
Noname manuscript No.
(will be inserted by the editor)

Upward Refinement Operators for Conceptual Blending in
the Description Logic EL++

Roberto Confalonieri · Manfred Eppe ·
Marco Schorlemmer · Oliver Kutz ·
Rafael Peñaloza · Enric Plaza

Received: date / Accepted: date

Abstract Conceptual blending is a mental process that serves a variety cognitive
purposes, including human creativity. In this line of thinking, human creativity is
modeled as a process that takes different mental spaces as input and combines them
into a new mental space, called a blend. According to this form of combinational

creativity, a blend is constructed by taking the commonalities among the input
mental spaces into account, to form a so-called generic space, and by projecting the
non-common structure of the input spaces in a selective way to the novel blended
space. Since input spaces for interesting blends are often initially incompatible,
a generalisation step is needed before they can be blended. In this paper, we
apply this idea to blend input spaces specified in the description logic EL++ and
propose an upward refinement operator for generalising EL++ concepts. We show
how the generalisation operator is translated to Answer Set Programming (ASP)
in order to implement a search process that finds possible generalisations of input
concepts. The generalisations obtained by the ASP process are used in a conceptual
blending algorithm that generates and evaluates possible combinations of blends.
We exemplify our approach in the domain of computer icons.

Keywords Computational Creativity · Conceptual blending · Description logic ·
Answer Set Programming

PACS 07.05.Mh · 89.20.Ff

R. Confalonieri · M. Schorlemmer · E. Plaza
Artificial Intelligence Research Institute (IIIA-CSIC)
Campus Universitat Autònoma Barcelona
E-08193 Bellaterra, Catalonia, Spain
E-mail: {confalonieri,marco,enric}@iiia.csic.es

M. Eppe
International Computer Science Institute
Berkeley, USA
E-mail: eppe@icsi.berkeley.edu

O. Kutz · R. Peñaloza
Free University of Bozen-Bolzano
Bolzano, Italy
E-mail: {oliver.kutz,rafael.penaloza}@unibz.it

2 Roberto Confalonieri et al.

1 Introduction

The upward refinement—or generalisation—of concepts plays a crucial role in cre-
ative cognitive processes for analogical reasoning and concept invention. In this
work we focus on its role in conceptual blending [20], where one combines two input
concepts to invent a new one. A problem in blending is that the combination of
two concepts may generate an unsatisfiable one due to contradiction, or may not
satisfy certain properties. However, by generalising input concepts, we can remove
inconsistencies to find a novel and useful combination of the input concepts. For
instance, a ‘red French sedan’ and a ‘blue German minivan’ can be blended to a
‘red German sedan’ by generalising the first concept to a ‘red European sedan’
and the second one to a ‘coloured German car’. The least general generalisation of
our input concepts—a ‘coloured European car’—serves as an upper bound of the
generalisation space to be explored, and, in a certain sense, plays the role of the
so called generic space in conceptual blending, which states the shared structure
of both concepts.

This paper addresses the formalisation and implementation of such a general-
isation process in the context of the description logic EL++ [4, 6]. The choice of
EL++ as the knowledge representation language for a computational interpreta-
tion of the cognitive theory of conceptual blending is motivated by several reasons.
First, EL++ is the underpinning logic of the OWL 2 EL Profile1, a recommendation
of the W3C, and, therefore, a well-understood and commonly used knowledge rep-
resentation formalism. Second, EL++ offers a good tradeoff between expressiveness
and efficiency of reasoning and is considered to be sufficiently expressive to model
large real-world ontologies, specially in the bio-medical domains [14, 40]. Finally,
subsumption of concepts w.r.t. an EL++ TBox is computable in polynomial time
[4], and therefore of special interest for a tractable real-world implementation of
conceptual blending. Indeed, a nontrivial problem of conceptual blending is that
there usually exists a considerable number of possible combinations for the blend
creation that are inconsistent or otherwise not interesting (see e.g. [19]). These
combinations need to be evaluated. Our EL++-based formalisation of conceptual
blending suggests that these combinations, leading to the blends, can be evalu-
ated against the entailment of some properties, modelled as ontology consequence
requirements. The nice computational properties of EL++ facilitate this kind of
evaluation since the entailment in EL++ is not computationally hard.

The generalisation of EL++ concepts has been studied both in the Description
Logic (DL) and in the Inductive Logic Programming (ILP) literature, although
from different perspectives. Whilst approaches in DL focus on formalising the
computation of a least general generalisation (LGG) (also known as least common
subsumer) among different concepts as a non-standard reasoning task [2, 5, 43],
approaches in ILP are concerned on learning DL descriptions from examples [32].

In both cases, however, finding a LGG is a challenging task. Its computabil-
ity depends on the type of DL adopted and on the assumptions made over the
structure of concept definitions.

Our work relates to these approaches, but our main motivation for generalising
DL concepts is intrinsically different. Although we do need to be aware of what
properties are shared by the concepts in order to blend them, it is not necessary

1 http://www.w3.org/TR/owl2-profiles/, accessed 26/11/2015

Upward Refinement Operators for Conceptual Blending in EL++ 3

(though desirable) to find a generic space that is also a LGG. A minimally specific
common subsumer w.r.t. the subconcepts that can be built using the axioms in
a Tbox will suffice. With this objective in mind, we propose an upward refine-
ment operator for generalising EL++ concepts which is inductively defined over
the structure of concept descriptions. We discuss some of the properties typically
used to characterise refinement operators; namely, local finiteness, properness and
completeness [29].2 Particularly, our operator is locally finite and proper, but it is
not complete. As a consequence, it cannot generate all the possible generalisations
of an EL++ concept. As we shall discuss, we sacrifice completeness for finiteness
(since we do not need to compute a LGG, strictly speaking), but we need the
applications of the operator to always terminate at each refinement step.

As far as the implementation of the operator is concerned, we state the prob-
lem of finding a generic space of EL++ concepts as a planning problem. This
involves finding a sequence of generalisations with conditional effects to reach
the generic space. This is natural, because modifying EL++ concepts underlies
certain conditional rules. These rules are ultimately defined through the upward

cover set which is generated within the generalisation operator definitions (see
Definitions 6 and 7). It is well-known that planning problems are inherently non-
monotonic because of the inertia assumption. That is, one assumes that world
properties, in this case parts of EL++ concept descriptions, persist unless there is
evidence that they changed. The ‘unless there is evidence’ condition implies the
use of Negation as Failure (NaF). To this end, we adopt the nonmonotonic logic
programming paradigm of Answer Set Programming (ASP) [23].3

To implement the the upward refinement operator and generic space search,
we employ the incremental solving capabilities of clingo [21], an advanced ASP
solver, to find a generic space among two EL++ input concepts. The ASP search
is embedded in an amalgam-based process that models conceptual blending. We
present a conceptual blending algorithm that uses the generalisations found by the
ASP-based search process to create new blended concepts. New concepts are eval-
uated by means of ontology consequence requirements and a heuristics function.
Throughout the paper, we use an example in the domain of computer icon design.

This paper is an extended and revised version of [13]. It now contains a formal
definition and analysis of the refinement operator properties (Propositions 1-3
and Theorem 1), an extension of the operator definition to deal with infinite chain
of generalisations, the complete implementation of the operator in ASP, and a
blending algorithm.

The remainder of this paper is organised as follows: Section 2 provides the
background knowledge to make this paper self-contained. Section 3 describes how
conceptual blending can be used to design new computer icons modeled in EL++.
Section 4 proposes the formalisation of a refinement operator for generalising EL++

2 Briefly, a refinement operator is said to be locally finite when it generates a finite set
of refinements at each step; proper, when its refinements are not equivalent to the original
concept, and complete, when it produces all possible refinements of a given concept. These
property are formally presented in Section 2.2.

3 The planning problem could also have been encoded in SAT. There are many approaches
to realize NaF and non-monotonicity for SAT, with circumscription [34] probably being the
most prominent method. In this sense, the computational complexity is equivalent with the one
of ASP. However, since NaF is already an inherent part of ASP, we found ASP more straight-
forward. This is also in-line with recent trends in Commonsense Reasoning about Action and
Change, where ASP is commonly used to solve planning problems (see e.g., [16, 17, 30, 33]).

4 Roberto Confalonieri et al.

concepts. In Section 5, the implementation of the operator and the ASP incre-
mental encoding, which models the generic space search, are presented. Section 6
describes an algorithm for conceptual blending. Section 7 outlines several works
that relate to ours from different perspectives. Finally, Section 8 concludes the
paper and envisions some future work.

2 Background

In this section we introduce the basic notions that will be used throughout the
paper. After presenting the EL++ description logic, we introduce refinement op-
erators. Then, we provide the definition of amalgams that provides a computa-
tional chacterisation of conceptual blending. We conclude the background with an
overview of Answer Set Programming (ASP) and the incremental solving capabil-
ities of clingo.

2.1 The Description Logic EL++

In DLs, concept and role descriptions are defined inductively by means of concept
and role constructors over a finite set NC of concept names, a finite set NR of role
names, and (possibly) a finite set NI of individual names. As is common practice,
we shall write A, B for concept names, C, D for concept descriptions, r, s for role
names, and a, b, for individual names.

The semantics of concept and role descriptions is defined in terms of an in-
terpretation I = (∆I , ·I), where ∆I is a non-empty domain and ·I is an inter-
pretation function assigning a set AI ⊆ ∆I to each concept name A ∈ NC , a set
rI ⊆ ∆I ×∆I to each role name r ∈ Nr, and an element aI ∈ ∆I for each individ-
ual name a ∈ NI , which is extended to general concept and role descriptions. The
upper part of Table 1 shows the constructors of the description logic EL++ that
are relevant for this paper, together with their interpretation. For a complete
presentation of EL++ we refer to [4, 6].

