
Argumentation-based Distributed Induction

Santiago Ontañón1 and Enric Plaza2

1 CCL, Cognitive Computing Lab,
Georgia Institute of Technology, Atlanta, GA 303322/0280,

santi@cc.gatech.edu
2 IIIA-CSIC, Artificial Intelligence Research Institute
Campus UAB, 08193 Bellaterra, Catalonia (Spain),

enric@iiia.csic.es

Abstract. Argumentation can be used by a group of agents to discuss
about the validity of hypotheses. In this paper we propose an argumentation-
based framework for distributed induction, where two agents learn sep-
arately from individual training sets, and then engage in an argumen-
tation process in order to converge to a common hypothesis about the
data. The result is a distributed induction strategy in which the agents
minimize the set of examples that they have to share in order to converge
to a common hypothesis. The proposed strategy works for any induction
algorithm which expresses the hypothesis as a disjunction of rules. We
show that the strategy converges to a hypothesis indistinguishable in
training set accuracy from that learned by a centralized strategy.

Keywords: Distributed Induction, Argumentation, Classification.

1 Introduction

Distributed induction is the problem of learning a hypothesis or model (like a set
of rules, or a decision true) from data when the data is distributed among differ-
ent sources. Some real-life domains involve such forms of distributed data, where
data cannot be centralized due to one or several of the following reasons: storage
size, bandwidth, privacy, or management issues. Storage size and bandwidth are
less and less a problem nowadays, however in large data sets they might still be
an issue. In this paper we will propose a framework in which agents will use a
limited form of argumentation in order to arrive to a hypothesis of all the data
while minimizing the communication, and specially minimizing the amount of
examples exchanged, and ensuring that the hypothesis found is exactly as good
as if centralized induction with all the data was used.

Argumentation frameworks can be used in multi-agent systems for different
purposes like joint deliberation, persuasion, negotiation, and conflict resolution
[12]. In a previous work [8] we have shown how argumentation can be used by
agents that use lazy learning techniques to solve classification tasks. In this paper
we will introduce a framework where agents use argumentation to argue about
hypotheses. In this framework, agents will generate hypotheses locally, and then



argue about them until both agents agree. During the argumentation process,
agents might exchange some small number of examples.

Formalizing agent communication as argumentation allows the distributed
induction strategies to abstract away from the induction algorithm used by the
agents. Thus, all the strategies presented in this paper can work with any induc-
tion algorithm that satisfies certain requirements. In particular, we require that
the hypotheses learnt can be expressed as a disjunction of independent rules.
So, for instance, algorithms such as FOIL [11], or ID3 [10] (since a tree can be
easily flattened into a set of rules), or other rule learners can be used. Algorithms
such as CN2 [4] that learn an ordered set of rules also fit in this framework, but
rules require some preprocessing to remove the dependencies that the ordering
introduces (as elaborated in Section 2). Moreover, the framework is also agnostic
in regards to the representation formalism, in the experiments section we will
show results with both relational as well as flat feature-vector representations.

The remainder of this paper is organized as follows. Section 2 presents our
multi-agent learning framework, including our formalism for argumentation. Sec-
tion 3 presents two strategies for distributed induction based on argumentation,
and Section 4 empirically evaluates them, comparing them to other distributed
induction strategies in the literature. Section 5 provides a quick overview of the
related work, and finally the paper closes with conclusions and future work.

2 A Framework for Multi-Agent Learning

Let A1 and A2 be two agents who are completely autonomous and have access
only to their individual and private training sets T1, and T2. A training set
Ti = {e1, ..., en} is a collection of examples. Agents are able to individually
apply induction in order to learn a hypothesis (or model) of the data and solve
problems using the induced model, but they can also collaborate with other
agents for both induction and problem solving. In the rest of this paper we will
use the terms model and hypothesis indistinguishably.

2.1 Examples, Hypotheses and Rules

Examples, hypotheses and rules are the three key concepts of the learning frame-
work proposed in this paper.

We will restrict ourselves to analytical tasks, i.e. tasks like classification,
where the solution of a problem is achieved by selecting a solution class from
an enumerated set of solution classes. In the following we will note the set of all
the solution classes by S = {S1, ..., SK}. Therefore, an example e = 〈P, S〉 is a
pair containing a problem P and a solution class S ∈ S. In the remainder of this
paper, we will use the dot notation to refer to elements inside a tuple; e.g., to
refer to the solution class of an example e, we will write e.S.

