Remembering similitude terms in CBR

Eva Armengol and Enric Plaza

IITA - Artificial Intelligence Research Institute,
CSIC - Spanish Council for Scientific Research,
Campus UAB, 08193 Bellaterra, Catalonia (Spain).
{eva, enric}@iiia.csic.es,

Abstract. In concept learning, inductive techniques perform a global
approximation to the target concept. Instead, lazy learning techniques
use local approximations to form an implicit global approximation of the
target concept. In this paper we present C-LID, a lazy learning technique
that uses LID for generating local approximations to the target concept.
LID generates local approximations in the form of similitude terms (sym-
bolic descriptions of what is shared by 2 or more cases). C-LID caches
and reuses the similitude terms generated in past cases to improve the
problem solving of future problems. The outcome of C-LID (and LID) is
assessed with experiments on the Toxicology dataset.

1 Introduction

Concept learning can be achieved both using lazy learning and eager learning.
Inductive concept learning is the typical eager approach, where learning is find-
ing a description characterizing the instances of a concept (positive examples)
and not the rest (negative examples). Lazy learning techniques like k-nearest
neighbor and case-based reasoning define concepts extensionally, i.e. by using
the extension of a concept enumerating the instances that belong to the concept
(positive examples) and those that do not (negative examples). Moreover, lazy
learning techniques are problem-centered, i.e. they take into account the new
problem (sometimes called query) while using the information of the previous
instances (cases). Inductive techniques are unable to do so, since by the time
they observe the query they have already chosen their (global) approximation to
the target function. In other words, eager techniques take a global approach to
concept learning while lazy techniques (implicitly) represent the target function
by combining many local approzimations [6].

In this paper we present C-LID a lazy learning approach that reuses those
local approzimations used for solving past instances in order to improve the
classification of new problems in case based-reasoning (CBR). C-LID (Caching
LID) is a variant of the CBR technique LID (Lazy Induction of Descriptions) [3].
LID is a lazy concept learning technique for classification tasks in CBR based on
the notion of similitude term. CBR approaches are based on finding the most
similar (or relevant) cases for a particular problem p, and usually these degree of
similarity is assessed using a distance metric. However, as explained in section

2, LID does not use a distance. Instead, LID builds a symbolic description of
the similarity D, between p and a set of cases S p,- We call D, a similitude
term and contains that which is common to p and the cases in Sp,. In other
words, D, is a generalization such that it covers the problem (D, C p) and the
retrieved cases (Dp T ¢ : Ve € Sp,). Thus, for LID, the similitude terms are
the local approximations used for solving problems, and since they are symbolic
descriptions we are able to cache them and reuse them in solving future problems.
This is the approach of Caching LID presented in this paper. In order to define
C-LID on top of LID we have only to specify two policies: a) the caching policy
(i.e. which similitude terms are cached and which not), and b) the reuse policy
(i.e. when and how the cached terms are used to solve a new problem) — see §3
below. Notice, however, that C-LID is still a lazy learning technique according
to the definition given above. The generalizations created by LID and cached by
C-LID are not global: they are local approximations.

The structure of the paper is as follows: section 2 explains the Lazy Induc-
tion of Descriptions technique, then section 3 introduces C-LID while section 4
presents an application of C-LID to a toxicology data set and reports on the ac-
curacy results of both LID and C-LID. The paper closes with a discussion section.

2 Lazy Induction of Descriptions

In this section we explain the LID (Lazy Induction of Descriptions) method. The
goal of LID is to classify a problem as belonging to one of the solution classes.
The main idea of LID is to determine which are the more relevant features of the
problem and to search in the case base for cases sharing these relevant features.
The problem is classified when LID finds a set of relevant features shared by
a subset of cases belonging all of them to the same solution class. Then, the
problem is classified into that solution class.

Given a case base B containing cases classified into one of the solution classes
C ={Cy...Cp} and a problem p, the goal of LID is to classify p as belonging
to one of the solution classes. The problem and the cases in the case base are
represented as feature terms.