A knowledge base usually consists of a finite set T of terminological axioms,
called TBox, which contains intensional knowledge defining the main notions rel-
evant to the domain of discourse; and a finite set A of assertional axioms, called
ABox, which contains extensional knowledge about individual objects of the do-
main. In this paper, we focus only on terminological axioms of the form C v D, i.e.
general concept inclusions (GCIs), and r1 ◦ · · · ◦ rn v r, i.e. role inclusions (RIs), as
well as axioms specifying domain and range restrictions for roles. The lower part
of Table 1 shows the form of these axioms, together with the condition for these
to be satisfied by an interpretation I. By L(T) we refer to the set of all EL++

concept descriptions we can form with the concept and role names occurring in T .
RIs allow one to specify role hierarchies (r v s) and role transitivity (r ◦

r v r). The bottom concept ⊥, in combination with GCIs, allows one to express
disjointness of concept descriptions, e.g., CuD v ⊥ tells that C and D are disjoint.
An interpretation I is a model of a TBox T iff it satisfies all axioms in T . The
basic reasoning task in EL++ is subsumption. Given a TBox T and two concept
descriptions C and D, we say that C is (strictly) subsumed by D w.r.t. T , denoted
as C vT D (C @T D), iff CI ⊆ DI (CI ⊆ DI and CI 6= DI) for every model I of

Upward Refinement Operators for Conceptual Blending in EL++ 5

concept description interpretation

A AI ⊆ ∆I

> ∆I

⊥ ∅
C uD CI ∩ CI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I .(x, y) ∈ rI ∧ y ∈ CI}

axiom satisfaction

C v D CI ⊆ DI

C ≡ D CI = DI

r1 ◦ · · · ◦ rn v r rI1 ; · · · ; rIn ⊆ rI

domain(r) v C rI ⊆ CI ×∆I

range(r) v C rI ⊆ ∆I × CI

Table 1: Syntax and semantics of some EL++ contructors and axioms. (Note: ‘;’ is
the usual composition operator in relation algebra.)

T . Analogously, given two roles r, s ∈ Nr, we say that r is (strictly) subsumed by
s w.r.t. T , denoted as r vT s (r @T s), iff rI ⊆ sI (rI ⊆ sI and rI 6= sI) for every
model I of T . Finally, an equivalence axiom C ≡T D is just an abbreviation for
C vT D and D vT C.

2.2 Refinement Operators

Refinement operators are a well known notion in Inductive Logic Programming
where they are used to structure a search process for learning concepts from ex-
amples. In this setting, two types of refinement operators exist: specialisation (or
downward) refinement operators and generalisation (or upward) refinement opera-
tors. While the former constructs specialisations of hypotheses, the latter contructs
generalisations.

Generally speaking, refinement operators are defined over quasi-ordered sets.
A quasi-ordered set is a pair 〈S,�〉 where S is a set and � is a binary relation
among elements of S that is reflexive (a � a) and transitive (if a � b and b � c

then a � c). If a � b, we say that b is more general than a, and if also b � a we
say that a and b are equivalent. A generalisation refinement operator is defined as
follows.4

Definition 1 A generalisation refinement operator γ over a quasi-ordered set 〈S,�〉
is a set-valued function such that ∀a ∈ S : γ(a) ⊆ {b ∈ S | a � b}.

A refinement operator γ can be classified according to some desirable proper-
ties [29]. We say that γ is:

– locally finite, if the number of generalisations generated for any given element
by the operator is finite, that is, ∀a ∈ S : γ(a) is finite;

– proper, if an element is not equivalent to any of its generalisations, i.e., ∀a, b ∈ S,
if b ∈ γ(a), then a and b are not equivalent;

4 A deeper analysis of refinement operators can be found in [29].

6 Roberto Confalonieri et al.

– complete, if there are no generalisations that are not generated by the operator,
i.e., ∀a, b ∈ S it holds that if a � b, then b ∈ γ∗(a) (where γ∗(a) denotes the set
of all elements which can be reached from a by means of γ in zero or a finite
number of steps).

When a refinement operator is locally finite, proper, and complete it is said to be
ideal. An ideal specialisation refinement operator for EL has been explored in [31].
In this paper, we define a generalisation refinement operator for EL++ and study
its properties.

2.3 Computational Concept Blending by Amalgams

The process of conceptual blending can be characterised in terms of amalgams

[36], a notion that has its root in case-based reasoning and focuses on the problem
of combining solutions coming from multiple cases in search-based approaches
to reuse and that has also been used to model analogy [8]. According to this
approach, input concepts are generalised until a generic space is found, and pairs
of generalised versions of the input concepts are ‘combined’ to create blends.

Formally, the notion of amalgams can be defined in any representation language
L for which a subsumption relation between formulas (or descriptions) of L can be
defined, and therefore also in L(T) with the subsumption relation vT for a given
EL++ TBox T .

Definition 2 Given two descriptions C1, C2 ∈ L(T):

– A most general specialisation (MGS) is a description Cmgs such that Cmgs vT
C1 and Cmgs vT C2 and for any other description D satisfying these properties,
D vT Cmgs.

– A least general generalisation (LGG) is a description Clgg such that C1 vT Clgg
and C2 vT Clgg and for any other description D satisfying these properties,
Clgg vT D.

Intuitively, a MGS is a description that has all the information from both the
original descriptions C1 and C2, while a LGG contains that which is common to
them. Depending on the structure of T , it is not always possible to find a least
general generalisation. Thus, the definition of Clgg is relaxed as follows.

Definition 3 Given two descriptions C1, C2 ∈ L(T), a common generalisation is a
description Cg such that C1 vT Cg and C2 vT Cg.

An amalgam of two descriptions is a new description that contains parts from

these original descriptions. For instance, an amalgam of ‘a red French sedan’ and
‘a blue German minivan’ could be ‘a red German sedan;’ clearly, there are always
multiple possibilities for amalgams, like ‘a blue French minivan’. For the purposes
of this paper we can define an amalgam of two descriptions as follows.

Definition 4 (Amalgam) Let T be an EL++ TBox. A description Cam ∈ L(T)
is an amalgam of two descriptions C1 and C2 (with common generalisation Cg) if
there exist two descriptions C′1 and C′2 such that:

1. C1 vT C′1 vT Cg,

Upward Refinement Operators for Conceptual Blending in EL++ 7

C1 C2

C 0
1

Cam

C 0
2

Clgg

Cg

(a) An amalgam with a common generalisa-
tion Cg that is not a least general generali-
sation of C1 and C2.

C1 C2

C 0
1

Cam

C 0
2

Cg ⌘T Clgg

(b) An amalgam with a common generalisa-
tion Cg that is also a least general generali-
sation of C1 and C2.

Fig. 1: Two diagrams of an amalgam Cam from descriptions C1 and C2 with
generalisations C′1 and C′2. Arrows indicate the subsumption of the target by the
source of the arrow.

2. C2 vT C′2 vT Cg, and
3. Cam is a MGS of C′1 and C′2

This definition is illustrated in Figure 1, where the common generalisation of
the inputs is indicated as Cg, and the amalgam Cam is the MGS of two concrete
generalisations C′1 and C′2 of the inputs. Notice that Cg used to define the amalgam
does not need to be a least general generalisation. Although having a least general
generalisation is desirable, a common generalisation of the inputs will suffice.

In Section 4, we define an upward refinement operator that allows us to find
generalisations of EL++ concept descriptions needed for computing the amalgams
as described above. We may generalise concepts C1 and C2 beyond the LGG but
we need to do this to guarantee termination, as we shall explain. We implement
the operator and the search for generalisation in Answer Set Programming (ASP)
[23]. To this end, we provide some basic notions about ASP in the next section.

2.4 Answer Set Programming

Answer Set Programming (ASP) is a declarative approach to solve NP-hard search
problems (see e.g. [7, 23]). An ASP program is similar to a PROLOG program in
that it is non-monotonic, takes logic programming style Horn clauses as input, and
uses negation-as-failure (NaF). However, instead of using Kowalski [27]’s SLDNF
resolution semantics as in PROLOG, it employs Gelfond and Lifschitz [24]’s Stable
Model Semantics, which makes it truly declarative, i.e., the order in which ASP
rules appear in a logic program does not matter. Furthermore, the Stable Model
Semantics has the advantage that Answer Set Programs always terminate, while
PROLOG programs do not. For example, given a program p ← not q. and q ←
not p., asking whether p holds results in an infinite loop for PROLOG, while ASP
returns two stable models as solution, namely the sets {p} and {q}.

An ASP program consists of a set of rules, facts and constraints. Its solutions
are called Stable Models (SM). In this paper we only consider so-called normal rules
[7], which are written as:

a0 ← a1, . . . , aj , not aj+1, . . . , not an (1)

8 Roberto Confalonieri et al.

in which a1, ..., an are atoms and not is negation-as-failure. When n = 0 the rule
a0 ← is known as a fact and the ← is omitted. A constraint is a rule of the form
← a1, . . . , aj , not aj+1, . . . , not an. Constraints are rules that are used to discard
some models of a logic program.

The models of an ASP program are defined according to the stable model se-

mantics. The stable semantics is defined in terms of the so-called Gelfond-Lifschitz

reduction [24]. Let LP be the set of atoms in the language of a normal logic program
P , then for any set M ⊆ LP , the Gelfond-Lifschitz reduction PM is the definite
logic program obtained from P by deleting:

(i) each rule that has a formula not a in its body with a ∈M , and
(ii) all formulæ of the form not a in the bodies of the remaining rules.

PM does not contain not and M is called a stable model of P if and only if M

is the minimal model of PM . A stable model M of an ASP program P contains
those atoms that satisfy all the rules in the program and, consequently, represent
a solution of the problem that represents.

ASP is interesting not only because can capture complex knowledge representa-
tion problems, but also because efficient ASP implementations exists. In particular,
the clingo solver [21] offers a step-oriented, incremental approach that allows us to
control and modify an ASP program at run-time, without the need of restarting
the grounding the solving process from scratch. To this end, a program is par-
titioned into a base part, describing the static knowledge independent of a step
parameter t, a cumulative part, capturing knowledge accumulating with increasing
t, and a volatile part specific for each value of t. The grounding and integration of
these subprograms into the solving process is completely modular and controllable
from a scripting language such as Python.

The ASP implementation in this paper follows this methodology of specifying
and solving a problem incrementally. For further details about incremental solving,
we refer to [22] in which several examples can be found.

3 Conceptual Blending of Computer Icons

To exemplify our approach, we take the domain of computer icons into account.
We consider computer icons as combinations of signs, such as Document, Magnify-

ingGlass, HardDisk and Pen that are described in terms of meanings [12]. Meanings
convey actions-in-the-world or object-types.

Figure 2 shows the concept names defined in the ComputerIcon ontology and
their relations. In what follows, concept names are capitalised (e.g., Sign) and role
names are not (e.g., hasMeaning). We assume that a TBox T consists of two parts:
one part that contains the background knowledge about the icon domain Tbk, and
another part that contains the domain knowledge about icon definitions Tdk. Tbk
contains the following axioms:

Upward Refinement Operators for Conceptual Blending in EL++ 9

Fig. 2: The ComputerIcon ontology, showing the concept names and their relation.

