
Ceaseless CBR

Francisco J. Martin1 and Enric Plaza2

1 School of Electrical Engineering and Computer Science
Oregon State University

Corvallis, 97331 OR, USA
fmartin@cs.orst.edu

2 IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
enric@iiia.csic.es

Abstract. Most CBR systems try to solve problems in one shot ne-
glecting the sequential behavior of most real world domains and the
simultaneous occurrence of interleaved problems proper to multi-agent
settings. This article provides a first answer to the following question:
how can the CBR paradigm be enriched to support the analysis of unseg-
mented sequences of observational data stemming from multiple coinci-
dental sources? We propose Ceaseless CBR, a new model that considers
the CBR task as on-going rather than one-shot and aims at finding the
best explanation of an unsegmented sequence of alerts with the purpose
of pinpointing whether undesired situations have occurred or not and, if
so, indicating the multiple responsible sources or at least which ones are
the most plausible.

1 Introduction

In an ever-increasing diversity of domains such as intrusion detection, forecasting
conflicts in international event analysis, fraud detection in cellular telephones,
etc, automated sensors (in addition to being noisy and imperfect) lack the in-
telligence to disambiguate (differentiate and synthesize) the parts corresponding
to distinct problems so they resort to piecing all the sensed parts together into
only one sequence. That is, several problem descriptions corresponding to prob-
lems occurring in parallel are serialized into a unique sequence without com-
prehensible criteria for its further understanding. Most CBR systems commonly
presuppose individualized problem descriptions with well-specified boundaries
that encompass all the information needed to solve the current problem in only
“one shot”. This assumption makes impracticable their direct deployment in
the above domains. The fact of the matter is that most CBR systems, built on
the dominant mainstream CBR model, are devised bearing in mind the follow-
ing three interrelated assumptions: (i) non-coincidental sources: there is only a
problem occurring at a time. Said differently, problems are solved successively
one after another without considering problems that concur and whose origin

could be related and could require a joint solution; (ii) full-fledged problem de-
scriptions: a problem description is provided in only one shot (instantaneous
situations) with well-defined and clear limits—i.e., the boundaries of each case
are perfectly delimited; and (iii) individual cases independency : cases are manip-
ulated (retrieved, reused, revised or retained) in isolation without contemplating
their sequential (spatial or temporal) structure or (serial or parallel) relation-
ship with other cases in the past. That is, they assume (snapshot) cases that are
independent of each other, and therefore relations among cases (e.g., sequential
relationships) are not taken into account.

These assumptions make CBR unsuitable for a number of challenging pro-
blems—mainly those that involve temporally-evolving sequences of observational
data. Thus our interest in investigating new techniques that allow one to alle-
viate such constraints and applying CBR in a variety of much more complex
domains. In this article we give a first answer to the following question: how
can the CBR paradigm be enriched to support the analysis of unsegmented se-
quences of observational data stemming from multiple coincidental sources? We
propose Ceaseless CBR a new CBR model that aims at finding the best expla-
nation of an unsegmented sequence of alerts with the purpose of pinpointing
whether undesired situations (an attack, fault, etc) have occurred or not and, if
so, indicating the multiple responsible sources (if more than one intervened) or
at least which ones are the most plausible. Moreover, Ceaseless CBR prioritizes
each individual alert according to the proposed explanations.

This article proceeds as follows. We initially describe the concrete applica-
tion domain where we have evaluated Ceaseless CBR in Sec. 2. Sec. 3 puts the
work covered in perspective. We see Ceaseless CBR as a constructive situation
awareness process governed ceaselessly by observational data, sequential cases,
and case activations. We discuss each of these concepts in detail in Sec. 4, Sec.
5, and Sec. 6 respectively. The description of Ceaseless Retrieve and Ceaseless
Reuse in Sec. 7 and Sec. 8 constitute the bulk of this article. Finally, Sec. 9
concludes the article with a succinct discussion about Ceaseless CBR.

2 Application Domain

We have conducted an exploratory analysis of Ceaseless CBR in intrusion de-
tection, concretely in alert triage—the rapid and approximate prioritization for
subsequent action of an Intrusion Detection System (IDS) alert stream [1]. The
fact of the matter is that current IDSes generate an unmanageable number of
false positive alerts3 which in turn increases the difficulties for the proper iden-
tification of real and malicious attacks. Security managers are so overwhelmed
that they frequently disable the alert device due to the consistent assumption
that nothing is wrong reinforced by the fact that the alert device “cried wolf”
too often. There are those who even postulate that current IDSes not only have
failed to provide an additional layer of security but have also added complexity

3 Alerts signaled when there is a manifest absence of intrusive behavior.

to the security management task. Therefore, there is a compelling need for de-
veloping a new generation of tools that help to automate security management
tasks such as alert triage. Generally speaking, two kinds of components can be
distinguished in the current state of the art IDSes [2]: probes and and aggre-
gation and correlation components (ACCs). Probes compile information using
host-based sensors as well as network-based sensors and evoke an alert whenever
suspicious activity is detected. Probes can be considered low-level sensors such
as firewalls or integrity checkers. Snort is a representative example of a signature-
based sensor that we have used for our experiments. Snort performs lightweight
real-time traffic analysis and packet logging on IP networks [3]. An ACC takes
as input alerts from probes and after analyzing and correlating received alerts
decides whether to send such alerts to the network manager or not [2]. Cease-
less CBR aims at increasing the performance of such decisions. The different
techniques devised throughout this work have been embodied within a research
prototype—called Alba (Alert Barrage)—that could be cataloged as a striking
example of these components [1].