Feature terms (also called feature structures or v-terms) are a generalization
of first order terms. The intuition behind a feature term is that it can be described
as a labelled graph. The edges of the graph are labelled with feature symbols
and the nodes are the sorts of the feature values. Sorts have an informational
order relation (<) among them, where ¢ < 1)’ means that ¢ has less information
than ¢’ or equivalently that v is more general than v’. The minimal element
(L) is called any and it represents the minimum information. When a feature
has unknown value it is represented as having the value any. All other sorts are
more specific that any. Figure 2 shows an example of sort/subsort hierarchy.

The semantic interpretation of feature terms brings an ordering relation
among feature terms that we call subsumption. Intuitively, a feature term 1
subsumes another feature term 1)’ (¢ C ¢’) when all the information in ¢ is also

Function LID (Sp, p, D, C)
if stopping-condition(Sp)
then return class(Sp)
else fq := Select-leaf (p, Sp, C)
D’ := Add-path(w(root(p), fa), D)
Sps = Discriminatory-set (D', Sp)
LID (Sp, p, D', C)
end-if
end-function

Fig. 1. The LID algorithm. D is the similitude term, Sp is the discriminatory set of
D, C is the set of solution classes, class(Sp) is the class C; € C' to which all elements
in Sp belong.

contained in ¢’. In section 4.1 feature terms are explained with an example. For
a more formal explanation of feature terms see [1].

We define the similitude term, s, of two cases ¢; and co as a term such as
s C ¢; and s C ¢y i.e. the similitude term of two cases subsumes both cases.
In this framework, the task of similarity assessment is a search process over the
space of similarity descriptions determined by the subsumption relation.

We call discriminatory set the set Sp = {b € B|D C b} that contains the
cases of B subsumed by the similitude term D.

The LID algorithm (figure 1) begins with the similitude term D initialized to
the most general feature term (i.e. the feature term any that has no features)
and the discriminatory set Sp initialized to the whole case base B (since any
subsumes all the cases). When there is some domain knowledge, the similitude
term D can be initialized to a value DY (where D° # any) as is described in [2].

Given the current similitude term D, the stopping condition of LID is that
all the cases in Sp belong to one solution class Cy € C. In the first call, this
condition is not satisfied because the initial similitude term D subsumes the
whole case base. The next step is to select a leaf for specializing D.

The specialization of a similitude term D is achieved by adding features to
it. In principle, any of the features used to describe the cases could be a good
candidate. Nevertheless, LID uses two biases to obtain the set Fj of features can-
didate to specialize D. First, of all possible features describing a case, LID will
consider only those features present in the problem p to be classified. As a con-
sequence, any feature that is not present in p will not be considered as candidate
to specialize D. The second bias is to consider as candidates for specializing D
only those features that are leaf features of p (i.e. to features having as values
feature terms without features).

The next step of LID is the selection of a leaf feature f; € F} to specialize
the similitude term D. Selecting the most discriminatory leaf feature in the set
F; is heuristically done using the RLM distance [5] over the features in F;. The
RLM distance assesses how similar are two partitions in the sense that the lesser

the RLM distance is the more similar are the partitions. Let us suppose that the
feature f; takes as value v; in the problem p. This feature induces a partition P;
of the case-base formed by two sets: one containing the cases that have value v;
and the other contain those cases with value different than v; in the feature f;.
For each feature in Fj, LID induces its associated partition.

The correct partition is a partition P, = {C;...Cy,} where all the cases
contained into a set C; belong to the same solution class. For each partition P;
induced by a feature f;, LID computes the RLM distance to the correct partition
P.. The proximity to P. of a partition P; estimates the relevance of feature f;.

Let P; and P; the partitions induced by features f; and f; respectively. We say
that the feature f; is more discriminatory than the feature f; ifft RLM (P;, P.) <
RLM ((P;, P.), i.e. when the partition induced by f; is closer to the correct par-
tition P, than the partition induced by f;. Intuitively, the most discriminatory
feature classifies the cases in a more similar way to the correct classification. LID
uses the more discriminatory than relationship to estimate the features that are
more relevant for the purpose of classifying a current problem.

