
Learning Collaboration Strategies for Committees of

Learning Agents

Enric Plaza (enric@iiia.csic.es)
Artificial Intelligence Research Institute (IIIA)
Consejo Superior de Investigaciones Cient́ıficas (CSIC)
Campus UAB, 08193, Bellaterra, Spain

Santiago Ontañón (santi@maia.ub.es)
University of Barcelona (UB)
Gran Via 585, 08007, Barcelona, Spain

Abstract.
A main issue in cooperation in multi-agent systems is how an agent decides in

which situations is better to cooperate with other agents, and with which agents does
the agent cooperate. Specifically in this paper we focus on the following problem:
given a multi-agent system composed of learning agents, and given that one of
the agents in the system has as a goal to predict the correct solution of a given
problem, the agent has to decide whether to solve the problem individually or to
ask for collaboration to other agents. We will see that learning agents can collaborate
forming committees in order to improve performance. Moreover, in this paper we will
present a proactive learning approach that will allow the agents to learn when to
convene a committee and with which agents to invite to join the committee. Our
experiments show that learning results in smaller committees while maintaining
(and sometimes improving) the problem solving accuracy than forming committees
composed of all agents.

1. Introduction

A main issue in cooperation in multi-agent systems is how an agent au-
tonomously decides in which situations is better to cooperate with other
agents, and with which agents does the agent cooperate. Specifically
in this paper we focus on the following scenario: assuming a multi-
agent system composed of learning agents (each one in principle with
a different background), and that the agents in the system have as a
goal to achieve a high accuracy on predicting the correct solution of the
problems they encounter, each agent has to decide when encountering a
new problem whether to solve it individually or to ask for collaboration
to other agents. When taking those decisions, the agent has to consider
whether, for each specific problem, collaborating with other agents is
likely to improve the prediction accuracy.

This generic scenario can be exemplified in the domain of marine
biology where the difficult task of identifying marine sponges prompted
us to address it as a multiagent system. The basic issue to be addressed

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

dynamic.tex; 27/03/2006; 18:43; p.1

2 Enric Plaza and Santi Ontañón

is that no biologist expert in limnology and benthology has complete
knowledge of all forms and kinds of marine sponges. In practice, bi-
ologists expert in marine sponges collect specimens on their own on
different parts of the world, developing a partial expertise depending
on location and species. Moreover, some species change according to
the location they live. Therefore, there will be no single biologist that
is an expert in all kinds of sponges and all kind of oceans: they refer this
fact as people having different backgrounds. When one of the biologists
finds a new sponge, he needs to identify specific species of the new
sponge. However, since she is not an expert on all kinds of sponges,
often she will realize she has low confidence in determining the correct
species of the new sponge. In this context, the expert will likely ask
other biologists for counsel on the correct species of the new sponge.
Notice that the biologist has to take two decisions: a) deciding when
she better asks counsel to other biologists (i.e. when to collaborate with
other biologists), and b) decide which of the other biologists he will ask
counsel to.

In this paper we propose a multi-agent system approach to deal with
such scenarios. In our approach, we will consider that each biologist has
a learning agent that has access to all the marine sponges collected (and
properly classified) by him. Each learning agent is able to identify a
new sponge based on previous experience. However, if the agent cannot
produce a prediction with high confidence, it can decide to collaborate
with other agents. Thus, (analogously to the biologist behavior) the
agent has to take two decisions: when to start collaboration with other
agents, and with which of the other agents to collaborate. Taking these
two decisions properly is crucial, since the correctness of the predictions
made by the learning agent strongly depends on them.

One of our goals is to show that, through collaboration, individ-
ual learning agents and multi-agent systems can improve their per-
formance. Both learning and collaboration are ways in which an agent
can improve individual performance. In fact, there is a clear parallelism
between learning a collaboration in multi-agent systems, since they are
ways in which an agent can deal with its shortcomings. Let us show
which are the main motivations that an agent can have to learn or to
collaborate:

Motivations to learn:

1. Increase the quality of solutions (e.g. accuracy),

2. Increase efficiency,

3. Increase the range of solvable problems.

Motivations to collaborate:

dynamic.tex; 27/03/2006; 18:43; p.2

Learning Collaboration Strategies for Committees of Learning Agents 3

1. Increase the quality of solutions (e.g. accuracy),

2. Increase efficiency,

3. Increase the range of solvable problems,

4. Have access to resources that only other agents can use.

Therefore, learning and collaboration are very related. In fact, with
the exception of motivation to collaborate number 4 above, they are
two extremes of a continuum of strategies to improve performance.
An agent may choose to increase performance by learning, by collab-
orating, or by finding an intermediate point that combines learning
and collaboration in order to improve performance. Specifically, we are
interested in studying how an individual learning agent can improve its
performance by collaborating with other agents, and how can a learning
agent decide whether it is better to work individually or to cooperate
with others.

Moreover, returning to the motivating example, we model the situ-
ation when a group of biologists collaborate to identify a given marine
sponge as the institution we usually call committee. When a committee
of human biologists is formed, the individual biologists have their own
background and produce their individual predictions. We consider a
committee goes through two main phases: discussion and deliberation.
During discussion, different alternatives are presented and arguments
justifying or attacking alternatives are exchanged; during deliberation,
one of the alternatives is chosen by some voting system that determines
the winner. Analogously, we use the notion of electronic institutions [11]
for a group of learning agents collaborating to reach a join prediction,
i.e. forming a committee of agents. In this paper we will focus only on
the deliberation phase, although current work on the argumentative
phase is published elsewhere [26].

Specifically, there are two core aspects we want to address in this
paper, namely when a committee is needed or not, and which agents
should be invited to join the committee. Notice that, in our biology
scenario, a biologist often solves the sponge identification task individ-
ually, while some other times recourse to external counsel (in our model,
convenes a committee) because she estimates she is not competent with
respect to the problem at hand. Our approach to this issue is equip-
ping the agents with a competence self-model capable of estimating
if the agent is competent (or to which degree it estimates might be
competent) to solve a specific problem. Moreover, we will show how
this competence self-model can be individually learnt by every agent in
the course of its regular process of solving problems and collaborating
with other agents.

dynamic.tex; 27/03/2006; 18:43; p.3

4 Enric Plaza and Santi Ontañón

Concerning the second issue, notice that when a biologist decides
to consult some other biologists, she does not call all the available
sponge experts in the world, but just a small sample, enough to cor-
rectly identify the new sponge. For a multiagent system this means
that an agent convening a committee will not simply invite always
all agents in the system to join the committee. Thus, we distinguish
two types of strategies for convening committees: fixed committees and
dynamic committees. An agent convenes fixed committees when the
agents invited to join the committee are always the same regardless of
the problem to be solved (an example of this strategy is the basic one
of always convening all the available agents to a committee). Moreover,
when an agent convenes a dynamic committee it has to select which
agents to invite in function of the problem to be solved. In this paper we
propose to equip each individual agent with competence models of the
other agents; these competence assess the confidence of the convener
agent in that some other agent is competent to solve the problem at
hand. Moreover, we will show how these competence models can be
individually learnt by every agent in the course of its regular process
of solving problems and collaborating with other agents (Section 3.1).

1.1. Committees and Machine Learning

Committees allow us to study the application of machine learning tech-
niques to multi-agent systems, and the relation between collaboration
and learning. From a machine learning perspective, a committee may
be considered an ensemble of agents, where each agent plays the role of
a predictor (trying to predict the correct solution for a given problem).
Ensembles of predictors are expected to have a higher performance than
individual predictors because of the ensemble effect [27]. The ensemble
effect is well known in Machine Learning, and states that, given that
some preconditions are met, the combination of predictions made by
several individual predictors is likely to be more accurate than the
prediction made by the individual predictors. The preconditions of the
ensemble effect are simple: each individual predictor must be minimally
competent (i.e. have an error rate lower than 0.5) and the ensemble
must be diverse (i.e. the error correlation between the predictions of
the individual classifiers must be low).

In previous work [28], we have shown that committees can also ben-
efit from the ensemble effect, as ensembles of predictors do. Thus, by
properly defining strategies to convene committees, agents can convene
committees that allow them to achieve higher performance than work-
ing individually. However, committees are not the same as ensembles, in
other words our goal is not to present new ensemble learning methods.

dynamic.tex; 27/03/2006; 18:43; p.4

Learning Collaboration Strategies for Committees of Learning Agents 5

The fundamental differences between committees and ensembles are,
for instance, that autonomy and privacy are not an issue in ensemble
learning, but they ar essential in multi-agent systems. Moreover, in an
ensemble, the ensemble learning algorithm is centralized and creates the
individual predictors in such a way that the ensemble works; however,
in a committee, agents are not created by a centralized process, agents
are in principle created or maintained by different organizations in
different places; therefore, in our multiagent framework an agent has
to convene a committee that achieves the maximum performance by
collaborating with the existing agents, and having no control or access
to the data they have stored locally. These hypotheses of decentralized
control and distributed data that our framework espouses are not satis-
fied by ensemble learning methods that assume centralized control and
access to data. Therefore ensemble learning methods are not directly
applicable to committees, although committees can use the core ideas
of the “ensemble effect” to improve their performance [28].

1.2. An Approach to Learning to Cooperate

The problem of convening dynamic committees is presented in this
paper inside a framework called Multi-agent Case Based Reasoning
Systems (MAC)[28]. A MAC system is composed by a set of CBR
agents, where a CBR agent is an agent that uses Case Based Reasoning
(CBR) [1] to solve problems and learn from those problems. The open
and dynamic nature of multi-agent systems fits with open and dynamic
nature of lazy learning [2] used in CBR. This framework is quite general
and has been used to study different aspects concerning learning in
multiagent systems [28, 21, 20, 23, 29, 22, 25].

In this paper, however, we focus on presenting collaboration strate-
gies that the agents in a MAC system can use to convene committees
in the phase of join deliberation (and therefore excluding the argumen-
tation phase). For this reason, we will use a MAC system where agents
learn to perform a classification tasks without lose of generality. In
Machine Learning, a classification task is one where a learning system
predicts one item among a set alternatives (usually called classes). Since
we are focusing on the deliberation phase of committees, where one of
the presented alternatives has to be selected, this task is, from the point
of view of the learning agent, a classification task. Notice our approach
is general in the sense that the alternatives under deliberation can be
internally complex (e.g. a committee can deliberate on alternative plans
of action), but in the deliberation phase the individual agents have just
to predict (and learn to predict) the better alternative.

dynamic.tex; 27/03/2006; 18:43; p.5

6 Enric Plaza and Santi Ontañón

Specifically, we will present a basic strategy called the Committee
Collaboration Strategy (CCS) that always convenes a committee using
all the available agents in the system. CCS is a strategy for fixed com-
mittees and is used for comparison purposes since using all agents in a
committee will (in principle) lead to more accurate predictions. After
that, we will present another strategy called Proactive Bounded Counsel
Collaboration Strategy (PB-CCS), that tries to achieve accurate predic-
tions, but only convening committees when required. Thus, PB-CCS is
our proposal to address the problem of deciding when to collaborate,
and with which agents to collaborate. We will present specific decision
policies that agents may use to decide when to solve problems indi-
vidually and when to convene committees, and to select which agents
to convene to a committee. Moreover, the key claim of this work is
that agents can learn to make those decisions (when to collaborate and
with which agents to collaborate). To support this claim, we present a
proactive learning approach that gives the agents the ability to learn
how to take those decisions.

Since those decision policies are based on what we call competence
models, we will two approaches: one where the competence models are
predetermined (and manually build by the agent designers) and another
one where those competence models are individually learnt by every
agent in the systems using PB-CCS. We also present experiments to
compare the performance fixed vs. dynamic committees, and that of
learning competence models vs. predetermined competence models.

The structure of the paper is as follows. First Section 2 presents
the multi-agent framework in which we have performed our experi-
ments, and formally define the notion of committee. Moreover, Section 2
presents the Committee Collaboration Strategy. After that, Section 3 in-
troduces the notion of dynamic committees, and the Proactive Bounded
Counsel Collaboration Strategy, that will be presented a a dynamic
committee collaboration strategy. Then, Section 4 presents a proactive
learning technique with which agents will be able to learn a decision
policy used to convene dynamic committees. Section 5 formally presents
the Bounded Counsel Collaboration Strategy for comparison purposes.
Finally, Section 6 presents an empirical evaluations of all the collabora-
tion strategies in several scenarios. The paper closes with related work
and conclusions sections.

2. A Multi-agent CBR Approach

In this paper we focus on agents that use Case Based Reasoning (CBR)
to solve problems. CBR techniques suit perfectly into multi-agent sys-

dynamic.tex; 27/03/2006; 18:43; p.6

Learning Collaboration Strategies for Committees of Learning Agents 7

tems and give the agents the capability of autonomously learn from
experience by retaining new cases (problems with known solution).
Therefore, we will focus on Multi-agent CBR Systems (MAC).

DEFINITION 2.1. A Multi-Agent Case Based Reasoning System (MAC)
M = {(A1, C1), ..., (An, Cn)} is a multi-agent system composed of a set
of CBR agents A = {Ai, ..., An} where each agent Ai ∈ A possesses an
individual case base Ci.