We have constructed three data sets for measuring the performance of our
techniques using honeypots to compile alerts in three different real-world scenar-
ios. The Rustoord data set consists of 31483 alerts with an average frequency of
1968 alerts/week. The Naxpot data set contains 204977 alerts with an average
frequency of 5856 alerts/week. The Huckleberry data set is composed of 219886
alerts with an average frequency of 13743 alerts/week. We have used the ROC4

evaluation framework described elsewhere to analyze the performance of Cease-
less CBR in the above data sets [1]. Our results showed a significant increase in
performance, as measured by ROC AUC (Area Under the Curve) [1]. Ceaseless
CBR was able to keep the true positive rate over and above 99% and the false
positive rate under and below 1%. We have achieved significant reductions in
the weekly alert load. We got reductions up to a 95.90% in Rustoord data-set,
to 80.89% in Naxpot, and to 93.02% in Huckleberry data-set. Our evaluations
demonstrated how a Ceaseless CBR-enhaced IDS system is not only able to
significantly reduce the weekly alert load but also to keep the number of false
negatives very low and an admissible rate of false positives. This level of perfor-
mance demonstrates that Ceaseless CBR can perform sufficiently for real world
deployment.

3 Related Work

Four of the main and unusual CBR issues that we deal with in this work were
partially opened, most of them early in the 90s, by separate seminal works [5–
9]. Shavlik was the first to notice that most CBR systems usually presuppose
well-defined current situations—situations where the boundaries of the current
4 The term ROC (Receiver Operating Characteristic) refers to the performance (the

operating characteristic) of a human or mechanical observer (the receiver) that has
to discriminate between radio signals contaminated by noise (such as radar images)
and noise alone [4].

case are cleanly defined [6]. Ram and Santamaŕıa observed with much truth
that CBR is mostly deployed as a high-level problem solving paradigm where
situations are represented using discrete and static symbolic representations [8].
Ceaseless CBR is closely-related to Continuous CBR. Both methods need to
provide a timely response to a time-varying situation (i.e., continuous on-line
performance). While Continuous CBR practically operates in real-time Cease-
less CBR only aspires to work on a quasi-real time basis. This is due to the fact
that we have to evaluate time-evolving sequences of complex objects as opposed
to only vectors of analog values as Continuous CBR does. The input of Ceaseless
CBR are unsegmented sequences of events dispersed over time and the task is
to segment the sequence to provide the best explanation of the current situation
and suggest an action. In Continuous CBR the current situation is given by a
series of equally time-spaced real values and the task is to directly execute the
actions. A drawback of Continuous CBR is that continuous cases are neither
easily-interpretable by a human nor easy-to-integrate with higher-level reason-
ing and learning methods. Jacynski observed that most CBR approaches only
cope with instantaneous situations (aka snapshot cases [10]) [9] and only few
CBR systems deal with time-extended situations (aka time-dependent situations
[10]). An instantaneous situation is a finite set of data that represents the state
of the world at a particular point in time whereas a time-extend situation reflects
the evolution of the world either through a continuum of instantaneous situa-
tions along a specific time line or through a sequence of events like Ceaseless
CBR. Only a few additional CBR works have dealt with time-extended situa-
tions, the most noticeable being the work due to Jaere et al [10] who introduced
temporal cases as a method for representing time-dependent situations within a
knowledge-intensive CBR framework. Relatively little attention has been spent
on CBR systems that are able to combine relevant pieces of several past cases
when solving a new problem. The pioneering works in this aspect are Barletta
et al [5] and Redmond [7].

The Ceaseless CBR inference process can be considered as an instantiation
model of the inference process of parsimonious covering theory. In a nutshell,
parsimonious covering theory is able to formalize many imprecise and intuitive
aspects of abduction providing a good theoretical foundation for automated
diagnostic problem-solving [11]. Traditional knowledge-based troubleshooting
techniques such those used by rule-based systems or model-based systems can-
not precisely capture the dynamic complexity of large systems, and thus CBR
emerges as a suitable paradigm to do so [12, 13]. Lewis extended a Ticket Trou-
bleshooting System (TTS) system with CBR methods that aided in computer
network alarm management [12]. Gupta introduced SPOTLIGHT, a CBR tool
for complex equipment troubleshooting [13]. Breese and Heckerman defined a
decision-theorectic methodology for developing diagnosis and troubleshooting
applications based on CBR [14]. They represented diagnostic cases by means
of a specific belief network structure where nodes represented issues, causes
and symptoms. This approach is similar in essence to Ceaseless CBR. However,
in our approach a sequential case only stores part of the complete model for

problem determination that helps to determine its plausibility given a collec-
tion of alerts. Since we store sequential cases individually, we avoid on-the-fly
construction for each new problem. Moreover, we consider a number of distinct
problems (attacks) occurring coincidentally whereas they solved problems se-
quentially (one-by-one) supposing the occurrence of only one problem at a time.
Their input is provided by an user and they used a myopic approximation (i.e.,
they presupposed that the user made just one observation at a time) whereas
we receive the input from an automated process and deal with a sequence of
interlaced observations corresponding to simultaneous problems. Conversational
CBR also assumes partial rather than complete problem descriptions. However,
when only a partial problem description is provided, an interactive dialogue is
engaged with the user to better delimit and clarify the descriptions provided [15].
Through this conversation with the user, a complete and individual description
is obtained in the end. Cunningham and Smith [16] proposed an incremental
case retrieval technique based on a simple information theoretic metric to find
the feature that best discriminates between the current set of retrieved cases and
produce focused questions in electronic fault diagnosis.