Our framework is restricted to hypotheses H that can be represented as a
disjunctive set of rules: H = {r1, ..., rm}. A rule r = 〈H,S〉 is composed of a
head r.H, and a solution, r.S. When a problem P matches the head r.H of a



TL
redgreen

CC Wait

yesno

Cross Wait

Fig. 1. Conversion of a decision tree to a set of rules.

CCN2 t t

A
CCN2 output:

A
B

default: C

Fig. 2. Postprocessing of the rules generated by CN2 in order to remove the order
dependencies, and thus fit in our argumentation framework.

particular rule r, the rule predicts that the solution to the problem P is r.S.
When a problem matches the head of a rule r.H, we say that the head subsumes
the problem: r.H v P . A large number of induction algorithms can generate
hypothesis that can be represented using this formalism. In particular, in our
experimental section we have selected to use INDIE [1], which is a heuristic
relational inductive learner, ID3, and CN2, but other algorithms could have
been used such as AQR [6], or FOIL [11].

The framework introduced in this paper does not specify which induction
algorithm or representation formalism agents use. In principle, any induction
algorithm could be used, and any data representation (propositional, relational,
or any other) could be used. The restriction on the hypothesis representation is
imposed because agents will argue about each one of these rules independently.

To illustrate how different induction algorithms can represent their hypoth-
esis using our formalism, Figure 1 shows he equivalence between a decision tree
and a set of rules. In the example, a simple decision tree with only two features
(TL and CC) is shown, and three rules equivalent to the tree are constructed.

Further, as we mentioned earlier, when using algorithms such as CN2, that
produce an ordered set of rules, the rules produced have to be postprocessed in
order to remove the order relationship among them. The left hand side of Figure
2 shows a set of three rules generated by CN2 (plus the default class assigned by



CN2 when no rule covers a problem). The center of Figure 2 shows a graphical
representation of the way these rules partition the problem space among the three
different solution classes A, B, and C (the three circles represent the subset of
problems that are subsumed by each of the three conditions in the head of the
rules: c1, c2 and c3). Notice for instance that rule r2 states that all the problems
that are subsumed by c2 have solution B. However, r2 is only considered if r1 is
not fired. Therefore, that rule is postprocessed and converted into rule r′2, which
states that all examples that are subsumed by c2, but not by c1 have solution
B. In general, a rule is postprocessed by adding the negations of all the previous
rules to its head. Finally, the default solution computed by CN2 is converted
also into a rule containing the conjunction of the negation of the head of all the
rules generated by CN2. The result of this process is a set of independent rules,
which can be used in our framework.

As illustrated by the previous two examples, a large collection of induction
algorithms can represent their hypotheses in the form of rules.

2.2 Arguments and Counterarguments

In order to use argumentation, two elements must be defined: the argument
language (that defines the set of arguments that can be generated), and a pref-
erence relation (that determines which arguments are stronger than others). In
our framework, the argument language is composed of two kinds of arguments:

– A rule argument α = 〈A, r〉, is an argument generated by an agent α.A
stating that the rule α.r is true.

– A counterexample argument β = 〈A, e, α〉, is an argument generated by an
agent β.A stating that a particular argument β.α is incorrect, because the
example β.e is a counterexample of such argument.

To define the relation among arguments, we have to take into account all
the possible different situations that can arise while comparing two arguments
consisting of rules or examples. Figure 3 shows all these situations. The top
row of Figure 3 considers all the possible comparisons of two rule arguments,
r1 and r2 such that r1.S = r2.S. Only three situations might arise: a) r1 and
r2 are totally unrelated, b) the set of problems covered by r1 and r2 has non
empty intersection, and c) one is more general than the other. The middle row
of Figure 3 considers all the possible comparisons of two rule arguments, r1
and r2 but this time r1.S 6= r2.S. The same three situations arise (unrelated,
non-empty intersection, and one more general than another). Notice that in the
non-empty intersection situation we also require that no rule is more general
than another (we don’t include the extra restriction in the figure for clarity).
Thus, when comparing any two rule arguments, only 6 situations might arise.
Situations a), b), c) and d) represent rule arguments that are compatible, whereas
situations e) and f) represent conflicting arguments. Moreover situation c) is a
special situation and we say that r1 subsumes r2.



a) b) c)

d) e) f)

g) h) i) j)

Fig. 3. All the possible different situations that can arise while comparing two argu-
ments consisting of rules or counterexamples.