Each individual agent Ai in a MAC is completely autonomous and
has access only to its individual and private case base Ci. A case base
Ci = {c1, ..., cm} is a collection of cases. Each agent has (in general)
its own CBR method(s) to solve problems using the cases stored in its
individual case base. Agents in a MAC system are able to individually
solve problems, but the can also collaborate with other agents to solve
problem in a collaborative way.

In this paper, we will focus on classification tasks, where the so-
lution of a problem is achieved by selecting a solution class from an
enumerated set of solution classes. We have taken this decision be-
cause aggregation of predictions in classification domains can be easily
achieved using any voting system. Other domains would require more
complex aggregation mechanisms, and it is out of the scope of this
paper to define complex aggregation methods for predictions in complex
domains such as planning or configuration.

In the following we will note the set of all the solution classes by
S = {S1, ..., SK}. Moreover, we will note the problem space by P,
that contains all the problems that can be described in a particular
application domain. Therefore, a case can be defined as:

DEFINITION 2.2. A case c = 〈P, S〉 is a tuple containing a case
description P ∈ P and a solution class S ∈ S.

Notice that case descriptions are defined over the problem space
P. In the following, we will use the terms problem and case descrip-
tion indistinctly. Therefore, we can say that a case consists of a case
description plus a solution class, or that a case is a problem/solution
pair. Moreover, we will use the dot notation to refer to elements inside
a tuple. e.g., to refer to the solution class of a case c, we will write c.S.
Moreover, we will also use the dot notation with sets, i.e. if C is a set
of problems, C.P refers to the set of problems contained in the cases
in C, i.e. C.P = {c.P |c ∈ C}.

Moreover, in our framework, all the interaction among agents is
performed by means of collaboration strategies.

dynamic.tex; 27/03/2006; 18:43; p.7

8 Enric Plaza and Santi Ontañón

DEFINITION 2.3. A collaboration strategy 〈I,D1, ..., Dm〉 defines the
way in which a group of agents inside a MAC collaborate in order to
achieve a common goal and is composed of two parts: an interaction
protocol I, and a set of individual decision policies {D1, ..., Dm}.

The interaction protocol of a collaboration strategy defines a set
of interaction states, a set of agent roles, and the set of actions that
each agent can perform in each interaction state. The agents use their
individual decision policies to decide which action to perform, from the
set of possible actions, in each interaction state. Each agent is free to
use its own decision policies. Moreover, we have used the ISLANDER
formalism [10] to specify the interaction protocols in our framework.

2.1. A CBR view of MAC systems

In this section we will try to present a CBR view of the collabora-
tion strategies presented in this paper. For that purpose, let us briefly
explain how CBR works.

The CBR problem solving cycle consists of four processes: Retrieve,
Reuse, Revise, and Retain [1]. During the Retrieve process, a CBR
system searches its case base for cases that can be used to solve the
problem at hand (relevant cases); during the Reuse process, the solution
of the cases retrieved during the Retrieve process is used to solve the
problem at hand. Thus, after the Retrieve and Reuse processes, the
CBR system has already solved the problem. After that, in the Revise
process, the solution provided by the system is revised by an expert or
by a causal model to ensure that the solution is correct, and a new case
is constructed using the problem and the revised solution. Finally the
Retain process decides whether the new case should be incorporated
into the case base for future use.

When a group of agents in a MAC system collaborate to solve prob-
lems, they also follow the CBR cycle. Specifically, our proposal is that
each individual agent should perform the Retrieve process individually
since case bases are private, and no agent should have access to the case
base of another agent. Collaboration will take place during the Reuse
process, where agents will collaborate to decide an overall solution for
the problem at hand by aggregating their individual predictions. Revise
and Retain processes fall out of the scope of this work (see [24] for work
on collaborative retention).

Thus, all the collaboration strategies presented in this paper have
to be seen as strategies that take place during the Reuse CBR cycle.

dynamic.tex; 27/03/2006; 18:43; p.8

Learning Collaboration Strategies for Committees of Learning Agents 9

2.2. Committees of CBR agents

This section presents the notion of Committees of agents that allows
a group of agents to benefit from the ensemble effect by collaborating
when solving problems.

DEFINITION 2.4. A Committee is a group of agents that join together
to predict the solution of a problem P . Each agent individually predicts
the solution of P and then all the individual predictions are aggregated
by means of a voting process.

The only requirement on the CBR method that an agent in a com-
mittee uses is that after solving a problem P , and agent Ai must be
able to build a Solution Endorsement Record. A Solution Endorsement
Record (SER) is a tuple R = 〈S, E, P,A〉 where A is an agent that
has found E (where E > 0 is an integer) cases endorsing the solution
S as the correct solution for the problem P . Intuitively, a SER is a
record that stores the result of individually performing the Retrieve
CBR process. If the CBR method of an agent can return more than
one possible solution class, then a different SER will be built for each
solution.

When a committee of agents solves a problem, the sequence of op-
eration is the following one: first of all, an agent receives a problem to
be solved and convenes a committee to solve the problem; the problem
is sent to all the agents in the committee and every agent preforms the
Retrieve process individually; after that, instead of performing Reuse
individually, each agent reify the evidence gathered during the Retrieve
process about the likely solution(s) of the problem in the form of a
collection of SERs. The Reuse process is performed in a collaborative
way by aggregating all the SERs to obtain a global prediction for the
problem. In our experiments, agents use a voting process (see Section
2.4) to aggregate predictions.

Moreover, there are many different strategies to convene committees.
In the remainder of this paper we will present several collaboration
strategies that convene different types of committees.

2.3. Committee Collaboration Strategy

This section presents the Committees Collaboration Strategy (CCS).
Specifically, the Committee Collaboration Strategy is composed by an
interaction protocol and an individual decision policy:

DEFINITION 2.5. The Committee Collaboration Strategy(CCS) is
a collaboration strategy 〈IC , DV 〉, where IC is the CCS interaction

dynamic.tex; 27/03/2006; 18:43; p.9

10 Enric Plaza and Santi Ontañón

P

P

P

P

RA1

RA2

RA3

Ac

Not willing
to collaborate

Ac

MAC

Figure 1. Illustration of aMAC system where an agent Ac is using CCS in order to
convene a committee to solve a problem.

w0 w1

w2

p1

p2

p3/c1

p3/c2
p4

w3w4

Request(?User, ?Ai, ?P)

Request(!Ai,A
c, !P)

Inform(?Aj , !Ai, ?R)/

Inform(?Aj , !Ai, ?R)/

p1

p2

p3/c1

p3/c2

p4

:
:
:

:

:

|!w0w1R| = #(Ac) − 2

|!w0w1R| < #(Ac) − 2

Inform(!Ai, !User, ?S)

Figure 2. Interaction protocol for the Committee collaboration strategy.

protocol shown in Figure 2 and DV is a decision policy based on any
voting system that can be used to aggregate the evidence gathered by
the individual agents into a global prediction (specifically, we will use a
voting system called BWAV, presented in Section 2.4).

The interaction protocol IC is described in Figure 2 using the IS-
LANDER [10] formalism and applies to a set of agents Ac that have
agreed to join a committee. The protocol consists of five states and w0

dynamic.tex; 27/03/2006; 18:43; p.10

Learning Collaboration Strategies for Committees of Learning Agents 11

is the initial state. When a user requests an agent Ai to solve a problem
P the protocol moves to state w1. Then, Ai broadcasts the problem P
to all the other agents in the system and the protocol moves to state
w2. Then, Ai waits for the SERs coming from the rest of agents while
building its own SERs; each agent sends its SERs to Ai in the message
p3. When the SERs from the last agent are received the protocol moves
to w3. In w3, Ai will apply the voting system defined in the individual
decision policy DV (with all the SERs received from other agents and
the SERs built by itself) to aggregate a global prediction. Finally, the
aggregate prediction S will be sent to the user in message p4 and the
protocol will move to the final state w4.

Notice that not all the agents in the MAC system may be willing
to collaborate using CCS. Therefore, the set Ac contains only those
agents that are willing to collaborate, as shown in Figure 1.

Since all the agents in a MAC system are autonomous CBR agents,
they will not have the same problem solving experience. Therefore, the
cases in their case bases will not be the same. For that reason, not
all the agents will be able to solve exactly the same problems, and
there will be some problems that some agents fail to solve correctly
but that some other agents will be able to solve. In other words, the
individual agent’s errors are uncorrelated. Thus, using the committee
collaboration policy an agent can increase its problem solving accuracy
because it satisfies the preconditions of the ensemble effect.

2.4. Bounded Weighted Approval Voting

Agents can use any voting system to aggregate their predictions. How-
ever, in this section we are going to present a voting system called
BWAV specifically designed for committees of CBR agents. As we will
see in Section 4, agents will perform a learning process that will use
as input the information provided by the votes of the games. Thus,
the more informative are the votes, the better the agents will be able
to learn. For that reason, BWAV is more adequate than standard ma-
jority voting (where each agent will simple vote for a single solution).
Moreover, more informative voting systems could be defined, however
BWAV provides enough information for the learning process to perform
well.

The principle behind the voting system is that the agents vote for
solution classes depending on the number of cases they found endorsing
those classes. Specifically, each agent has one vote that can be for a
unique solution class or fractionally assigned to a number of classes
depending on the number of endorsing cases.

dynamic.tex; 27/03/2006; 18:43; p.11

12 Enric Plaza and Santi Ontañón

Let Rc = {R1, ...,Rm} be the set of SERs built by the n agents in
Ac to solve a problem P . Notice that each agent is allowed to submit
one or more SERs. In fact, an agent will submit as many SERs as
different solution classes are present in the retrieved cases to solve P .
Let RAi = {R ∈ Rc|R.A = Ai} be the subset of SERs of R created by
the agent Ai to solve problem P . The vote of an agent Ai ∈ Ac for a
solution class Sk ∈ S is the following:

V ote(Sk, P, Ai) =

{
R.E
c+N If ∃R ∈ RAi |R.S = Sk,

0 otherwise.
(1)

where c is a normalization constant that in our experiments is set to
1 and N =

∑
R∈RAi

R.E is the total number of cases retrieved by Ai.
Notice that if an agent Ai has not created a SER for a solution class
Sk, then the vote of Ai for Sk will be 0. However, if Ai has created a
SER for Sk, then the vote is proportional to the number of cases found
endorsing the class Sk, i.e. R.E.

To understand the effect of the constant c we can rewrite the first
case of Equation 1 as follows (assume that R is the SER built by Ai

for the solution class Sk):

V ote(Sk, P, Ai) =
R.E

N
× N

c + N

Since N is the total number of cases retrieved by Ai, the first fraction
represents the ratio of the retrieved cases endorsing solution Sk with
respect to N (the total number of cases retrieved by Ai). The second
fraction favors the agent that has retrieved more cases, i.e. if Ai has
only retrieved one case, and it is endorsing Sk, then the vote of Ai for
Sk will be V ote(Sk, P, Ai) = 1

1+1 = 0.5; moreover, if the number of
retrieved cases is 3 (and all of them endorsing Sk), then the vote is
V ote(Sk, P, Ai) = 3

1+3 = 0.75. Notice that the sum of fractional votes
casted by an agent is upper bounded by 1, but in fact it is always less
than 1 and, the more cases retrieved, the closer to 1. Finally, notice
that if c = 0 the sum of votes is always 1.

We can aggregate the votes of all the agents in Ac for one class by
computing the ballot for that class:

Ballot(Sk, P,Ac) =
∑

Ai∈Ac

V ote(Sk, P, Ai)

and therefore, the winning solution class is the class with more votes
in total:

Sol(S, P,Ac) = arg max
Sk∈S

Ballot(Sk, P,Ac) (2)

dynamic.tex; 27/03/2006; 18:43; p.12

Learning Collaboration Strategies for Committees of Learning Agents 13

We call this voting system Bounded-Weighted Approval Voting (BWAV),
and it can be seen as a variation of Approval Voting [3]. The main
differences between approval voting and BWAV are that in BWAV
agents can give a weight to each one of its votes and that the sum of the
votes of an agent in BWAV is always smaller than 1. In Approval Voting
each agent votes for all the candidates they consider as an acceptable
outcome without giving weights to the accepted options.

3. Dynamic Committees

The Committee Collaboration Strategy (CCS) can effectively improve
the problem solving performance of the agents in a MAC system with
respect to agents solving problems individually (as we will show in the
experimental results section). However, when an agent uses CCS, no
policy is used to select which agents are invited to join the committee
and all the agents in a MAC system are invited each time that an
agent wants to use CCS. Moreover, it is not obvious that forming a
committee with all the available agents is the best option for all the
problems: possibly smaller committees have an accuracy comparable
(or indistinguishable) to that of the complete committee. Furthermore,
possibly some problems could be confidently solved by one agent while
others could need a large committee to be solved with confidence. Fi-
nally, in some domains (recall the marine sponge example presented in
Section 1) it is absolutely nonsense to convene all the agents.