To the best of our knowledge, only a few case-based approaches to intrusion
detection have been published [17, 18]. Esmaili et al proposed a Case-Based In-
trusion Detection System (CBIDS) whose input was the audit trail produced by
an operating system and whose output was a collection of countermeasure ac-
tions that the system performed based on the severity of the intrusion detected
so far [17]. Recently Schwartz et al proposed to improve the capabilities of Snort
IDS [3] using a case-based approach [18]. They proposed a similarity measure
based on a collection of distinct comparators for each feature (Snort rule prop-
erties) rather than using a complete match on all features as Snort. There are
two main differences to our approach. First, we work at higher-level of abstrac-
tion using alerts provided by Snort as input and providing a priority as output
whereas they used directly suspect network packets as input and provided alerts
as output. Second, their approach was stateless since they assessed the danger
of each suspect network packet (case) individually whereas our approach can be
considered stateful and considers a whole sequence of alerts before determining
the priority of individual alerts.

4 Observational Data

We suppose alerts that are triggered by automated real-time systems that collect
and interpret sensor data in real-time. Alerts are complex objects made up of
a set F of numeric, qualitative and structured features. We model alerts using
feature terms that organize concepts into a hierarchy of sorts, and represent
terms or individuals as collections of features (functional relations). For further
details and examples see [1]. We assume that at a given point in time t there
is a sequence of n alerts (alert stream) in the system. We denote by S(t) the
sequence of alerts received so far. Each alert ψi in S(t) belongs to a pre-specified
alert signature Σ. An alert signature Σ = 〈S,⊥,F ,�〉 is a four-tuple where S is

a set of sort symbols; F is a set of feature symbols; and � is a decidable partial
order on S such that ⊥ is the least element. Based on that order among sorts,
intuitively, we say of two alerts ψ,ψ′ that ψ subsumes ψ′ (ψ v ψ′) when all that
is true for ψ is also true for ψ′. Let X and Y be two sequences of alerts such that
X = [ψ1, · · · , ψn] and Y = [ψ′1, · · · , ψ′m], |X| = n, |Y | = m, and n > m. We say
that Y subsumes X if there exists a sequence of indices 1 ≤ i1 < · · · < im ≤ n
such that: ψ′1 v ψi1 , · · · , ψ′m v ψim . We also define the function root(ψ) that
returns the sort of alert ψ. A path ρ(X, fi) is defined as a sequence of features
going from the variable X to the feature fi. There is a path equality when two
paths ρ(X, fi) and ρ(Y, fj) point to the same value (i.e., ρ(X, fi) = ρ(Y, fj)).

In an ever-changing environment, recalling the history of the system can be
the only way to reduce uncertainty. Our model considers that as the analysis
of the alert stream proceeds, it produces a probability distribution over the set
of all received alerts. This probability distribution constitutes the foundation of
our similarity between sequences as well as the basis that allow us to go from
observations to hypotheses and from hypotheses to explanations. For each sort
i in S we denote by q

(t)
i the relative frequency of sort i at time t. We use the

relative frequency of a sort to estimate its a priori probability P (t)(i) = q
(t)
i .

When there is no risk of confusion with the instant of time that we are referring
to we simply use P (i) and qi. We say that the probability of occurrence of an
alert ψj whose sort is i = root(ψj) is P (ψj) = qroot(ψj) = qi. Notice that given
two sorts i, j ∈ S such that i � j then P (i) > P (j) and that P (⊥) = 1.

We consider that our model is unable to capture all possible alerts (observ-
able symptoms events) that affect the system under supervision. Alerts may be
not evoked due to a number of causes. For example, because the corresponding
network sensors cannot detect an attacker’s action that corresponds to a new
and unknown vulnerability. Alerts could also be lost before reaching the ACC
because they are transmitted through unreliable or corrupted communication
channels. We define the alert loss ratio as the probability that an alert of a given
sort is lost and denote it by L(i). This value is adjusted based on the knowledge
about the system under supervision. For example, using the packet loss rate
in the communication channel or other parameters that allow us to derive the
reliability of the different components that underpin the CBR component [19].

5 Sequential Cases

A compositional (or composite) case is an assemblage of several cases that lies
in a hierarchical structure. The cases on the upper levels are made up of small
cases that in turn are compositional. The lowest level is made of indivisible
cases. The highest level is made up of only one case that refers to the whole
compositional hierarchy. Intermediate compositional cases (the cases that lie
between the highest level and the lowest level) are considered as part of a larger
ensemble solution rather than as individual solutions to the case at hand. We
say that a case Ci is a direct part of a case Cj , denoted by Ci � Cj , iff Ci ⊂
Cj ∧ @Ck 6= Ci : Ci � Ck ∧ Ck � Cj (i.e., they are a step away). We say that

Theft

DoS
ip_src, ip_dst

DoS
Land

Attack

SCAN
cybercop
os probe

Break-in
ip_src, ip_dst

DNS
EXPLOIT
named

overflow
attempt

DNS
named
version
attempt

Steal
ip_src, ip_dst

MySQL
show

databases
attempt

MySQL
root login
attempt

0.3

0.2 0.5 0.4 0.6

0.4 0.6

0.5 0.3

 1 2 3 4 5 6

7 8 9

10

Fig. 1. An actionable tree of a Theft attack. An attacker launches a DoS against a
machine running an IDS, subsequently breaks in to a DNS server, spawns a remote
shell, and steals some information from a MySQL database.

case Ci is a part of case Cj , denoted by Ci �∗ Cj , iff there exist n ≥ 0 cases
Ck+1, · · · , Ck+n such that Ci � Ck+1 � · · ·� Ck+n � Cj .

