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Abstract. How to achieve shared meaning is a significant issue when
more than one intelligent agent is involved in the same domain. We
define the task of concept convergence, by which intelligent agents can
achieve a shared, agreed-upon meaning of a concept (restricted to empir-
ical domains). For this purpose we present a framework that, integrating
computational argumentation and inductive concept learning, allows a
pair of agents to (1) learn a concept in an empirical domain, (2) argue
about the concept’s meaning, and (3) reach a shared agreed-upon con-
cept definition. We apply this framework to marine sponges, a biological
domain where the actual definitions of concepts such as orders, families
and species are currently open to discussion. An experimental evaluation
on marine sponges shows that concept convergence is achieved, within a
reasonable number of interchanged arguments, and reaching short and
accurate definitions (with respect to precision and recall).

1 Introduction

How to achieve shared meaning is a significant issue when more than one intel-
ligent agent is involved in the same domain. In this paper we focus on empirical
domains, where intelligent agents are able to learn, in an individual way, the con-
cepts that are relevant to describe that domain from examples. In this scenario,
two or more agents will require some process for sharing, comparing, critiquing
and (eventually) agreeing on the meaning of the concepts of a domain. Our pro-
posal is that an agent communication process based on argumentation supports
the required aspects to find a shared, agreed-upon meaning of concepts.

For instance, in zoology, the definition of “manta ray” (the largest species
of ray) has been a subject of debate; another example is in the domain of as-
tronomy, where the definition of “planet” has been subject of recent debate. If
more than one expert is to collaborate in these domains, they need to reach a
shared definition of these concepts. Notice that these examples do not deal with
the issue of ontology alignment (where different names or terms for the same
concept are aligned); rather, the debate is about the meaning and scope (with
respect to an empirical domain) of a particular concept. In this article we pro-
pose a framework intended to model a particular kind of process to reach this
shared meaning we call concept convergence.



We will define the task of concept convergence as follows: Given two or more
individuals which have individually learned non-equivalent meanings of a con-
cept C from their individual experience, find a shared, equivalent, agreed-upon
meaning of C. Two agents achieve concept convergence when (a) they share a
concept C within some shared terminology, (b) their individual meanings for
C are equivalent in a field of application, and (c) each agent individually ac-
cepts this agreed-upon meaning. Notice that concept convergence is less general
than the complex discussion on how many species of manta ray should be recog-
nized or how should be defined the concept of planet; however, it is more clearly
specified and we will show it can be automated for empirical domains1.

The task of concept convergence can be performed by the integration of
computational argumentation and inductive concept learning. We have devel-
oped A-MAIL, a framework allows the agents to argue about the concept they
learn using induction [7]. A-MAIL is a unified framework where autonomous
agents learn from experience, solve problems with their learnt hypotheses, au-
tonomously generate arguments from experience, communicate their inductive
inferences, and argue about them in order to reach agreements with other agents.

The remainder of this paper is organized as follows. First we formally define
concept convergence. Then our empirical argumentation framework A-MAIL is
described. Then we motivate the usefulness of concept convergence in the bio-
logical domain of marine sponges, including an experimental evaluation of two
inductive agents arguing about definitions of several concepts. The paper closes
with related work, conclusions and future work.

2 Concept Convergence

Our approach integrates notions and techniques from two distinct fields of study
—namely inductive learning and computational argumentation— to develop a
new approach to achieve concept convergence. We will define the meaning and
definition of concepts in the framework of inductive concept learning, which is
the process by which given an extensional definition of a concept C then an
intensional definition of a concept C expressed in an ontology O is found.

Let E = {e1...eM} be a field of application composed of M individuals de-
scribed in an ontology O and let C ∈ O be a concept: an extensional description
of C is a subset of individuals E+ ⊂ E that are instances of C. E+ are called
(positive) examples of C, while the rest of the examples E− = E −E+ are called
counterexamples (or negative examples).

1 Notice that ontology alignment (or matching) is a related topic but it focuses on
determining correspondences between concepts [3]. As such, alignment’s main goal
is to establish a “concept name correspondence” relationship such that a semantic
interoperability is achieved by being capable of substituting a concept name by a
corresponding name. Concept convergence is different, we assume that the individual
members of a multiagent system have a common concept vocabulary, but they still
do not share a precise shared definition of some concept(s).
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Fig. 1. (a) Semiotic triangle; (b) schema for two agents where a concept sign (C) is
shared (Ci

∼= Cj) while concept descriptions may be divergent (Ci 6∼= Ci).