In this paper we will study different collaboration strategies that do
not invite always all the agents to join the committee. The goal of these
strategies is to study whether it is possible to achieve similar accuracies
than the Committee Collaboration Strategy without convening always
the complete committee. We are interested in studying whether it is
possible to provide agents with strategies that convene large committees
only when the application domain requires it, and convene smaller ones
when there is no need for large ones. Specifically, we will focus on
solving two main problems:

1. Deciding when an individual agent can solve a problem individually
and when it is needed to convene a committee.

2. Deciding which agents should be invited to join the committee.

A collaboration strategy that convenes a different committee in
function of the current problem is called a Dynamic Committee collabo-
ration strategy. Moreover, as we have stated in Section 1, agents require

dynamic.tex; 27/03/2006; 18:43; p.13

14 Enric Plaza and Santi Ontañón

competence models in order to decide when to convene a committee and
which agents to invite.

3.1. Competence Models

All the strategies presented in this paper use competence models in
order to decide which agents will form a committee.

DEFINITION 3.1. A competence model MA(P) → [0, 1] is a function
that estimates the confidence on the prediction of an agent (or set of
agents) for a specific problem P , i.e. estimates the likelihood that the
prediction is correct.

Competence models can be acquired by two different ways: a) di-
rectly specified by a human user, b) automatically learned from expe-
rience by the agents. In this paper we will present a learning technique
to allow agents to learn their own competence models. Moreover, in the
experimental results section we will compare the learned competence
models against fixed and handcrafted competence models.

Competence models will be used for two purposes: a) to assess the
confidence of a given committee and decide whether inviting more
agents to join the committee could improve performance, and b) to as-
sess the confidence of agents that have not yet joined in order to decide
which of them should be invited to join the committee. A central issue
for these decisions is to assess the confidence of a set of collaborating
agents Ac, including the special case of a committee composed of a
single agent (the convener agent), that corresponds to assessing the
confidence of a single agent individually solving a problem.

Therefore, a competence model must assess the competence of an
agent or group of agents given a voting situation, i.e. a situation in
which committee has been convened and the convener agent is ready
to apply a voting system to obtain a final prediction for the problem.
Notice that the collection of SERs RAc casted by the agent members
of a committee Ac completely characterizes a voting situation (since
from RAc we can obtain which agents are members of the committee
and which have been their votes).

DEFINITION 3.2. A voting situation RAc is a set of SERs for a
problem P sent by a committee of agents Ac to the convener agent
(including the SERs of the convener agent Ac).

For each voting situation we can define the candidate solution of a
voting situation as the solution that the committee will predict if no
more agents join the committee: Sc = Sol(S, P,RAc). Moreover, we

dynamic.tex; 27/03/2006; 18:43; p.14

Learning Collaboration Strategies for Committees of Learning Agents 15

P

P

P
RA2

RA3

Ac

Not willing
to collaborate

MAC

Candidates to be invited

Agents willing to collaborate

Current committee

Figure 3. Illustration of PB-CCS where 3 agents have already been invited to join
the committee, forming a committee of 4 agents.

can also define the individual candidate solution of an agent Ai in a
committee as the solution that Ai individually predicts for the problem:
Sc

Ai
= Sol(S, P,RAi).

Previously, we have given a general definition for a competence
model (Definition 3.1). In our approach, a competence model specif-
ically takes as input a voting situation RAc and outputs a confidence
value in the interval [0, 1]. The output represents the confidence that the
candidate solution of the voting situation is correct. If the competence
model is modelling the competence of a single agent Ai, then the output
represents the confidence that the individual candidate solution of Ai

is correct.
In Section 4 we will present a proactive technique to learn com-

petence models, and in Section 5 we will present an example of a
predefined competence model.

3.2. Proactive Bounded Counsel Collaboration Strategy

The Proactive Bounded Counsel Collaboration Strategy (PB-CCS) is
designed to study if the decisions that have to be taken to convene
dynamic committees can be learnt. Specifically, agents using PB-CCS
will engage in a proactive process to acquire the information they need
in order to learn a decision policy that allows them to decide when and
which agents will be invited to join each committee.

Before explaining the proactive learning process, we will first in-
troduce how a dynamic committee is convened. For this purpose, we

dynamic.tex; 27/03/2006; 18:43; p.15

16 Enric Plaza and Santi Ontañón

w0

w1 w2

p1
p2

Request(?User, ?Ai, ?P)p1

p2

p4 :

:

:
:

p4

p3

w3

p3

Request(!Ai, ?Aj , !P)

Inform(!Aj , !Ai, ?R)

Inform(!Ai, !User, ?S)

Figure 4. Interaction protocol for the Proactive Bounded Counsel collaboration
strategy.

propose an iterative approach to determine the committee needed to
solve a problem. The iterative approach works as follows: In the first
round, only the convener agent individually predicts the solution of the
problem. Then, a competence model is used to determine whether there
is enough confidence on the individually predicted solution. It there is
enough confidence, then no committee is convened, and the prediction
made by the convener agent is considered the final solution. However,
if there is not enough confidence, then a committee is convened in the
subsequent rounds: a new agent Aj is invited to join the committee
in the second round; the committee of two agents solve the problem
and a competence model is used again to determine whether there is
enough confidence on the solution predicted by that committee. If there
is not enough confidence a new agent is invited in a third round, and
so on. When the competence model estimates that a prediction has
enough confidence, the process terminates and the solution predicted
is returned. Figure 3 illustrates this process: from all the agents in
the MAC system that have agreed to collaborate, some of them have
already joined the committee, and some of them are candidates to
be invited if the confidence in the solution predicted by the current
committee is not high enough. Moreover, notice that some agents in
theMAC system may be unwilling to participate in PB-CCS(since they
are autonomous and may have their own reasons for not collaborating,
such as not having enough free computational resources to accomplish
the task, or any other reason), thus are not candidates to be invited to
join the committee.

dynamic.tex; 27/03/2006; 18:43; p.16

Learning Collaboration Strategies for Committees of Learning Agents 17

Notice that this iterative process does not guarantee to find the
optimal committee, where we consider the optimal committee to be
the smaller committee with the maximum confidence (predicted us-
ing a competence model). However, computing the optimal committee
may be prohibitive, since there are an exponential number of possible
committees.

In order to use the iterative approach to form dynamic committees,
the convener agent needs two individual decision policies (in addition
to the voting system), namely a Halting decision policy and an Agent
Selection decision policy.

DEFINITION 3.3. The Proactive Bounded Counsel Collaboration Strat-
egy (PB-CCS) is defined as a collaboration strategy 〈IB, DH , DAS , DV 〉,
consisting of an interaction protocol IB, shown in Figure 4, DH is
the Proactive Bounded Counsel Halting decision policy, DAS is the
Proactive Bounded Counsel Agent Selection decision policy, and DV

is the voting decision policy based on BWAV (see Section 2.4).

PB-CCS is an iterative collaboration strategy consisting in a series
of rounds. We will use t to note the current round of the protocol; thus,
Ac

t will be the subset of agents of A that have joined the committee
at round t and Ar

t the subset of agents of A that have not yet been
invited to join the committee at round t. Finally, we will note RAc

t
the

set of all the SERs submitted to the convener agent by all the agents
in Ac

t (included the SERs built by the convener agent Ac itself), i.e.
RAc

t
represents the voting situation at round t.

Figure 4 shows the formal specification of the IB interaction proto-
col. The protocol consists of 4 states: w0 is the initial state, and, when
a user requests an agent Ai to solve a problem P , the protocol moves to
state w1. The first time the protocol is in state w1 the convener agent
uses the DH decision policy to decide whether to convene a committee
not. If a committee will be convened, then the DAS decision policy is
used to choose an agent Aj , and message p2 is sent to Aj containing the
problem P . After that and the protocol moves to state w2. Ai remains
in state w2 until Aj sends back message p3 containing its own prediction
for the problem P , and the protocol moves back to state w1. In state
w1 the convener agent assesses the confidence of the current prediction
and uses the DH decision policy to decide whether another agent has
to be invited to join the committee or not. If Ai decides to invite more
agents, then message p2 will be send to another agent (chosen using the
DAS decision policy), repeating the process of inviting a new agent; if
Ai decides that no more agents need to be invited to join the committee
the voting system specified in DV will be used to aggregate a global

dynamic.tex; 27/03/2006; 18:43; p.17

18 Enric Plaza and Santi Ontañón

prediction S. Finally, Ai will send the global prediction to the user with
message p4, and the protocol will move to the final state w3.

3.3. Proactive Bounded Counsel Decision Policies

Both DH and DAS decision policies use competence models. Thus, let
us introduce the competence models used by the two decision poli-
cies before explaining them in detail. Consider an agent Ai member
of a MAC system composed of n agents, A = {A1, ..., An}. In or-
der to use PB-CCS, Ai needs to learn several competence models,
namely MAi = {Mc,MA1 , ...,MAi−1 ,MAi+1 , ..., MAn}, where Mc is a
Committee-Competence Model and MAj are Agent-Competence Models.

A Committee-Competence Model Mc is a competence model that
assesses the confidence in the prediction of a committee Ac in a given
voting situation R. Thus, Mc is used to decide whether the current
committee Ac

t is competent enough to solve the problem P or it is
better to invite more agents to join the committee.

An Agent-Competence Model MAj is a competence model that as-
sesses the confidence in the prediction made by an agent Aj in a given
voting situation R. MAj is useful for the convener agent to select which
agent Aj is the best candidate to be invited to join the committee by
selecting the agent Aj for which its competence model predicts the
highest confidence (i.e. the agent with the highest likelihood that its
prediction is correct) given the current voting situation R.

Notice that the convener agent Ai does not specifically require a
competence model of itself since the competence model Mc can be
used to assess its own competence. For that purpose, the convener
agent Ai uses Mc to assess the confidence of a committee consisting
of only one agent, itself. Thus, the Committee-Competence Model Mc

can be used both to assess the individual confidence of the convener
agent and to assess the confidence of a committee of agents (where Ai

is the convener).
Using those competence models, we can define the Proactive Bounded

Counsel Halting decision policy DH as a boolean decision policy that
decides whether the convener agent can stop inviting agents to the
committee at a round t; i.e. if DH(RAc

t
) = true, no more agents will

be invited to join the committee.

DH(RAi) =
(
Mc(RAc

t
) ≥ η1

)
∨

(
maxAj∈Ar

t
(MAj (RAc

t
)) < η2

)
where η1 and η2 are threshold parameters. The rationale of this policy is
the following: if the confidence in the solution predicted by the current
committee is high enough (Mc(RAc

t
) ≥ η1) there is no need to invite

dynamic.tex; 27/03/2006; 18:43; p.18

Learning Collaboration Strategies for Committees of Learning Agents 19

more agents since the current prediction has a very high confidence.
Moreover, if the confidence on an agent Aj ∈ Ar that is not in the
committee is very low (MAj (RAc

t
) < η2) inviting Aj to join the com-

mittee is not advisable (since the prediction of that agent will very
likely be incorrect and would increase the chances that the committee
prediction is incorrect). Therefore, if the maximum confidence of every
agent in Ar

t is very low, i.e. maxAj∈Ar
t
(MAj (RAc

t
)) < η2, inviting any

of these agents to join the committee is not advisable. This follows
from one the preconditions of the ensemble effect (see Section 1), that
state that the individual members of an ensemble have to be minimally
competent.

The two threshold parameters η1 and η2 have the following in-
terpretation: η1 represents the minimum confidence required for the
committee’s prediction (candidate solution) of the current voting situ-
ation; η2 represents the minimum confidence required in the prediction
of an individual agent to allow that agent to join the committee.

Notice that by varying η1 and η2, the behavior of PB-CCS can be
changed. Assuming that by adding more agents to the committee the
confidence of the predicted solution will tend to increase, if we set a high
value for η1, the convener agent will tend to convene larger committees;
and if we set a low value for η1, the convener agent will stop inviting
agents earlier, since a lower confidence will be considered adequate
enough. Moreover, by setting a high value for η2, the convener agent
will be very selective with the agents allowed to join the committee
(since only those agents with a confidence higher than η2 will be allowed
to join). On the other hand, a low value of η2 will make the convener
agent very permissive, and any agent could potentially be invited to
join the committee.

In fact, if η1 = 0.0, an agent will always solve problems individually,
and if the parameters are set to η1 = 1.0 and η2 = 0.0 the resulting
collaboration strategy will always convene all the available agents in the
MAC system, and therefore achieve the same results than the Com-
mittee Collaboration Strategy. Furthermore, by increasing η2 (leaving
η1 = 1.0) we can obtain a collaboration strategy that invites all the
agents to join the committee except those that have a confidence level
lower than η2. Therefore, η1 and η2 allow us to define a range of different
strategies to build committees.

The second decision policy is the Proactive Bounded Counsel Agent
Selection decision policy DAS , that is defined as a function that takes as
input a voting situation RAi and a set of candidate agents to be invited
to the committee and returns the name of the agent that has the highest
confidence on finding the correct solution for a given problem:

dynamic.tex; 27/03/2006; 18:43; p.19

20 Enric Plaza and Santi Ontañón

RAc

t

Mc
MA1

MAn

DH
DAS

Ajtrue/false

Figure 5. Relation among the competence models and the Proactive Bounded
Counsel decision policies.

DAS(RAi ,Ar
t) = argmaxA∈Ar

t
(MA(RAc

t
))

That is to say, DAS selects to invite the agent Aj ∈ Ar
t that has the

highest confidence MAj (RAc
t
) on predicting the correct solution.

Figure 5 shows the relations among the competence models and the
decision policies in PB-CCS. The figure shows that at each round, the
current voting situation, RAc

t
, is the input to the competence models.

