒ is the com-
plexity of unification, both of which are language de-
pendent. In the case of feature terms, the cost of unifi-
cation completely dominates that of subsumption [17],
and thus, the cost of the remainder algorithm is basi-
cally O(nmϒ).

Algorithm 1 Remainder: r(ψ1,ψ2,γ)

1: t := 0,π0 := ψ1
2: while (true) do
3: N = {ψ ∈ γ(πt)|ψ 6v ψ2 ∧ ψtψ2 ≡ ψ1}
4: if N = /0 then
5: return πt
6: end if
7: πt+1 selected stochastically from N
8: t := t +1
9: end while

3.2. Disintegration

The intuitive idea of term disintegration is to gener-
alize a term repeatedly until reaching ⊥, collecting a
property at each step by getting the remainder of the
generalization operation. Let us formally define such
process.

Definition 7. (Refinement Path) A finite sequence of
terms (ψ1, ...,ψn) is a refinement path ψ1

ρ−→ ψn be-
tween two terms ψ1 and ψn when for each 1 ≤ i < n,
ψi+1 ∈ ρ(ψi). The same definition applies for the gen-
eralization refinement operator: ψn

γ−→ ψ1.

Definition 8. (Disintegration) Given a finite refine-
ment path p = ψ1

γ−→ ⊥ consisting of a sequence of
terms (ψ1, ...,ψn), where ψn = ⊥, the set Dp(ψ1) =
{r(ψi,ψi+1)}1≤i<n is a disintegration of the term ψ1.

That is to say, Dp(ψ1) is the set of remainders result-
ing from each generalization step performed by the re-
finement operator γ in the path p from ψ1 to ⊥.

Given a refinement path p = ψ
γ−→ ⊥, and having

in mind that refinement operators represent the most
fine-grained steps in which terms can be specialized or
generalized, the remainders obtained from such paths
correspond to the most primitive pieces of informa-
tion contained in a term ψ. Therefore, the disintegra-
tion of a term is a process that breaks up a term into
its most constituent and primitive pieces of informa-
tion (with respect to a particular language); each one
of these pieces of information is also represented as a
term, and this is what we call a property. Moreover, all
the properties generated from a given refinement path
are different as demonstrated by the following lemma.

Lemma 1. If ψ1
γ−→⊥ is a refinement path consisting

of a sequence of terms (ψ1, ...,ψn = ⊥), γ is proper,
and 1≤ i < j < n, then r(ψi,ψi+i) 6v r(ψ j,ψ j+i).

Ontañón and Plaza / Refinement-based Disintegration 5

h l

X1:�train X2:�car

X3:�integer

X4:�long

X5: engine

cars

nwheels

ln

shape
X5:�engine

X1 i X2 X3 2cars nwheels

h l

X1:�train X2:�car X3:�2cars

X1:�train X2:�car

X2:�2

X3:�long

X4: engine

cars

nwheels

ln

shape
X4:�engine

h l

X1:�train X2:�car

X3:�integer

X4:�long

X5: engine

cars

nwheels

ln

shape
X5:�engine

X1 i X2 X3 2cars nwheels

h l

X1:�train X2:�car X3:�2cars

X1:�train X2:�car

X2:�2

X3:�long

X4: engine

cars

nwheels

ln

shape
X4:�engine

h l

X1:�train X2:�car

X3:�integer

X4:�long

X5: engine

cars

nwheels

ln

shape
X5:�engine

X1 i X2 X3 2cars nwheels

h l

X1:�train X2:�car X3:�2cars

X1:�train X2:�car

X2:�2

X3:�long

X4: engine

cars

nwheels

ln

shape
X4:�engine

 2

 1

� �! ⇡

Fig. 2. A refinement operator γ that generalizes ψ1 into ψ2 by subtracting a piece of information π called the remainder of the refinement.