The third row of Figure 3 shows all the possible situations that arise when
comparing a rule argument with a counterexample argument: g) both the coun-
terexample and the rule support the same class (in which case the counterex-
ample is not such, and both arguments endorse each other), h) in which the
counterexample, although supporting the same class, is not covered by the rule,
i) where the counterexample supports a different solution than the rule, and the
rule covers the counterexample, j) in which the counterexample, although sup-
porting a different class, is not covered by the rule. In our framework, we assume
that a counterexample cannot be defeated, and thus only the rule arguments can
be defeated. Out of the four situations, the counterexample argument only de-
feats the rule in situation i), in all the other situations, they are compatible. The
counterexample in situation i) is called a defeating counterexample of r1.

Using these two types of arguments and the compatible, conflicting, subsumed,
and defeated relations among arguments, next section introduces two different
distributed induction strategies.

3 Argumentation-based Distributed Induction

In this section we will present two strategies, ADI (Argumentation-based Dis-
tributed Induction) and RADI (Reduced Argumentation-based Distributed In-
duction), based on argumentation for distributed induction. Since the strategies
involve communication among agents, they will be presented as communication



protocols. Both strategies are based on the same idea, and share the same high
level structure.

1. A1 and A2 use induction locally with their respective training sets, T1 and
T2, and obtain initial hypotheses H1 and H2 respectively.

2. A1 and A2 argue about H1, obtaining a new H∗1 derived from H1 that is
consistent with both A1 and A2’s data.

3. A1 and A2 argue about H2, obtaining a new H∗2 derived from H2 that is
consistent with both A1 and A2’s data.

4. A1 and A2 obtain a final hypothesis H∗ = H∗1 ∪ H∗2 . Remove all the rules
that are subsumed by any other rule (situation c) in Figure 3).

Basically, the intuitive idea is the following. In step 1 both agents perform
induction individually. Then in steps 2 and 3 (which are symmetric, and can
actually be performed in parallel), the agents use argumentation to refine the in-
dividually obtained hypotheses and make them compatible with the data known
to both agents. Finally, when both hypothesis are compatible, a final global hy-
pothesis H∗ is obtained by just computing the union of all the rules learned by
both agents, removing all the rules that are subsumed by some other rule (since
those would be redundant). Notice that, unless the induction algorithms are not
able to learn rules with 100% accuracy in the training set, there should not be
any conflicting rules in H∗ (at least not conflicting in the classification of the
examples of the training set). However, there might be rules that conflict in the
classification of problems outside of the training set. If the learning algorithm
computes confidence levels for rules, those can be used to arbitrate, otherwise
random arbitration can be used. ADI and RADI only differ in the way steps 2
and 3 are performed.

Step 2 in ADI works as follows

1. Let H0
1 = H1, and t = 0.

2. If there is any rule r ∈ Ht
1 that still has not been accepted by A2, then send

the argument α = 〈A1, r〉 to A2. Otherwise, if all the rules in Ht
1 have been

accepted the protocol goes to step 5.
3. A2 analyzes α.r and tries to find a counterexample that defeats it (situation

i) in Figure 3). If A2 can find such counterexample e, then A2 sends the
counterargument β = 〈A2, e, α〉 it to A1. Otherwise, r is accepted and the
protocol goes to step 2 again.

4. When A1 receives a counterexample β, it appends β.e to its training set T1,
and updates its hypothesis. If the induction algorithm of A1 is not incremen-
tal, then A1 can simply use induction from scratch with the new extended
set of examples that includes e. A1 updates the hypothesis obtaining Ht+1

1 .
The protocol goes to step 2 again, and t = t+ 1.

5. The protocol returns Ht
1.

The main idea is that A1 will generate hypotheses according to his local
training set T1, and A2 evaluates them, trying to generate counterarguments to
the hypotheses that do not agree with his own local data T2. Step 3 in ADI is



just the reversed, where it is A2 that generates hypotheses, and A1 that tries
to rebut them with counterexamples. One characteristic of ADI is that at each
step, only one counterexample is exchanged.