A sequential case is a compositional case where a temporal order is estab-
lished among all the parts that comprise it. If all the sub-cases that make up a
sequential case are totally-ordered then we say that the sequential case is serial.
If the order of all the sub-cases are interchangeable then we say that the se-
quential case is parallel. Otherwise, if they are partially-ordered we say that the
sequential case is arbitrary (i.e., a sequential case made up of serial and parallel
subcases). Sequential cases are represented by means of actionable trees.

An actionable tree is a predictive compositional hierarchy modeled using
a Multi-Rooted Acyclic Graph (see Fig. 1) with the semantics that a single
distinguished node is designated as the crown (node 10), a number of (evidence)
nodes are designated as the roots (nodes 1 to 6), the intermediate nodes in the
path between the crown and a root node are designated as the trunk (nodes 7 to
9), and the arcs represent part-whole relationships. Roots represent observable
symptom events and allow one to specify sorts to which each alert belongs.
Inference is engaged upon their individual observation thus we call them roots.
Nodes in the trunk represent composite (serial or parallel) cases and specify
constraints (e.g. ip src and ip dst) among the direct parts of a sequential case.
The crown represents a sequential case made up of a combination of all the
events in the roots ordered according to the constraints expressed by the trunk.

A predictive actionable tree embodies an actionable tree in a representation
that allows predictive inference. Formally, given an alert signatureΣ, a predictive
actionable tree is defined as a 7-tuple 〈G,µ, τ, κ, φ,�, L〉 where: G is a multi-
rooted acyclic graph G = 〈V,E〉 where V is partitioned in three mutually exclu-
sive sets: R (the set of roots) , T (the set of trunk nodes), and C (the singleton
set containing the crown); E defines part-of relationships � among the subsets of
R; µ : R→ Σ.S is a mapping that associates each root node with a sort in Σ.S;
τ : T∪{C} → {serial,parallel} is a mapping that associates each non-root node
with an order type; κ : T ∪C → 2Σ.F is a mapping that associates each non-root

node with a subset of features (constraints) in Σ.F ; φ : E → L is a mapping that
labels each arc e ∈ E to a casual strength in L; and L is a likelihood model that
assigns a measure of strength to the part-whole relation. L provides a probabilis-
tic model based on the following semi-ring: P = 〈[0, 1], ·, 1 −

∏k
i=1(1 − li), 0, 1〉

where the multiplicative operation is the product of probabilities (i.e., ·) and the
additive operation is defined as: l1+· · ·+lk = 1−

∏k
i=1(1−li). Therefore, the prob-

ability of the crown C given a root node r ∈ R is: P (C|r) =
∏
e∈path(r,C) φ(e) and

the probability of the crown C given a sequence of root nodes r1, · · · , rn ∈ R is:
P (C|r1, · · · , rn) = 1−

∏n
i=1(1−

∏
e∈path(ri,C) φ(e)). Actionable trees have been

devised with the main purpose in mind of providing a measure of confidence on
the occurrence of a whole sequence of alerts given a number of observed alerts.
Said differently, they provide a measure of the strength with which the existence
of the whole can be determined in terms of the existence of some of its parts. For
example, consider the predictive actionable tree of Fig. 1. If we observe an alert
of sort SCAN cybercop os probe then the probability of observing a Theft attack
is 0.06 = 0.2 · 0.3. If we additionally observe an alert of sort DNS named version
attempt then the probability of Theft is 0.2104 = 1− ((1− 0.06)(1− 0.16)).

Additionaly, we consider sequential abstract cases. Given an alert signature
Σ, a sequential abstract case is constructed based on the informational order
provided by the taxonomic hierarchy (i.e., Σ.S) used to represent the alerts
at the roots of the actionable tree. Sequential abstract cases allow Ceaseless
CBR to find explanations for those alerts corresponding to attacks that have
never occurred in the system before. That is, they are used as a back-up for the
explanation of unknown situations. We use the predicate abst?(Ci) to determine
whether a case Ci is abstract or not.

6 Case Activations

We deal with new cases that are not assembled but broken up into pieces that
arrive over time without fixed boundaries and mixed in with other cases’ pieces
that correspond to problems that occur coincidentally. Therefore, an incremental
case acquisition process is required. This process entails piecing together different
parts that resemble a past case. While this happens our model needs to keep
a number of plausible hypotheses that continuously best match the different
partial descriptions received during a specified time span. These hypotheses, that
we have called case activations, are generated by retrieving similar cases from
the case base and are constantly updated as soon as new evidence is gathered.
A case activation is a hypothesis on the occurrence of a similar past case and is
represented formally as a 6-tuple h = 〈C, â, ǎ, %, ẽ, t〉 where: C is a reference to
the sequential case being activated; â represents a partial binding between the
sequence of alerts that occurred and are subsumed by C; ǎ represents those alerts
in C that have not been observed yet and that were abduced in the dynamic
sequence similarity computation; % represents the rareness of the observed alerts.
We compute it as the sequence similarity between C and % i.e., % = C ∼s â;
ẽ measures the level of confidence (evidence) we have in the occurrence of a

complete similar sequence of alerts to those that the sequential case C represents.
We compute it as the normalized sequence similarity between C and â i.e.,
ẽ = ‖C ∼s â‖; and t is the time at which the last alert on â occurred.