Algorithm 2 (Disintegrate): D(ψ, γ)

1: D := /0, t := 0,ψ0 := ψ

2: while ψt 6=⊥ do
3: non-deterministically select a ψt+1 ∈ γ(ψt)
4: D := D∪{r(ψt ,ψt+1)}
5: t := t +1
6: end while
7: return D

Proof. By Definition 7, we know that if γ is proper,
then ψk+1 < ψk for 1 ≤ k < n. Now, let ψa =
r(ψi,ψi+i), and ψb = r(ψ j,ψ j+i). By Definition 6,
ψ j ∈ ψ j+1 tψb, and thus ψb v ψ j, since j > i, we
know that ψ j v ψi+1, and thus ψb v ψi+1. Now, let
us assume ψa v ψb. Since ψa v ψb v ψi+1, we know
that ψi+1 tψb = ψi+1, and ψi+1 tψa = ψi+1. Since
γ is proper, we know that ψi 6= ψi+1. Therefore ψi 6∈
ψi+1 tψa, which is in contradiction with Definition
6, and thus our assumption that ψa v ψb has to be
false.

The disintegration of a term ψ is described in Al-
gorithm 2. Given a term ψ, and a generalization re-
finement operator γ, the algorithm proceeds iteratively,
generalizing ψ using γ, until ⊥ is reached. At each it-
eration t of the algorithm, a new generalization ψt+1
is generated by taking one of the generalizations (one
can be chosen at random) generated by γ from the cur-
rent term ψt . Then, the property set D is expanded by
adding the remainder r(ψt ,ψt+1) of generalizing ψt
into ψt+1. When ⊥ is reached, the algorithm returns
the set D containing all the properties generated so far,
corresponding to a disintegration of the term ψ.

Step 3 in Algorithm 2 is non-deterministic. Depend-
ing on the choice of refinements (i.e. depending on the
refinement path), different disintegrations might be ob-
tained. It can be shown that under certain conditions
(e.g. the refinement graph being a lattice), then the

choice of refinements is irrelevant, since all of them
will result in the same disintegration. However, in gen-
eral, this is not true. As part of our future work, we plan
to investigate the possibility of different strategies for
making this non-deterministic choice, which produce
unique disintegrations.

Figure 3 shows an example of the disintegration pro-
cess, where a simple train represented as a feature term
(top half) has been disintegrated into properties (bot-
tom half). Disintegration extracted 14 properties from
this train. Notice how the properties respect Lemma
1, i.e. the properties generated earlier cannot be more
general than the properties generated later.

Concerning computational complexity, the com-
plexity of disintegration algorithm is O(n2mϒ), where
n is the length of the refinement path from ψ to⊥, m is
the average number of refinements generated by γ, and
ϒ is the complexity of the unification operation.

The integration of a property set is the opposite pro-
cess of disintegration.

Definition 9. (Integration) The integration of a set of
properties D(ψ), obtained via disintegrating a term ψ

is defined as:

integrate(D(ψ)) =
⊔

(D(ψ))

In other words, integration is defined as the unifica-
tion of all properties of a disintegrated term ψ. Given
that unification of feature terms is not unique, there
might be multiple different integrations of a given set
of properties. It can be easily seen that one of the dif-
ferent integrations of a disintegrated term is equivalent
to (in the sense of ‘≡’) the original term.

Lemma 2. One of the unifications of all the properties
of a term ψ is exactly the term ψ, i.e. ψ ∈ ⊔

(D(ψ)).
When unification is unique, then ψ =

⊔
(D(ψ)).