Let us call f; the most discriminatory feature in Fj. The feature fy is the
leaf feature of path m(root(p), f4) in problem p. The specialization step of LID
defines a new similitude term D’ by adding to the current similitude term D
the sequence of features specified by m(root(p), fa). After this addition D’ has
a new path m(root(D'), fq) with all the features in the path taking the same
value that they take in p. After adding the path 7 to D, the new similitude term
D’ = D + 7 subsumes a subset of cases in Sp, namely the discriminatory set
Sps (the subset of cases subsumed by D’).

Next, LID is recursively called with the discriminatory set Sp/ and the simil-
itude term D’. The recursive call of LID has Sps as first parameter (instead of
Sp) because the cases that are not subsumed by D’ will not be subsumed by any
further specialization. The process of specialization reduces the discriminatory
set S C Sg_l C ... C SY at each step.

Another stopping situation is when the current discriminatory set S7, con-
tains cases belonging to several solution classes (C;...C;) but the similitude
term D™ cannot be further specialized. In this situation LID uses the majority
rule for propose a solution class for p, i.e. p is classified as belonging to the class
Cy such that Card(S} N Ck) = maz{Card(SPH NC;)...Card(SEH NCj)}.

Given a new problem p and a case base C'B, the result of LID is the solution
class and a similitude term D. The similitude term can be seen as an explanation
of why p is classified as belonging to a solution class C;. Moreover, the cases
contained in the discriminatory set Sp support this classification. Notice that the
stopping condition means that the similitude term is able to discriminate cases
belonging to the solution class C; with respect to the cases that does not belong
to C;. In this sense, the similitude term D can be viewed as a partial description
of C;. D is a partial description because, in general, it does not subsume all the
cases belonging to C; but only a subset of them (those sharing the features of D
with the new problem). The similitude term D depends on the new problem, for
this reason there are several partial descriptions (i.e. similitude terms) for the

same solution class. In the next section we explain how the similitude term can
be used as support to the LID solution.

3 Caching LID

Caching LID is implemented on top of LID by defining two policies: the caching
policy and the reuse policy. C-LID considers the similitude terms built by LID
as descriptions of the local approximations performed by this CBR technique.
The caching policy determines which similitude terms are to be retained; from
now one we will call patterns the similitude terms that are cached by C-LID. The
reuse policy determines when and how the cached patterns are used to solve new
problems.

The caching policy of C-LID states that similitude term D will be cached if it
is univocal, i.e. when all cases covered D, (all cases in Sp,) belong to one class
only. Thus, C-LID’s caching policy retains only similitude terms that characterize
the class of a problem p and a set or retrieved cases Sp, without any uncertainty.
The reuse policy of C-LID states that patterns will be used for solving a problem
p only when LID is unable to find a similitude term D), for p that is univocal. In
that case all patterns that subsume p will be used together with D, to determine
the most likely class of p. Below we explain in detail how this class is determined.

C-LID can be decomposed in two steps: 1) a preprocessing of the case base in
order to obtain some similitude terms to be cached; and 2) the problem solving
phase that uses LID together with the cached similitude terms for clasifying new
problems.

Preprocessing. During this phase the caching policy is applied. The experiments
described in section 4.2 are performed using the caching policy already explained.
There are possible other less strict caching policies, and we briefly discuss them
in section 5. The preprocessing phase is done using the leave-one-out technique
over the whole training set B. For each case ¢ € B, C-LID uses LID to classify
it. When similitude term D, is univocal C-LID caches it. Thus, at the end of
the preprocessing phase C-LID has a set M = {D;...D,} of cached similitude
terms (patterns).

Problem solving. In the problem solving phase the reuse policy is applied. First,
a new problem p is solved using LID. If LID finds a similitude term D,, that is
univocal then p is classified in the same class as the cases in Sp,. Otherwise, Sp,
contains cases belonging to several solution classes, and the reuse policy states
that relevant patterns in M are to be used to solve the problem. The relevant
patterns are defined as the subset of patterns that subsume p, i.e. M, = {m €
M|m C p}. In other words, the relevant patters are those that share with p the
same features that were used to classify previous problems. Let S, be the set of
cases subsumed by mj; € M), we define Sy, as the union of all cases subsumed
by any relevant pattern. C-LID applies the magjority rule to the set Sp, U Si,;
that is to say, C-LID classifies p as belonging to the solution class to which belong
a majority of the cases in Sp, U Sy, .

