
Argumentation-based Example
Interchange for Multiagent Induction

Santiago ONTAÑÓN and Enric PLAZA
IIIA (Artificial Intelligence Research Institute),
CSIC (Spanish Council for Scientific Research)

Campus UAB, 08193 Bellaterra, Catalonia (Spain),
{santi,enric}@iiia.csic.es

Abstract. Argumentation can be used by a group of agents to discuss about the
validity of hypotheses. In this paper we propose an argumentation-based frame-
work for multiagent induction, where two agents learn separately from individual
training sets, and then engage in an argumentation process in order to converge to
a common hypothesis about the data. The result is a multiagent induction strategy
in which the agents minimize the set of examples that they have to exchange (using
argumentation) in order to converge to a shared hypothesis. The proposed strategy
works for any induction algorithm which expresses the hypothesis as a set of rules.
We show that the strategy converges to a hypothesis indistinguishable in training
set accuracy from that learned by a centralized strategy.

Keywords. Multiagent learning, induction, argumentation

1. Introduction

Multiagent induction is the problem of learning a hypothesis or model (such as a set of
rules, or a decision tree) from data when the data is distributed among different agents.
Some real-life domains involve such forms of distributed data, where data cannot be
centralized due to one or several of the following reasons: storage size, bandwidth, pri-
vacy, or management issues. Storage size and bandwidth are less a problem nowadays,
however, in large data sets they might still be an issue. In this paper we will propose a
framework in which agents will use a simple form of argumentation in order to arrive to
a model of all the data while minimizing the communication, and specially minimizing
the amount of examples exchanged, and ensuring that the hypothesis found is as good as
if centralized induction with all the data was used.

Argumentation frameworks can be used in multi-agent systems for different pur-
poses such as joint deliberation, persuasion, negotiation, and conflict resolution [10]. Pre-
vious work [7] has shown how argumentation can be used by agents that use lazy learn-
ing or case-based reasoning (CBR) techniques. In this paper we introduce a framework
where agents that use inductive learning argue about learnt hypotheses. In this frame-
work, agents generate hypotheses locally, and then argue about them until they agree.

Formalizing agent communication as argumentation allows us to abstract away from
the induction algorithm used by the agents. Thus, all the strategies presented in this



CN2 output:

r1 = �c1, A�
r2 = �c2, B�
r3 = �c3, A�
default: C









r�
1 = �c1, A�

r�
2 = �c2 ∧ ¬c1, B�

r�
3 = �c3 ∧ ¬c1 ∧ ¬c2, A�

r�
4 = �¬c1 ∧ ¬c2 ∧ ¬c3, C�

C
c1

c2
c3

A

B
A

Figure 1. Postprocessing of the rules generated by CN2 in order to remove the order dependencies, and thus
fit in our argumentation framework.

paper can work with any induction algorithm that learn hypotheses expressed as a set
of independent rules. Algorithms such as ID3 [9] can also be used, since a tree can be
easily flattened into a set of rules. Algorithms such as CN2 [4] that learn an ordered set
of rules also fit in this framework, but rules require some preprocessing to remove the
dependencies that the ordering introduces (as elaborated in Section 2). Moreover, the
framework is also agnostic in regards to the representation formalism.

This paper is organized as follows. Section 2 presents our multi-agent learning
framework. Section 3 presents two strategies for multiagent induction based on argu-
mentation, and Section 4 empirically evaluates them, comparing them to other strategies
in the literature. Section 5 provides a quick overview of the related work, and finally the
paper closes with conclusions and future work.

2. A Framework for Multi-Agent Learning

Let A1 and A2 be two agents who are completely autonomous and have access only
to their individual collections of examples, or training sets T1, and T2. A training set
Ti = {e1, ..., en} is a collection of examples. Agents can individually use induction in
order to infer a hypothesis (or model) of the data; we will use the terms “model” and
“hypothesis” indistinguishably. These hypotheses will be used during argumentation and,
given the dynamic nature of the training sets, old hypotheses will be discarded and new
ones will be inferred as need be.

Examples, hypotheses and rules are the three key concepts of the learning framework
proposed in this paper. We will restrict ourselves to classification tasks, therefore, an
example e = 〈P, S〉 is a pair containing a problem P and a solution S. In the remainder
of this paper, we will use the dot notation to refer to elements inside a tuple; e.g., to refer
to the solution of an example e, we will write e.S.