αbk1 : Action v Meaning

αbk2 : ObjectType v Meaning

αbk3 : Search v Action

αbk4 : Edit v Action

αbk5 : HardDrive v ObjectType

αbk6 : Doc v ObjectType

αbk7 : Action u ObjectType v ⊥
αbk8 : Search u Edit v ⊥
.
αbk14 : HardDrive u Doc v ⊥

Axioms αbk1 -αbk6 capture the different meanings associated with signs; axioms
αbk7 -αbk14 model the disjointness among all Action and ObjectType concepts de-
fined in the ontology. Signs are associated with a meaning. This is modeled by the
hasMeaning role in the following axioms:

αbk15 : MagnifyingGlass ≡ Sign u ∃hasMeaning.Search

αbk16 : HardDisk ≡ Sign u ∃hasMeaning.HardDrive

αbk17 : Pen ≡ Sign u ∃hasMeaning.Edit

αbk18 : Document ≡ Sign u ∃hasMeaning.Doc

αbk19 : MagnifyingGlass u HardDisk v ⊥
.
αbk25 : Pen u Document v ⊥

A sign is associated with a meaning. For instance, MagnifyingGlass is associated with
Search to describe that it conveys the action of looking for something. Sign concepts
are disjoint (αbk19 -αbk25). Signs are related by spatial relationships such as isAboveIn,
isAboveInLeft, isAboveInRight, isUpIn, isUpLeft, isUpRight, isDownIn, isDownLeft, and
isDownRight. Spatial relationships are modelled as roles.

αbk26 : isAboveIn v isInSpatialRelation

αbk27 : isAboveLeft v isInSpatialRelation

αbk28 : isAboveRight v isInSpatialRelation

.
αbk37 : isDownRight v isInSpatialRelation

10 Roberto Confalonieri et al.

GenInput 1
MGS

Blend

Input 1 Input 2

GenInput 2

LGG / Generic Space

MagnifyingGlass u 9isAboveIn.Sign

Sign u 9isInSpatialRelation.Sign

Sign u 9isInSpatialRelation.Document

MagnifyingGlass u 9isAboveIn.HardDisk

MagnifyingGlass u 9isAboveIn.Document

Pen u 9isAboveRight.Document

Fig. 3: Blending the SearchHardDisk and EditDocument icon concepts into a new
concept representing a search-in-document icon. Sign’s meanings are not repre-
sented.

For the sake of simplicity, we assume that icons are modelled according to a canon-
ical form. Axioms describing icon concepts are of the form IconName ≡ C u ∃r.D,
where r is a spatial relation and C, D are concepts that describe signs. Based on
this canonical form and on the axioms above, we modeled some icons as domain
knowledge of a TBox.

Example 1 SearchHardDisk is an icon that consists of two signs MagnifyingGlass and
HardDisk, where the MagnifyingGlass sign is above in the middle of the HardDisk

sign. Another icon is EditDocument, where the Pen sign is above on the right of the
Document sign. Both icons are shown in Figure 3.

αdk1 : SearchHardDisk ≡ MagnifyingGlass u ∃isAboveIn.HardDisk
αdk2 : EditDocument ≡ Pen u ∃isAboveRight.Document

We consider the above knowledge as a library of icons. We assume that the library
is managed and used by a computer icon design tool. The tool accepts a query as
input and retrieves those icons that satisfy certain properties. For instance, a query
asking for an icon with the meaning of searching in a hard-disk will retrieve the
SearchHardDisk concept. In contrast, a query asking for an icon with the meaning
of searching in a document does not return any result. In such a case, the tool
tries to answer the query by running a conceptual blending algorithm.

Intuitively, the conceptual blending algorithm works as follows. Given two in-
put concepts, the algorithm tries to create new concepts that can satisfy the query.
New concepts are created by taking the commonalities and some of their specifics
into account (Figure 3). For instance, both SearchHardDisk and EditDocument are
icons that consist of two signs related by a spatial relation (the generic space).
Then, if we keep the MagnifyingGlass concept from SearchHardDisk and the Document

concept from EditDocument, and we generalise the HardDisk and Pen concepts and

Upward Refinement Operators for Conceptual Blending in EL++ 11

the role isAboveRight, we can blend the generalised input concepts of SearchHardDisk
and EditDocument into a new concept representing an icon whose meaning is to
search in a document.

MagnifyingGlass u ∃isAboveIn.Document

In this paper, we show how the above concept generation description can be com-
putationally realised by two processes. An ASP-based implementation that gen-
eralises EL++ concept descriptions and finds a generic space; and a procedural
implementation that generates and evaluates the blended concepts. First, we in-
troduce a refinement operator for generalising an EL++ concept.

4 A Generalisation Refinement Operator for EL++

In any description logic the set of concept descriptions are ordered under the
subsumption relation forming a quasi-ordered set. For EL++ in particular they
form a bounded meet-semilattice with conjunction as meet operation, > as greatest
element, and ⊥ as least element. In order to define a generalisation refinement
operator for EL++, we need some auxiliary definitions.

Definition 5 Let T be an EL++ TBox. The set of subconcepts of T is given as

sub(T) = {>,⊥} ∪
⋃

CvD∈T
sub(C) ∪ sub(D) (2)

where sub is inductively defined over the structure of concept descriptions as fol-
lows:

sub(A) = {A}
sub(⊥) = {⊥}
sub(>) = {>}

sub(C uD) = {C uD} ∪ sub(C) ∪ sub(D)

sub(∃r.C) = {∃r.C} ∪ sub(C)

Based on sub(T), we define the upward cover set of atomic concepts and roles.
sub(T) guarantees the following upward cover set to be finite.5

Definition 6 Let T be an EL++ TBox with concept names from NC . The upward

cover set of an atomic concept A ∈ NC ∪ {>,⊥} and of a role r ∈ NR with respect
to T is given as:

UpCov(A) := {C ∈ sub(T) | A vT C (3)

and for all C′ ∈ sub(T) such that A vT C′

then C vT C′

UpCov(r) := {s ∈ NR | r vT s (4)

for all s′ ∈ Nr such that r vT s′

then s vT s′}
5 We assume that T is finite.

12 Roberto Confalonieri et al.

We can now define our generalisation refinement operator for EL++ as follows.

Definition 7 Let T be an EL++ TBox. We define the generalisation operator γ

inductively over the structure of concept descriptions as follows:

γ(A) = UpCov(A)

γ(>) = UpCov(>) = ∅
γ(⊥) = UpCov(⊥)

γ(C uD) = {C′ uD | C′ ∈ γ(C)} ∪ {C uD′ | D′ ∈ γ(D)}

γ(∃r.C) =

{
γr(∃r.C) ∪ γC(∃r.C) whenever UpCov(r) 6= ∅ or UpCov(C) 6= ∅
{>} otherwise.

where γr and γC are defined as:

γr(∃r.C) = {∃s.C | s ∈ UpCov(r)}
γC(∃r.C) = {∃r.C′ | C′ ∈ γ(C) and C′ v range(r)}.

Given a refinement operator γ, EL++ concepts are related by refinement paths as
described next.

Definition 8 A finite sequence C1, . . . , Cn of EL++ concepts is a concept refinement

path C1
γ−→ Cn from C1 to Cn of the generalisation operator γ iff Ci+1 ∈ γ(Ci) for

all i : 1 ≤ i < n. γ∗(C) denotes the set of all concepts that can be reached from C

by means of γ in zero or a finite number of steps.

Proposition 1 The operator γ is a generalisation refinement operator over the set of

all EL++ concepts with the order v.

Proof We need to prove that for every EL++ concept C and every D ∈ γ(C), the
subsumtion C vT D holds. We do this by induction on the structure of C. If C is
a concept name, >, or ⊥, the subsumption holds directly by definition. If C is of
the form C1 u C2, we can assume w.l.o.g. that D is C′ u C2 for some C′ ∈ γ(C1).
By induction hypothesis, C1 vT C′ and hence C1 uD vT C′ uD. Finally, if C is
of the form ∃r.C1 we have three possible cases. If UpCov(r) 6= ∅, and D is ∃s.C1 for
s ∈ UpCov(r) then by definition ∃r.C1 vT ∃s.C1. If UpCov(C) 6= ∅, C 6= > and D

must be of the form ∃r.C′ with C1 vT C′, and hence the subsumption holds. In
the last case, D is equivalent to >, and hence the subsumption follows trivially. ut

We now analyse the properties of the generalisation operator γ. Observe first
that our definition of UpCov for basic concepts and roles only considers the set of
subconcepts present in a TBox T . This guarantees that γ is locally finite, since at
each generalisation step, the set of possible generalisations is finite.

Proposition 2 The generalisation refinement operator γ is locally finite.

Proof We prove that for every EL++ concept C, γ(C) is finite by induction on the
structure of C.

For A ∈ NC ∪ {>,⊥}, we have that γ(A) ⊆ sub(T). Since sub(T) is finite, the
result immediately holds. For C u D, we have that |γ(C u D)| ≤ |γ(C)| + |γ(D)|.

Upward Refinement Operators for Conceptual Blending in EL++ 13

By induction hypothesis, the two sets on the right-hand side of this inequality are
finite, and hence γ(C u D) must be finite too. Finally, it holds that |γ(∃r.C)| ≤
|UpCov(r)| + |γ(C)|. By the fact that UpCov(r) ⊆ NR, which is finite, and the
induction hypothesis, the result follows. ut

When generalising concept names and role names, we always ensure that the re-
sulting concepts are more general (w.r.t. the TBox T) than the original elements.
Unfortunately, this does not guarantee that γ is proper.

Example 2 Let T := {A v B}. Then, following Definition 7, we have that general-
ising the concept AuB yields Au> ∈ γ(AuB). However, both these concepts are
equivalent to A w.r.t. T . Therefore, γ is not proper.

One possible way to avoid this situation, and, therefore, to guarantee the proper-
ness of γ, is to redefine it with an additional semantic test. More precisely, let γ′

be defined as:

γ′(C) := γ(C)\{D ∈ γ(C) such that D vT C} (5)

Essentially, γ′ discards those generalisations that are equivalent to the concept
being generalised. It is easy to see that γ′ is still a finite generalisation operator
and it is proper.

Proposition 3 The generalisation refinement operator γ′ is proper.

Proof This proposition trivially follows from Eq. 5.