6 Ontañón and Plaza / Refinement-based Disintegration

Y1:train) Y2:car) Y3:long)
cars) ln)

Y1:train) Y2:car)
cars)

Y3:engine)
shape)

Y1:train) Y2:car)
cars)

Y1:train)

Y2:car)

Y3:car)

cars)
infront)

Y1:train)
Y2:car)

Y3:car)

cars)

Y1:train) Y2:car)
cars)

Y1:train)Y1:train) Y2:car) Y4:open6shape)
cars) shape)

Y1:train) Y3:openhex)
cars) shape)

X1:train)

X2:car)

X3:car)

X4:long)

X5:engine)

X6:short)

X7:openhex)

cars)

shape)

ln)

shape)

infront)

Y4:short)
ln)

Y1:train) Y2:car) Y4:car6shape)
cars) shape)Y3:car)infront)

Y1:train) Y2:car) Y4:car6length)
cars) ln)Y3:car)infront)

Y3:car)infront)

Y3:car)

ln)

Y1:train) Y2:car) Y4:closed6shape)
cars) shape)

Y1:train)
Y2:car)

Y3:car)

cars)
Y4:car6shape)

shape)

Y5:short)
ln)

Y1:train)
Y2:car)

Y3:car)

cars)
Y3:car6length)

ln)

Y3:car6length)
ln)

Fig. 3. An example feature term disintegrated into properties using Algorithm 2.

Proof. Let ψ1 be a term that when disintegrated us-
ing the refinement path (ψ1, ...,ψn = ⊥) yields the
properties (r1, ... , rn−1). Definition 6 (Remainder) en-
sures that ψi+1 t ri = ψi (or that ψi is one of the uni-
fications if ψi+1 t ri is not unique). Let us consider
first the case when unification is unique. Iteratively
unifying the properties in the reverse order in which
they were generated, we can reconstruct the refinement
path: ψn−1 = rn−1, ψn−2 = rn−1trn−2, ψn−3 = (rn−1t
rn−2) t rn−3, etc. Thus, ψ1 =

⊔
i=n−1...1 ri, which is

precisely
⊔
(D(ψ)). When unification is not unique,

we know by Definition 6 that: ψn−1 = rn−1, ψn−2 ∈
rn−1 t rn−2, ψn−3 ∈ (rn−1 t rn−2) t rn−3, etc. Thus,
ψ1 ∈

⊔
i=n−1...1 ri, which is precisely

⊔
(D(ψ)).

If another representation formalism, different from
feature terms, were to be used where the refinement
graph was a lattice, then integration would generate a
single term, which would be the same as the original
example. This is interesting, since it shows that not too
much information is lost when disintegrating a term.

4. Re-representation with a Taxonomic
Vocabulary

The possibility of defining different refinement op-
erators that generate different subsets of a given rep-
resentation language opens the possibility of defining
several different sublanguages of different expressive
power and complexity. Consequently, the disintegra-

tion of the examples in a given training set would yield
sets of properties in the particular sublanguage corre-
sponding to the refinement operator being used.

For example, Figure 4 shows the sublanguages de-
fined in [16] for feature terms. Summarily, L is the
complete feature term language as defined above; L0
contains all the feature terms that do not have any set-
valued feature or any variable equality; Le contains all
the terms that do not have any set-valued feature or any
circular variable equality (non-circular variable equal-
ities are allowed); Lc is a super set of Le which allows
terms with circular variable equalities; and Ls is a su-
per set of the base language L0 which allows set-valued
features. These languages are generated using a differ-
ent set of refinement operators (intuitive descriptions
of each operator is included in the figure, see [16] for
their formal definitions).

The disintegration operation gives us the capability
of re-representing examples in a vocabulary composed
of properties of those examples.

Definition 10. (Vocabulary) A vocabulary V of prop-
erties for a set of examples E = {e1, . . . ,en} is a subset
V⊆⋃

i=1,...,n D(ei).

Definition 11. (Taxonomic Vocabulary) A taxonomic
vocabulary of a set properties V is the preorder 〈V,v〉,
where v is the subsumption relation.

Let us now show how a taxonomic vocabulary
allows us to re-represent the set of examples E =
{e1, . . . ,en} as a binary matrix.