Then, the output of the competence models are used as the inputs of
the decision policies.

Moreover, notice that only the convener agent needs to use compe-
tence models. However, any agent that wants to use PB-CCS to convene
dynamic committees has to maintain its own competence models.

4. Proactive Learning

This section presents a proactive learning technique with which an
agent Ai in a MAC system can learn its competence models MAi to
be used in PB-CCS. In order to learn these competence models, agents
need to collect examples from where to learn. This section presents the
way in which an agent can proactively collect those examples and how
can a competence model be learnt from them.

dynamic.tex; 27/03/2006; 18:43; p.20

Learning Collaboration Strategies for Committees of Learning Agents 21

The proactive learning technique consists of several steps (shown
in Figure 6): first, an agent Ai that wants to learn a competence
model obtains a set of cases (that can be taken from its individual
case base), and those cases are transformed to problems (by removing
their solutions); the agent sends then those problems to other agents
and obtains their individual predictions for those problems; with the
predictions made by the other agents for all the problems sent, Ai will
construct a set of voting situations; finally, these voting situations will
be the input of a learning algorithm from which the competence models
will be learnt.

Moreover, in order to easily apply standard machine learning tech-
niques, we need to characterize the voting situations by defining a
collection of attributes in order to express them as attribute-value
vectors (since most machine learning techniques work with attribute-
value vectors). The characterization of a voting situation RAc

t
is a tuple

consisting of several attributes:

− The attributes A1, ..., An are boolean. Ai = 1 if Ai ∈ Ac
t (i.e. if Ai

is a member of the current committee), and Ai = 0 otherwise.

− Sc = Sol(S, P,RAc
t
) is the candidate solution.

− V c = Ballot(Sc,Ac
t) are the votes for the candidate solution.

− V r = (
∑

Sk∈S Ballot(Sk,Ac
t)) − V c is the sum of votes for all the

other solutions.

− ρ = V c

V c+V r is the ratio of votes supporting the candidate solution.

We will use υ = 〈A1, ..., An, Sc, V c, V r, ρ〉 to note the characteriza-
tion of a voting situation. Moreover, an M -example m derived from
a case c is a pair m = 〈υ, ω〉, where υ is the characterization of a
voting situation RAc

t
and ω represents the “prediction correctness” of

the voting situation, such that ω = 1 if the candidate solution of the
voting situation RAc

t
was the correct one (i.e. if Sc = c.S) and ω = 0

otherwise (if Sc 6= c.S).
Therefore, a competence model M ∈MAi will be learnt by collecting

a set of M -examples to form a data set and learning the competence
model from them using induction.

Figure 6 presents a scheme of the proactive learning process that
will be explained in the remaining of this section. Specifically, the steps
involved in the proactive learning process are the following ones:

1. An agent that wants to learn a competence model M , selects a set
of cases from its individual case base.

dynamic.tex; 27/03/2006; 18:43; p.21

22 Enric Plaza and Santi Ontañón

Case Base

Pi

Sk

Ci :

Case with Known solution

Pi

Pi

Pi

SERSERSERSER

Voting Situation

SERs for Pi

voting S
′

k

Voting Situation

M-examples

Competence
Model Learning

Acquisition of M-examples

ω Ok?

Figure 6. Detailed graphical representation of the proactive learning technique to
learn competence models.

2. Those cases are transformed into problems by removing their solu-
tion and are sent to other agents in the MAC system in order to
obtain their individual predictions.

3. Voting situations are then built from these individual predictions,
and from these voting situations, M -examples are constructed.

4. Finally, with the collection of M -examples, a competence model is
learnt using an induction algorithm.

These four steps will be presented in detail in the rest of this section.

4.1. Acquisition of M-examples

In this section we are going to present the proactive process that an
agent follows in order to acquire M -examples from where to learn the
competence models.

Since an agent Ai needs to learn several competence models, a dif-
ferent training set TM will be needed to learn each competence model
M ∈MAi . We will call TAi = {TMc , TMA1

, ...TMAi−1
, TMAi+1

, ..., TMAn
}

to the collection of training sets needed by an agent Ai to learn the
competence models.

For example, when Ai is building Mc (the competence model of the
committee), Ai sends a problem P to the rest of agents in the MAC
system. After receiving their predictions, Ai builds the voting situation
resulting of putting together all the SERs built by the agents. Then,
Ai uses the voting system to determine the candidate solution of that

dynamic.tex; 27/03/2006; 18:43; p.22

Learning Collaboration Strategies for Committees of Learning Agents 23

voting situation. If the candidate solution for the problem P is correct,
then Ai can build an Mc-example with ω = 1, and if the prediction is
incorrect, Ai can build an Mc-example with ω = 0.

Specifically, an agent Ai that wants to obtain the collection of train-
ing sets needed to learn the competence models proceeds as follows:

1. Ai chooses a subset of cases Bi ⊆ Ci from its individual case base.

2. For each case c ∈ Bi:

a) Ai uses IC (the interaction protocol of CCS) to convene a com-
mittee of agents Ac to solve the problem c.P . After this, Ai

has obtained the SERs built by all the rest of agents in Ac for
problem c.P .

b) Ai solves c.P using a leave-one-out method1 and creates its own
set of SERs RAi .

c) With the set RAc of SERs obtained (that includes all the SERs
from the other agents obtained in step (a) and the SERs of Ai

computed in (b)), Ai builds a number of voting situations from
where to construct M -examples (as explained below).

Notice that Ai can build more than one voting situation from the
collection RAc of SERs in Step 2.(c). For instance, the set of SERs built
by Ai, RAi ⊆ RAc corresponds to a voting situation where only agent
Ai has cast votes. The set of SERs built by Ai and any other agent Aj ,
(RAi ∪RAj) ⊆ RAc corresponds to a voting situation where Ai and Aj

have cast their votes. In the following, we will write RA′ to refer to the
set of SERs built by a set of agents A′.

A Valid Voting Situation RA′ for an agent Ai and a problem c.P is
a voting situation where Ai has casted its votes, i.e. a set of SERs built
by a set of agents A′ that at least contains Ai. Specifically, RA′ ⊆ RAc

such that A′ ⊆ Ac and Ai ∈ A′.
Intuitively, a valid voting situation for an agent Ai is one in which Ai

itself is a member of the committee. Therefore, a valid voting situation
can be built by selecting the set of SERs built by any subset of agents
A′ ⊆ Ac (such that Ai ∈ A′). We can define the set of all the possible
subsets of agents of A that contain at least Ai as A(Ai) = {A′ ∈
P(A)|A1 ∈ A′}, where P(A) represents the parts of the set A (i.e. the

1 The leave-one-out method works as follows: the agent Ai removes the case c
from its case base; then it solves tries to solve c.P ; after it has found a solution for
c.P , the agent introduces c again into its case base. This method is usually used to
test wether a learning system would be able to properly solve a given problem if the
problem would not be present in its case base.

dynamic.tex; 27/03/2006; 18:43; p.23

24 Enric Plaza and Santi Ontañón

set of all the possible subsets of A). Now it is easy to define the set
of all the possible Valid Voting Situations for an agent Ai that can be
constructed from RAc as follows:

The Set of Valid Voting Situations for an agent Ai is: V(Ai) =
{RA′ |A′ ∈ A(Ai)}, where RA′ represents the set of SERs built by the
set of agents A′.

Using the previous definitions, we can decompose Step 2.(c) above
in three sub-steps:

1. Ai takes a sample of all the possible Valid Voting Situations that
can be built: V′ ⊆ V(Ai) (see below).

2. For every voting situation R ∈ V′, the agent Ai determines the
characterization of the voting situation 〈A1, ..., An, Sc, V c, V r, ρ〉.

3. With this characterization Ai can build M -examples. Specifically,
Ai will build one M -example for each competence model M ∈MAi .

Let us now focus on how M -examples are constructed for each
specific competence model M ∈MAi :

− To build an Mc-example, Ai determines the candidate solution
Sc = Sol(S, c.P,RA′) obtained by applying the voting system to
all the SERs in RA′ . If Sol(S, c.P,RA′) = c.S, then the following
Mc-example is built: m = 〈〈A1, ..., An, Sc, V c, V r, ρ〉, 1〉 where ω =
1 because the M -example characterizes a voting situation where
the predicted solution is correct. If Sc 6= c.S, then the following
Mc-example is built: m = 〈〈A1, ..., An, Sc, V c, V r, ρ〉, 0〉 where ω =
0 because the M -example characterizes a voting situation where
the predicted solution is not correct.

− To build an MAj -example, Ai determines the individual candidate
solution yield by Aj , i.e. Sc

Aj
= Sol(S, c.P,RAj). If Sc

Aj
= c.S (i.e.

the prediction of Aj is correct), then the following MAj -example is
built: m = 〈〈A1, ..., An, Sc, V c, V r, ρ〉, 1〉 and if Sc

Aj
6= c.S (i.e. the

prediction of Aj is incorrect), then the following MAj -example is
built: m = 〈〈A1, ..., An, Sc, V c, V r, ρ〉, 0〉.

Notice that with each voting situation R ∈ V′, an M -example can
be constructed for each different competence model in MAi . Therefore,
the larger the size of V′ ⊆ V(Ai), the larger the number of M -examples
that can be constructed. The size of V(Ai) (that is equivalent to the size
of A(Ai)) depends on the number of agents in the committee convened
to solve each of the problems c.P (where c ∈ Bi ⊆ Ci). In fact, the size

dynamic.tex; 27/03/2006; 18:43; p.24

Learning Collaboration Strategies for Committees of Learning Agents 25

of V(Ai) grows exponentially with the size of the set of convened agents:
there are 2n−1 different Valid Voting Situations for a MAC system with
n agents. Therefore, building all the M -examples that can be derived
from all possible valid voting situations in V(Ai) may be unfeasible
or impractical. For that reason, an agent using the proactive learning
technique to learn competence models will take a sample V′ ⊆ V(Ai)
instead of considering all of them.

The number of M -examples that an agent builds for each compe-
tence model M is about #(Bi) × #(V′) (where the #(A) notation
represents the number of elements of B, where A is any set). The num-
ber of M -examples that agents need to collect for learning appropriate
competence models may vary in function of the application domain. In
general, the more M -examples collected, the better, however collecting
many M -examples will waste resources of the agent, thus in function of
the resources an agent is wiling to spend in building competence mod-
els, the number of M -examples to collect must be determined. In our
experiments we have imposed the limit of at most 2000 M -examples for
each competence model. Therefore, the agents in our experiments will
take subsets V′ ⊆ V(Ai) to have at most 2000/#(Bi) voting situations.
Moreover, in our experiments, an agent Ai using the proactive learning
technique uses all the case base Ci as the set Bi (i.e. Bi = Ci) (in
order to maximize the diversity in the set of voting situations built),
and therefore the size of V′ will be at most 2000/#(Ci) (see [19] for
the definition of a method to select subsets V′ ⊆ V(Ai) in a more
informative way than doing a random selection).

4.2. Induction of the Competence Models

Once an agent Ai has collected enough M -examples, good competence
models can be learnt. In our experiments we have used an induction
algorithm based on decision trees [30].

A decision tree is a predictive model for a specific problem, i.e.
given a new problem, a decision tree predicts its solution. A decision
tree is composed of two kind of nodes: decision nodes and leaf nodes.
A decision node contains an expression, and as many child nodes as
possible values that expression might have. When using the decision
tree to predict the solution of a given problem P , the expression of the
decision node is evaluated for P , and the branch corresponding the the
value obtained is followed. This procedure is repeated until we reach a
leaf node. Leaf nodes contain the predicted solution. If while solving a
problem P using a decision tree we reach a leaf labelled Sk, then the
predicted solution for P will be Sk.

dynamic.tex; 27/03/2006; 18:43; p.25

26 Enric Plaza and Santi Ontañón

Moreover, since competence models predict confidence values (i.e.
real numbers in the interval [0, 1]), standard decision trees cannot be
directly used as confidence values (since they are thought for predicting
class labels). For that reason, we are going to define a variation of
decision trees that we call confidence trees, that will suit our needs. As
decision trees, a confidence tree is a structure consisting on two types
of nodes: decision nodes and leaf nodes. Decision nodes are identical to
that of decision trees, however leaf nodes of confidence trees differ. A
leaf node in a confidence tree contains three real numbers: p−l , pl, and
p+

l (such that p−l ≤ pl ≤ p+
l); where pl is the expected confidence in

that a voting situation that is classifier in a leaf l will yield a correct
candidate solution, and p−l and p+

l are respectively, the pessimistic and
optimistic estimations of that confidence.

In order to learn confidence trees, we will use a standard decision
tree learning algorithm [30], but with the following considerations:

1. Numerical attributes are discretized. Each numeric attribute a is
discretized to have just 2 possible values. The discretization is per-
formed by computing a threshold κ. Left branch of the decision
node will have the M -examples with value(a) ≤ κ and in the right
branch all the M -examples which value(a) > κ.

2. Error-based pruning [5] of the tree is used to avoid overfitting
(i.e. for not learning a too specific decision tree that overfits the
particularities of the training set).