The repetitive application of the generalisation refinement operator allows one to
find a description that represents the properties that two or more EL++ concepts
have in common. This description is a common generalisation of EL++ concepts,
the so-called generic space that is used in conceptual blending.

Definition 9 An EL++ concept description G is a generic space of the EL++ con-
cept descriptions C1, . . . , Cn if and only if G ∈ γ′∗(Ci) for all i = 1, . . . , n.

Example 3 Let us consider the EL++ concepts EditDocument and SearchHardDisk

defined in Example 1. It can be checked that:

{(Sign u ∃hasMeaning.Action) u ∃isInSpatialRelation.(Sign u ∃hasMeaning.ObjectType)} ∈ γ′∗(EditDocument)
{(Sign u ∃hasMeaning.Action) u ∃isInSpatialRelation.(Sign u ∃hasMeaning.ObjectType)} ∈ γ′∗(SearchHardDisk)

(Sign u ∃hasMeaning.Action) u ∃isInSpatialRelation.(Sign u ∃hasMeaning.ObjectType) is
a generic space (Definition 9) of EditDocument and SearchHardDisk.

Unfortunately, due to the fact that upward cover set we defined only takes
subconcepts already present in the TBox into account, neither γ nor its refine-
ment γ′ are complete; that is, these operators may fail to compute some of the
generalisations of a given EL++ concept.

Example 4 Let T := {A v B, A v C}. Then, generalising the concept A yields
γ(A) = {B,C}. However, B u C is also a possible generalisation of A w.r.t. vT .

More generally, as the following theorem shows, no generalisation refinement op-
erator over EL++ concepts w.r.t. vT can be locally finite, proper, and complete.

14 Roberto Confalonieri et al.

Theorem 1 There is no ideal generalisation refinement operator for EL++ concepts.

Proof Consider the TBox T = {A v ∃r.A, ∃r.A v A}, and define the concepts
G0 := >, Gi+1 := ∃r.Gi for all i ≥ 0. Notice first that these concepts form an
infinite chain of generalisations G0 AT G1 AT G2 AT · · · AT A. Moreover, every
EL++ concept C with A @T C is equivalent (w.r.t. T) to one such Gi. Let now γ be
a locally finite and proper generalisation refinement operator. Then γ(A) is a finite
set of concepts which, w.l.o.g. we can assume to be of the form {Gi | i ∈ I}, where
I is a finite set of indices. In particular, I contains a maximum index n. Then
Gn+1 is strictly more specific than all elements of γ(A) and cannot be derived by
further applications of γ. Thus, γ is not complete. ut

Since the refinement operator is not complete, it cannot guarantee to find a generic
space that is a least general generalisation. Although a least general generalisation,
is desirable, finding a common description, which allows us creating new EL++

concepts from existing ones by conceptual blending, will suffice.
At this point, we should note, however, that the generalisation operator may

even fail to find a generic space of a set of EL++ concepts. Indeed, as the follow-
ing example shows, the generalisation operator can produce an infinite chain of
generalisations.

Example 5 Let T := {A v ∃r.A,B v >}. Then, the generalisation of the concept
description B can yield >. The generalisation of the concept description A yields
the infinite chain {∃r.∃r . . . ∃r.A}. A common (trivial) generalisation for A, B is >
but it is not found by γ.

Not finding a common generalisation of a set of EL++ concepts is a not a new
problem in the DL literature. Different solutions have been proposed [1, 2, 5, 43,
44]. Typically, some assumptions are made over the structure of the TBox or a
fixed role depth of concepts is considered. In the following, we adopt the latter
view, and we restrict the number of nested quantifiers in a concept description
to a fixed constant k. To this end, we introduce the definition of role depth of a
concept as follows.

Definition 10 The role depth of an EL++ concept description C is defined as the
maximum number of nested (existential) quantifiers in C:

roleDepth(>) = roleDepth(A) = 0,

roleDepth(C uD) = max{roleDepth(C), roleDepth(D)},
roleDepth(∃r.C) = roleDepth(C) + 1

Based on the role depth of a concept we modify the definition of the generalisation
operator γ′ to take a fixed constant k ∈ N>0 of nested quantifiers into account.
More precisely, let γ′k be defined as γ′, except that for the case of generalising a
concept ∃r.C we set:

γ′k(∃r.C) :=

γr(∃r.C) ∪ γC(∃r.C) if (UpCov(r) 6= ∅ or UpCov(C) 6= ∅) and

roleDepth(C) ≤ k,
{>} otherwise.

The role depth prevents the generalisation operator from generating infinite chains
of generalisations. Consequently, it can ensure that a generic space between EL++

concepts can always be found.

Upward Refinement Operators for Conceptual Blending in EL++ 15

Predicates modeling EL++ concepts Description
dConcept(C) A reference to a domain knowledge concept C
concept(A) A concept A
subConcept(A,B) A concept B subsumes A
role(r) A role r
subRole(r, s) A role r subsumes s

hasConjunct(C, ex,A, t) A concept A is an expression ex in
C at step t

hasRoleEx(C, roleEx, r, depth,A, t) A concept A fills the role r in a role expression
roleEx with depth depth in C at step t

Predicates modeling the refinement Description

notEqual(C1, C2, t)
The domain concepts C1, C2 are not equivalent
at step t

conjunctNotEq(C1, C2, A, t)
The concept A is not equivalent in C1 and C2
at step t

hasRoleExNotEq(C1, C2, C, t)
A conjunct C is not equivalent in the C1, C2
at step t

roleInExpressionNotEq(C1, C2, C, r, t)
A role r in a conjunct C is not equivalent
in C1, C2 at step t

app(a, C, t) A refinement step a is applicable in C at step t
poss(a, C, t) A refinement step a is possible in C at step t
exec(a, C, t) A refinement step a is executed in C at step t

Table 2: Overview of the main predicates used to formalise the upward refinement
process in ASP. The predicates in the top table are used to model EL++ concepts,
whereas predicates in the table below are used to model the refinement operators.

Definition 11 An EL++ concept description Gk is a k-approximation of a generic
space of the EL++ concept descriptions C1, . . . , Cn if and only if Gk ∈ γ′∗k (Ci) for
all i = 1, . . . , n.

Proposition 4 There always exists a k-approximation of a generic space Gk for any

EL++ concept descriptions C1, . . . , Cn.

Proof The proof of this proposition can be done by noticing that every concept
can always be generalised to > in a finite number of applications of γ′k. Therefore,
> is always a generic space of any concept descriptions C1, . . . , Cn. ut

The role depth not only avoids infinite chains of generalisations, but also pro-
vides a way to maintain the structure of the input concepts in conceptual blending.
For instance, by choosing the value of k as the maximum role depth of the input
concepts to be blended, the operator yields generalisations with a similar role
structure.

5 Implementing Upward Refinement in ASP

We consider an EL++ TBox T that consists of a background knowledge Tbk and
a domain knowledge Tdk. A generic space between EL++ concepts in the domain
knowledge is found by means of an ASP program that generalises Tdk in a step-
wise transition process. Since finding a generic space of n concepts can be reduced
to the problem of finding a generic space between pairs of concepts [3], the ASP
program we devise takes two EL++ concepts into account.

16 Roberto Confalonieri et al.

In what follows, we describe how an EL++ TBox T is translated into an ASP
representation needed for implementing the generic space search. Table 2 shows
the main predicates used in the ASP implementation.6

5.1 Modeling EL++ concepts in ASP

For each concept name A ∈ NC in Tbk, we state the fact:

concept(A) (6)

For each role r ∈ NR in Tbk with domain(r) v C and range(r) v D, we state the
facts:

role(r) (7a)

domain(r, C) (7b)

range(r,D) (7c)

For each inclusion axiom A v B ∈ Tbk and A, B are atomic concepts, we state the
fact:

subConcept(A,B) (8)

Similarly, for each role inclusion axiom r v s ∈ Tbk, we state the fact:

subRole(r, s) (9)

For each inclusion axiom A v C ∈ Tbk in which A is an atomic concept and C is a
complex concept, we call C the concept definition of A and denote it as C within
the following facts:

concept(C) (10a)

subConcept(A, C) (10b)

Then, C is translated to ASP facts by means of the following function:

toASP(C, ex(k), C uD, depth) = {hasConjunct(C, ex(k), subEx(k+1)), (11a)

hasConjunct(C, ex(k), subEx(k+2))}
∪ {toASP(C, subEx(k+1), C, depth)}
∪ {toASP(C, subEx(k+2), D, depth)}

toASP(C, ex(k),>, depth) = {hasConjunct(C, ex(k), Thing)} (11b)

toASP(C, ex(k), B, depth) = {hasConjunct(C, ex(k), B)} (11c)

toASP(C, ex(k), ∃r.B, depth) = {hasConjunct(C, ex(k), roleEx(k)), (11d)

hasRoleEx(C, roleEx(k), depth, r, B)}
toASP(C, ex(k),∃r.C, depth) = {hasConjunct(C, ex(k), roleEx(k)), (11e)

hasRoleEx(C, roleEx(k), depth, r, subEx(k+1))}
∪ {toASP(C, subEx(k+1), C, depth+ 1)}

6 Disjointness axioms are not translated to ASP because they are not used in the generali-
sation process.

Upward Refinement Operators for Conceptual Blending in EL++ 17

toASP models a complex concept description as a set of hasConjunct/3 and
hasRoleEx/5 predicates that are generated by recursively traversing its structure.
ex(k) and roleEx(k) are atoms that are dynamically generated during the transla-
tion; k is a counter that let the predicates be identifiable in a unique way, and
depth is used to count the depth of a role r. A conjunction in a concept description
is modeled by means of hasConjunct/3 predicates. For instance, if C = C u D,
then, the predicate hasConjunct(C, ex(1), subEx(3)) models that the complex con-
cept C has a concept D as one of its conjunct (Eq. 11a). The translation of D is
done by the recursive call toASP(C, subEx(3), D, depth). Role expressions are mod-
eled by means of a hasConjunct/3 and hasRoleEx/5 predicate. For instance, if
we consider D = ∃r.B then the role expression ∃r.B is modeled by the predi-
cates hasConjunct(C, subEx(2), roleEx(2)) and hasRoleEx(C, roleEx(2), 1, r, B). The
former predicate states that the expression subEx (2) —referring to D— has a role
expression roleEx (2). The latter predicate models that, in the the complex concept
C, the expression roleEx (2) has a concept B filling the role r, and that the depth
of r is 1 (Eq. 11d). Cases 11b-11c-11e can be explained in a similar way.