If the induction algorithm of A1 and A2 was capable of achieving 100%
accuracy if it was given the complete collection of examples that both A1 and
A2 have, then the protocol always ends up converging to a hypothesis that also
has 100% accuracy in both T1 and T2. Moreover, in order to prevent infinite
iterations in the case of noisy data, the agents are not allowed to send the same
counterexample twice during the protocol. This ensures that the protocol will
eventually end.

The second strategy, RADI, improves over ADI in trying to minimize the
number of times the hypothesis has to be updated while keeping the number of
counterexamples exchanged low. Step 2 in RADI works as follows:

1. Let H0
1 = H1, and t = 0.

2. Let Rt ⊆ Ht
1 be the set of rules in the hypothesis of A1 not yet accepted

by A2. If such set is empty, then the protocol goes to step 5. Otherwise, A1

sends the set of arguments Rt = {α = 〈A1, r〉|r ∈ Rt} to A2.
3. For each α ∈ Rt, A2 computes the set of examples Cα in its training set that

are counterexamples that defeat α.r: Cα = {e ∈ T2|α.r.H v e.P ∧ α.r.S 6=
e.S}. For each argument α ∈ Rt such that Cα = ∅, α.r is accepted by A2.
Let It ⊆ Rt be the subset of arguments for which A2 could find defeating
counterexamples. A2 computes the minimum set of counterexamples Bt such
that ∀α∈ItCα ∩ Bt 6= ∅. That is the minimum subset of examples such that
there is at least one counterexample that can defeat each argument in It. A2

sends the set of counterexample arguments Bt consisting of a counterexample
argument β = 〈A2, e, α〉 for each pair e, α such that e ∈ Bt, α ∈ Rt, and β
defeats α.

4. When A1 receives a set counterexample arguments Bt, it appends all the
examples on them to its training set T1, and updates its hypothesis. If the
induction algorithm of A1 is not incremental, then A1 can simply use induc-
tion from scratch with the new extended set of examples. A1 updates the
hypothesis obtaining Ht+1

1 . The protocol goes to step 2 again, and t = t+ 1.
5. The protocol returns Ht

1.

The idea behind RADI is that an example can be a defeating counterexam-
ple of more than one rule at the same time, thus, by selecting the minimum
set of counterexamples, the number of examples exchanged is reduced. Also, by
sending all the counterexample arguments at once, the number of times the hy-
pothesis has to be updated is also reduced. This results in an efficient strategy for
distributed induction that minimizes the number of examples being exchanged,
and that can be used with any induction algorithm. Notice that finding such
minimum subset of counterexamples is NP, however approximate methods to
compute such minimum subset can be easily defined.

Figure 4 illustrates the first cycle of the RADI protocol. In the figure, agent
A1 has learnt a hypothesis H0

1 from its original training set. A1 sends the set



Fig. 4. An illustration of one step in the RADI strategy.

R0 of rule arguments to A2. In the middle part of Figure 4, we can see the
training set of A2 (T2). In this example, there are only two classes, + and -. A2

evaluates all the arguments in R0 with his training set T2. In particular, in this
example, A2 finds counterexamples for two of the arguments, namely α1 and α2.
Thus, the set B0 = {α1, α2}. Then, A2 constructs the set B0 consisting of the
minimum set of examples that contain counterexamples for all the arguments in
I0. In this case, there is a particular example, e2, which is a counterexample of
both arguments, so e2 is enough to contradict both. Therefore, A2 will construct
the set of counterarguments Bt = {〈A2, e2, α1〉, 〈A2, e2, α3〉}, and send it to A1,
which will update his hypothesis by appending e2 to its training set T1, and
will generate a new updated hypothesis H1

1 , with which the next round of the
protocol will start.

As explained in Section 6, it is part of our future work to investigate how
the inclusion of additional types of counterarguments, such as rule counterar-
guments, can further reduce the amount of information exchanged during the
distributed induction process.