Our framework is restricted to hypothesesH that can be represented as a set of rules:
H = {r1, ..., rm}. A rule r = 〈D,S〉 is composed of a body r.D, and a solution, r.S.
When a problem P matches the body r.D of a particular rule r, the rule predicts that the
solution to the problem P is r.S. When a problem matches the body of a rule r.D, we say
that the rule subsumes the problem: r.D v P . A large number of induction algorithms
can generate hypothesis that can be represented using rules. Moreover, the framework
introduced in this paper does not specify which representation formalism agents use to
represent examples. In principle, any data representation (propositional, relational, or
any other) could be used.

When using algorithms such as CN2, that produce an ordered set of rules, the rules
produced have to be postprocessed in order to remove the order relationship among them.



The left hand side of Figure 1 shows a set of three rules generated by CN2 (plus the
default solution assigned by CN2 when no rule covers a problem). The center of Figure
1 shows a graphical representation of the way these rules partition the problem space
among the three different solutions A, B, and C (the three circles represent the subset of
problems that are subsumed by each of the three conditions in the body of the rules: c1,
c2 and c3). Notice for instance that rule r2 states that all the problems that are subsumed
by c2 have solution B. However, r2 is only considered if r1 is not fired. Therefore, that
rule is postprocessed and converted into rule r′2, which states that all examples that are
subsumed by c2, but not by c1 have solution B. In general, a rule is postprocessed by
adding the negations of all the previous rules to its body. Finally, the default solution
computed by CN2 is converted also into a rule containing the conjunction of the negation
of the body of all the rules. The result of this process is a set of independent rules, which
can be used in our framework.

In order to use argumentation, two elements must be defined: the argument language
(that defines the set of arguments that can be generated), and an attack relation. In our
framework, the argument language is composed of two kinds of arguments:

• A rule argument α = 〈A, r〉, is an argument generated by an agent A stating that
the rule r is true.

• A counterexample argument β = 〈A, e, α〉, is an argument generated by an agent
A stating that e is a counterexample of (an example contradicting) argument α.

Including additional types of counterarguments, such as “rule counterarguments” is
part of future work (see Section 6).

To define the relation among arguments, we have to take into account all the possible
different situations that can arise while comparing two arguments consisting of rules or
examples. Figure 2 shows all these situations. The top row of Figure 2 considers all the
possible comparisons of two rule arguments, r1 and r2 such that r1.S = r2.S. Only
three situations might arise: a) r1 and r2 are totally unrelated, b) the sets of problems
covered by r1 and r2 have a non empty intersection, and c) one is more general than
the other. The middle row of Figure 2 considers all the possible comparisons of two
rule arguments, r1 and r2 but this time r1.S 6= r2.S. The same three situations arise
(unrelated, non-empty intersection, and one more general than another). Notice that in the
non-empty intersection situation we also require that no rule is more general than another
(we don’t include the extra restriction in the figure for clarity). Thus, when comparing
any two rule arguments, only 6 situations might arise. Situations a), b), c) and d) represent
rule arguments that are compatible, whereas situations e) and f) represent conflicting
arguments. Situation c) is a special situation and we say that r1 subsumes r2.

The third row of Figure 2 shows all the possible situations that arise when compar-
ing a rule argument with a counterexample argument: g) both the counterexample and
the rule support the same class, h) in which the counterexample, although supporting the
same class, is not covered by the rule, i) where the counterexample supports a different
solution than the rule, and the rule covers the counterexample, j) in which the counterex-
ample, although supporting a different class, is not covered by the rule. In our frame-
work, we assume that a counterexample cannot be attacked. Out of the four situations,
the counterexample argument only attacks the rule in situation i), where it is called an
attacking counterexample of r1.



r1.S = r2.S

r1 ∩ r2 = ∅ r1 ∩ r2 �= ∅ r1 ⊆ r2

r1.S �= r2.S

r1 r2 r1 r2 r1 r2

r1 ∩ r2 = ∅ r1 ∩ r2 �= ∅ r1 ⊆ r2

r1 r2 r1 r2 r1 r2

r1r1r1r1

e1 e1 e1 e1

r1 � e1

r1.S = e1.S r1.S �= e1.S
r1 �� e1

r1.S �= e1.Sr1.S = e1.S

r1 � e1 r1 �� e1

a) b) c)

d) e) f)

g) h) i) j)

Figure 2. All the possible different situations that can arise while comparing two arguments consisting of rules
or counterexamples.