Metane

Acyclic-saturated Ethane
Acyclic-alkane { Propane
Acyclic-unsaturated o
[~ Alkane Saturated-cycloalkane

Cycloalkane Unsaturated-cycloalkane Pyrane
Arom-hetero-monocycle Pyridine

Aromatic-heterocycle ~|: Thiazole
Heterocycles ~|: Arom-hetero-polycycle

No-aromatic-heterocycle

Arom-no-hetero-monocycle — benzene
Aromatic-no-heterocycle ~ Anthracene

Naphtalene
No-heterocyles Arom-no-hetero-polycycle P
No-aromatic-no-heterocycle polyey Phenalene

Functional-group ~|:

Fig. 2. Partial view of the Toxicology ontology

compound— Cyclie

In the next section we explain some experiments on the Toxicology dataset
and we evaluate the accuracy both of LID and C-LID.

4 The Toxicology Dataset

The Toxicology dataset has been provided by the US National Toxicology Pro-
gram (NTP) (http://ntp-server.niehs.nih.gov). In this dataset there are descrip-
tions of around 500 chemical compounds that may be carcinogenic for two animal
species: rats and mice. The carcinogenic activity of the compounds has proved to
be different in both species and also among the sex of the same species. There-
fore there are, in fact, four datasets. The chemical compounds of the dataset can
be classified into eight solution classes according to the laboratory experiments:
positive, clear evidence, some evidence, equivocal, equivocal evidence, inadequate
study, negative and negative evidence. Nevertheless, most of the authors working
on this dataset consider the classes positive, clear evidence and some evidence
as the class “positive”; the classes negative and negative evidence as the class
“negative”; and the compounds belonging to the other classes are removed.

The classification task in this domain is specially difficult since the predic-
tive accuracy exhibited by the domain human experts ranges from 28% to 78%
[7]. In the Predictive Toxicology Challenge 2000-2001 (PTC) [4] several authors
presented different approaches for solving the classification task. Most of them
try to induce rules in order to characterize both classes. The accuracy obtained
by the different methods is around 63%. In fact the maximum accuracy is 65%
and it is considered as the default prediction.

In the next section the representation of the chemical compounds using fea-
ture terms is explained. Then we discuss the results obtained from the experi-
ments done using both LID and C-LID.

compound
main-group =benzene

o [position-radical
M0 position =one
. . d
radicals = M .
NH; N L [main-group =alcohol
[position-radical
oH TR-339 = boswon-radicar
. . |position =two
p-radicals = -
. . |compound
radicals = |——— .) }
L main-group =amine
position i]_”our
. . d
radicals = | 2pound -)
L main-group = nitro-derivate

Fig. 3. Representation of the compound with identifier TR-339, the 2-amino-4-
nitrophenol, using feature terms.

4.1 Representation of the chemical compounds

The basis of the representation we propose is the chemical ontology used by
chemist experts and that is implicit in the chemical nomenclature of the com-
pounds. For instance, the benzene is an aromatic ring composed by six carbon
atoms with some well-known properties, therefore it is not necessary to describe
the individual atoms in the benzene when we have the benzene concept in our
domain ontology.

Figure 2 shows part of the chemical ontology we used for representing the
compounds in the Toxicology dataset. This ontology is based on the chemical
nomenclature which, in turn, is a systematic way of describing a molecule. In
fact, the name of a molecule provides to a chemist all the information needed to
graphically represent the structure of the molecule.