Ontañón and Plaza / Refinement-based Disintegration 7

⇢s ⇢v⇢n ⇢i⇢e

L

LsL0

Lc

Le

L
Ls

L0

Lc

Le

No sets,
no variable equalities (Trees)

No sets (Graphs)

No variable equalities (Trees + sets)

Full feature terms

⇢s

⇢v

⇢n

⇢i

⇢e

Refinement Operators: Sub-languages:

Non-circular variable
equality introduction

Sort specialization

Variable introduction
(without sets)

Variable introduction

Variable equality
introduction

No sets,
no circular variable equalities (DAGs)

Fig. 4. Several sublanguages of feature terms generated by different refinement operators (shown as ρ symbols on the top and defined in [16]).

⇡1 ⇡i ⇡j ⇡k ⇡m

en

e1

ei 0/1

TAXONOMIC
VOCABULARY

⇡1

⇡i

⇡j

⇡k ⇡m

⇡j v ⇡k

⇡j v ⇡i

⇡i v ⇡1

Example/Property Matrix

M[i, j]

Fig. 5. Taxonomic vocabulary of properties to re-represent examples
and the E/M matrix.

Definition 12. (Re-representation) A re-representation
of a set of examples E = {e1, . . . ,en} with a taxonomic
vocabulary 〈V,v〉, where V = {π1, ...,πm}, is a n×m
binary matrix M where

M[i, j] =

{
1⇔ π j v ei

0⇔ π j 6< ei

We call M the Example/Property (or E/P) matrix, as
shown in Fig. 5.

Definition 13. (Example Re-representation) The re-
represenation of an example ei in a taxonomic vocab-
ulary 〈V,v〉 is a Boolean vector R(ei) = (b1, · · · ,bm),
where bi ∈ {0,1} such that b j = 1 whenever π j v ei
and b j = 0 otherwise. Notice that each row of the E/P
matrix is an example re-representation.

Thus, given a dataset E, we can re-represent it by
first disintegrating each of the examples in E, and then
computing the E/P matrix. Moreover, a vocabulary V
may also be built using only a subset of all the avail-
able examples in E. A simple way to do that is sam-
pling the examples to be disintegrated. Let Σ(E,τ) be a
sampling method (such as SRS or class-stratified sam-
pling) that returns a τ percent of E; the correspond-
ing vocabulary is VΣ(E,τ) =

⋃
ei∈Σ(E,τ) D(ei). For large

data sets, sampling the examples to collect the proper-
ties for a vocabulary clearly diminishes computational
cost, as long as the τ percent examples allow us to build
a vocabulary V that is representative and satisfactory
for the purposes at hand.

There are further operations that may reduce the size
of a vocabulary V, such are removing all properties
subsumed by all (or almost all) examples. But are not
studied in this paper.

Re-representation is a process that maps objects de-
scribed in a formalism to descriptions on another for-
malism, often because this second formalism is more
adequate for some specific form of reasoning or in-
ference (e.g. analogical reasoning [8]). A related no-
tion is that of propositionalization in relational learn-
ing and ILP [11]; from our viewpoint, propositional-
ization is a specific kind of re-representation where
relational representation of objects is mapped into a
propositional language. In our approach, however, ob-
jects represented as feature terms are mapped not onto
propositions but onto sets of feature terms (called prop-
erties). These feature terms (properties) constitute a
partially ordered vocabulary whose elements are not
simple propositions, since they have a strong structure
based on subsumption. Moreover, properties are also
related to the objects (examples) by subsumption.

Let us now analyze the structure of taxonomic vo-
cabularies that are generated for different data sets.

5. Structure of Taxonomic Vocabularies

The disintegration operation maps a given relational
example (represented, for example, as a feature term)
to a set of properties. Moreover, these properties are
not completely independent, but are related to each
other via the subsumption relation. For example, in
Figure 3, property ψ14 subsumes property ψ13. In a
similar way, a taxonomic vocabulary V is not a plain

8 Ontañón and Plaza / Refinement-based Disintegration

Most General
Property

Fig. 6. The set of properties resulting from disintegrating an example
in the Demospongiae data set. Arrows indicate subsumption.

set, but has internal structure (see Definition 11). This
section illustrates the structure of these vocabularies
for different types of datasets.