Using these two types of arguments and the compatible, conflicting, subsumed, and
attack relations among arguments, next section introduces two different multiagent in-
duction strategies.

3. Argumentation-based Multiagent Induction

In this section we will present two strategies, AMAI (Argumentation-based Multiagent
Induction) and RAMAI (Reduced Argumentation-based Multiagent Induction). Both
strategies are based on the same idea, and share the same high level structure.

1. A1 and A2 use induction locally with their respective training sets, T1 and T2, and
obtain initial hypotheses H1 and H2 respectively.

2. A1 andA2 argue aboutH1, obtaining a newH∗1 derived fromH1 that is consistent
with both A1 and A2’s data.

3. A1 andA2 argue aboutH2, obtaining a newH∗2 derived fromH2 that is consistent
with both A1 and A2’s data.

4. A1 and A2 obtain a final hypothesis H∗ = H∗1 ∪H∗2 . Remove all the rules that are
subsumed by any other rule (situation c) in Figure 2).

Thus, both agents perform induction individually in step 1 and then, in steps 2 and 3
(which are symmetric), the agents use argumentation to refine the individually obtained
hypotheses and make them compatible with the data known to both agents. Basically, one
agent proposes rules, and the other agent either accepts them or sends a counterexample.
Finally, when both hypotheses are compatible, a final global hypothesisH∗ is obtained as
the union of all the rules learned by both agents while removing redundant rules. Notice
that, unless the induction algorithms are not able to learn rules with 100% accuracy in



the training set, there should not be any conflicting rules in H∗. AMAI and RAMAI only
differ in the way steps 2 and 3 are performed. Step 2 in AMAI works as follows:

2.a Let H0
1 = H1, and t = 0.

2.b If there is any rule r ∈ Ht
1 that has not yet been accepted by A2, then send the

argument α = 〈A1, r〉 to A2. Otherwise (all the rules in Ht
1 have been accepted) the

protocol goes to step 2.e.
2.c A2 analyzes α.r and tries to find a counterexample that attacks it. A2 sends the

counterargument β = 〈A2, e, α〉 to A1 if a counterexample e is found; otherwise r
is accepted and the protocol goes back to step 2.b.

2.d When A1 receives a counterexample argument β, the counterexample β.e is added
to the training set T1, and A1 updates its hypothesis1 obtaining Ht+1

1 . The protocol
goes back to step 2.b, and t = t+ 1.

2.e The protocol returns Ht
1.

The main idea is that A1 infers rules according to its individual training set T1, and
A2 evaluates them, trying to generate counterarguments to the rules that do not agree with
its own individual training set T2. Step 3 in AMAI is the dual situation where A2’s rules
are attacked byA1’s counterexamples. Notice that only one counterexample is exchanged
at a time in AMAI. Agents are not allowed to send the same counterexample twice to
ensure the convergence of the protocol in case of noisy data.

The second strategy, RAMAI, improves over AMAI in trying to minimize the number
of times the hypothesis has to be updated while trying to keep a low number of exchanged
counterexamples. Step 2 in RAMAI works as follows:

2.a Let H0
1 = H1, and t = 0.

2.b Let Rt ⊆ Ht
1 be the set of rules in the hypothesis of A1 not yet accepted by A2. If

empty, then the protocol goes to step 2.e, otherwise A1 sends the set of arguments
Rt = {〈A1, r〉|r ∈ Rt} to A2.

2.c For each α ∈ Rt, A2 determines the set of examples Cα in its training set that are
attacking counterexamples of α.r: Cα = {e ∈ T2|α.r.D v e.P ∧ α.r.S 6= e.S}.
For each argument α ∈ Rt such that Cα = ∅, A2 accepts rule α.r. Let It ⊆ Rt
be the subset of arguments for which A2 could find attacking counterexamples. A2

computes the minimum set of counterexamplesBt such that ∀α ∈ It, Cα∩Bt 6= ∅,
i.e. the minimum subset of examples that can attack all arguments in It. A2 sends
the set of counterexample arguments Bt consisting of a counterexample argument
β = 〈A2, e, α〉 for each pair e, α such that e ∈ Bt, α ∈ It, and β attacks α.