In our representation (see Figure 3) a compound is a sort described by two
features: main-group and p-radicals. The values of the feature main-group belong
to someone of the sorts shown in Figure 2. The value of the feature p-radicals
is a set whose elements are of sort position-radical. The sort position-radical
is described using two features: radicals and position. The value of the feature
radicals is also of sort compound. This is because both, main group and radicals,
are the same kind of molecules, i.e. the benzene may be the main group in one
compound and a radical in some other compounds. The feature position of the
sort position-radical indicates where the radical is bound to the main group.

For example, the chemical compound with identifier TR-339 in the NTP
Toxicology dataset, is the 2-amino-4-nitrophenol. This compound has a phenol
as main group. The phenol, is a molecule composed of one benzene with a radical
alcohol in position one. Thus, the compound TR-339 has a benzene as main group
and a set of three radicals: a radical with an alcohol as main group in position
one; a radical with an amine as main group in position two; and a radical with

Dataset|# cases| LID |C-LID||Answers M
MR 297 |58.27(60.54|| 39.96 57.67
FR 296 (63.09(66.97|| 56.15 60.67
MM 296 |52.39(53.95|| 32.99 53.35
FM 319 |52.36(56.60|| 32.23 53.34

Table 1. Table comparing the performances of LID (column LID) and C-LID (column

C-LID) on male rats (MR), female rats (FR), male mice (MM) and female mice (FM).

Answers is the percentage of problems that can be classified using the patterns in the

set M. The column M is the predictive accuracy using only the patterns generated by

LID.

a nitro-derivate in position four. Notice that this information has been directly
extracted from the chemical name of the compound following the nomenclature
rules. We have translated, with the support of a chemist, the compounds of the
Toxicology dataset to this representation based on feature terms.

In the next section we describe the experiments done using both LID and
C-LID for solving the classification task in the Toxicology dataset.

4.2 Experiments

The Toxicology dataset can be seen as formed by four separate datasets: male
rats (MR), female rats (FR), male mice (MM) and female mice (FM). The
classification task is solved separately for each one of these datasets, i.e. solving
a case means solving four classification tasks: 1) the classification of the case
according to its activity in MR; 2) the classification according to its activity in
FR; 3) the classification according its activity in MM; and 4) the classification
according its activity in FM. From now on, we will refer to the classification of
a case as the classification of the case in one dataset.

For each one of the datasets we take into account only those cases having
as solution positive or negative activity, i.e. we do not considered the cases with
value of activity unknown, equivocal or inadequate.

The evaluation of the predictive accuracy of the methods has been made
using 10-fold cross-validation. First of all we evaluated the accuracy of LID. The
column labelled as LID in Table 1 shows the accuracy of LID for each one of the
datasets. Notice that LID has an accuracy of 63.09% for FR that is near to that
considered as the default accuracy (65%).

Table 1 also shows the predictive accuracy of C-LID. The predictive accuracy
of C-LID improves the accuracies obtained using only LID in the four datasets.
These results show that the caching policy is adequate since the cached patterns
allow to increase the accuracy of the LID method. Notice that the caching policy
stores only the similitude terms that are univocal, i.e. those subsuming cases
belonging to only one solution class. With this policy C-LID takes into account
only those patterns with clear evidence of a good discrimination among classes.

In order to assess the contribution of the patterns to the accuracy improve-
ment in C-LID we evaluated the accuracy using the set of patterns M alone.

When a problem p is not subsumed by any similitude term in M, it cannot be
classified. Column labeled as Answers in Table 1 shows the average of cases that
have been solved using the patterns alone. Notice that only around a third of
cases can be solved. The predictive accuracy using only patterns (column M in
Table 1) is greater than the accuracy of LID for mice but the accuracy for rats
is lower than the LID accuracy.

The cached patterns contribute to C-LID’s accuracy increase for two reasons.
First, they are used only when LID is unable to yield a univocal solution. In
this case C-LID wants to use patterns but not always is possible (since their
applicability is about 1/3 of the cases as shown in Table 1). However, the ex-
periments show that when they are used the accuracy of C-LID improves. The
way in which patterns improve the system final decision is increasing the set of
cases that C-LID take into account when the majority rule is applied. In fact, the
second reason is that the cases added are really relevant to the problem C-LID
is solving, as proved by the increase in accuracy that they provide.