Figure 6 shows the set of 88 properties resulting
from disintegrating one of the examples in the Demo-
spongiae dataset. Demospongiae is a relational dataset
containing descriptions of marine sponges. These de-
scriptions are tree-like structures (i.e. a feature term
representing a sponge might have set-valued features,
but no variable equalities). If we disintegrate one of
these sponges and create a graph where each node is
one of the resulting properties and edges represent sub-
sumption relations, we obtain a graph similar to the
one shown in Figure 6. We call this the property graph
of a given feature term. Notice that since subsumption
is transitive, if a property ψ1 subsumes a property ψ2,
which subsumes a property ψ3, we only draw edges
between ψ1 and ψ2 and between ψ2 and ψ3; we do not
include the edge between ψ1 and ψ3, which is implicit.
Taxonomic vocabularies for feature terms represented
by feature term sub-languages without variable equal-
ities result in trees, where the root is the most general
property.

Figure 7 shows the property graph resulting from
disintegrating an example in the Trains data set (where
each train is represented similarly as the train in Figure
1). To represent this dataset, we need variable equal-
ities, but not circular ones. The resulting structure of
the property graph is a DAG (directed acyclic graph).

Most
General
Property

Properties
Representing
the number of

cars

Fig. 7. The set of properties resulting from disintegrating an example
in the Trains data set. Arrows indicate subsumption.

Moreover, we can see that the resulting DAG is orga-
nized by smaller clusters of properties; in Figure 7, we
have highlighted one of these clusters, containing prop-
erties that represent the number of cars in the train. For
example:

– P75 corresponds to ψ14 in Figure 3 (representing
a train with no cars).

– P74 corresponds to ψ13 (a train with one car).
– P73 is ψ12 (a train with two cars, but without any

order restriction between them).
– P69 is ψ11 (a train with two cars, one in front of

the other).

Notice that, by construction, the different properties
in the re-representation of examples are not indepen-
dent, as typically assumed by machine learning algo-
rithms. Thus, it is interesting to know the structure of
the property graph associated with the Taxonomic vo-
cabularies for a given representation language, since
this structure is tightly related with the dependencies
between attributes. If we re-represent examples as bi-
nary vectors, the binary features that are related via
subsumption are not independent. This information
can be exploited for example for feature selection, or
for increasing the efficiency of algorithms like decision
tree inducers (ID3, C4.5, FOIL, etc.), since once a fea-
ture is selected, all of the features subsumed by it can
be discarded in one of the subbranches of the tree. As

Ontañón and Plaza / Refinement-based Disintegration 9

part of our future work, we want to explore new al-
gorithms that can further exploit this structure during
learning.

6. Experimental Results

In order to evaluate our re-representation ideas, we
performed two sets of experiments. In the first ex-
periment, we compared the performance of a nearest-
neighbor classifier using distance measures based on
our re-representation versus a set of other relational
distance measures that work directly over the relational
representation of the examples. In the second experi-
ment, we studied the effect that creating taxonomic vo-
cabularies of different sizes has on performance.

We used three datasets, representing three levels of
complexity: Soybean is a propositional data set (repre-
sentable using L0 in Figure 4) from the UCI machine
learning repository consisting of 307 cases. Demo-
spongiae is a relational dataset, where each example
can be represented as a tree (Ls); it has 503 exam-
ples pertaining to 7 different classes (we used also a
subset of 280 examples and 3 different classes, typi-
cally used in the literature for comparison purposes).
Trains is a relational dataset, generated using Muggle-
ton’s train generator [14]. It contains 1000 trains be-
longing to 2 different classes; trains are represented as
graphs (the full feature term language L is required for
this dataset).