4 Experimental Evaluation

In order to evaluate our approach, we tested the distributed induction strategies
in four different data sets: three propositional data sets from the Irvine machine
learning repository (soybean, zoology, cars), and a complex relational data set
(sponges). Moreover, we tested it using three different induction algorithms:
ID3, CN2 and INDIE (a relational inductive learner [1]). We also compared the
results against centralized induction and also three other distributed induction
strategies: individual (where agents just do induction individually), union (where
agents do induction individually, and then they put together all the rules they
learn into one common hypothesis), and DAGGER [5] (the only other distributed



Centralized

Induction

T2T1

DAGGER

ADI / RADI

Individual

T2

H2

Induction

T1

H1

InductionT2

Induction

T1

Induction

T2

H2

Induction

T1

H1

Induction DAGGER DAGGER

ARGUMENTATION

H2H1

H2H1

Union

T2

Induction

T1

Induction
Induction

H2H1

Fig. 5. An illustration of all the different distributed induction strategies evaluated in
our experiments.

induction technique independent of the learning algorithm to the best of our
knowledge, see Section 5 for a brief explanation of DAGGER). Figure 5 presents a
visual overview of the different strategies used in our evaluation. We will evaluate
convergence, time, number of examples exchanged, number of rules exchanged,
number of induction calls, and both training and test set accuracy. All the results
presented are the average of 10 fold cross validation runs.

Since sponge is a relational data set (introduced by Armengol and Plaza [1])
it has to be converted to propositional so that ID3 and CN2 can use it. In the
sponge data set, examples are represented as trees, and the size of the trees
varies greatly from an example to another. In order to convert it to a proposi-
tional representation, we computed the set of all possible different branches that
the examples have, and each one is converted to a feature (70 different features
are defined in this way). Each example consists of about 30 to 50 features each,
so there is a large amount of missing values in the resulting propositional repre-



Table 1. Training and test accuracy measurements of different distributed induction
strategies combined with different induction algorithms.

Training Test

Soybean Zoology Cars Sponges Soybean Zoology Cars Sponges

ID3-ADI 100.00 100.00 100.00 99.70 88.50 99.00 88.95 58.21

ID3-RADI 100.00 100.00 100.00 99.74 87.67 99.00 89.24 58.21

ID3-centralized 100.00 100.00 100.00 99.44 85.00 99.00 88.95 58.57

ID3-individual 85.67 93.85 93.84 80.20 76.50 90.00 86.84 55.54

ID3-union 90.25 94.73 97.73 94.05 81.00 94.00 90.99 60.36

ID3-DAGGER 99.57 100.00 76.36 99.76 80.67 92.50 68.95 62.50

CN2-ADI 100.00 100.00 100.00 100.00 84.90 93.50 80.61 79.11

CN2-RADI 100.00 100.00 100.00 100.00 84.66 93.50 80.17 78.93

CN2-centralized 100.00 100.00 100.00 100.00 84.66 94.00 80.64 78.57

CN2-individual 87.82 94.62 89.90 88.29 77.83 87.50 80.84 74.46

CN2-union 54.91 91.65 80.41 70.71 63.66 86.00 80.00 68.20

CN2-DAGGER 99.49 99.65 95.86 99.88 79.33 92.50 75.34 78.93

INDIE-ADI 99.64 100.00 100.00 100.00 84.33 93.00 91.25 95.89

INDIE-RADI 99.64 100.00 100.00 100.00 84.50 94.00 91.37 94.11

INDIE-centralized 99.64 100.00 100.00 100.00 83.00 94.00 81.80 95.00

INDIE-individual 89.21 94.07 93.93 96.45 77.50 85.50 87.76 54.11

INDIE-union 91.44 96.48 97.42 97.90 78.00 90.00 91.80 94.29

INDIE-DAGGER - - - - - - - -

sentation. Thus, both ID3 and CN2 have troubles learning in this domain. CN2
does, in fact, a better job, but ID3 achieves a very low classification accuracy.
Additionally, since the basic ID3 cannot handle missing values, all missing values
where considered to have the special value “missing” when the data set was used
by ID3. For CN2, a beam size of 3 was used in all the experiments.

Table 1 presents the classification accuracy (both measured in training set
and in test set). We ran each combination of induction algorithm (ID3, CN2, IN-
DIE) with distributed induction strategy (centralized, individual, union, DAG-
GER, ADI and RADI) with all the data sets (except the combination of INDIE-
DAGGER, that is not possible, since DAGGER assumes propositional data sets,
and INDIE requires them in relational form). In each experimental run the data
set was split in two sets, a training set containing 90% of the examples, and a
test set containing 10% of the examples. The training set was further split among
two agents (except in the case of the centralized strategy, where there was only
one agent). Accuracy is measured in the original training set (with 90% of the
examples), and also in the remaining 10%, that forms the test set. The left hand
side of Table 1 shows accuracy in the training set, and the right hand side shows
accuracy in the test set.