We define an equality path checking process that ensures when two case
activations are compounded together the constraints established by the cor-
responding sequential case are followed. We say that a sequence of alerts S is
constrainable given a set of constraints C = {f1, · · · , fm} : fi ∈ Σ.F when
path equality is kept for all features in C and for all alerts in S. This process
guarantees that all the alerts in a given sequence share a number of common
features. For example, the same source and destination IP address. This pro-
cess is part of the fusion of case activations. The fusion of two case activations
hi = 〈Ci, âi, ǎi, %i, ẽi, ti〉 and hj = 〈Cj , âj , ǎj , %j , ẽj , tj〉, denoted by hi] hj , is
defined as 〈Ci, âi ∪ âj , ǎi − âj , Ci ∼s (âi ∪ âj), ‖Ci ∼s (âi ∪ âj)‖,max(ti, tj)〉
if hi and hj are compoundable and as {〈Ci, âi, ǎi, %i, ẽi, ti〉, 〈Cj , âj , ǎj , %j , ẽj , tj〉}
otherwise. We say that two case activations hi = 〈Ci, âi, ǎi, %i, ẽi, ti〉 and hj =
〈Cj , âj , ǎj , %j , ẽj , tj〉 are compoundable when: (i) the corresponding sequential
cases do not subsume repeated alerts. That is, the observed alerts in both case
activations do not intersect (i.e., âi ∩ âj = ∅); (ii) the observed alerts are con-
strainable according to the constraints expressed by the corresponding sequential
case; and either (iii.a) both case activations correspond to the same sequential
case, i.e., Ci = Cj ; (iii.b) or one of the case activations corresponds to a new
abstract case, i.e., (abst?(Ci)∧¬abst?(Cj))∨(¬abst?(Ci)∧abst?(Cj)); or both
case activations correspond to a new abstract case and there exists a sequen-
tial case that can be abstracted to subsume the corresponding composition, i.e.,
abst?(Ci)∧ abst?(Cj)∧ ∃Ck ∈ C(t) : Ck v âi ∪ âj . The above definition can be
easily extended to the union of n case activations [1].

7 Ceaseless Retrieve

Ceaseless Retrieve continuously compares the sequence of alerts at hand with se-
quential cases in the case base and keeps updated a collection of case activations
that represent the current situation. Ceaseless Retrieve proceeds as sketched
by Algorithm 1. We assume a case base initially composed of n > 0 sequen-
tial cases C(0) = {C1, · · · , Cn}. We use W

(t)
wm to represent the most recently

received alerts according to a specific window model wm. A window model de-
termines how much context is considered each time that inference is invoked
upon the arrival of new events. Time-based or space-based sliding windows are
common window models. H(t) denotes the set of current case activations. Initi-
tally H(0) = ∅. A(t) denotes the set of all new case activations at iteration t. It is
set to ∅ at the beginning of each iteration (line: 3). Ceaseless Retrieve establishes
a case retrieval policy based on the frequency of occurrence of alerts. This pol-
icy promotes rareness. Those cases that subsume alerts that are very common
receive a low score whereas those cases that subsume rare alerts receive a high
score. Namely, the rarer the alerts that comprise an attack the higher the score.
This helps our system to note those situations that apparently convey more peril

since the system is less used to dealing with them. The match is carried out us-
ing the dynamic sequence similarity measure that we introduced elsewhere and
behaves according to such policy [1]. We denote by R(t) the set of sequential
cases retrieved at iteration t (line: 4). Using the sequence of sorts returned by
root(W (t)

wm(S(t))) and our dynamic similarity measure ∼s, those cases that are
similar to the sequence above a user-defined threshold 0 < θ 6 1 are retrieved.
A case activation hi is created for each retrieved case and fused toghether with
previous case activations generated during the same iteration (lines: 5–8).

Algorithm 1 Ceaseless Retrieve
Require: C(0), S(0), θ, τ , wm;
Local: H, R, A, Ci, hi
1: H(0) = ∅;
2: while true do
3: A(t) = ∅;
4: R(t) = retrieve(root(W (t)

wm(S(t))),C(t−1), θ);

5: for each Ci ∈ R(t) do
6: hi = 〈Ci, âi, ǎi, %i, ẽi, t〉;
7: A(t) = A(t)] {hi};
8: end for
9: for each ψi ∈ W (t)

wm : D(t)(ψi) = ∅ do
10: hi = 〈⊥, ψi, ∅, %∗, 1, t〉;
11: A(t) = A(t)] {hi};
12: end for
13: H(t) = H(t−1)]A(t);

14: for each hi ∈ H(t) do
15: if hi.t− t > τ then

16: H(t) = H(t) − {hi};
17: end if
18: end for
19: send(H(t), CEASELESSREUSE); /* non-blocking call */

20: [H(t),P (t)] = recv(CEASELESSREUSE);

21: end while

We denote the domain of an alert ψi over time by D(t)(ψi) = {Cj ∈ C(t−1) :
root(ψi) �∗ Cj}. We say that an alert is uncovered when its domain is ∅. For
each uncovered alert in W

(t)
wm, a new case activation hi is created using a simple

actionable tree composed uniquely of the observed alert and fused with case
activations created in previous iterations (lines: 9–12). The evidence of this kind
of case activation is originally set to 1 and their rareness to a maximal value
(i.e., %∗ = max %i,∀hi) so that they could promptly be prioritized.