While the background knowledge is static, the domain knowledge changes. To
this end, we need to keep track of the generalisations applied to each domain
concept. This is done by modeling a concept in the domain knowledge by means
of the predicates hasConjunct and hasRoleEx with an extra atom, t, that is a step-
counter representing the number of modifications made to the concept.

For each axiom A ≡ C ∈ Tdk, in which A is a concept in the domain knowledge
and C is its definition, we denote it by C and we add the following fact:

dConcept(C) (12)

Then, C is translated to ASP in the following way:

1. C is rewritten to C′ by using all the axiom definitions in the background knowl-
edge;

2. C’ is translated to ASP by means of the function toASP with the only difference
that the predicates hasConjunct and hasRoleEx have an extra atom t, equal to
0.

To exemplify the translation process, we provide the following example.

Example 6 Let us consider the TBox and the domain concept EditDocument in
Section 3. The background knowledge is translated to the following ASP facts:

Sign v Thing concept(Sign). By Eq. 6
concept(Thing).
subConcept(Document, Thing). By Eq. 8

Document v Sign concept(Document). By Eq. 6
subConcept(Document, Sign). By Eq. 8

.
domain(isAboveIn) v Sign role(isAboveIn). By Eq. 7a
range(isAboveIn) v Sign domain(isAboveIn, Sign). By Eq. 7b

range(isAboveIn, Sign). By Eq. 7c
.
isAboveIn v isInSpatialRelation subRole(isAboveIn, isInSpatialRelation). By Eq. 9
.

The concept EditDocument is translated to the following ASP facts:

18 Roberto Confalonieri et al.

Pen u ∃isRightIn.Document
(Sign u ∃hasMeaning.Edit) u ∃isRightIn.(Sign u ∃hasMeaning.Doc)
dConcept(EditDocument). By Eq. 12
hasConjunct(EditDocument, ex(1), subEx(2), 0). By Eq. 11a
hasConjunct(EditDocument, ex(1), subEx(3), 0). By Eq. 11a
hasConjunct(EditDocument, subEx(2), subEx(3), 0). By Eq. 11a
hasConjunct(EditDocument, subEx(2), subEx(4), 0). By Eq. 11a
hasConjunct(EditDocument, subEx(3), Sign, 0). By Eq. 11c
hasConjunct(EditDocument, subEx(4), roleEx(4), 0). By Eq. 11d
hasRoleEx(EditDocument, roleEx(4), 1, hasMeaning,Edit, 0). By Eq. 11d
hasConjunct(EditDocument, subEx(3), roleEx(3), 0). By Eq. 11e
hasRoleEx(EditDocument, roleEx(3), 1, isRightOn, subEx(6), 0). By Eq. 11e
hasConjunct(EditDocument, subEx(4), subEx(5), 0). By Eq. 11a
hasConjunct(EditDocument, subEx(4), subEx(6), 0). By Eq. 11a
hasConjunct(EditDocument, subEx(5), Sign, 0). By Eq. 11c
hasConjunct(EditDocument, subEx(6), roleEx(6), 0). By Eq. 11d
hasRoleEx(EditDocument, roleEx(6), 1, hasMeaning,Doc, 0). By Eq. 11d

Besides, we model the concept > as the fact concept(Thing), and for each concept
name A ∈ NC , which is not already subsumed by other concept names, we add a
fact subConcept(A,Thing). We check for (in)equality of domain concepts C1 and C2
by a predicate notEqual(C1, C2, t). The predicate is true whenever conjuncts, role
expressions and roles are not equal in C1 and C2.

5.2 Formalising upward refinement in ASP

We consider each step of the refinement operator in Definition 7 as an operator
type by itself. We consider five types of generalisation that can be applied to a
concept in the domain knowledge at each step:

1. The generalisation of an atomic concept, and we denote it as γA;
2. The generalisation of a concept filling the range of a role up to a role depth k

(γC);
3. The generalisation of a role (γr);
4. The removal of a role, and we denote it as γr− ;
5. The removal of a concept, and we denote it as γC− .

We treat each upward refinement operator type as an action. To this end, we
model each operator type via a precondition rule, an inertia rule, and an effect rule.
Preconditions are modelled with a predicate app/3 that states when an operator
type is applicable. Inertia is modelled with different non-inertial predicates that
state when an element in a domain concept remains unchanged after the execution
of a refinement operator type. Effect rules model how a refinement operator type
changes a concept in the domain knowledge. We represent the execution of an
upward refinement operator type with an atom exec(γx, C, t). This atom denotes
that a generalisation operator type γx ∈ {γA, γC , γr, γr− , γC−} is applied to C at
step t.

Upward refinement of atomic concepts. A fact app(genConcept(Ex,A,B), C, t)
denotes the applicability of the generalisation of a concept A to a concept B in a

Upward Refinement Operators for Conceptual Blending in EL++ 19

conjunct Ex of C at step t using γA:

app(genConcept(Ex,A,B), C1, t)← (13)

hasConjunct(C1, Ex,A, t),
subConcept(A,B),

not hasRoleEx(C1, A, , , , t),
not hasConjunct(C1, A, , t),
conjunctNotEq(C1, C2, A, t),
not exec(genConcept(Ex,A,B), C2, t), dConcept(C2)

There are several preconditions for generalising an atomic concept in a conjunct
Ex. First, Ex involves a concept A that has a parent concept B in the subsumption
hierarchy defined by the axioms of the TBox (first two EDB predicates). Second,
Ex is neither a role expression nor a complex expression. Third, A is not equivalent
in C1 and C2 (conjunctNotEq/4). This latter atom is true when either C1 or C2 does
not contain A. Another condition is that A is not being generalised in C2, since we
want to keep elements that are common in C1 and C2.
We also need a simple inertia rule for generalising a concept in a conjunct. This
is as follows:

noninertialGenConcept(C, Ex,A, t)← exec(genConcept(Ex,A,), C, t), (14)

hasConjunct(C, Ex,A, t)

noninertialGenConcept atoms will cause a concept A to remain in a conjunct Ex
in C, as defined via rule (23a).

Upward refinement of range concepts. A fact app(genConceptInRole(Ex, r,A,B),
C, t) denotes the applicability of the generalisation of a concept A to a concept B
when A fills the range of a role r in a role expression RoleEx of C at step t using
γC :

app(genConceptInRole(RoleEx, r, A,B), C1, t)← (15)

hasRoleEx(C1, RoleEx,Depth, r, A, t),
app(genConcept(RoleEx,A,B), C1, t),
hasRoleExNotEq(C1, C2, RoleEx, t), Depth ≤ k,
not exec(genConceptInRole(RoleEx, , ,), C2, t), dConcept(C2)

The preconditions for generalising a concept filling the role of a role expression
RoleEx are similar to the case of the upward refinement of an atomic concept:
RoleEx involves a concept A that is generalisable, the role expression is not equiv-
alent in C1 and C2 (hasRoleExNotEq/4), and the concept to be generalised must
not be under generalisation in C2. Please note how the maximum role depth of a
concept k controls the applicability of this rule.
The inertia rule for generalising a concept that fills the range of a role in C is:

noninertialGenConceptInRole(C, RoleEx, r, A, t)← (16)

exec(genConceptInRole(RoleEx, r, A,), C, t),
hasRoleEx(C, RoleEx, , r, A, t)

20 Roberto Confalonieri et al.

noninertialGenConceptInRole atoms will cause a concept A to remain in the range
of a role as defined via rule (23b).

Upward refinement of roles. A fact app(genRole(RoleEx , r , s), C, t) denotes the
applicability of the generalisation of a role r to a role s in a role expression RoleEx
of C at step t using γr:

app(genRole(RoleEx, r, s), C1, t)← (17)

hasConjunct(C1, Ex,RoleEx, t),
hasRoleEx(C1, RoleEx, , r, A, t),
subRole(r, s),

roleInExpressionNotEq(C1, C2, RoleEx, r, t),
not exec(genRole(RoleEx, r,), C2, t), dConcept(C2)

The main precondition for generalising a role r contained in a role expression
RoleEx is that r has a parent role s in the subsumption hierarchy defined by the
axioms of the TBox. Other preconditions are that the role expression RoleEx is
not equivalent in C1 and C2 (roleInExpressionNotEq/4) and is not being generalised
in C2.
The inertia rule for generalising a role in a role expression is:

noninertialGenRole(C, RoleEx, r, t)← exec(genRole(RoleEx, r,), C, t), (18)

hasRoleEx(C, RoleEx, , r, A, t)

noninertialGenRole atoms will cause a role r to remain in a role expression RoleEx

in C, as defined via rule (23b).

Removal of a role. A fact app(rmRole(RoleEx , r ,A), C, t) denotes the applicability
of the removal of a role r from a role expression RoleEx of C at step t using γr− :

app(rmRole(RoleEx, r, A), C1, t)← (19)

hasConjunct(C1, Ex,RoleEx, t),
hasRoleEx(C1, RoleEx, , r, A, t),
not app(genRole(RoleEx, r, s), C1, t),
not app(genConceptInRole(RoleEx, r, A,), C1, t),
hasRoleExNotEq(C1, C2, RoleEx, t),
not exec(rmRole(RoleEx, r,), C2, t), dConcept(C2)

Essentially, a role r is removable from a role expression RoleEx when neither it-
self nor the concept filling its range are generalisable. This is captured by the
negated-by-failure predicates app/3. Other preconditions are that the role expres-
sion RoleEx is not equivalent in C1 and C2 (hasRoleExNotEq/4) and is not being
removed from C2.
The inertia rule for removing a role in a role expression is:

noninertialRmRole(C, Ex,RoleEx, r, A, t)← exec(rmRole(RoleEx, r, A), C, t), (20)

hasConjunct(C, Ex,RoleEx, t),
hasRoleEx(C, RoleEx, , r, A, t)

Upward Refinement Operators for Conceptual Blending in EL++ 21

noninertialRmRole atoms will cause a role r to remain in a role expression in C, as
defined via rules (23a-23b).