3. Usually, when learning a decision tree, the solution class of each
leaf is decided in function of the solution of the examples of the
training set that fall in that leaf. However, instead of deciding
a single solution class for each leaf, we will store the amount of
examples of each solution class that fall in each leaf. Figure 7.a
shows a decision tree such that in each leaf l, the number of M -
examples with ω = 1 and with ω = 0 is shown. For instance, you can
see that in the right-most leaf, there are 457 examples with ω = 1
and 29 examples with ω = 0. That means that in the training set,
there were 457 examples with ρ > 0.70 and ω = 1, and 29 examples
with ρ > 0.70 and ω = 0.

Once a decision tree is learnt, we transform it into a confidence
tree by maintaining decision nodes and transforming leaf nodes in the
following way: Let al be the number of M -examples with ω = 1 and
bl the number of M -examples with ω = 0 in a given leaf l of the
learnt decision tree. Then, the values of the corresponding leaf in the
confidence tree take the following values:

dynamic.tex; 27/03/2006; 18:43; p.26

Learning Collaboration Strategies for Committees of Learning Agents 27

ρ > 0.70

Vmax > 1.63

Vrest > 1.13

1 : 457
0 : 29

1 : 57
0 : 21

1 : 4
0 : 1

1 :150
0 : 95

1 : 7
0 : 23

1 : 6
0 : 14

Sc

ρ > 0.70

Vmax > 1.63

Vrest > 1.13

0.93
0.94
0.95

0.68
0.73
0.78

0.66
0.80
1.0

0.58
0.61
0.64

0.16
0.23
0.3

0.20
0.30
0.39

Sc

AX AS HA AX AS HA

a) b)
truefalse

false

false

true

true

true

true

true

false

false

false

Figure 7. a) Decision tree learnt as the competence model Mc in a MAC system
composed of 5 agents. b) Confidence tree computed from the decision tree shown
in a). For the numerical attributes, the right branches of each node contain the
M -examples that match the condition in the node. AS, AS and HA are the pos-
sible solution classes in S. The left figure shows the number of M -examples with
each confidence value that have fallen in each tree, and the right figure shows the
estimation of the confidence in each leaf.

− pl = (1/(al + bl)) ∗ (1 ∗ al + 0 ∗ bl) is the expected confidence of an
M -example classified in leaf l.

− p−l : the pessimistic estimation of the confidence of the confidence
of an M -example classified in that leaf l (see below).

− p+
l : the optimistic estimation of the confidence of the confidence

of an M -example classified in that leaf l (see below).

Figure 7 shows an example of the conversion from a decision tree
(on the left) to a confidence tree (on the right). On each leaf l of the
confidence tree, the three values p−l , pl, and p+

l (such that p−l ≤ pl ≤
p+

l) are shown. Since pl is just an estimation of the confidence, if the
number of M -examples in the leaf node l is small then pl may be a poor
estimator of the confidence of the candidate solution of voting situations
classified on the leaf l. The greater the number of M -examples in leaf
l, the better the estimation of the confidence. To solve this problem,
instead of estimating the confidence as a single value, the agents will
compute an interval, [p−l , p+

l], that ensures with 66% certainty that the
real confidence value is in that interval. This interval depends on the
number of examples in leaf l: the greater the number of M -examples,
the narrower the interval will be (those intervals can easily computed
numerically using basic bayesian probabilistic computations). In Figure
7.b, p−l and p+

l are shown above and below pl respectively. For instance,
if we look at the right most leaf in Figure 7 (the one with 457 M -

dynamic.tex; 27/03/2006; 18:43; p.27

28 Enric Plaza and Santi Ontañón

examples with confidence 1 and 29 M -examples with confidence 0), we
can see that the estimated pl is 0.94 and the interval is [0.93, 0.95], a
very narrow interval since the number of M -examples to estimate the
confidence is high.

For the purposes that competence models will have in the dynamic
committee collaboration strategies, pessimistic estimation is safer than
any other estimation (expected pl or optimistic p+

l). Using pessimistic
estimations the worst that can happen is that the committee convened
to solve a problem is larger than in should be. However, if we make
a more optimistic estimation of the confidence, (using the expected
pl or optimistic p+

l estimations) the convener agent may stop inviting
agents too early, thus failing to correctly solve a problem more often.
Therefore, since confidence trees will be used as competence models,p−l
will be used as the output of the competence model, i.e. the output of
a competence model M for a voting situation RAc is M(RAc) = p−l ,
where l is the leaf of the confidence tree in which the voting situation
RAc has been classified.

The next section presents an exemplification of the proactive learn-
ing technique used to learn the confidence trees that will be used as the
competence models in the Proactive Bounded Counsel Collaboration
Strategy.

4.3. Exemplification

In order to clarify the M -example acquisition process, we will de-
scribe an exemplification with a system composed of 3 agents A =
{A1, A2, A3}. Moreover, notice that the this section tries to exemplify
only the M -example acquisition process, and not the use of PB-CCS.

The agent A1 is collecting M -examples to learn the competence
models needed in the Proactive Bounded Counsel Collaboration Strat-
egy. A1 should learn three competence models:MA1 = {Mc,MA2 ,MA3}.

For that purpose, A1 has selected a subset B1 ⊆ C1 of cases from
its individual case base C1. All the cases in B1 will be used to acquire
M -examples. In the experiments presented in this paper the agents use
the policy Bi = Ci to select the subset Bi of cases, however in a real
scenario where the case base Ci might be arbitrarily high this might
have a high cost. For that reason we say that, in general, an agent
selects a subset Bi ⊆ Ci instead of using all the case base. However,
if there are enough computational resources Bi should be as large as
possible in order to acquire a good training set from where to learn the
competence models.

For each case c ∈ B1 the agent A1 convenes a committee to solve
the problem c.P . For instance, imagine that for a specific problem c1 =

dynamic.tex; 27/03/2006; 18:43; p.28

Learning Collaboration Strategies for Committees of Learning Agents 29

〈P1, S1〉, both A2 and A3 accept to join the committee, and send the
following SERs to A1: A2 sends R2 = 〈S1, 3, P1, A2〉 and A3 sends
R3 = 〈S2, 1, P1, A3〉. Finally, A1 has built the SER R1 = 〈S1, 2, P1, A1〉
using a leave-one-out method. Therefore, A1 has collected the set of
SERs RAc = {R1,R2,R3} from the set of agents Ac = {A1, A2, A3}.

There are 4 possible subsets of Ac that contain A1, namely A(A1) =
{{A1}, {A1, A2}, {A1, A3}, {A1, A2, A3}}. Assume that the agent A1

chooses the collection A′ = {{A1}, {A1, A2}, {A1, A3}} of subsets of
agents to build voting situations from where to construct M -examples
(recall from Section 4.1 that in general all subsects cannot be selected,
since for a large number of agents there are an exponential number of
them)

From the first subset of agents A′ = {A1}, the following voting situ-
ation R′ = {R1} is built. A1 computes the attributes that characterize
the voting situation R′: (1, 0, 0, S1, 0.66, 0.00, 1.00). From this voting
situation, the three following M -examples can be built:

− An Mc-example: 〈(1, 0, 0, S1, 0.66, 0.00, 1.00), 1〉, since the candi-
date solution S1 is the correct one.

− An MA2-example: 〈(1, 0, 0, S1, 0.66, 0.00, 1.00), 1〉, since the SER of
agent A2 endorses the correct solution class S1. It is important to
understand that this MA2-example characterizes a situation where
A1 has voted, the candidate solution of the current committee
(containing only A1) is S1 and A2 has not yet joined the committee.
A confidence value ω = 1 means that in this situation A2 has
predicted the correct solution class S1.

− An MA3-example: 〈(1, 0, 0, S1, 0.66, 0.00, 1.00), 0〉, since the SER of
agent A3 endorses an incorrect solution class S2. As in the previous
situation, this MA3-example characterizes a situation where A1 has
voted, the candidate solution of the current committee (containing
only A1) is S1 and A3 has not yet joined the committee. A confi-
dence value ω = 0 means that in this situation A3 has predicted
an incorrect solution class.

From the second subset of agentsA′ = {A1, A2}, the following voting
situationR′ = {R1, R2} is built. The characterization is (1, 1, 0, S1, 1.41,
0.00, 1.00), and the M -examples that can be built are:

− An Mc-example: 〈(1, 1, 0, S1, 1.41, 0.00, 1.00), 1〉, since the candi-
date solution S1 is the correct one.

− An MA3-example: 〈(1, 1, 0, S1, 1.41, 0.00, 1.00), 0〉, since the SER of
agent A3 endorses an incorrect solution class S2.

dynamic.tex; 27/03/2006; 18:43; p.29

30 Enric Plaza and Santi Ontañón

Notice that no MA2-example is built from this voting situation,
since A2 is already a member of the committee corresponding to the
characterized voting situation.

Finally, from the third subset of agents A′ = {A1, A3}, the follow-
ing voting situation R′ = {R1, R3} is built. The characterization is
(1, 0, 1, S1, 0.66, 0.50, 0.57), and the M -examples that can be built are:

− An Mc-example: 〈(1, 0, 1, S1, 0.66, 0.50, 0.57), 1〉, since the candi-
date solution S1 is the correct one.

− An MA2-example: 〈(1, 0, 1, S1, 0.66, 0.50, 0.57), 1〉, since the SER of
agent A2 endorses the correct solution class S1.

Therefore, with just a single case c ∈ Bi, the agent Ai has built
3 Mc-examples, 2 MA2-examples and 2 MA3-examples. After A1 has
collected M -examples using all the cases in Bi, 3 training sets will be
built: TMc , TMA2

, and TMA3
. From these 3 training sets, A1 can now

induce the corresponding confidence trees to be used as the competence
models Mc, MA2 , and MA3 . Similarly, agents A2 and A3 can also use
the same technique to acquire their respective competence models if
they need them. Notice that each agent in a MAC system is free to
use the collaboration strategies and decision policies that it prefers.
Therefore, if A1 uses the proactive learning technique to learn its own
competence models, A2 and A3 are not forced to use it. Each agent
could acquire its competence models using another strategy or using
PB-CCS with different parameter settings.

4.4. Proactive Bounded Counsel Cost

Autonomous learning of competence models has a computational cost
for the agents. Specifically, the agents will have to send a set of prob-
lems to the other agents (in order to evaluate them), and also solve
individually another set of problems (in order to build the committee
competence model). However, notice that if learning is not used, the
cost of learning the competence models does not disappear, but it is
merely shifted to a previous phase where a good competence model (or
any other policy to decide how to form committees) is built by hand.

Moreover, in a real system, the cost of acquiring M -examples to
learn the competence models can me greatly lowered. Imagine that a
specific agent wants to learn a competence model; the agent can solve
the problems that arrive from users convening committees using any
other collaboration strategy (such as CCS), and store the predictions
that the other agents make during the solution of problems that arrive.
Once the agent has collected enough experience, the competence model

dynamic.tex; 27/03/2006; 18:43; p.30

Learning Collaboration Strategies for Committees of Learning Agents 31

can be learnt. In other words, it is not necessary for an agent to collect
all the required M -example in one step, but they can be automatically
acquired by interacting with other agents by solving real problems send
by users.

5. Bounded Counsel Collaboration Strategy

In this section we are going to define a non-learning approach to form
dynamic committees, the Bounded Counsel Collaboration Strategy (B-
CCS). B-CCS works basically in the same way than PB-CCS, but uses
predefined competence models instead of learnt ones. Thus B-CCS is
only presented for comparison purposes, with the goal of evaluating
the learnt competence models used by PB-CCS. The Bounded Counsel
collaboration strategy is composed by an interaction protocol and two
decision policies:

DEFINITION 5.1. The Bounded Counsel Committee Collaboration
Strategy(B-CCS) is a collaboration strategy 〈IB, DH , DV 〉, where IB is
the B-CCS interaction protocol shown in Figure 4, DH is the Bounded
Counsel Halting decision policy (used to decide when to stop inviting
agents to join the committee), and DV is the voting decision policy
based on BWAV (see Section 2.4).

B-CCS uses IB, the same protocol as PB-CCS. Moreover, when a
new agent is invited to join the committee in B-CCS, a random agent Aj

is selected from the set of agents that do not belong to the committee.
Thus, B-CCS requires only an individual decision policy: the Bounded
Counsel Halting decision policy DH , that decides whether inviting more
agents to join the committee is needed.

The DH decision policy uses the C-Competence model that measures
the confidence in a solution predicted by a committee to be correct.

C-Competence(Rc) =

{
1
M Ballot(Sol(S,Ac),Ac) If N > 1,

min(Ballot(Sol(S,Ac),Ac), 1) If N = 1.

where M =
∑

Sk∈S Ballot(Sk,Ac), is the sum of all the votes casted by
the agents and N = #({Sk ∈ S|Ballot(Sk,Ac) 6= 0}), is the number of
different classes for which the agents have voted for.