Those case activations that have not been altered during a certain period of
time (given by the paremeter τ) are filtered out from consideration (lines: 14–17).
We denote by P (t) the sequence of pending alerts at time t. That is, alerts that
have not been prioritized yet either because they have just arrived or they were
not prioritized in a previous iteration because they had a low urgency. We discuss
this issue later on in Sec. 8. Therefore, we say that H(t) always keeps a number of
up-to-date case activations for each pending alert. We also say that, H(t) defines
the current situation that is then sent to the Ceaseless Reuse (line: 19). Ceaseless
Reuse decides on which alerts to explain/prioritize first and returns those case
activations and associated alerts for which it estimates that more evidence is
needed before the corresponding alerts can be prioritized conveniently (line: 20).

8 Ceaseless Reuse

Ceaseless Reuse constantly searches the combination of case activations that best
explains the sequence of alerts most recently received and those that did not find
an explanation in previous iterations (pending alerts). Ceaseless Reuse uses a
belief function to determine which case activations are susceptible of being used
to prioritize the corresponding alerts. However, if this process prioritizes alerts
too soon, that is, without being completely sure of the presence of a (possible)
exceptional situation the number of false positives will be high and the ultimate
objective (to triage the alert stream) will not be achieved. On the contrary, if
it prioritizes too late and an exceptional situation is really occurring then the
time to enable a prompt response is reduced. Thus we take a decision-theoretic
approach that maximizes the overall utility of each complete explanation and
define a measure of urgency that guides the decisions of this process over time.
Algorithm 2 sketches the tasks performed by Ceaseless Reuse.

Algorithm 2 Ceaseless Reuse
Local: H, hi, b, B, E, e, e∗, U ,
1: while true do
2: H(t) = recv(CEASELESSRETRIEVE);

3: for each h
(t)
i ∈ H(t) do

4: b(t)+(hi) = 1;
5: for each ψj ∈ hi.ǎ do

6: b(t)+(hi) = b(t)+(hi)×
`
L(ψj) + ((1− L(ψj))× (1− P (ψj |hi))

´
;

7: end for
8: b(t)−(hi) = P (hi)P (P (t)|hi);
9: b(t)(hi) = b(t)+(hi)× b(t)−(hi);

10: end for
11: [H(t),H

(t)
U ,P (t),U(t)] = rank(H(t),b(t));

12: send([H(t),P (t)], CEASELESSRETRIEVE); % non-blocking call

13: E(t) = {ei ⊆ H
(t)
U : ∀

ψi∈U(t)∃hi ∈ ei : hi.Ci v ψi ∧ @e′′ : |e′′| < |e′| ∧ (e′ ∩ e′′) 6= ∅};

14: for each ei ∈ E(t) do
15: B(t)+(ei) = 1;
16: for hj ∈ ei do

17: B(t)+(ei) = B(t)+(ei)× b(t)+(hj);
18: end for
19: B(t)−(ei) = P (ei)P (U(t)|ei);
20: B(t)(ei) = B(t)+(ei)×B(t)−(ei);
21: end for
22: e∗(t) = ei ∈ E(t) : B(t)(ei) is maximal;

23: send([e∗(t),U(t)], CEASELESSREVISE); % non-blocking call

24: end while

At each iteration Ceaseless Reuse receives a number of competing hypotheses
expressed in terms of case activations that explain the current situation (line:
2). We say that a case activation hj explains an alert ψk if the corresponding
sequential case hj .C subsumes ψk (i.e., hj .Cj v ψk). For each case activation
Ceaseless Reuse computes a belief function as the product of two other belief
components (lines: 3–10): a negative component (that takes into account ob-
served alerts) and a positive component (that takes into account those alerts
that have not been observed yet): b(t)(hi) = b(t)+(hi)b(t)−(hi).

On the one hand, the positive component is computed in terms of the alerts
that have been abduced during the sequence similarity computation as follows:
b(t)+(hi) =

∏
ψj∈hi.ǎ

(
L(ψj) + ((1 − L(ψj))(1 − P (ψj |hi))

)
. For each abduced

alert we consider every possible alternative. Namely, we consider the proba-
bility that the alert is lost L(ψj) and the probability that the alert is not lost
(1−L(ψj)) but it was not observed given the sequential case corresponding to the
case activation at hand (1−P (ψj |hi)). Later we will show through Eq. 2 how to
compute P (ψj |hi), the probability that the alert was in fact observed given such
case activation. On the other hand, the negative belief on a case activation hi
is computed as the posterior probability of the case activation given the current
sequence of pending alerts: b(t)−(hi) = P (hi|P (t)). Using Bayes’ theorem the
posterior probability can be computed as follows: P (hi|P (t)) = P (hi)P (P (t)|hi)

P (P (t))
.