Removal of a concept. A fact app(rmConcept(C ,A), C, t) denotes the applicability
of the removal of a concept A from a conjunct Ex of C at step t using γC− :

app(rmConcept(Ex,A), C1, t)← (21)

hasConjunct(C1, Ex,A, t),
not app(genConcept(Ex,A,), C1, t),
conjunctNotEq(C1, C2, A, t),
not exec(rmConcept(Ex,A), C2, t), dConcept(C2)

Essentially, a concept A is removable from a conjunct Ex when is not generalisable.
This is captured by the negated-by-failure predicates app/3. Other preconditions
are that the conjunct from where the concept will be removed is not equivalent in
C1 and C2 (conjunctNotEq/4) and A is not being removed from C2.
The inertia rule for removing a concept is:

noninertialRmConcept(C, Ex,A, t)← exec(rmConcept(Ex,A), C, t), (22)

hasConjunct(C, Ex,A, t)

noninertialRmConcept atoms will cause a concept A to remain in a conjunct Ex in
C, as defined via rule (23a).

Inertia. The following rules state which concepts remain unchanged when they
are inertial.

hasConjunct(C, C,A, t+ 1)← hasConjunct(C, C,A, t), (23a)

not noninertialGenConcept(C, C,A, t),
not noninertialRmRole(C, C,A, , , t),
not noninertialRmConcept(C, C,A, t)

hasRoleEx(C, C, r,Depth,A, t+ 1)← (23b)

hasRoleEx(C, C, r,Depth,A, t),
not noninertialGenConceptInRole(C, C, r, A, t),
not noninertialGenRole(C, C, r, A, t),
not noninertialRmRole(C, , C, r, A, t)

Effects. Effect rules model how the knowledge changes when a concepts is gen-
eralised. The rule below shows an example of the effects of the generalisation of
an atomic concept. Other two effect rules model the changes in the case of the
generalisation of a role and of a concept in the range of a role.

hasConjunct(C, C,B, t+ 1)← (24)

hasConjunct(C, C,A, t),
exec(genConcept(C,A,B), C, t)

22 Roberto Confalonieri et al.

Additional rules handle the case in which the generalisation adds facts that model
concept definitions (Eq. 11a-11e). In such a case, the number of roles Depth can
be increased. To this end, the precondition Depth ≤ k in Eq. 15 prevents the
applicability of further generalisations of a concept filling the range of a role when
Depth reaches k, the maximum number of nested roles allowed.

Checking the equivalence between generalisations. As seen in the previous
section, the upward refinement operator γ is proper when those generalisations,
which are equivalent to the concept being generalised, are discarded (see Eq. 5).
To this end, during the generic space search, we discard these generalisations.
The clingo solver allows one to interleave the solving capabilities of ASP with a
procedural language such as Python. This allowed us to check the equivalence
between two generalisations in an external Python function and return the result
to the ASP program. The rule below shows an example of how an external function
isGenEq can be called from our ASP program.

poss(genConcept(Ex,A,B), C1, t)← (25)

app(genConcept(Ex,A,B), C1, t),

EQ 6= 1,EQ = @isGenEq(‘genConcept′, C, Ex, , A,B, t)

The isGenEq function internally does two things. First, it builds the concept
description C based on the current generalisation. Since the incremental ASP solv-
ing process is controlled by a Python script, the Python function contains all the
generalisations of a concept. Second, it checks whether the generalisation at step
t is equivalent to the generalisation at step t − 1. This is done by means of the
jcel reasoner [35].7 We test the equivalence between the current and the previous
generalisation by checking the corresponding subsumptions. If the two generali-
sations are equivalent, then the function returns 1. In this case, the applicability
of a generalisation operation is disabled by preventing the instantiation of the
corresponding poss/3 predicate.

5.3 Upward refinement search

We use ASP for finding a generic space and the generalised versions of the concepts
in the domain knowledge of an EL++ TBox T , which can lead to a blend. This is
done by successively generalising the concepts in the domain knowledge by means
of the upward operator steps we described in the previous subsection.

Given a concept description C in an EL++ TBox T , the repetitive application
of the generalisation operator types is a refinement path.

Definition 12 Let C be a domain concept in an EL++ TBox T , let {γ1x, . . . , γnx }
be the set of generalisation steps for C, 0 = t1 < · · · < tn = n be refinement

7 The jcel is a modular rule-based reasoner for description logics of the EL family imple-
mented in Java. It uses a rule-based completion algorithm in which a set of completion rules
are successively applied to saturate data structures that are used to model EL axioms. The
algorithm is based on the CEL’s algorithm [4] but is generalised with a change propagation
approach. It implements reasoning tasks such as classification, consistency, satisfability, and
entailment. The main advantage of the jcel reasoner is that these tasks are computable in
polynomial time.’

Upward Refinement Operators for Conceptual Blending in EL++ 23

steps and γx ∈ {γA, γC , γr, γr− , γC−} . The set of atoms S = {exec(γ1x, C, t1), · · · ,
exec(γnx , C, tn)} is a refinement path of C. A refinement path of C leads to the
generalised concept Cn = γnx (· · · γ2x(γ1x(C))). We write Cj (1 ≤ j ≤ n) to denote the
concept C after j generalisation steps.

Refinement paths are generated by means of a choice rule, that allows one or zero
refinement operators per C at each step t. The only generalisations that are ex-
ecuted are those whose preconditions are satisfied. Refinement paths lead from
the domain concepts to a generic space. A generic space is reached, if the gen-
eralised domain concepts are equal. A constraint ensures that the generic space
is reached in all stable models. The ASP program generates one stable model for
each combination of generalisation paths that lead to the generic space.

We should note at this point that the ASP implementation is sound and com-
plete w.r.t. the upward refinement operator γ′∗. So, given two EL++ concepts C1

and C2, each stable model of the logic program P —encoding the generic space
search and the two concepts— contains the refinement paths S1 and S2 through
which C1 and C2 can be generalised to a concept G that is a generic space accord-
ing to Definition 9. Proving this result can be done by induction over the structure
of toASP and P , similar to the proof in [16, Appendix B]. On the other hand, if
two concepts has a generic space G by applying γ′∗, this generic space is found
by P , thus, the implementation is complete. However, the ASP implementation is
neither sound nor complete w.r.t. the EL++ semantics (vT) since the operator is
not complete (see Theorem 1).

Example 7 Let us consider the SearchHardDisk and EditDocument concepts in Ex-
ample 1 representing icons in the domain knowledge of the ComputerIcon ontology.
Their refinement paths are:

SSearchHardDisk = {exec(genConceptInRole(roleEx(6), hasMeaning,HardDrive,

ObjectType),SearchHardDisk , 0),

exec(genRole(roleEx(3), isAboveIn, isInSpatialRelation, subEx(4)),

SearchHardDisk , 1),

exec(genConceptInRole(roleEx(4), hasMeaning, Search,Action),

SearchHardDisk , 2)}
SEditDocument = {exec(genConceptInRole(roleEx(4), hasMeaning,Edit, Action),

EditDocument , 0),

exec(genRole(roleEx(3), isAboveInRight, isInSpatialRelation, subEx(4)),

EditDocument , 1),

exec(genConceptInRole(roleEx(6), hasMeaning,Doc,ObjectType),

EditDocument , 2)}

The refinement paths are parsed in order to translate the ASP encoding back to
EL++ and apply the corresponding generalisation operators. The application of
the refinement paths to the input concepts lead to the generalised concepts and
to their a generic space. It is easy to check that this corresponds to the generic
space in Example 3.

24 Roberto Confalonieri et al.

Algorithm 1 Conceptual blending of EL++ concepts

Input:

An EL++ TBox T
Two domain concepts C1 and C2

A consequence requirement CR

A maximum role depth k
Output: A ranked list of blended concepts B
{〈C′1, C′2〉 denotes a set of generalisations for C1 and C2 that lead to a generic space.}

1: for all 〈C′1, C′2〉 ← generalise(C1, C2, k) do
2: for C′

1 ∈ C′1 do
3: for C′

2 ∈ C′2 do
4: Cam ←MGS(C′

1, C
′
2)

5: if Cam 6∈ B and {T ∪ Cam} entails CR then
6: C′

am ← completion(Cam)
7: rankBlend(C′

am, compactness(C
′
am),B)

8: end if
9: end for

10: end for
11: end for
12: return B

The output the generalisation search is then passed to a blending algorithm in
order to create and evaluate EL++ blended concepts, as described next.

6 Blending EL++ concepts

Conceptual blending by Fauconnier and Turner [20] is a cognitive theory that
explains human creativity. According to this theory, humans create through a
mental process that takes different mental spaces as input and combines them
into a new mental space, called a blend. A blend is constructed by taking the
commonalities among the input mental spaces into account, to form a so-called
generic space, and by projecting the non-common structure of the input spaces in a
selective way to the novel blended space. Since this theory focuses on the cognitive
aspects of human creation, it is not a computational framework. It needs to be
re-interpreted in a computational way, when one wants to use it in computational
creativity.

In working towards this objective, we have characterised mental spaces in terms
of EL++ concept descriptions and we have devised a generalisation algorithm to
find the generic space between EL++ concepts. In this section, we provide an
algorithm to find EL++ blended concepts. From a cognitive point view, conceptual
blending involves the following aspects:

1. blend generation: it takes the generic space of two input spaces into account
and combines their non-common structure in a selective way to a novel blended
space;

2. blend completion: it constructs the emergent structure of a blend —a struc-
ture that is not directly copied from the inputs— by taking some background
knowledge into account;

3. blend evaluation: it assesses the quality of a blend by means of certain optimality
principles.

Upward Refinement Operators for Conceptual Blending in EL++ 25

Our algorithm for blending EL++ concepts (Algorithm 1) implements these aspects
as three phases, and re-interprets them in order to provide a computational account
for conceptual blending. The implementation of the conceptual blending algorithm
is available at: https://bitbucket.org/rconfalonieri/ontolp-implementation.

The blend generation is implemented according to the definition of an amal-
gam (Definition 4). To this end, first, a generic space is found by means of the
ASP-based generalisation process described in the previous section. The method
generalise finds different refinement paths of two (domain) EL++ concepts that
lead to a generic space (Line 1). Then, a blend is created by computing the most
general specialisation (MGS) of a pair of generalised concepts (Line 4). The MGS
of two EL++ concepts corresponds to their conjunction.

Due to this combinational way of generating the blends, some of them might
have already been found using some previous refinement paths, and they are simply
not considered. Some other blends, on the other hand, may be not interesting. For
instance, they might not have certain desirable properties.