2.d When A1 receives a set of counterexample arguments Bt, it adds their counterexam-
ples to its training set T1, and updates its inductive hypothesis, obtaining Ht+1

1 . The
protocol goes back to step 2.b, and t = t+ 1.

2.e The protocol returns Ht
1.

As before, Step 3 in RAMAI is just the dual of Step 2. The idea behind RAMAI is
that an example can be an attacking counterexample of more than one rule at the same
time. RAMAI computes the minimum set of examples that attacks all the rules in It and
sends them all at once. Therefore, the number of times the hypothesis has to be updated
is likely reduced (see experiments in Section 4).

1If the induction algorithm of A1 is not incremental, then A1 can use induction from scratch with the new
extended training set that includes e.



4. Experimental Evaluation

In order to evaluate our approach, we tested the multiagent induction strategies in four
different data sets from the Irvine machine learning repository: three propositional ones
(soybean, zoology, cars), and a relational one (demospongiae). For demospongiae, we
used a subset consisting of the axinellida, adromerida and astrophorida classes. More-
over, we tested it using three different induction algorithms: ID3 [9], CN2 [4] and INDIE
(a relational inductive learner [2]). This base techniques for induction are applied to three
multiagent induction strategies: Individual (where agents just do induction individually),
Union (where agents do induction individually, and then they put together all the rules
they learn into one common hypothesis), and DAGGER [5] (the only other distributed
induction technique independent of the learning algorithm to the best of our knowledge,
see Section 5 for a brief explanation of DAGGER). We also compared the results against
Centralized induction (one sole agent having all data). We evaluated convergence, time,
number of examples exchanged, number of rules exchanged, number of induction calls,
and both training and test set accuracy. All the results presented are the average of 10
fold cross validation runs.

Since demospongiae is a relational data set, it has to be converted to propositional
so that ID3 and CN2 can use it. In the demospongiae data set, examples are represented
as trees, we computed the set of all possible different branches that the examples have,
and each one is converted to a feature (70 different features are defined in this way).
Each example consists of about 30 to 50 features each, so there is a large amount of
missing values in the resulting propositional representation. Thus, both ID3 and CN2
have troubles learning in this domain. CN2 does, in fact, a better job, but ID3 achieves a
very low classification accuracy. Additionally, since the basic ID3 cannot handle missing
values, all missing values where considered to have the special value “missing” when the
data set was used by ID3. For CN2, a beam size of 3 was used in all the experiments.

Table 1 presents the classification accuracy comparison. We ran each combination
of induction algorithm (ID3, CN2, INDIE) with multiagent induction strategy (Central-
ized, AMAI, RAMAI, Individual, Union and DAGGER ) with all the data sets (except the
combination of INDIE-DAGGER, that is not possible, since DAGGER assumes propo-
sitional data sets, and INDIE requires them in relational form). In each experimental run
the training set was randomly split among the two agents, forming their individual train-
ing sets (except in the case of the Centralized strategy, where there was only one agent).
Accuracy is measured in the original training set (with 90% of the examples), and also
in the remaining 10% of the test set.

The training set accuracy results confirm is that the hypotheses learnt by AMAI and
RAMAI are indistinguishable in training set accuracy from those learnt by using Central-
ized induction, achieving a 100% accuracy every time where Centralized induction also
does. When agents perform Individual induction, having less data, accuracy diminishes;
agents using the Union strategy improve their accuracy with respect to an individual strat-
egy, but still it is not guaranteed to be as good as that of Centralized accuracy. DAGGER
shows good accuracy (although not guaranteeing that of Centralized induction).

Analyzing test set accuracy (accuracy over unseen examples), we observe that, ex-
cept in a few cases where DAGGER achieves higher accuracy (and one where Union
does), AMAI and RAMAI achieve same or higher accuracy than the Centralized ap-
proach. Table 1 shows the highest results for each induction algorithm in boldface (when
the difference was not statistically significant, more than one result is highlighted).