Notice that the denominator, the probability of the sequence of pending alerts, is
a constant for all case activations at the current iteration. Therefore the relative
rank produced will be the same if we only use the numerator. Thus, the computa-
tion of b(t)−(hi) can be approximated as follows: P (hi|P (t)) ∝ P (hi)P (P (t)|hi).
The probability of a case activation P (hi) represents the probability of occur-
rence of the associated sequential case that in turn represents the probability
of occurrence of the corresponding undesired situation. This probability is com-
puted using the inference mechanism provided by predictive actionable trees
that we saw in Sec. 5 as follows:

P (hi) = 1−
∏

ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
)

(1)

The probability that we observe the sequence of alerts P (t) given the occur-
rence of a sequential case is computed as follows: P (P (t)|hi) =

∏
ψi∈P (t)(1 −

P (ψi|hi)). Using Bayes’ theorem P (ψi|hi) = P (ψi)P (hi|ψi)
P (hi)

. By actionable trees
the probability of occurrence of a sequential case given an alert is P (hi|ψi) =∏
e∈path(ψj ,hi.Ci) φ(e). Therefore substituting we get:

P (ψi|hi) =
P (ψi)

∏
e∈path(ψj ,hi.Ci) φ(e)

1−
∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci) φ(e)

) (2)

Therefore b(t)−(hi) can be approximated using Eq. 1 and Eq. 2. Notice that
a belief on a case activation does not need to be computed again and again
at each new iteration. That is, we only need to recompute them when their
evidence varies at the current iteration (i.e., when hi.t is equal to t). Once
we have computed the belief on each case activation we rank them and select
a number of alerts to build an overall explanation (line: 11). The motivation
for not considering all the alerts at each iteration is twofold. First, to reduce
the combinatorial explosion in successive steps. The larger the number of alerts
considered, the longer it will take to build an overall explanation. Second, it
does not make sense to consider alerts for which our belief in their corresponding
sequential case is too low, since it increases the probability of making a wrong

judgment and therefore decreasing the expected utility. Different criteria could
be applied to rank and select which alerts should be explained first. Our approach
is to use a measure of urgency in the same way that it is applied to healthcare
patient monitoring and in mass casualty incidents [20].

We define urgency as the degree to which an immediate prioritization is
required [20]. We compute the urgency of each alert in terms of the expected
utility of prioritizing it right now, using our current degree of belief on the
hypotheses that explain it, versus the expected utility of waiting to do it after
more evidence has been gathered. We say that urgency allows us to trade off in
prioritizing an alert versus continuing computation as well as choosing among
competing case activations (see [1] for further details). Thus, given the set of
current case activations H(t) and their current beliefs b(t) the function rank
(line: 11) partitions alerts and their corresponding case activations into those
that are urgent and and those that will remain will remain waiting for further
evidence. We denote by U (t) the alerts that are urgent and need to be explained
at the current iteration. Likewise, H(t)

U denotes the set of case activations that
explain urgent alerts and that will be used at the current iteration to compound
explanations whereas H(t) denotes the set of case activations that remains for
further iterations. Both case activations that remains for further iterations and
pending alerts are sent back to Ceaseless Retrieve (line: 12). Then, Ceaseless
Reuse creates explanations using the set of case activations that explain urgent
alerts H(t)

U and select the explanation whose belief is maximal to propose it to
the user as the most plausible explanation.

An explanation ei is a subset of H(t)
U that explains all alerts in U (t). An

explanation ei is said to explain an alert ψk if it contains at least a case ac-
tivation hj that explains ψk. E(t) represents the set of all explantions. E(t) is
computed following a parsimonious principle [11]. Based on the observation that
the probability of multiple coincidental sources is low we induce the following
heuristic: e′ is not included in E(t) if it contains a case activation that is already
contained by e′′ ∈ E(t) such that its size is smaller. Therefore those explanations
that contain case activations that appear in other explanations that are already
in E(t) and whose size is lower are not contemplated (line: 13). The next step
is to compute an estimation of the goodness for each explanation in E(t) (lines:
14–21). We define B(t)(ei) as a belief function that represents the likelihood that
all cases in ei have occurred and ei explains all alerts in U (t). B(t) is computed
using the beliefs b(t) previously computed for each case activation hi. B(t)+ is
based on a double component: B(t)(ei) = B(t)+ei)B(t)−(ei).

The belief based on positive symptoms gives a degree of suitability for each
explanation that is based on the intuition that when some of the expected alerts
have not occurred yet it is a positive symptom that allows us to decrease our
belief on the hypotheses that compound the explanation at hand: B(t)+(ei) =∏

hi∈ei

∏
ψj∈hi.ǎ

b(t)(hi). The belief component based on negative symptoms
determines the relative likelihoods of multiple case activations according to their
posterior probabilities: B(t)−(ei) = P (ei|U (t)). By Bayes’ theorem P (ei|U (t)) =
P (ei)P (U(t)|ei)

P (U(t))
. To rank posterior probabilities it is only necessary to compare

the joint probabilities since the normalization factor P (U (t)) is a constant for all
competing explanations at iteration t. Therefore: P (ei|U (t)) ∝ P (ei)P (U (t)|ei).
The a priori probability of a explanation ei is given by: P (ei) =

∏
hi∈e

(t)
i
P (hi)

that can be estimated using Eq. 1 as follows:

P (ei) =
∏

hi∈ei

(
1−

∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci)

φ(e)
))

(3)

The conditional probability of U (t) given ei is computed as follows: P (U (t)|ei) =∏
ψi∈U(t)(1−

∏
hi∈ei

(1− P (ψi|hi))). Then, by Eq. 2, P (U (t)|ei) =

∏
ψi∈U(t)

(
1 −

∏
hi∈ei

(
1 −

P (ψi)
∏
e∈path(ψj ,hi.Ci) φ(e)

1−
∏
ψj∈hi.â

(
1−

∏
e∈path(ψj ,hi.Ci) φ(e)

))) (4)

Finally, B(t)− can be approximated from Eq. 3 and Eq. 4. All explanations
ei in E(t) are ranked according to B(t). The best explanation e∗(t), the one that
is maximal, among all competing explanations, is chosen as the problem solu-
tion and sent to Ceaseless Revise for user’s revision (line: 23). Ceaseless Revise
continuously provides a human operator with the set of most likely explanations
given the alerts received so far (instead of presenting a solution periodically).
The operator’s feedback produces a set of revised solutions that are used by
Ceaseless Revise to produce the prioritization of the corresponding alerts.