Looking at the training accuracy, the first thing that the experimental re-
sults confirm is that the hypotheses learnt by ADI and RADI is indistinguish-
able in training set accuracy from the one learnt by using centralized induction.



Table 2. Time (in seconds) required to complete the induction process per agent,
number of examples shared per agent (as a percentage of the number of examples
owned by an agent), number of rules sent per agent, and number of times the base
induction algorithm had to be invoked per agent (notice that in the “centralized” case,
there is only one agent). All the results are average over all the induction algorithms
and all the data sets.

time Examples shared Rules sent Induction calls

centralized 2.8 100.00% 0.00 1.00
individual 1.5 0.00% 0.00 1.00
union 1.5 0.00% 67.63 1.00
DAGGER 3.5 68.56% 64.75 1.50
ADI 155.4 19.04% 3748.70 58.90
RADI 18.2 21.52% 679.34 5.77

Achieving a 100% accuracy all the times where centralized induction also does.
When agents perform individual induction, of course, training accuracy dimin-
ishes (since agents only learn with 50% of the data in the training set), agents
using the union strategy improve their accuracy, but still it is not guaranteed
to be as good as that of centralized accuracy (and in the case of CN2, where
the order of the rules matter, the accuracy drops drastically). DAGGER shows
good accuracy (although not guaranteeing that of centralized induction).

Analyzing test set accuracy, we observe that, except in a few cases where
DAGGER achieves higher accuracy (and one where surprisingly union does 3),
ADI and RADI achieve same or higher accuracy than the centralized approach.
Table 1 shows the highest results for each induction algorithm in boldface (when
the difference was not statistically significant, more than one result is high-
lighted). The explanation is that when agents use ADI or RADI, two different
hypothesis of the data are learnt (one per agent), and, after inconsistencies are
fixed, they are merged. Therefore, the resulting hypothesis has potentially sev-
eral rules that cover the same examples, but that were derived from different
training sets (thus having different biases). This, alleviates overfitting, and thus
increases classification accuracy in unseen problems. The effect achieved is sim-
ilar to that of ensemble methods, but with the advantage of having a single
hypothesis.

Another effect that can be seen is that ID3 and CN2 cannot properly handle
the complexity of the sponges data set, since, although they can achieve high
training set accuracy, the rules they learn do not generalize and achieve very low
test set accuracy. INDIE, however, being a relational learner, can handle sponges
in its native representation formalism, and thus learn much more general rules,
that generalize properly, achieving high test set accuracy.

3 We repeated that experiment several times, with identical result, we are still in the
process of analyzing why union achieves such good result in the cars data set with
ID3.



Classification accuracy, however, is only one side of the coin. Table 2 shows
the amount of time used by each of the different distributed induction strategies
per agent (averaged over all the data sets and induction algorithms), also the
percentage of the examples owned by each agent that had to be shared, the
number of rules exchanged, and also the number of times that the agents had to
call the base induction algorithm. Notice, that time is dominated by the slower
learning algorithm (CN2) and the most complex data set (sponges), the fastest
algorithm (ID3) required less than a tenth of a second for any strategy except
ADI and RADI (where it still required less than a second for any data set).
Table 2 shows that ADI and RADI, are the most computationally expensive
strategies, ADI taking 155.4 seconds and RADI 18.2, while centralized accuracy
required only 2.8 seconds. Moreover, most of the time consumed by ADI and
RADI corresponds to invocations to the base induction algorithm after receiving
new examples. If an incremental induction algorithm such as ID5R or ITI [15]
the amount of time consumed would be reduced drastically.

Table 1 shows that among all the distributed induction strategies, DAGGER
is the one that requires exchanging the highest percentage of examples, 68.56%,
while ADI and RADI exchange only 19.04% and 21.52% respectively. The union
strategy, of course, does not force agents to exchange any example. However,
ADI and RADI require the exchange of a large amount of rules, where as other
strategies, such as DAGGER, or union only require sharing the final hypothesis.
While ADI shares slightly a lower amount of examples, RADI requires only a
tenth of the time, a fifth of the rules, and a tenth of the number of induction
calls.