Table 1. Training and test accuracy measurements of different multiagent induction strategies combined with
different induction algorithms.

Training Test

Soyb. Zool. Cars Demosp. Soyb. Zool. Cars Demosp.

ID3 100.00 100.00 100.00 99.44 85.00 99.00 88.95 58.57

ID3-AMAI 100.00 100.00 100.00 99.70 88.50 99.00 88.95 58.21

ID3-RAMAI 100.00 100.00 100.00 99.74 87.67 99.00 89.24 58.21

ID3-individual 85.67 93.85 93.84 80.20 76.50 90.00 86.84 55.54

ID3-union 90.25 94.73 97.73 94.05 81.00 94.00 90.99 60.36

ID3-DAGGER 99.57 100.00 76.36 99.76 80.67 92.50 68.95 62.50

CN2 100.00 100.00 100.00 100.00 84.66 94.00 80.64 78.57
CN2-AMAI 100.00 100.00 100.00 100.00 84.90 93.50 80.61 79.11
CN2-RAMAI 100.00 100.00 100.00 100.00 84.66 93.50 80.17 78.93
CN2-individual 87.82 94.62 89.90 88.29 77.83 87.50 80.84 74.46

CN2-union 54.91 91.65 80.41 70.71 63.66 86.00 80.00 68.20

CN2-DAGGER 99.49 99.65 95.86 99.88 79.33 92.50 75.34 78.93

INDIE 99.64 100.00 100.00 100.00 83.00 94.00 81.80 95.00

INDIE-AMAI 99.64 100.00 100.00 100.00 84.33 93.00 91.25 95.89
INDIE-RAMAI 99.64 100.00 100.00 100.00 84.50 94.00 91.37 94.11

INDIE-individual 89.21 94.07 93.93 96.45 77.50 85.50 87.76 54.11

INDIE-union 91.44 96.48 97.42 97.90 78.00 90.00 91.80 94.29

Table 2. Time (in seconds) required to complete the induction process per agent, number of examples shared
per agent (as a percentage of the number of examples owned by an agent), number of rules sent per agent, and
number of times the base induction algorithm had to be invoked per agent (notice that in the Centralized case,
there is only one agent). Results are average over all the induction algorithms and all the data sets.

time Examples Rules Induction calls
Centralized 2.8 100.00% 0.00 1.00
Individual 1.5 0.00% 0.00 1.00
Union 1.5 0.00% 67.63 1.00
DAGGER 3.5 68.56% 64.75 1.50
AMAI 155.4 19.04% 3748.70 58.90
RAMAI 18.2 21.52% 679.34 5.77

Another effect that can be seen is that ID3 and CN2 cannot properly handle the com-
plexity of the demospongiae data set, since, although they can achieve high training set
accuracy, the rules they learn do not generalize and achieve very low test set accuracy.
INDIE, however, being a relational learner, can handle demospongiae in its native rep-
resentation formalism, and thus learn much more general rules, that generalize properly,
achieving high test set accuracy.

Table 2 shows the amount of time used by each of the different multiagent induction
strategies per agent (averaged over all the data sets and induction algorithms), also the
percentage of the examples that had to be shared, the number of rules exchanged, and



also the number of times that the agents had to call the base induction algorithm. Notice
that time is dominated by the slower learning algorithm (CN2) and the most complex
data set (demospongiae), while the fastest algorithm (ID3) required less than a tenth of
a second for any strategy except AMAI and RAMAI (where it still required less than a
second for any data set). Table 2 shows that AMAI and RAMAI, are the most computa-
tionally expensive strategies, AMAI taking 155.4 seconds and RAMAI 18.2, while Cen-
tralized accuracy required only 2.8 seconds. However, most of the additional time con-
sumed by AMAI and RAMAI corresponds to multiple invocations of the base induction
algorithm after receiving new examples, and RAMAI greatly reduces computational time
from AMAI. If an incremental induction algorithm such as ID5R or ITI [12] was used,
the amount of time consumed could be further reduced.