In the algorithm, blend evaluation consists of two parts: a logical check and
a heuristic function (Line 5 and 7).8 The logical check discards those blends that
do not satisfy certain properties. Desirable properties are modeled as an ontology
consequence requirement CR that is given as input to the algorithm. For instance,
a consequence requirement can ask that a blend should contain certain concepts
and roles. For our purposes, it can require that a blended concepts contains a sign
with meaning search above a sign with meaning document, which can be modeled in
EL++ as Sign u ∃hasMeaning.Search u ∃isAboveIn.Sign u ∃hasMeaning.Doc, To verify
whether a consequence requirement is satisfied or not, the algorithm makes use
of the jcel reasoner. Consequence satisfaction is achieved by checking whether the
ontology in the TBox T and the new blended concept entail the consequence
requirement (Line 5).9

Then, those blends that satisfy the consequence requirement are completed.
In conceptual blending, completion refers to the “background knowledge that one

brings into a blend” [20]. Clearly, in a computational setting, there can be different
interpretations of what background knowledge stands for. In our implementation,
we interpreted it as structural properties that a blend should have. In blending
computer icons, we expect new blended icon concepts to be defined by one spatial
relation between signs in which each sign has only one meaning relation.10 To this
end, completion is an operation that transforms the structure of a blend by taking
this background knowledge into account. In particular, completion consists of a
set of transformation rules that aggregate roles and concepts by taking the axioms
in the TBox into account.

8 Blend evaluation is an open research topic in conceptual blending and it can be accom-
plished in different ways. For instance, evaluation could be achieved through an argumentative
dialogue, in which users engage in order to decide which blend to keep and which one to dis-
card. We refer the interested reader to [12] where a discussion about the use of Lakatosian
reasoning to evaluate conceptual blends is presented.

9 Consequence satisfaction can be checked by means of the ‘entailment’ option of the jcel
reasoner as: java -jar jcel.jar entailment ontology.owl --conclusion=conclusion.owl,
where ontology.owl is the ontology extended with the definition of a new blended concept
Blend and conclusion.owl contains an axiom of the form Blend v CR.
10 This constraint is not expressable in EL++. We re-interpreted it as the background knowl-

edge used to complete blended concepts.

26 Roberto Confalonieri et al.

To implement completion, we specified a simple rewriting system using Maude
[11], a system that supports rewriting logic specification and programming. The
transformation rules that we used for completing a blend are:

A uB is transformed to A if A vT B (26a)

∃r.C u ∃s.C is transformed to ∃r.(C uD) if r vT s (26b)

Besides, we make use of concept definitions — equivalence axioms in the TBox—
to rewrite a blend into a shorter equivalent form. It is worthy to notice that whilst
this last rewriting preserves concept equivalence —therefore, it can be considered
a simple instance of DL rewriting [3]— the above rules do not. Indeed, the rule in
Eq. 26b is not invariant w.r.t. EL++ semantic equivalence, since it transforms a
concept into a more specific one. Blends are completed before a heuristic function
is applied (Line 6).

To decide which blends are better than others, the algorithm ranks them by
means of a heuristic function (Line 7). The compactness heuristic counts the number
of concepts and roles used in the definition of a blend B:

compactness(B) =
1

conceptsNr(B) + rolesNr(B)
(27)

The algorithm considers as best blends those that have a higher compactness value.
This heuristic can be considered as a computational interpretation of some of
the optimality principles proposed by Fauconnier and Turner [20]. The integration

principle, for instance, states that “a blend must constitute a tightly integrated scene

that can be manipulated as a unit”. The compactness of a blend captures the idea
behind this principle in the sense that minimises the number of concepts and roles
that are used to define a blend.

Example 8 Let us consider C1 = SearchHardDisk, C2 = EditDocument, G in Ex-
ample 3 and the generalisation steps in PSearchHardDisk and in PEditDocument of
Example 7. Given a consequence requirement expressing that a blended concept
should contain a sign with meaning search above a sign with meaning document,
modeled in EL++ as Sign u ∃hasMeaning.Search u ∃isAboveIn.Sign u ∃hasMeaning.Doc,
and the maximum role depth k = 2, the algorithm returns the following ranked
blends:11

Blend Compactness

MGS(C1
1 , C

2
2) 0,33

MGS(C1, C
1
2) 0,2

MGS(C1, C
2
2) 0,16

MGS(C1
1 , C

1
2) 0,14

MGS(C1, C2) 0,13
MGS(C1

1 , C2) 0,1

Each blend is obtained by combining different generalisations of the input con-
cepts C1 and C2. The concepts C1

1 and C2
2 correspond to the generalised concepts

‘GenConcept1’ and ‘GenConcept2’ in Figure 3 respectively. They are obtained

11 Recalling Definition 12, in the table, Cj
i stands for ‘j generalisations have been applied to

the concept i’. When j is omitted, Ci denotes the input concept i with no generalisations.

Upward Refinement Operators for Conceptual Blending in EL++ 27

by applying the generalisations steps from Example 7. C1
1 is obtained from C1

in one generalisation step by generalising the concept HardDrive (filling the role
hasMeaning) to ObjectType. C2

2 is obtained from C2 in two generalisation steps
by generalising the concept Edit (filling the role hasMeaning) to Action and the role
isAboveRightIn to isInSpatialRelation. MGS(C1

1 , C
2
2) is completed and elaborated into

MagnifyingGlass uisAbove.Document and its compactness value is 0,33. MGS(C1
1 , C

2
2)

is the best blend found by the algorithm. Other valid but less ranked blends are
obtained by other combinations of generalised concepts.

7 Related Work

Conceptual blending in EL++ as described in this paper is a special case of the
amalgam-based concept blending model described in [9], and implemented for
CASL theories in [18] in order to invent cadences and chord progressions. This
model has also been used to study the role of blending in mathematical invention
[10]. This concept blending model, as the one presented here, is based on the notion
of amalgam defined over a space of generalisations [36]. The space of generalisa-
tions is defined by refinement operators, that can be specialisation operators or
generalisation operators, notions developed by the Inductive Logic Programming
(ILP) community for inductive learning. These notions can be specified in any
language where refinement operators define a generalisation space like ILP [29],
description logics [39], or order-sorted feature terms [37].

Several approaches for generalising ontology concepts in the EL family exist in
the DL and ILP literature.

On the one hand, in DL approaches, the LGG is defined in terms of a non-
standard reasoning task over a TBox [1, 2, 5, 43, 44]. Generally speaking, since
the LGG w.r.t. general TBoxes in the EL family does usually not exist, these
approaches propose several solutions for computing it. For instance, Baader [1, 2]
devises the exact conditions for the existence of the LGG for cyclic EL-TBoxes
based on graph-theoretic generalisations. Baader et al [5] propose an algorithm
for computing good LGGs w.r.t. a background terminology. Turhan and Zarrieß
[43], Zarrieß and Turhan [44] specify the conditions for the existence of the LGG for
general EL- and EL+-TBoxes based on canonical models. As already commented
in the introduction, our work relates to these approaches, but it is different in
spirit, since we do not need to find the LGG between (two) EL++ concepts for the
kind of application we are developing.

An approach in DL that does use refinement operators is [39], where the lan-
guage chosen for representing the generalisation space is that of DL Conjunctive
Queries. Here LGG between two inputs, translated to conjunctive queries, can be
determined by searching over the generalisation space using downward specialisa-
tion operators.

On the other hand, studying the LGG in terms of generalisation and speciali-
sation refinement operators has been used for order sorted-feature terms and Horn
clauses in ILP. Anti-unification (or LGG) in order sorted-feature terms was stud-
ied in [37], which was conducive to later develop the notion of amalgam [36]. The
notion of refinement operator, that originated in ILP, has been more studied in the
space of Horn clauses [29], but LGG in particular has not been a topic intensively
pursued in the context of inductive learning in ILP.

28 Roberto Confalonieri et al.

Finally, other approaches that combine ASP for reasoning over DL ontologies
worthy to be mentioned are [15, 38, 41].

8 Conclusion and Future Works

In this paper, we defined an upward refinement operator for generalising EL++ con-
cepts for conceptual blending. The operator works by recursively traversing their
descriptions. We discussed the properties of the refinement operator. We showed
that the operator is locally finite, proper, but it is not complete (Propositions
2-3 and Theorem 1). We claimed, however, that completeness is not an essential
property for our needs, since being able to find a generic space between two EL++

concepts, although not a LGG, is already a sufficient condition for conceptual
blending.

We presented an implementation of the refinement operator in ASP. We showed
how to model the description of EL++ concepts in ASP and to implement a search
process for generalising the domain knowledge of an EL++ TBox. The stable mod-
els of the ASP program contain the generalisation steps needed to be applied in
order to generalise two EL++ concepts until a generic space is reached. We embed-
ded the ASP-based search process in an amalgamation process to implement an
algorithm for conceptual blending. The algorithm creates new EL++ concepts by
combining pair of generalised EL++ concepts. The blends are logically evaluated
and ranked by means of ontology consequence requirements and a heuristic func-
tion respectively. We exemplified our approach in the domain of computer icon
design.

We envision some directions of future research. We aim at employing a richer
DL, such as SROIQ [26] —the DL underlying the Web Ontology Language OWL
212—, in our conceptual blending framework. This will allow us to capture more
complex concept descriptions and consequence requirements. By doing this, how-
ever, we will have to sacrifice efficiency, since the reasoning tasks in this logic are
computational more expensive than in EL++. A possible way to find a tradeoff
between expressivity and efficiency is to employ a richer DL only in one of the
phases of our conceptual blending framework, e.g., either in the generation or in
the evaluation phase. For instance, SROIQ could be employed in the generation
phase (to this end, we will need to extend the generalisation operator), while the
blend evaluation could be realised through argumentation [12]. On the contrary,
we can keep EL++ in the generation phase and use SROIQ in the evaluation.
These options are perfectly justifiable from the conceptual blending point of view,
since the blend generation and evaluation are separate processes that can use dif-
ferent languages and techniques. This is also what usually happens in data mining
approaches to computational creativity [42].

Another extension of the framework that we wish to explore is the blending of
ontologies rather only concepts. Blending ontologies has already been explored in
an ontological blending framework [25, 28], where blends are computed as colimits

of algebraic specifications. In this framework, the blending process is not charac-
terised in terms of amalgamation, the input concepts are not generalised, and the

12 http://www.w3.org/TR/owl2-overview/, accessed 04/12/2015

Upward Refinement Operators for Conceptual Blending in EL++ 29

generic space is assumed to be given. Therefore, the results of this paper can be
extended and applied in this framework.

We consider the work of this paper to be a fundamental step towards the chal-
lenging task of defining and implementing a computational framework for concep-
tual blending which uses DLs as its formal underpinning language.