9 Conclusions

CBR practitioners are sometimes oblivious that there often situations in the
real world where problems occur simultaneously and whose descriptions come
interleaved or in continuous form—i.e., without well-defined boundaries between
adjacent problem descriptions—and additionally require continuous response to
changing circumstances—i.e., a timely action once a proper solution has been
identified. In this article we have proposed to enhance the CBR paradigm to sup-
port the analysis of unsegmented sequences of observational data stemming from
multiple coincidental sources. We aimed at establishing a first CBR model, that
we have called Ceaseless CBR, to solve situations that are expressed by means
of unsegmented, noisy sequences of complex events that arrive continuously over
time. We provided a model that considers the CBR task as on-going rather than
one-shot and enables reasoning in terms of problem descriptions that are broken
up into small pieces that are mixed with other problems’ pieces and the possibil-
ity of combining a number of cases that best match the sequential structure of
the problem at hand. To put the whole matter in a nutshell, we coped here with
problems that include an additional challenge compared to most of those solved
by CBR practitioners before, given that each problem description is composed
of an undetermined number of parts that arrive continuously over time and are
blurred together with other problems’ parts into a single on-line stream.

Acknowledgments We wish to acknowledge anonymous reviewers for useful
suggestions and valuable corrections.

References

1. Martin, F.J.: Case-Based Sequence Analysis in Dynamic, Imprecise, and Adver-
sarial Domains. PhD thesis, Technical University of Catalonia (2004)

2. Debar, H., Wespi, A.: Aggregation and correlation of intrusion detection alerts.
In: Proceedings of the 4th Symposium on RAID. (2001)

3. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings
of 13th Systems Administration Conference. (1999)

4. Swets, J.A.: Signal Detection Theory and ROC Analysis in Psychology and Diag-
nostics. Collected Papers. Lawrence Erlbaum Associates (1996)

5. Barletta, R., Mark, W.: Breaking cases into pieces. In: AAAI-88 Case-Based
Reasoning Workshop. (1988) 12–16

6. Shavlik, J.W.: Case-based reasoning with noisy case boundaries: An application
in molecular biology. Technical Report 988, University of Wisconsin (1990)

7. Redmond, M.: Distributed cases for case-based reasoning; facilitating use of mul-
tiple cases. In: Proceedings of AAAI-90, AAAI Press/MIT Press (1990)

8. Ram, A., Santamaŕıa, J.C.: Continuous case-based reasoning. In: Proceedings of
the AAAI-93 Workshop on Case-Based Reasoning. (1993) 86–93

9. Jacynski, M.: A framewok for the management of past experiences with time-
extended situations. In: 6th ACM CIKM. (1997)

10. Jaere, M.D., Aamodt, A., Skaalle, P.: Representing temporal knowledge for case-
based prediction. In: 6th European Conference in Case-Based Reasoning. Lecture
Notes in Artificial Intelligence, LNAI 2416. Springer (2002) 174–188

11. Peng, Y., Reggia, J.A.: Abductive Inference Models for Diagnostic Problem-
Solving. Springer-Verlag (1990)

12. Lewis, L.: Managing Computer Networks. A Case-Based Reasoning Approach.
Artech House Publishers (1995)

13. Gupta, K.M.: Knowledge-based system for troubleshooting complex equipment.
International Journal of Information and Computing Science 1 (1998) 29–41

14. Breese, J.S., Heckerman, D.: Decision theoretic case-based reasoning. Technical
Report MSR-TR-95-03, Microsoft Research, Advanced Technology Division (1995)

15. Aha, D.W., Maney, T., Breslow, L.A.: Supporting dialogue inferencing in conver-
sational case-based reasoning. LNCS 1488 (1998) 262–266

16. Cunningham, P., Smyth, B.: A comparison of model-based and incremental case-
based approaches to electronic fault diagnosis. In: Proceedings of the Case-Based
Reasoning Workshop, AAAI-1994. (1994)

17. Emaili, M., Safavi-Naini, R., Balachandran, B., Pierprzyk, J.: Case-based rea-
soning for intrusion detection. In: 12th Annual Computer Security Applications
Conference. (1996)

18. Schwartz, D., Stoecklin, S., Yilmaz, E.: A case-based approach to network in-
trusion detection. In: 5th International Conference on Information Fusion, IF’02,
Annapolis, MD, July 7-11. (2002) 1084–1089

19. Steinder, M., Sethi, A.S.: Probabilistic event-driven fault diagnosis through in-
cremental hypothesis updating. In: Proceedings of IFIP/IEEE Symposium on
Integrated Network Management. (2003)

20. Huang, C., Schachter, R.: Alarms for monitoring: A decision-theoretic framework.
Technical Report SMI-97-0664, Section on Medical Informatics, Stanford Univer-
sity School of Medicine (1997)