We experimented with two different distance mea-
sures for the nearest-neighbor classifier: Jaccard and
Euclidean. These two measures are defined as mea-
sures that compare two rows, i and j (representing two
instances), of the re-representation matrix M, as fol-
lows (assuming we have n examples and m properties):

– Jaccard distance: typically defined to measure
the difference between sets as the size of their in-
tersection divided by the size of their union, can
be computed from the matrix M as:

dJ(i, j)=
∑k=1...m M[i,k]M[j,k]

∑k=1...m M[i,k]+M[j,k]−M[i,k]M[j,k]

– Euclidean distance:

dE(i, j) =
√

∑
k=1...m

(M[i,k]−M[j,k])2

The results from our first experiment can be seen
on Table 1. We compared the performance of our re-
representation against four other distance and similar-
ity measures from the literature:

– Sλ [16]: is a relational similarity measure based
on computing the antiunification of the two terms,
and then measuring its size (the larger, the more
similar the two terms).

– SHAUD [3]: is a similarity measure defined over
feature terms. SHAUD is only defined for terms
that can be represented as trees, and thus, it cannot
be applied to the trains dataset.

– RIBL [7]: is a relational similarity measure de-
fined over horn clauses. In order to compare
against this measure, we converted all our datasets
to Horn clauses, using the same procedure as [16].

– Kashima [9]: is a graph-kernel based on random
walks. It requires the conversion of the examples
to labelled graphs, which can be done trivially.

As Table 1 shows, using our re-representation achieves
similar (and sometimes better) performance than us-
ing complex relational similarity measures. This indi-
cates that our re-representation does not lose any sig-
nificant information, at least in the datasets used for
this study. Moreover, as any propositionalization tech-
nique, it has the advantage that once a dataset has been
re-represented, applying propositional machine learn-
ing techniques is much more efficient.

Table 2 show the results we obtained disintegrating a
different portion of examples (τ) of the dataset. Results
were obtained using a leave-one-out procedure. As Ta-
ble 2 shows, performance degrades very slowly when
disintegrating smaller and smaller portions of a regular
dataset. For example, we observed no difference in per-
formance in any dataset when creating the Taxonomic
Vocabulary by disintegrating only 40% of the exam-
ples in the dataset. Moreover, in some datasets, such as
Trains, performance did not degrade at all even when
only disintegrating a 1% of the examples in the dataset.
This is because just disintegrating a small sample of
examples in the dataset is enough for obtaining a good
sample of binary attributes that can be used to perform
the classification task.

These results are very promising, since disinte-
grating is a computationally expensive operation, but
as Table 2 shows, we only need to disintegrate a
small portion of the dataset for obtaining good results.
Also, notice that when classifying new instances, we
don’t need to disintegrate them, just re-represent them,
which is computationally much cheaper than disin-
tegration. Re-representing simply means running one
subsumption test for each of the different properties in
the Taxonomic Vocabulary.

10 Ontañón and Plaza / Refinement-based Disintegration

Table 1
Classification accuracy (in percentage) measured using a leave-one-
out method for different distance/similarity measures.

Using re-representation Relational Measures

Jaccard Euclidean Sλ SHAUD RIBL Kashima

Soybean-307 91.21 91.21 91.53 91.53 91.53 92.18

Demospongiae-280 95.00 93.47 95.00 95.71 91.67 90.71

Demospongiae-503 90.66 89.26 89.66 88.27 88.93 83.10

Trains-1000 90.70 90.40 84.80 - 67.10 63.90

Table 2
Performance of a nearest neighbor classifier with different sampling
sizes (τ) for vocabulary creation; for each value of τ we report clas-
sification accuracy of three different distances and vocabulary size.

Soy (307) Dem (280)

τ Jacc. Eucl. Size Jacc. Eucl. Size

0.01 86.97 86.32 92.04 88.57 87.50 95.39
0.02 85.99 86.64 107.08 88.21 86.79 140.55
0.05 90.55 90.88 122.00 93.21 90.71 197.80
0.1 90.55 90.55 129.52 93.57 92.50 247.81
0.2 90.88 90.88 133.11 93.93 93.93 306.56
0.4 91.53 91.53 134.53 95.00 93.93 376.55
0.6 90.88 90.88 134.82 95.36 93.57 428.26
0.8 90.88 90.88 134.94 95.00 94.07 469.86
1.0 91.21 91.21 135.00 95.00 93.47 506.39