Table 2 shows that among all the multiagent induction strategies, DAGGER is the
one that requires exchanging the highest percentage of examples, 68.56%, while AMAI
and RAMAI exchange only 19.04% and 21.52% respectively. The Union strategy, of
course, does not force agents to exchange any example. However, AMAI and RAMAI re-
quire the exchange rules to be performed repeatedly, resulting in a larger number of rules
being exchanged, whereas other strategies, such as DAGGER, or Union only require
exchanging rules once. Comparing AMAI and RAMAI, notice that AMAI exchanges a
slightly lower amount of examples, but RAMAI reduces other aspects: requires only a
tenth of the time, a fifth of the rules, and a tenth of the number of induction calls.

Summarizing the results, we can conclude that different multiagent induction strate-
gies have different strengths and weaknesses. Performing centralized induction has the
problem of having to share all the examples, but achieves a high accuracy. Next in line is
DAGGER, which forces the agents to exchange most of their examples, achieving a high
accuracy (although not guaranteed to be as high as centralized). On the other extreme,
we have the Individual and Union strategies, that have the minimum computational cost,
zero example exchange, but also the lowest classification accuracies.

AMAI and RAMAI sit in the middle, requiring the agents to share a small percent-
age of examples (around 20%), while ensuring the same or higher classification accu-
racy than centralized induction (especially in the test set, where the hypotheses learnt by
AMAI or RAMAI have less overfitting). Thus, the usefulness of of using argumentation to
regulate the examples to be interchanged is shown: results a better selection of examples
to be exchanged since accuracy is maintained (with respect to the Centralized baseline)
by exchanging fewer examples. On the other side, argumentation requires the agents to
dynamically reviser their inductive hypotheses, resulting in a higher computational cost.
Finally AMAI and RAMAI, we can conclude that RAMAI is the most well balanced strat-
egy, since it requires about a tenth of the computational cost, while only sharing a very
small number of additional examples. Consequently, RAMAI shows de feasibility of per-
forming induction on a multiagent scenario, across different inductive techniques and
data sets; the Centralized option of sharing all data may not always be always feasible,
while in any scenario where sharing a small portion of data is acceptable, then RAMAI
is a feasible option.

5. Related Work

Distributed induction has been attempted with four different approaches: computing
statistics in a distributed fashion and then aggregating, sharing examples, sharing hy-



potheses or viewing induction as search and distributing the search process. One ap-
proach [3] is performing induction from a set of distributed sources, computing a col-
lection of statistics locally in each of the sources, and then aggregating them to learn a
model. Some learning algorithms, such as ID3, can be distributed in this way while still
guaranteeing that the decision tree found is exactly the same that would be found if all
the data were centralized. This approach is restricted to attribute-value representations,
while our approach works also for relational learning. Another difference is that they as-
sume a single agent trying to learn from scratch from a collection of distributed sources,
while in our framework we assume a multi-agent system with agents that already have
an initial hypothesis and improve them by arguing with other agents. Additionally, our
research focuses on finding multiagent induction strategies that can be built around stan-
dard induction algorithms without modifying them.

The DAGGER approach [5] performs distributed induction by selecting a reduced
set of informative examples from each of the distributed sources, and then performing
centralized induction with the union of the reduced sets of examples. DAGGER’s pro-
poses a one shot approach that does not ensure preserving classification accuracy, while
our strategies do.

Another approach to distributed induction [11], proposes to learn individual models
in each of the sources, and then combine them by using a genetic algorithm that uses
specialized mutation and crossover operators for being able to merge the hypothesis.
The goal of this approach is to distribute the induction task among several agents, so
that this parallelization becomes more efficient. Our goal is not to make the induction
process more efficient, but to allow groups of agents to perform individual induction
while putting together their results by argumentation with the goal of obtaining a joint
inductive hypothesis that preserves a high quality.

Another example of distributing induction for efficiency is that of distributing the
search process of finding rules among a series of distributed processors. Provost and Hen-
nessy [8] propose to perform distributed search for rule learning, where each individual
processor only searches with a subset of the data and proposes each candidate rule to the
rest for verification.