5 Conclusions

We have presented C-LID, a lazy concept learning technique for case-based rea-
soning in classification tasks. C-LID is built on top of LID by caching and reusing
the symbolic similitude terms generated by LID. The rationale of the C-LID is
that similitude terms are the local approximations of the target function used
to classify problems in CBR.

The cache policy of C-LID keeps only those similitude terms that perfectly
classify the subsumed cases (i.e. those similitude terms whose cases in the dis-
criminatory set belong all to a unique class). This policy has the rationale that
it is worth caching those similitude terms that are good approximations. Clearly,
there are less strict policies that are possible, e.g. caching all similitude terms
that have a clear majority class among the cases in their discriminatory set. This
policy retains more patterns (and thus increase their scope) but they increase
the uncertainty when they are reused. We performed two experiments with less
strict caching policies: similarity terms were cached when the majority class in
the discriminatory set was greater that 2/3 and then greater than 3/4. The out-
come was very similar to that patrons alone in Table 1. Therefore, the increase
in scope is undermined by the uncertainty increase in less strict policies.

This result supports the caching policy of patterns, but why do cached pat-
terns improve accuracy? For this we have to consider the reuse policy. First,
when the ”classic” approach to CBR embodied in LID works perfectly (all re-
trieved cases are in the same class) the patterns are not reused. That is to say,
when the current local approximation is assessed to be without uncertainty no
other local approximations (patterns) are reused. However, when LID’s outcome
involves some uncertainty we assess that this local approximation is not good
enough and we search for past local approximations (patterns) that were good
enough. Now, for a problem p, of all cached patterns M the reuse policy only
considers as subset such that M, = {m; € M|m C p}—that is to say, those

10

similitude terms whose informational content is also shared by p. Notice that
each cached similitude term m; € M, was a good characterization of what was
shared by some problem p and a subset of the case base. Since p also shares
this symbolic description m; it is likely that it would be in m;’s class. Thus, the
patterns in M, (if they exist for p) can help in reducing the uncertainty intrinsic
to the "pure” CBR approach of LID.

Finally, notice that C-LID is clearly a lazy approach to concept learning. C-LID
uses local approximations of the target function and not a global approximation
(even if it caches generalizations of examples). The contribution of C-LID is that
it uses local approximations in a new way: C-LID builds in a problem-centered
way a local approximation, and then assess its goodness against the existing
case base; if this local approximation is found wanting then C-LID reuses similar
local approximations that have been cached. The similar local approximations
are those that share with the problem p the content of a symbolic description of
similarity among cases.

Acknowledgements This work has been supported by the MCYT-FEDER
Project SAMAP (TIC2002-04146-C05-01). The authors thank Dr. Lluis Bona-
musa for his assistance in developing the representation of chemical molecules.

References

[1] E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine Learn-
ing, 41(1):259-294, 2000.

[2] E. Armengol and E. Plaza. Individual prognosis of diabetes long-term risks: A
CBR approach. Methods of Information in Medicine, pages 46-51, 2001.

[3] E. Armengol and E. Plaza. Lazy induction of descriptions for relational case-
based learning. In Luc De Raedt and Peter Flach, editors, Machine Learning:
ECML-2002, number 2167 in Lecture Notes in Artificial Intelligence, pages 13-24.
Springer-Verlag, 2001.

[4] C. Helma, R. King, S. Kramer, and A. Srinivasan. The predictive toxicology chal-
lenge 2000-2001. In ECML/PKDD 2001. Freiburg, 2001.

[5] Ramon Lépez de Méntaras. A distance-based attribute selection measure for deci-
sion tree induction. Machine Learning, 6:81-92, 1991.

[6] Tom M. Mitchell. Machine Learning. McGraw-Hill International Editions. Com-
puter Science Series, 1997.

[7] Bernhard Pfahringer. (the futility of) trying to predict carcinogenicity of chemi-
cal compounds. In Proceedings of the Predictive Toxicology Challenge Workshop,
Freiburg, Germany, 2001., 2001.