That is to say, if the agents inAc have built SERs for a single solution
(N = 1), the Committee-Competence model will return the ballot for
that solution. Moreover, notice that the ballot for a solution when there
are more than one agent in Ac can be greater than 1. Therefore we take

dynamic.tex; 27/03/2006; 18:43; p.31

32 Enric Plaza and Santi Ontañón

the minimum between the ballot and 1 to ensure that the competence
models output confidence values within the interval [0, 1]. The intuition
is that the higher the ballot, the larger the number of cases retrieved by
the agents endorsing the predicted solution, and therefore the higher
the confidence on having predicted the correct solution. Moreover, if
the agents in Ac have built SERs for more than one solution (and
therefore N > 1), the C-Competence model will return the fraction of
votes that that are given to the most voted solution Sol(S, {Ai}). The
larger fraction of votes for the predicted solution, the larger the number
of agents that have voted for the predicted solution or the larger the
number of cases that each individual agent has retrieved endorsing the
predicted solution, and therefore the higher the confidence on having
predicted the correct solution.

Using this competence model, we can now define the DH as a boolean
decision policy that decides whether the convener agent can stop invit-
ing agents to the committee; if DH(Rc) = true, no more agents will be
invited to the committee.

DH(Rc) = (C-Competence(Rc) ≥ η)

where η is a threshold parameter.
The intuition behind the DH decision policy is that if the confidence

on the solution predicted by the current committee is high enough,
there is no need for inviting more agents to join the committee. No-
tice that when Ai is alone (and can be considered as a committee of
1) this decision is equivalent to choose between solving the problem
individually or convening a committee. In our experiments we have set
η = 0.75.

6. Experimental Evaluation

This section presents the experimental evaluation of the performance of
PB-CCS. To evaluate the behavior of PB-CCS using the learnt compe-
tence models we have compared it against the Committee Collaboration
Strategy (CCS) and the Bounded Counsel Collaboration Strategy (B-
CCS). We have made experiments with MAC systems composed of
3, 5, 7, 9, 11, 13, and 15 agents. Moreover, the agents use a stan-
dard 3-Nearest Neighbor (3-NN) [7] method to solve problems. Notice
that we could have used a more complex CBR method, but we have
chosen the standard 3-NN since our goal is to analyze the behavior
of PB-CCS and not to obtain the maximum classification accuracy.
We have designed an experimental suite with a case base of 280 ma-
rine sponges pertaining to three different orders of the Demospongiae

dynamic.tex; 27/03/2006; 18:43; p.32

Learning Collaboration Strategies for Committees of Learning Agents 33

class (Astrophorida, Hadromerida and Axinellida). In an experimental
run, training cases are randomly distributed among the agents. In the
testing stage unknown problems arrive randomly to one of the agents.
The goal of the agent receiving a problem is to identify the correct
biological order given the description of a new sponge. Moreover, all
the results presented here are the result of the average of five 10-fold
cross validation runs.

Moreover, in order to investigate whether the the proactive learning
technique used in PB-CCS learns adequate competence models under
different circumstances, we have performed experiments in three differ-
ent scenarios: the uniform scenario, the redundancy scenario, and the
untruthful agents scenario.

Uniform: in this scenario each individual agent receives a random
sample of the training set without replication of cases (i.e. the case
bases of the agents are disjoint).

Redundancy: in this scenario each agent receives a random sample
with replication of cases (i.e. two agents may own the same case).
To measure the degree of redundancy introduced, we will define the
redundancy index R as follows:

R =
(
∑

i=1...n #(Ci))−N

N ∗ (n− 1)

where n is the number of agents, N = #(∪i=1...nCi) is the total number
of different cases in the system, and Ci is the individual case base of
the agent Ai.

When the individual case bases of the agents are disjoint, there is no
redundancy at all, thus R = 0. Notice that this is true since when the
case bases are disjoint N = #(∪i=1...nCi) =

∑
i=1...n #(Ci); thus the

numerator is zero. Moreover, when all the individual case bases of the
agents are identical (all the agents own the same cases) the redundancy
is maximal, and thus R = 1. Notice that this is also true since if all the
case bases are identical, then ∀j ∪i=1...n Ci = Cj , and thus #(Cj) = N .
For that reason,

∑
i=1...n #(Ci) = N × n; therefore R = 1.

In our experiments we have used a degree of redundancy of R = 0.1,
and the data set that is distributed among the agents has 280 cases (as
we perform a 10 fold cross validation, there training set to distribute
among the agents at each fold has 254 cases). To have an idea of what
R = 0.1 represents, consider this: in a 5 agents scenario with R = 0.0
each agent will receive about 50.4 cases (since the 280 cases in the data
set are divided in a training set of 252 cases and a test set of 28 cases
during the 10 fold cross validation, and 252 / 5 = 50.4). Moreover, with
R = 0.1, each agent will receive 70.54 cases since some of the training
cases will be replicated among the agents case bases (if R = 1.0 each

dynamic.tex; 27/03/2006; 18:43; p.33

34 Enric Plaza and Santi Ontañón

agent will receive the 252 training cases). In a 9 agents scenario, with
R = 0.0 each agent will receive about 28.00 cases, and with R = 0.1
each agent will receive 50.4 cases in average.

Untruthful Agents: in this scenario some of the agents in the
committee are untruthful, i.e. when an agent asks them for help, they
will sometimes answer a solution different from their real individual
prediction (i.e. they lie). However, those agents answer the truthful
solution when they are in the role of the convener agent.

The goal of performing experiments in these scenarios is to test
whether the individually learnt competence models are useful to decide
when to stop inviting agents to join the committee and which agents
to invite under different conditions. The uniform scenario is the basic
scenario, where each individual agent has a different sample of the train-
ing set. Moreover, since each agent has more cases in the redundancy
scenario than in the uniform scenario, it is expected that each individual
agent has a greater individual accuracy. Therefore, we expect that the
number of times an agent solves a problem individually without need to
convene a committee increases in the redundancy scenario. Moreover,
the average number of agents needed to solve a problem should decrease
for the same reason.

Finally, the untruthful agents scenario models a situation in which
not all the agents of the system can be trusted. We have designed
this scenario to test whether the learnt competence models can detect
which agents in the system can be trusted and which cannot. In this
scenario, we expect that the performance of the committee decreases
with respect to the uniform scenario. Moreover, by using competence
models, the proactive bounded counsel collaboration strategy should be
able to detect untruthful agents and very seldom invite them to join the
committee; consequently we expect the performance of the proactive
bounded counsel collaboration strategy (PB-CCS) not to decrease as
much as the performance of the fixed committee (CCS), thus showing
a more robust behavior.

These three scenarios are evaluated on a single data set. Using sev-
eral data sets would not add any more meaningful information; the only
apparent difference between several data sets is the degree in which the
ensemble effect increases the committee accuracy. However, this is not
a primary concern here, since our goal is evaluating the performance
of the dynamic committees with respect to convening always the full
committee in a given data set.

dynamic.tex; 27/03/2006; 18:43; p.34

Learning Collaboration Strategies for Committees of Learning Agents 35

CLASSIFICATION ACCURACY

50

55

60

65

70

75

80

85

90

3 5 7 9 11 13 15

COMMITTEE SIZE

0 10 20 30 40 50 60 70 80 90 100

3

5

7

9

11

13

15

B-CCS
PB-CCS (0.9)

PB-CCS (0.95)
CCS

a) b)

Figure 8. Classification accuracy and average committee size for agents using CCS,
B-CCS, and PB-CCS in the sponges data set and using 3-NN in the uniform scenario.

6.1. PB-CCS Evaluation in the Uniform Scenario

Figure 8 shows the results for the uniform scenario. Specifically, Figure
8.a shows the classification accuracy and Figure 8.b shows the average
committee size. MAC systems with 3, 5, 7, 9, 11, 13 and 15 agents
are tested. For each MAC system results for agents using CCS, B-
CCS, and PB-CCS are presented. Moreover, two different parameter
settings have been evaluated for PB-CCS: the first one with η1 = 0.9
and η2 = 0.5 and the second one with η1 = 0.95 and η2 = 0.5. In the
first parameter settings the convener agent will request a confidence
of at least 0.9 in order to stop inviting agents to join the committee,
and in the second parameter settings, the convener agent will request
a confidence of at least 0.95. Therefore, the expected behavior is that
in the second parameter settings both the convened committees and
the classification accuracy would be larger. Moreover, both parameter
settings request that all invited agents have at least a confidence of 0.5
of predicting the correct solution for the current problem.

Before analyzing the results shown in Figure 8, notice that as the
number of agents increase, each agent receives a smaller case base.
Thus, the classification accuracy of each individual agent is lower in the
experiments with many agents. The effect of this is that the accuracy
of all the collaboration strategies diminishes as the number of agents
increases. However, it is important to note that this is not due to the
number of agents, but to the way in which experiments have been
performed, since in our experiments a larger number of agents implies
smaller case bases (since the training set is divided among all the agents
in the system and therefore, the more agents, the less cases that each
agent receives).

dynamic.tex; 27/03/2006; 18:43; p.35

36 Enric Plaza and Santi Ontañón

Figure 8 shows that the classification accuracy of PB-CCS is very
close to that of CCS. In fact, with η1 = 0.95 the difference in classifica-
tion accuracy between PB-CCS and CCS is not statistically significant.
Moreover, the classification accuracy of PB-CCS (both with η1 = 0.9
and η1 = 0.95) is higher than the classification accuracy of B-CCS
in all of the MAC systems except in the 9 agents system (where the
difference is not statistically significant).

Figure 8.b shows the average size of the committees convened by
PB-CCS and B-CCS expressed as the percentage of the agents in the
MAC system convened in average (we do not show the size of the com-
mittees convened by CCS that is always 100% since CCS invites all the
agents to join the committee). The figure shows that the average size of
the committees convened by PB-CCS is smaller than the committees
convened by CCS and specially in MAC systems with a large number
of agents. The figure also shows that the average size of the committees
convened by PB-CCS is larger than in B-CCS. In fact, PB-CCS invites
more agents to join the committee when needed (since PB-CCS has
a higher classification accuracy than B-CCS). Moreover, the threshold
parameter η1 affects the average size of the committee: if η1 = 0.95
the size of the committees tends to be larger than with η1 = 0.9, as
expected.

Therefore PB-CCS achieves a better tradeoff of accuracy and com-
mittee size than CCS since the classification accuracy achieved by
PB-CCS with η1 = 0.95 is undistinguishable of the accuracy of CCS
while the average size of a committee convened by PB-CCS is much
smaller than 100% (the size of a committee convened by CCS). B-CCS
also achieves an interesting tradeoff of accuracy and committee size: it
achieves classification accuracy that are only a bit lower than that of
the committee, and the committee size is much smaller than that of
the committee. Notice that the only difference between PB-CCS and B-
CCS is that in PB-CCS agents learn their own competence models, and
in B-CCS competence models have to be predefined. The competence
models used by B-CCS in these experiments have been hand-tuned for
the uniform scenario, and thus B-CCS performs really well. However,
as we will see in the next sections, the problem of B-CCS is that its
competence models have to be defined (by a human user) for each
different scenario in which an agent has to operate, while agents using
PB-CCS can be left alone in any scenario and they will learn their own
competence models without needing the intervention of a human user.

Figure 9 shows the percentage of times that the convener agent has
convened committees of different sizes with η1 = 0.9. An horizontal bar
is shown for each MAC system. Each bar is divided in several inter-
vals: the leftmost interval represents the percentage of times that the

dynamic.tex; 27/03/2006; 18:43; p.36

Learning Collaboration Strategies for Committees of Learning Agents 37

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

a)

c)

b)

Figure 9. Percentage of times that the convener agent has convened committees of
different sizes in the uniform scenario using PB-CCS with η1 = 0.9.

convener agent has solved the problem individually; the second interval
represents the percentage of times that a committee of 2 agents has been
convened, and so on. The right most interval represents the percentage
of times that a committee containing all the agents in the system has
been convened. Figure 9 shows that in the 3 agents system, about 40%
of the times the convener agent solves the problem individually without
the need of convening a committee. However, this percentage is reduced
in the MAC systems with more agents; this is an expected result since
in systems with more agents individual case bases are smaller and
the individual accuracy is lower; consequently, the Proactive Bounded
Counsel Halting decision policy DH decides more often to convene
a committee. However, even for a 15 agents system, more than 25%
percent of the times an agent can solve problems individually without
compromising the overall MAC performance. This shows that even
with a large number of agents (where each agent has a small case base)
the decision policies are able to detect that there are problems that
can be solved individually without reducing the classification accuracy.
This is another evidence that the proactive learning is able to learn
adequate competence models.

Summarizing, PB-CCS in the uniform scenario can achieve a clas-
sification accuracy undistinguishable to that of CCS but convening
smaller committees. Consequently we can conclude that the proactive
learning process is producing adequate competence models (since they
exhibit the expected behavior). Moreover, we have seen that varying
parameters η1 and η2 have the expected result in the behavior of PB-
CCS since η1 = 0.95 achieves a higher accuracy than η1 = 0.9. The
next section analyzes the behavior of PB-CCS in a different scenario.

dynamic.tex; 27/03/2006; 18:43; p.37

38 Enric Plaza and Santi Ontañón

B-CCS
PB-CCS (0.9)

CCS

NN3 - SPONGE

50

55

60

65

70

75

80

85

90

95

3 5 7 9 11 13 15

NN3 - SPONGE

0 10 20 30 40 50 60 70 80 90 100

3

5

7

9

11

13

15

a) b)

Figure 10. Classification accuracy and average committee size for agents using CCS,
B-CCS, and PB-CCS in the sponges data set and using 3-NN in the redundancy
scenario.