Concerning argumentation, the idea that argumentation might be useful for machine
learning has been proposed by several authors [1,6]. The idea is that hypotheses induced
from data can be considered as arguments, and then by defining a proper attack and defeat
relations, sound hypotheses can be found. More specifically, the work presented in this
paper is complementary to the AMAL argumentation framework for case-based learning
[7]. While in AMAI and RAMAI agents collaborate during induction, and then they solve
problems individually, in AMAL, agents learn separately, and only collaborate during
problem solving. Thus, AMAL is an argumentation model of multi-agent learning based
on “solution merging”, where as AMAI and RAMAI are based on “hypothesis merging”.

6. Conclusions and Future Work

In this paper we have presented AMAI and RAMAI, two different multiagent induction
strategies that can be used on top of any induction algorithm capable of learning hypothe-
ses represented using sets of rules. AMAI and RAMAI ensure that the hypothesis learnt
will be undistinguishable in terms of training set accuracy from that produced by a cen-



tralized approach. The main idea behind AMAI and RAMAI is to let each agent perform
induction individually, then argue about the learnt hypotheses to remove inconsistencies,
and finally merge both hypotheses.

Experimental results show that, in addition to achieve the same training set accuracy
as a centralized method, AMAI and RAMAI obtain hypotheses that are less prone to over-
fitting, achieving slightly higher test set accuracy. Moreover, AMAI and RAMAI require
sharing only a small part of all existing examples (about 20% in our experiments). AMAI
and RAMAI also require that the agents perform induction several times, so Incremental
techniques for induction could be used to speed the process, but we did not use them to
make clear this is not a necessary requirement for our approach.

AMAI and RAMAI use counterexamples as the only form of counterargument. How-
ever, we plan to investigate more complex argumentation protocols that let agents use
rules also generalizations as counterarguments. The problem of that, is that the base
learning algorithms would have to be modified to be able to take rules into account, in
addition to the examples in the training sets. This is related to the research in “argument
based machine learning” by Možina et al. [6] where they modify the CN2 algorithm to
take into account specific rules (arguments) in addition to examples for learning pur-
poses. Additionally, we intend to tackle more complex scenarios: the committee scenario
(with n agents deliberating) and k-issue scenario (where learning and argumentation is
not about one concept or issue but over a collection of interrelated concepts).

Acknowledgements This research was partially supported by projects Next-CBR
(TIN2009-13692-C03-01) and Agreement Technologies (CONSOLIDER CSD2007-
0022).

References

[1] Leila Amgoud and Mathieu Serrurier. Arguing and explaining classifications. In Argumentation in
Multi-Agent Systems, 4th International Workshop, ArgMAS 2007, pages 164–177, 2007.

[2] E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine Learning, 41(1):259–294,
2000.

[3] Doina Caragea, Adrian Silvescu, and Vasant Honavar. Decision tree induction from distributed, het-
erogeneous, autonomous data sources. In Proc. Conf. on Intelligent Systems Design and Applications
(ISDA 03), pages 341–350. Springer Verlag, 2003.

[4] Peter Clark and Tim Niblett. The CN2 induction algorithm. In Machine Learning, pages 261–283, 1989.
[5] Winston H. E. Davies. The Communication of Inductive Inference. PhD thesis, University of Aberdeen,

2001.
[6] Martin Mozina, Jure Zabkar, and Ivan Bratko. Argument based machine learning. Artificial Intelligence,

171(10-15):922–937, 2007.
[7] Santiago Ontañón and Enric Plaza. Learning and joint deliberation through argumentation in multiagent

systems. In Proc. AAMAS-07, pages 971–978, 2007.
[8] Foster John Provost and Daniel N. Hennessy. Scaling up: Distributed machine learning with cooperation.

In Proc. AAAI-96, pages 74–79. AAAI Press, 1996.
[9] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[10] Iyad Rahwan, Simon Parsons, and Chris Reed, editors. Argumentation in Multi-Agent Systems, 4th
International Workshop, ArgMAS 2007, volume 4946 of LNCS. Springer, 2008.

[11] Michael J. Shaw and Riyaz Sikora. A distributed problem-solving approach to rule induction: Learning
in distributed artificial intelligence systems. Technical Report ADA232822, Carnagie-Mellon Univer-
sity, 1990.

[12] Paul E. Utgoff. An improved algorithm for incremental induction of decision trees. Technical Report
94-072, UMass, 1994.