Dem (503) Trains (1000)

τ Jacc. Eucl. Size Jacc. Eucl. Size

0.01 83.50 83.10 149.81 92.00 91.40 86.68
0.02 86.68 86.68 197.55 90.90 90.40 99.08
0.05 89.46 88.87 271.67 91.40 91.20 116.42
0.1 89.46 89.06 335.93 91.40 91.70 129.44
0.2 90.86 89.46 408.60 91.40 91.20 141.11
0.4 90.66 90.46 497.42 90.30 89.80 150.22
0.6 90.66 90.06 560.37 91.20 90.30 154.40
0.8 90.46 90.06 609.30 90.80 90.90 156.70
1.0 90.66 89.26 651.61 90.70 90.40 158.00

7. Related Work

Propositionalization in ILP transforms a relational
representation of a learning problem into a propo-
sitional (feature-based, attribute-value) representation
[11]. Clearly, propositionalization can be described as
a re-representation that transforms examples into vec-
tors of attribute-value pairs, while in our approach
the re-representation transforms examples into sets
of properties (multi-relational patterns, not attribute-
value pairs). An example of propositional learning
techniques applied to relational data is adapting deci-
sion trees to ILP, e.g. the TILDE system [5]. TILDE
presents a logical representation for decision trees and

how to translate them into Prolog programs, and uses
first order logic clauses to represent decisions (nodes)
in the tree. MRDT (Multi-Relational Decision Tree In-
duction) were introduced in [10]. MRDT adds deci-
sion nodes to the tree through a process of succes-
sive refinement. MRDT defines a so-called selection
graph where each node contains a multi-relational pat-
tern, and a new split in the tree modifies (“refines”)
the selection graph. While properties are also multi-
relational patterns, they are defined by and obtained
from the refinement graph of the generalization space,
not a selection graph. Neither TILDE nor MRDT use
re-representation of examples, and they focus on log-
ical representations, while our approach can be used
in any representation formalism where an adequate re-
finement operator could be defined.

8. Conclusions

This paper is based upon two key ideas. First we pre-
sented the idea of disintegration (already introduced in
[16]), which allows us to translate a term into a set of
properties. The second is that of a taxonomic vocabu-
lary, which allows us to define an E/P matrix M relat-
ing properties to examples can be used for any classical
approach of propositional learning to relational data.
The reason is that the E/P matrix M re-represents the
relational examples into a Boolean vector of properties
that each example satisfy or not. The only difference
is that the values in that vector are relational patterns
(properties) that can be obtained in a principled way
after a refinement graph is specified. The E/P matrix
M could be used for different purposes, like calculat-
ing the similarity among examples, using M to perform
clustering, or finding the minimal set of properties that
discriminate the positive examples belonging to a class
with respect to the negative examples.

We presented experiments of using re-representation
in the context of a nearest neighbor classifier. In our
current work, we are developing property-based deci-

Ontañón and Plaza / Refinement-based Disintegration 11

sion trees. One interesting aspect of our re-representa-
tion approach when used in conjunction with inductive
machine learning techniques, such as decision trees, is
that once generalizations have been found over the re-
representation, those can be mapped back to the origi-
nal representation by using the integration operation.

Future work will also explore how to use the vari-
ous distinct sublanguages (e.g. like the sublanguages
of feature terms defined in Fig. 4) in machine learning
techniques. The goal would be to find the simplest sub-
language that fulfills the requirement of a specific ML
technique for a given set of examples (following ideas
from multi-strategy learning). Moreover, we intend to
investigate the use of properties on other representa-
tion formalisms for which complete and locally finite
refinement operators have been defined in the litera-
ture, such as ILP-restricted Horn Clauses [12] or some
Description Logics [4].

Acknowledgements. Research partially supported by
Projects Next-CBR (TIN2009-13692-C03-01) and Cog-
nitio (TIN2012-38450- C03-03) and by the Generalitat
de Catalunya under the grants 2009-SGR-1434.