6.2. PB-CCS Evaluation in the Redundancy Scenario

In the redundancy scenario the case bases of the individual agents are
not disjoint as in the uniform scenario, but have some overlapping, i.e.
there are cases that are present in more than one agents’ case base. This
may interfere in the proactive learning process, since if two agents have
a large intersection between their case bases the competence models
that they learn about each other could be overestimating their real
confidence. Moreover, we have used η1 = 0.9 and η2 = 0.5 for all the
experiments in the redundancy scenario.

Figure 10 shows the results for the redundancy scenario. Figure 10.a
shows that the classification accuracy of PB-CCS, B-CCS, and CCS are
very similar, and their accuracy values are higher than those achieved in
the uniform scenario. In fact, the difference in classification accuracy is
only statistically significant in the 11, 13, and 15 agents systems where
B-CCS achieves a lower classification accuracy than PB-CCS and CCS.
Therefore, PB-CCS is as proficient as CCS.

In terms of committee size, PB-CCS convenes much smaller com-
mittees than the 100% committee of CCS as Figure 10.b shows. Again,
this is specially noticeable in MAC systems with a large number of
agents. For instance, in a MAC system with 13 agents, less than the
30% of the agents are convened in average, while CCS always con-
venes the 100% of the agents. Comparing the behavior of the dynamic
committee strategies in the redundancy scenario with their behavior in
the uniform scenario, it would be expected that they convene smaller
committees in the redundancy scenario since individual agents have
higher classification accuracy. PB-CCS shows exactly this behavior, i.e.

dynamic.tex; 27/03/2006; 18:43; p.38

Learning Collaboration Strategies for Committees of Learning Agents 39

it convenes smaller committees in the redundancy scenario. However, B-
CCS convenes larger committees in the redundancy scenario than in the
uniform scenario. This happens because the competence models used
by B-CCS are fixed, and do not change from one scenario to the other.
This shows that learning competence models, as PB-CCS does, instead
of using predefined ones, as B-CCS does, is a clear advantage. Moreover,
another effect that we expect is that the classification accuracy of the
collaboration strategies is higher in the redundancy scenario since the
accuracy of the individual agents is higher. Comparing Figure 8 with
Figure 10 we can observe that the three collaboration strategies show
this behavior and their accuracy in the redundancy scenario is higher
than in the uniform scenario.

Concerning the behavior of B-CCS, Figure 10 shows an interesting
fact. As we previously said, B-CCS uses predefined competence models
that in these experiments where hand-tuned to perform well in the
uniform scenario. Figure 10 clearly shows that the behavior of B-CCS
degrades as the number of agents increase (i.e. B-CCS achieves lower
classification accuracy compared with PB-CCS or CCS and convenes
larger committees than PB-CCS as the number of agents increase). This
effect has a clear explanation. In the experiments in the redundancy
scenario, we have fixed a redundancy index of R = 0.1; however R = 0.1
does not represent the same amount of redundancy in the 3 agents
system than in the 15 agents system. In fact, a redundancy index of
R = 0.1 in a 15 agents system is a huge degree of redundancy. Therefore,
the larger the number of agents in the redundancy scenario, the further
we are from the uniform scenario, and thus the further we are from the
scenario for which the competence model of B-CCS was designed (and
thus, the worse B-CCS performs).

Finally, Figure 11 shows the percentage of times that the convener
agent has convened committees of different sizes in the redundancy
scenario. Figure 11 shows that in the redundancy scenario, agents using
PB-CCS solve problems individually more often than in the uniform
scenario (shown in Figure 9). Therefore the proactive learning process
has acquired good competence models, since the behavior of PB-CCS is
the expected one, i.e. convenes smaller committees in the redundancy
scenario since since if the individual accuracy is higher, the agents
will individually solve problems correctly more often, and therefore, a
committee has to be convened less often (and if there is the need to
convene one, it can be convened with a smaller number of agents). For
instance, in MAC systems composed of 9 agents or less, agents solve
problems individually between a 40% and a 50% of the times and in
systems with 11 agents or more, in the 50% of the times no more than 2

dynamic.tex; 27/03/2006; 18:43; p.39

40 Enric Plaza and Santi Ontañón

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

a)

c)

b)

Figure 11. Percentage of times that the convener agent has convened committees of
different sizes in the redundancy scenario using PB-CCS with η1 = 0.9.

agents are invited to join the committee, while in the uniform scenario
more agents were needed in average.

Summarizing, we have seen that redundancy improves individual
accuracy and PB-CCS is able to detect that since it convenes smaller
committees. Moreover, we have also seen that redundancy improves
the accuracy of CCS and also that of PB-CCS(even convening smaller
committees).

6.3. PB-CCS Evaluation in the Untruthful Agents
Scenario

The untruthful agents scenario has two goals: the first one is to evaluate
the robustness of PB-CCS in the presence of malicious agents (that is
equivalent to evaluate the robustness of PB-CCS to noise); the second
goal is to evaluate whether the proactive learning process produces ade-
quate competence models, i.e. competence models that can detect that
there are some agents that have a very low confidence (the untruthful
agents).

Specifically, we have prepared a scenario where some agents in the
MAC system will lie in their predictions when forming part of a com-
mittee. These untruthful agents will tell their individually predicted
solution truthfully when they are convener agents, but will sometimes
lie to other conveners. In our experiments we have set to 50% the
probability of an untruthful agent to lie about its individual prediction.
Specifically, there will be 1, 2, 3, 4, 5, 6 and 7 untruthful agents in the
3, 5, 7, 9, 11, 13 and 15 agents systems respectively. Moreover, in this
scenario we expect that the Proactive Bounded Counsel Agent Selection
decision policy, DAS , is able to effectively decide which agents have a

dynamic.tex; 27/03/2006; 18:43; p.40

Learning Collaboration Strategies for Committees of Learning Agents 41

B-CCS
PB-CCS (0.9)

CCS

NN3 - SPONGE

50

55

60

65

70

75

80

85

90

3 5 7 9 11 13 15

NN3 - SPONGE

0 10 20 30 40 50 60 70 80 90 100

3

5

7

9

11

13

15

a) b)

Figure 12. Classification accuracy and average committee size for agents using CCS,
B-CCS, and PB-CCS in the sponges data set and using 3-NN in the untruthful agents
scenario.

high confidence and which ones have a low confidence, so that untruth-
ful agents are very seldom invited to join a committee. Finally, in the
presence of the untruthful agents, it is expected that the classification
accuracy of all the collaboration strategies is lower than in the uniform
or redundancy scenarios since there are less agents with high confidence
in the system that can be invited to join the committee.

Figure 12 shows the results for the untruthful agents scenario. The
threshold parameters are set to η1 = 0.9 and η2 = 0.5. Figure 12.a
shows that in this scenario the accuracy achieved by CCS and B-CCS
is lower than the accuracy achieved by PB-CCS (in fact, the accuracy
of CCS is even lower than the accuracy achieved by B-CCS since CCS
always invites the untruthful agents to join the committee, while B-
CCS does not). Moreover, comparing the accuracy achieved by the
three collaboration strategies in the untruthful agents scenario with
that achieved in the uniform scenario (shown in Figure 8) we see that
they all achieve lower accuracy in the untruthful agents scenario. This
decrease of classification accuracy is expected, since the presence of
untruthful agents leaves less truthful agents to form committees with,
and thus the maximum accuracy that can be reached is lower.

Since CCS does not perform any agent selection, all the untruthful
agents are convened and its accuracy drops from 81.71% to 66.80%
in the 15 agents scenario. Thus, we can conclude that CCS is not
robust when there are agents that cannot be trusted. B-CCS selects
agents randomly, and thus also convenes untruthful agents too often,
resulting in a decreased classification accuracy. However, PB-CCS does
use an agent selection policy, and as Figure 12.a shows, the accuracy
of PB-CCS is much higher than that of B-CCS and CCS. This shows

dynamic.tex; 27/03/2006; 18:43; p.41

42 Enric Plaza and Santi Ontañón

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

a)

c)

b)

Figure 13. Percentage of times that the convener agent has convened committees of
different sizes in the untruthful scenario using PB-CCS with η1 = 0.9.

that PB-CCS is much more robust in the presence of untruthful agents
than CCS and B-CCS. Moreover, the accuracy of PB-CCS drops (with
respect to the uniform scenario) because there are less agents to convene
committees with, and not because of a bad agent selection policy, as
we will later show.

Concerning the committee sizes, Figure 12.b shows that the average
size of the committees convened by PB-CCS is smaller than those
convened by B-CCS. As the number of agents increase, the difference
in size of the committees convened by B-CCS and PB-CCS increases.
The explanation is that PB-CCS uses learnt competence models in the
DAS decision policy to select which of the other agents is the best one
to be invited to join the committee, and thus untruthful agents are
very seldom invited to join committees. Results concerning accuracy
and average committee size in Figure 12 prove that this decision policy
is useful and that effectively helps to convene a better committee than
those convened using B-CCS or CCS. Consequently, this proves that
the proactive learning process produces adequate competence models
since the decision policy that uses them behaves as we would expect.
In contrast, B-CCS uses a random decision policy to determine which
agents are invited to join the committee, and therefore, untruthful
agents are regularly invited to the committee. An untruthful agent that
joins a committee will not likely contribute to increase the confidence
of the predicted solution, and more agents will need to be invited, thus
increasing the average committee size.

Figure 13 shows the percentage of times that the convener agent
has convened committees of different sizes in the untruthful agents
scenario. Specifically, we see that agents using PB-CCS in the untruth-

dynamic.tex; 27/03/2006; 18:43; p.42

Learning Collaboration Strategies for Committees of Learning Agents 43

Table I. Average number of times that truthful and untruthful agents are invited
to join a committee.

Agents 3 5 7 9 11 13 15

Truthful 47.57% 44.14% 43.63% 31.0% 32.0% 32.75% 31.8%

Untruthful 5.07% 9.03% 6.82% 7.14% 9.14% 11.57% 11.08%

ful agents scenario tend to convene smaller committees than in the
uniform scenario (Figure 9). Committees convened by PB-CCS in the
untruthful agents scenario are smaller because there are less agents
with a high confidence that can be invited to join the committee. In
fact, agents in the untruthful agents scenario should solve problems
individually (without convening a committee) with the same frequency
than agents in the uniform scenario, but the learnt competence models
will detect that there is a subset of agents with low confidence and
they will very seldom be invited to join the committee. For instance,
in the 15 agents scenario, PB-CCS never convenes committees with
more than 10 agents. Moreover, Figure 13 shows that agents in the
untruthful agents scenario solve problems individually more or less the
same percentage of times as in the uniform scenario (except for the 3
agents system).

For the purpose of assessing the degree in which the Proactive
Bounded Agent Selection decision policy DAS is able to detect the
untruthful agents, the number of times that each agent has been invited
to join a committee has been counted, summarized in Table I. For each
MAC system, two values are shown: the average number of times that
a truthful agent has been convened to a committee and the average
number of times that an untruthful agent has been convened to a
committee. For instance, in the 3 agents MAC system, each one of
the two truthful agents is invited to join a committee a 47.57% of the
times while the only untruthful agent is only invited to join a committee
5.07% of the times. This clearly shows that DAS selects a truthful agent
much more often. In fact, the degree to which DAS is able to detect
the untruthful agents depends of the threshold parameter η2. In these
experiments we have set η2 = 0.5, but if we set a higher value (e.g.
η2 = 0.75) untruthful agents would be invited even less often. Notice
that η2 ≥ 0.5 in order to preserve one the preconditions of the ensemble
effect, namely that the individual error of the individual classifiers must
be lower than 0.5.

dynamic.tex; 27/03/2006; 18:43; p.43

44 Enric Plaza and Santi Ontañón

The conclusion that we can draw form the experiments in the un-
truthful agents scenario is that PB-CCS is more robust than CCS and
that B-CCS when the assumption that all the agents in the system are
truthful does not hold, i.e. when not all the agents can be trusted. The
result is that PB-CCS achieves a higher classification accuracy than
both CCS and B-CCS and also convenes smaller committees.

7. Related Work

Three main areas are related to our work: ensemble learning, dis-
tributed CBR, and team formation.

Concerning ensemble learning, the “ensemble effect” is a general
result on multiple model learning [15], that demonstrated that if uncor-
related classifiers with error rate lower than 0.5 are combined then the
resulting error rate must be lower than the one made by the individual
classifiers. The BEM (Basic Ensemble Method) is presented in [27] as a
basic way to combine continuous estimators, and since then many other
methods have been proposed: Stacking generalization [31], Cascade
generalization [13], Bagging [4] or Boosting [12] are some examples.
However, ensemble methods assume a centralized control of all the
data while this is not true in our approach. Ensemble methods assume
that all data is available to a centralized algorithm that constructs
the individual classifiers that form the ensemble. In our approach each
agent is the owner of its individual data (each individual agent has
only access to the data contained in its own case base, and has no
access to the data in other agents’ case bases), and the distribution of
data among agents cannot be determined using a centralized algorithm.
Moreover, the control in MAC systems is decentralized, and the global
effect is achieved by individual decisions taken by the agents, while in
ensemble learning all the decisions are made in a centralized way.