Summarizing the results, we can conclude that different distributed induc-
tion strategies have different strengths and weaknesses. Performing centralized
induction has the problem of having to share all the examples, but achieves a
high accuracy at the minimum computational cost. Next in line is DAGGER,
which forces the agents to share most of their examples, but achieves a high ac-
curacy also (although not guaranteed to be as high as centralized). On the other
extreme, we have the individual and union strategies, that have the minimum
computational cost, zero example exchange, but also the lowest classification ac-
curacies. ADI and RADI sit in the middle, requiring the agents to share a small
percentage of examples (around 20%), while ensuring the same or higher clas-
sification accuracy than centralized induction (especially in the test set, where
they hypotheses learn by ADI or RADI have less overfitting). However, ADI and
RADI have a higher computational cost. In between ADI and RADI, we can
conclude that RADI is the most well balanced strategy, since it requires about
a tenth of the computational cost, while only sharing a very small number of
additional examples.

Moreover, notice that nothing stops ADI or RADI from working even if each
of the agents had a different base induction algorithm.



5 Related Work

Two areas of work are related to our work, namely distributed induction and
incremental learning. Distributed induction has been attempted mainly from
four different approaches: computing statistics in a distributed fashion and then
aggregating, sharing example, sharing hypotheses or viewing induction as search
and distributing the search process. Let us present examples of each one of the
approaches.

Caragea et al. [3] present a framework for induction from a set of distributed
sources based on computing a collection of statistics locally in each one of the
sources, and then aggregating them to learn a model. They prove that some
learning algorithms, such as ID3, can be distributed in this way while still guar-
anteeing finding the same exact tree that would be found if all the data was
centralized. Their framework restricts to feature value representations. The main
difference with out work is that in their framework they assume a single agent
trying to learn from scratch from a collection of distributed sources, while in
our framework we assume a multi-agent system with agents that already have
an initial hypothesis and improve it by interacting with other agents. A simi-
lar framework was presented by Bhatnagar and Srinivasan [2], but where they
allow each agent to have a completely different of attributes, as long as all the
tables owned by the agents can be put together using a join data base operation
if they were copied in a centralized repository. Another difference of both these
frameworks with ours is that both attempt at providing a framework for defining
distributed induction algorithms. So, using those frameworks, algorithms such
as ID3 or CN2 have to be adapted to work in a distributed fashion. In contrast,
our research focuses on finding distributed induction strategies that can be built
around standard induction algorithms without modifying them.

A different approach is DAGGER, presented by Davies [5] (and used in our
experiments for comparison purposes). Davies proposes to perform distributed
induction by selecting a reduced set of informative examples from each one of the
distributed sources, and then perform centralized induction with the union of the
reduced sets of examples. Davies’ method had the goal of being an alternative
to voting mechanisms for aggregating hypothesis, which is a different goal than
the work presented in this paper. Thus Davies’ approach is a one shot approach
that does not ensure preserving classification accuracy, while our strategies do.

Another approach to distributed induction is that of Shaw and Sikora [14],
where they propose to learn individual models in each one of the sources, and
then combine them by using a genetic algorithm that uses specialized mutation
and crossover operators for being able to merge the hypothesis. The goal with
Shaw and Sikora’s approach is just to distribute the induction task among agents,
so that it becomes more efficient and parallelizable. Our goal is not to make
the induction process more efficient, but to allow groups of agents to perform
distributed induction by using their own induction algorithm, and ensuring high
quality of the hypotheses found.

Another example of distributing induction for efficiency is that of distribut-
ing the search process of finding rules among a series of distributed processors.



Provost and Hennessy [9] propose to perform distributed search for rule learn-
ing, where each individual processor only searches with a subset of the data and
proposes each candidate rule to the rest for verification.

Also related is the work on incremental learning, such as the incremental
versions of the ID3 algorithm ID4 and ÎD4 by Schlimmer and Fisher [13], or
ID5R and ITI by Utgoff [15], which allow learning a decision tree from a set of
examples, and then update it with new examples at a lower cost than learning
it from scratch again. These algorithms can be used to increase the efficiency of
relearning the hypotheses in the techniques presented in this paper. Experiments
to validate this claim are part of our future work.

Finally, the argumentation framework presented in this paper is comple-
mentary to that introduced in [8], where an argumentation framework for lazy
learning called AMAL was presented. The idea behind AMAL is complementary
to that of ADI and RADI. While in ADI and RADI agents perform induction in
a collaborative fashion, and then they solve problems individually (by using the
hypothesis learnt collaboratively), in AMAL, agents learn separately, and only
collaborate during problem solving. Thus, AMAL is an argumentation model of
multi-agent learning based on “solution merging”, where as ADI and RADI is
based on “hypothesis merging”.