References

[1] Aı̈t-Kaci, H.: Description logic vs. order-sorted feature logic.
In: Proc. 20th International Workshop on Description Logics.
pp. 147–154 (2007)

[2] Aı̈t-Kaci, H., Podelski, A.: Towards a meaning of LIFE. Tech.
Rep. 11, Digital Research Laboratory (1992)

[3] Armengol, E., Plaza, E.: Relational case-based reasoning for
carcinogenic activity prediction. Artif. Intell. Rev. 20(1-2),
121–141 (2003)

[4] Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for
description logics. In: Cussens, J., Frisch, A. (eds.) Inductive
Logic Programming. pp. 40–59. No. 1866 in Lecture Notes in
Computer Science, Springer (1999)

[5] Blockeel, H., De Raedt, L.: Top-down induction of first-order
logical decision trees. Artificial Intelligence 101, 285–297
(May 1998)

[6] Carpenter, B.: The Logic of Typed Feature Structures, Cam-
bridge Tracts in Theoretical Computer Science, vol. 32. Cam-
bridge University Press (1992)

[7] Emde, W., Wettschereck, D.: Relational instance based learn-
ing. In: Saitta, L. (ed.) Machine Learning - Proceedings 13th
International Conference on Machine Learning. pp. 122 – 130.
Morgan Kaufmann Publishers (1996)

[8] Falkenhainer, B., Forbus, K., Gentner, D.: The structure map-
ping engine: algorithm and examples. Artificial Intelligence 41,
1–63 (1990)

[9] Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels be-
tween labeled graphs. In: Proc. ICML’04. pp. 321–328 (2003)

[10] Knobbe, A.J., Siebes, A., Wallen, D.V.D., V, S.B.: Multi-
relational decision tree induction. In: Principles of Data Mining
and Knowledge Discovery. pp. 378–383. Springer (1999)

[11] Kramer, S., Lavrač, N., Flach, P.: Propositionalization ap-
proaches to relational data mining. In: Džeroski, S., Lavrač, N.
(eds.) Relational Data Mining, pp. 262–286. Springer (2000)

[12] van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Completeness and
properness of refinement operators in inductive logic program-
ming. J. Log. Program. 34(3), 201–225 (1998)

[13] Lavrač, N., Džeroski, S.: Inductive Logic Programming. Tech-
niques and Applications. Ellis Horwood (1994)

[14] Michie, D., Muggleton, S., Page, D., Srinivasan, A.: To the
international computing community: A new East-West chal-
lenge. Tech. rep., Oxford University Computing laboratory,
Oxford,UK (1994)

[15] Mitchell, T.: Machine Learning. McGraw-Hill (1997)
[16] Ontañón, S., Plaza, E.: Similarity measures over refinement

graphs. Machine Learning 87(1), 57–92 (Apr 2012)
[17] Ontañón, S., Meseguer, P.: Efficient operations in feature terms

using constraint programming. In: Inductive Logic Program-
ming, pp. 270–285. Springer (2012)

[18] Plotkin, G.D.: A note on inductive generalization. In: Machine
Intelligence. No. 5 (1970)

[19] Sánchez, A., Ontañón, S., Calero, P.A.G., Plaza, E.: Measuring
similarity in description logics using refinement operators. In:
Ram, A., Wiratunga, N. (eds.) ICCBR’11: Proc. 19th Interna-
tional Conference on Case-Based Reasoning. Lecture Notes in
Artificial Intelligence, vol. 6880, pp. 289 – 303 (2011)

[20] Sánchez-Ruiz-Granados, A.A., Ontañón, S., González-Calero,
P.A., Plaza, E.: Refinement-based similarity measure over
DL conjunctive queries. In: Delany, S.J., Ontañón, S. (eds.)
ICCBR-13: Proc. 21st International Conference on Case-Based
Reasoning. Lecture Notes in Computer Science, vol. 7969, pp.
270–284. Springer (2013)