The meta-learning approach in [6] is applied to partitioned data
set. They experiment with a collection of classifiers which have only
a subset of the whole case base and they learn new meta-classifiers
whose training data are based on predictions of the collection of (base)
classifiers. They compare their meta-learning approach results with
weighted voting techniques. The final result is an arbitrator tree, a
centralized method whose goal is to improve classification accuracy.
This approach is slightly more similar to ours than other techniques in
ensemble learning, since the base assumption is that there exist a set of
base classifiers (that are not created by the ensemble method), and the
meta-learning approach just learns a way to combine their predictions
(although in a centralized way).

dynamic.tex; 27/03/2006; 18:43; p.44

Learning Collaboration Strategies for Committees of Learning Agents 45

Another related area is that of distributed CBR systems. McGinty
and Smyth [18] present collaborative case-based reasoning (CCBR) as a
framework where experience is distributed among multiple CBR agents.
Their individual agents are only capable of solving problems that fall
within their area of expertise. When an agent cannot solve a problem,
it broadcasts the problem to the rest of agents, and if there is some
agent capable of solving it, it will return the relevant retrieved cases to
the initial agent. This approach differs from ours in the sense that they
only perform case retrieval in a distributed way. The initiating agent
receives all the relevant cases contained in all the case bases of the other
agents, and then it solves the problem locally. In our approach, an agent
can only work with its individual case base since no agent has access to
the case base of another agent. Thus, while the CCBR approach can be
seen as a distributed-retrieval approach, our approach can be seen as
a distributed-reuse approach. Another related approach is multi-case-
base reasoning (MCBR) [16, 17]. MCBR deals with distributed systems
where there are several case bases available for the same task. Moreover,
each case base may not correspond to exactly the same problem, or
may reflect some different user preferences, etc. Therefore cases must
be adapted to be moved from one case base to another. Moreover, the
main difference between our approach and MCBR is again that they
focus on distributed retrieval.

Concerning team formation. Gomez, Abasolo and plaza [14] present
a framework that allows teams of agents with different capabilities join
together to solve a given problem. However, the main difference between
the team formation literature and our work is that in team formation
each agent is supposed to have only a subset of the capabilities required
to solve a problem, and teams have to be formed to solve problems. In
our approach, each agent is supposed to be able to generate a prediction
for a given problem, and collaboration is only used to increase the
accuracy with which predictions are made.

Moreover, team formation is sometimes called Cooperative Problem
Solving (CPS) [8, 32]. Four stages are clearly identified in CPS: 1)
potential recognition (finding which agents can perform certain tasks),
2) team formation, 3) plan formation, and 4) plan execution. This
framework is certainly a general way to deal with team formation,
however it focuses on finding a plan (or protocol) that the individual
agents can follow to collaborative solve a given problem by combining
their capabilities, and usually assumes that if two different agents are
able to perform a task, it does not matter which of both is selected.
In our framework, we deal with a more specific form of collaboration
(committees), where all the agents are capable of predicting solutions,

dynamic.tex; 27/03/2006; 18:43; p.45

46 Enric Plaza and Santi Ontañón

but the selection of the specific members of the committee is crucial
for the good performance of the committee.

Also relevant is work on learning to form coalitions of agents by
Sarathi and Sen [9], where they propose a framework for agents that
learn who are the best agents to collaborate with in the form of stable
coalitions. However, they focus on the assignment of tasks to individual
agents that can perform them in a more efficient way, rather than
aggregating individual predictions as we do.

8. Conclusions and Future Work

We have presented a framework for collaborative multi-agent CBR
systems called MAC. The framework is collaborative in the sense that
the agents collaborate with other agents if this can report some im-
provement in performance. This article addresses two main issues on
collaboration: when to collaborate, and with whom to collaborate. We
have presented the idea of committees to study these issues, and specif-
ically presented a collaboration strategy called PB-CCS that allows the
agents to learn when to convene committees, and which agents to invite
to each committee. We have also presented a learning technique that
allows an agent to learn its individual competence models, that are
required by PB-CCS.

From the empirical evaluation we can conclude several things: first,
PB-CCS is more robust than both CCS and B-CCS, since it achieves
higher classification accuracy values in a wider range of scenarios than
CCS or B-CCS; thus, we can say that the learnt competence models
are more robust than the predefined ones used in B-CCS. Second, PB-
CCS convenes in average smaller committees than CCS while achieving
same accuracy (or higher, as in the untruthful agents scenario). And
third, the proactive learning process acquires adequate competence
models since PB-CCS behaves as expected in all the three scenarios.
Moreover, given the experimental results, we can say that PB-CCS
will perform well (i.e. having a high accuracy) if a) the agents have
a reasonable number of cases (needed to collect M -examples), b) the
agents do not change their behavior radically (otherwise the compe-
tence models wouldn’t predict well their behavior), and c) there are at
least some competent and truthful agents in the system (otherwise no
collaboration strategy can perform well).

As future work, we plan to perform incremental learning, where the
competence models should be updated as time passes. In this scenario,
the competence models should be able to adapt if more agents enter
or leave in the MAC system, and to reflect changes in the kind of

dynamic.tex; 27/03/2006; 18:43; p.46

Learning Collaboration Strategies for Committees of Learning Agents 47

problems that the system is solving. If the agents store the SERs
from the other agents received when playing the role of the convener
agents, the competence models could be updated by learning new trees
reflecting the changes in the behaviors of the other agents. To detect
when a competence model has to be updated, an agent could compare
the behavior of an external agent with the predicted behavior from the
learned competence model for that agent. When the learned compe-
tence model does not predict well the behavior of an external agent
anymore, it has to be updated.

Also as future work, we plan to expand the scope of problems that
the individual agents solve. We have presented results for classification
tasks, but we plan to work with regression, planning and configuration
tasks. To deal with other tasks, new aggregation methods for the in-
dividual predictions has to be designed, since voting would not work
(for regression domains, weighted averaging could be used). Moreover,
other tasks will need quality measures of the prediction of agents in
order to evaluate when an agent has correctly solved a problem, and
thus be able to learn competence models. Finally, notice that the MAC
framework is general enough to be applicable to any other task than
classification given that: a) aggregation methods for predictions can be
defined, and b) the correctness of a prediction can be assessed.

Acknowledgements

The authors thank Josep-Llúıs Arcos of the IIIA-CSIC for their sup-
port and for the development of the Noos agent platform. Support for
this work came from projects TIC2000-1414 “eInstitutor” and (MCYT-
FEDER) TIC2002-04146-C05-01 “SAMAP”.

References

1. Aamodt, A. and E. Plaza: 1994, ‘Case-Based Reasoning: Founda-
tional Issues, Methodological Variations, and System Approaches’.
Artificial Intelligence Communications 7(1), 39–59. online at
<url:http://www.iiia.csic.es/People/enric/AICom ToC.html>.

2. Aha, D. (ed.): 1997, Lazy Learning. Kluwer Academic Publishers.
3. Brams, S. J. and P. C. Fishburn: 1983, Approval Voting. Birkhauser, Boston.
4. Breiman, L.: 1996, ‘Bagging Predictors’. Machine Learning 24(2), 123–140.
5. Cestnik, B. and I. Bratko: 1991, ‘On estimating probabilities in tree pruning’.

In: Machine Learning-European Working Session on Learning-91, Vol. 482 of
Lecture Notes in Artificial Intelligence. Springer Verlag, pp. 151–163.

6. Chan, P. K. and S. J. Stolfo: 1995, ‘A comparative evaluation of voting and
meta-learning on partitioned data’. In: Proc. 12th Int. Conf. on Machine
Learning. pp. 90–98.

7. Cover, T. and P. Hart: 1967, ‘Nearest neighbor pattern classification’. IEEE
Transactions on Information Theory 13(1), 21–27.

dynamic.tex; 27/03/2006; 18:43; p.47

48 Enric Plaza and Santi Ontañón

8. Dignum, F., B. Dunin-Kȩplicz, and R. Verbrugge: 2001, ‘Agent Theory for
Team Formation by Dialogue’. Lecture Notes in Computer Science 1986, 150–
??

9. Dutta, P. S. and S. Sen: 2002, ‘Emergence of Stable Coalitions via Task Ex-
changes’. In: C. Castelfranchi and W. L. Johnson (eds.): Proc. 1st Int. Conf.
on Automous Agents and Multiagent Systems. pp. 312–313.

10. Esteva, M., J. Padget, and C. Sierra: To appear, ‘Formalising a language for
institutions and norms’. In: Intelligent Agents VIII, Proceedings ATAL’01.

11. Esteva, M., J. A. Rodriguez-Aguilar, C. Sierra, P.Garcia, and J. L. Arcos: 2001,
‘On the formal specification of electronic institutions’. In: Agent Mediated
Electronic Commerce, Vol. 1991 of LNAI. Springer-Verlag.

12. Freund, Y. and R. E. Schapire: 1996, ‘Experiments with a new Boosting
algorithm’. In: Proc. 13th Int. Conf. on Machine Learning. pp. 148–146.

13. Gama, J.: 1998, ‘Local cascade generalization’. In: Proc. 15th Int. Conf. on
Machine Learning. pp. 206–214.

14. Gomez, M., C. Abasolo, and E. Plaza: 2001, ‘Domain-Independent Ontologies
for Cooperative Information Agents’. Vol. 2182 of Lecture Notes in Artificial
Intelligence. Springer Verlag, pp. 118–129.

15. Hansen, L. K. and P. Salamon: 1990, ‘Neural networks ensembles’. IEEE
Transactions on Pattern Analysis and Machine Intelligence (12), 993–1001.

16. Leake, D. B. and R. Sooriamurthi: 2001, ‘When Two Case Bases Are Better
than One: Exploiting Multiple Case Bases’. In: ICCBR. pp. 321–335.

17. Leake, D. B. and R. Sooriamurthi: 2002, ‘Managing Multiple Case Bases: Di-
mensions and Issues’. In: Proceedings of the Fifteenth International Florida
Artificial Intelligence Research Society (FLAIRS). pp. 106–110.

18. McGinty, L. and B. Smyth: 2001, ‘Collaborative Case-Based Reasoning: Appli-
cations in Personalized Route Planning’. In: Case Based Reasoning ICCBR-01.
pp. 362–376.

19. Ontañón, S.: 2005, ‘Ensemble Case Based Learning for Multi-Agent Systems’.
Ph.D. thesis, Universitat Autònoma de Barcelona.

20. Ontañón, S. and E. Plaza: 2002a, ‘A bartering aproach to improve multiagent
learning’. In: 1st Int. Joint Conference in Autonomous Agents and Multiagent
Systems.

21. Ontañón, S. and E. Plaza: 2002b, ‘Collaboration Strategies to Improve
Multiagent Learning’. Lecture Notes in Artificial Intelligence 2430, 331–344.

22. Ontañón, S. and E. Plaza: 2003a, ‘Collaborative Case Retention Strategies for
CBR Agents.’. Lecture Notes in Artificial Intelligence 2689, 392–406.

23. Ontañón, S. and E. Plaza: 2003b, ‘Justification-based Multiagent Learning,’.
In: International Conference on Machine Learning ICML-2003. pp. 576–583.

24. Ontañón, S. and E. Plaza: 2004, ‘Justification-based Case Retention’. In:
European. Conf. Case Based Reasoning (ECCBR 2004). pp. 346–360.

25. Ontañón, S. and E. Plaza: 2005, ‘Recycling Data for Multi-Agent Learning’.
In: Proc. 22nd International Conference on Machine Learning ICML-2005. pp.
633–640.

26. Ontañón, S. and E. Plaza: 2006, ‘Arguments and Counterexamples in Case-
based Joint Deliberation.’. In: Workshop on Argumentation on Multi-Agent
Systems (2006). p. to appear.

27. Perrone, M. P. and L. N. Cooper: 1993, ‘When networks disagree: Ensemble
methods for hybrid neural networks’. In: Artificial Neural Networks for Speech
and Vision. Chapman-Hall.

28. Plaza, E. and S. Ontañón: 2001, ‘Ensemble Case-based Reasoning: Collabo-
ration Policies for Multiagent Cooperative CBR’. In: I. Watson and Q. Yang

dynamic.tex; 27/03/2006; 18:43; p.48

Learning Collaboration Strategies for Committees of Learning Agents 49

(eds.): In Case-Based Reasoning Research and Development: ICCBR-2001. pp.
437–451.

29. Plaza, E. and S. Ontañón: 2003, ‘Cooperative Multiagent Learning’. Lecture
Notes in Artificial Intelligence 2636, 1–17.

30. Quinlan, J. R.: 1986, ‘Induction of Decision Trees’. Machine Learning 1(1),
81–106.

31. Wolpert, D. H.: 1990, ‘Stacked Generalization’. Technical Report LA-UR-90-
3460, Los Alamos, NM.

32. Wooldridge, M. and N. R. Jennings: 1994, ‘Towards a Theory of Cooperative
Problem Solving’. In: Proc. Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW-94). Odense, Denmark, pp. 15–26.

Address for Offprints: Santi Ontañón, Artificial Intelligence Research Institute
(IIIA), Consejo Superior de Investigaciones Cient́ıficas (CSIC), Campus UAB, 08193,
Bellaterra, Catalonia, Spain

dynamic.tex; 27/03/2006; 18:43; p.49

dynamic.tex; 27/03/2006; 18:43; p.50