6 Conclusions and Future Work

In this paper we have introduced two different distributed induction strategies,
ADI and RADI, that can be used on top of any induction algorithm capable of
learning hypotheses that can be represented using an independent set of rules.
ADI and RADI ensure that the hypothesis learnt will be undistinguishable in
terms of training set accuracy from that produced by the base induction algo-
rithm when learning from all the data. The main idea behind ADI and RADI
is to let each agent perform induction individually, then argue about the learnt
hypotheses to remove inconsistencies, and finally merge both hypotheses.

Experimental results show that, in addition to achieve the same training
set accuracy than a centralized method, ADI and RADI have the advantage of
obtaining hypotheses that are less prone to overfitting, and thus achieve higher
test set accuracy. Moreover, ADI and RADI require sharing only about 20%
of the examples of each agent in order to converge to the common hypothesis.
ADI and RADI also require that the agents perform several calls to the base
induction algorithm, and thus are better suited to be paired with incremental
learning algorithms (but this is not required).

ADI and RADI use counterexamples as the only form of counterargument.
However, we plan to investigate more complex argumentation protocols that let
agents use rule also as counterarguments. The problem of that, is that the base
learning algorithms would have to be modified to be able to take rules into ac-
count, in addition to the examples in the training set. This is related to the
research in “argument based machine learning” by Možina et al. [7] where they
modify the CN2 algorithm to take into account specific rules (arguments) in



addition to examples for learning purposes. Our ultimate goal is to design dis-
tributed induction strategies that could be paired with any induction algorithm,
and get as close as possible to not requiring the exchange of any example, while
converging to the same hypothesis of a centralized learner. Additionally, we want
to extend ADI and RADI to work with an arbitrary number of agents, and go
beyond classification tasks.

Acknowledgements Support for this work came from the project MID-CBR TIN2006-

15140-C03-01.

References

[1] E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine
Learning Journal, 41(1):259–294, 2000.

[2] Raj Bhatnagar and Sriram Srinivasan. Pattern discovery in distributed databases.
In AAAI/IAAI, pages 503–508, 1997.

[3] Doina Caragea, Adrian Silvescu, and Vasant Honavar. Decision tree induction
from distributed, heterogeneous, autonomous data sources. In In Proceedings of
the Conference on Intelligent Systems Design and Applications (ISDA 03), pages
341–350. Springer Verlag, 2003.

[4] Peter Clark and Tim Niblett. The CN2 induction algorithm. In Machine Learning,
pages 261–283, 1989.

[5] Winston H. E. Davies. The Communication of Inductive Inference. PhD thesis,
University of Aberdeen, 2001.

[6] Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-
purpose incremental learning system aq15 and its testing application to three
medical domains. In AAAI, pages 1041–1047, 1986.

[7] Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learning.
Artificial Intelligence, 171(10-15):922–937, 2007.

[8] Santiago Ontañón and Enric Plaza. Learning and joint deliberation through ar-
gumentation in multiagent systems. In AAMAS, page 159, 2007.

[9] Foster John Provost and Daniel N. Hennessy. Scaling up: Distributed machine
learning with cooperation. In In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence, pages 74–79. AAAI Press, 1996.

[10] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
[11] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5:239–266, 1990.
[12] Iyad Rahwan, Simon Parsons, and Chris Reed, editors. Argumentation in Multi-

Agent Systems, 4th International Workshop, ArgMAS 2007, Honolulu, HI, USA,
May 15, 2007, Revised Selected and Invited Papers, volume 4946 of Lecture Notes
in Computer Science. Springer, 2008.

[13] Jeffrey C. Schlimmer and Douglas H. Fisher. A case study of incremental concept
induction. In AAAI, pages 496–501, 1986.

[14] Michael J. Shaw and Riyaz Sikora. A distributed problem-solving approach to
rule induction: Learning in distributed artificial intelligence systems. Technical
Report ADA232822, Carnagie-Mellon University, 1990.

[15] Paul E. Utgoff. An improved algorithm for incremental induction of decision trees.
Technical Report 94-072, UMass, 1994.