Acknowledgements The authors wish to express their thanks to the reviewers of this paper
for their helpful comments. The research presented in this article was partially supported by
the COINVENT project (FET-Open grant number: 611553).

References

1. Baader F (2003) Computing the Least Common Subsumer in the Description
Logic EL w.r.t. Terminological Cycles with Descriptive Semantics. In: Ganter
B, de Moor A, Lex W (eds) Conceptual Structures for Knowledge Creation
and Communication, Lecture Notes in Computer Science, vol 2746, Springer
Berlin Heidelberg, pp 117–130

2. Baader F (2005) A Graph-Theoretic Generalization of the Least Common
Subsumer and the Most Specific Concept in the Description Logic EL. In:
Hromkovič J, Nagl M, Westfechtel B (eds) Graph-Theoretic Concepts in Com-
puter Science, Lecture Notes in Computer Science, vol 3353, Springer Berlin
Heidelberg, pp 177–188

3. Baader F, Küsters R (2006) Non-standard Inferences in Description Logics:
The Story So Far. In: Gabbay DM, Goncharov SS, Zakharyaschev M (eds)
Mathematical Problems from Applied Logic I, International Mathematical Se-
ries, vol 4, Springer New York, pp 1–75

4. Baader F, Brandt S, Lutz C (2005) Pushing the EL Envelope. In: Proceedings
of the 19th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, pp 364–369

5. Baader F, Sertkaya B, Turhan AY (2007) Computing the least common sub-
sumer w.r.t. a background terminology. Journal of Applied Logic 5(3):392 –
420

6. Baader F, Brandt S, Lutz C (2008) Pushing the EL Envelope Further. In:
Clark K, Patel-Schneider PF (eds) In Proceedings of the OWLED 2008 DC
Workshop on OWL: Experiences and Directions

7. Baral C (2003) Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press

8. Besold TR, Plaza E (2015) Generalize and Blend: Concept Blending Based on
Generalization, Analogy, and Amalgams. In: Proceedings of the 6th Interna-
tional Conference on Computational Creativity, ICCC15

9. Bou F, Eppe M, Plaza E, Schorlemmer M (2014) D2.1: Reasoning with
Amalgams. Tech. rep., COINVENT Project, available at http://www.

coinvent-project.eu/fileadmin/publications/D2.1.pdf

10. Bou F, Schorlemmer M, Corneli J, Gomez-Ramirez D, Maclean E, Smail A,
Pease A (2015) The role of blending in mathematical invention. In: Proceedings
of the 6th International Conference on Computational Creativity, ICCC15

11. Clavel M, Durán F, Eker S, Lincoln P, Mart́ı-Oliet N, Meseguer J, Talcott C
(2003) The Maude 2.0 System. In: Nieuwenhuis R (ed) Rewriting Techniques

30 Roberto Confalonieri et al.

and Applications (RTA 2003), Springer-Verlag, no. 2706 in Lecture Notes in
Computer Science, pp 76–87

12. Confalonieri R, Corneli J, Pease A, Plaza E, Schorlemmer M (2015) Using
Argumentation to Evaluate Concept Blends in Combinatorial Creativity. In:
Proceedings of the 6th International Conference on Computational Creativity,
ICCC15

13. Confalonieri R, Eppe M, Schorlemmer M, Kutz O, Peñaloza R, Plaza E (2015)
Upward Refinement for Conceptual Blending in Description Logic —An ASP-
based Approach and Case Study in EL++. In: Proceedings of 1st International
workshop of Ontologies and Logic Programming for Query Answering, ON-
TOLP 2015, co-located with IJCAI-2015

14. Cornet R, de Keizer N (2008) Forty years of SNOMED: a literature review.
BMC medical informatics and decision making 8 Suppl 1

15. Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H (2008) Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence 172(12–13):1495–1539

16. Eppe M, Bhatt M (2015) Approximate Postdictive Reasoning with Answer
Set Programming. Journal of Applied Logic 13(4, Part 3):676–719

17. Eppe M, Bhatt M, Dylla F (2013) Approximate epistemic planning with post-
diction as answer-set programming. In: Cabalar P, Son TC (eds) Logic Pro-
gramming and Nonmonotonic Reasoning: 12th International Conference, LP-
NMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 290–303

18. Eppe M, Confalonieri R, Maclean E, Kaliakatsos-Papakostas MA, Cam-
bouropoulos E, Schorlemmer WM, Codescu M, Kühnberger K (2015) Compu-
tational Invention of Cadences and Chord Progressions by Conceptual Chord-
Blending. In: Yang Q, Wooldridge M (eds) Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, AAAI Press, pp 2445–2451

19. Eppe M, Maclean E, Confalonieri R, Kutz O, Schorlemmer WM, Plaza E
(2015) ASP, Amalgamation, and the Conceptual Blending Workflow. In: Cal-
imeri F, Ianni G, Truszczynski M (eds) Logic Programming and Nonmono-
tonic Reasoning - 13th International Conference, LPNMR 2015, Lexington,
KY, USA, September 27-30, 2015. Proceedings, pp 309–316

20. Fauconnier G, Turner M (2002) The Way We Think: Conceptual Blending
And The Mind’s Hidden Complexities. Basic Books

21. Gebser M, Kaminski R, Kaufmann B, Schaub T (2014) Clingo = ASP +
control: Preliminary report. CoRR abs/1405.3694

22. Gebser M, Kaminski R, Kaufmann B, Lindauer M, Ostrowski M, Romero J,
Schaub T, Thiele S (2015) Potassco User Guide 2.0. Tech. rep., University of
Potsdam

23. Gelfond M, Kahl Y (2014) Knowledge Representation, Reasoning, and the
Design of Intelligent Agents: The Answer-Set Programming Approach. Cam-
bridge University Press, New York, NY, USA

24. Gelfond M, Lifschitz V (1988) The stable model semantics for logic program-
ming. In: Proceedings of the Fifth International Conference on Logic Program-
ming, (ICLP’88), The MIT Press, pp 1070–1080

25. Hois J, Kutz O, Mossakowski T, Bateman J (2010) Towards ontological blend-
ing. In: Dicheva D, Dochev D (eds) Artificial Intelligence: Methodology, Sys-

Upward Refinement Operators for Conceptual Blending in EL++ 31

tems, and Applications, Lecture Notes in Computer Science, vol 6304, Springer
Berlin Heidelberg, pp 263–264

26. Horrocks I, Kutz O, Sattler U (2006) The Even More Irresistible SROIQ. In:
Doherty P, Mylopoulos J, Welty CA (eds) Proceedings, Tenth International
Conference on Principles of Knowledge Representation and Reasoning, Lake
District of the United Kingdom, June 2-5, 2006, AAAI Press, pp 57–67

27. Kowalski R (1974) Predicate Logic as Programming Language. In: Proceedings
of International Federation for Information Processing, pp 569– 574

28. Kutz O, Bateman J, Neuhaus F, Mossakowski T, Bhatt M (2014) E pluribus
unum: Formalisation, Use-Cases, and Computational Support for Conceptual
Blending. In: Computational Creativity Research: Towards Creative Machines,
Thinking Machines, Atlantis/Springer

29. van der Laag PR, Nienhuys-Cheng SH (1998) Completeness and properness
of refinement operators in inductive logic programming. The Journal of Logic
Programming 34(3):201 – 225

30. Lee J, Palla R (2012) Reformulating the Situation Calculus and the Event
Calculus in the General Theory of Stable Models and in Answer Set Program-
ming. Journal of Artificial Intelligence Research 43:571–620

31. Lehmann J, Haase C (2010) Ideal Downward Refinement in the EL Descrip-
tion Logic. In: Proc. of the 19th Int. Conf. on Inductive Logic Programming,
Springer-Verlag, Berlin, Heidelberg, ILP’09, pp 73–87

32. Lehmann J, Hitzler P (2010) Concept learning in description logics using re-
finement operators. Machine Learning 78(1-2):203–250

33. Ma J, Miller R, Morgenstern L, Patkos T (2013) An Epistemic Event Calculus
for ASP-based Reasoning About Knowledge of the Past, Present and Future.
In: International Conference on Logic for Programming, Artificial Intelligence
and Reasoning

34. McCarthy J (1986) Applications of circumscription to formalizing common-
sense knowledge. Artificial Intelligence 28(1):89–116

35. Mendez J (2012) jcel: A Modular Rule-based Reasoner. In Proceedings of the
1st International Workshop on OWL Reasoner Evaluation (ORE 2012) 858

36. Ontañón S, Plaza E (2010) Amalgams: A Formal Approach for Combining
Multiple Case Solutions. In: Bichindaritz I, Montani S (eds) Proceedings of
the International Conference on Case Base Reasoning, Springer, Lecture Notes
in Computer Science, vol 6176, pp 257–271

37. Ontañón S, Plaza E (2012) Similarity measures over refinement graphs. Ma-
chine Learning Journal 87(1):57–92

38. Ricca F, Gallucci L, Schindlauer R, Dell’Armi T, Grasso G, Leone N (2009)
OntoDLV: An ASP-based System for Enterprise Ontologies. Journal of Logic
and Computation 19(4):643–670

39. Sánchez-Ruiz A, Ontañón S, González-Calero P, Plaza E (2013) Refinement-
Based Similarity Measure over DL Conjunctive Queries. In: Delany S, Ontañón
S (eds) Case-Based Reasoning Research and Development, Lecture Notes in
Computer Science, vol 7969, Springer Berlin, pp 270–284

40. Spackman K, Campbell K, Cote R (1997) SNOMED RT: A reference terminol-
ogy for health care. Journal of the American Medical Informatics Association

41. Swift T (2004) Deduction in Ontologies via ASP. In: Lifschitz V, Niemelä I
(eds) Logic Programming and Nonmonotonic Reasoning, Lecture Notes in
Computer Science, vol 2923, Springer Berlin, pp 275–288

32 Roberto Confalonieri et al.

42. Toivonen H, Gross O (2015) Data mining and machine learning in computa-
tional creativity. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 5(6):265–275

43. Turhan A, Zarrieß B (2013) Computing the lcs w.r.t. general EL+-TBoxes.
In: Proceedings of the 26th International Workshop on Description Logics, pp
477–488

44. Zarrieß B, Turhan AY (2013) Most Specific Generalizations w.r.t. General
EL-TBoxes. In: Proceedings of the 23th International Joint Conference on
Artificial Intelligence, AAAI Press, IJCAI ’13, pp 1191–1197