Definition 1. An intensional definition C of a concept C is a well formed for-
mula built using the concepts in O such that it subsumes (v) all positive examples
of C and no counterexample of C:

∀ei ∈ E+ : C v ei ∧ ∀ej ∈ E− : C 6v ej

For simplicity, we will shorten the previous expression as follows: C v E+ ∧
C 6v E−. In this framework, we will define the task of concept convergence be-
tween 2 agents based on the notion of semiotic triangle. The well-known semiotic
triangle in Fig. 1(a) expresses meaning as the relationship between sign, concept,
and object. Specifically:

1. A sign is a designation of the concept in some ontology (in our framework
the name of the concept C ∈ O);

2. A concept is “A unit of thought constituted through abstraction on the basis
of properties common to a set of objects” [ISO 5963:1985] (in our framework
the intensional description C)

3. An object is a material or immaterial part of the perceived world (in our
framework, the objects in E)

Now, concept convergence between 2 agents means that each one has its own
semiotic triangle concerning a particular concept, as shown in Fig. 1(b). We as-
sume that both agents share the designation of the concept C in an ontology,
which in Fig. 1(b) is expressed by the equivalence Ci ∼= Cj . The agents do not
share their intensional definitions of the concept —which we’ll assume are con-
sistent with their extensional representations of concepts E+

i and E+
j . Moreover,

the agents do not share their individual collections of examples Ei and Ej .

Definition 2. Concept Convergence (between 2 agents) is defined as follows:

Given two agents (Ai and Aj) that agree on the sign C denoting a concept (Ci ∼=
Cj) and with individually different intensional (Ci 6∼= Ci) and extensional
(E+

i 6= E+
j ) definitions of that concept,

Find a convergent, shared and agreed-upon intensional description (C′i ∼= C′j) for
C that is consistent for each individual with their extensional descriptions.
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Fig. 2. The relationship of concept definitions for two inductive agents.

For example, in this paper we used the domain of marine sponge identifica-
tion. The two agents need to agree on the definition of the target concept C =
Hadromerida, among others. While in ontology alignment the focus is on estab-
lishing a mapping between the ontologies of the two agents, here we assume that
the ontology is shared, i.e. both agents share the concept name Hadromerida.
Each agent has experience in a different area (one in the Atlantic, and the other
in the Mediterranean), so they have collected different samples of Hadromerida
sponges, those samples constitute their extensional definitions (which are dif-
ferent, since each agent has collected sponges on their own). Now they want to
agree on an intensional definition C, which describes such sponges. In our ex-
periments, one such intensional definition reached by one of the agents is: C =
“all those sponges which do not have gemmules in their external features, whose
megascleres had a tylostyle smooth form and that do not have a uniform length
in their spikulate skeleton”.

2.1 Empirical Argumentation for Concept Convergence

Concept convergence in empirical domains is modeled by agents that perform
induction to achieve intensional definition of one or more concepts. Figure 2
shows the relationship of concept definitions for two inductive agents concerning
a concept C. Each agent has a sample of examples of C and examples that are
not C. The task of concept convergence is to find a shared and mutually accept-
able definition for C that is consistent with the examples each agent has. The
information exchanged during argumentation about how C should be defined
is the information that will enact a process of belief revision in each individual
agent until an agreed-upon definition is achieved. This paper focuses on 2-agent
argumentation, leaving concept convergence among more agents for future work.

In the A-MAIL framework, an intensional definition of a concept C is repre-
sented as a disjunctive description C = r1∨...∨rn, where each of the conjuncts ri
will be called a generalization, such that each positive example of C is subsumed
by at least one of the generalizations, and no generalizations subsume any coun-
terexample of C. When an example is subsumed by a generalization in C, we
will say that the example is covered. Each one of these generalizations is a well



formed formula representing a generalization of a set of examples. We assume
that a more-general-than relation (subsumption) exists among generalizations,
and when a generalization r1 is more general than another generalization r2 we
write r1 v r2. Additionally, if a generalization r is a generalization of an example
e, we will also say that r is more general than e, or that r subsumes or covers
e, noting it as r v e. Moreover, for practical purposes the intensional definitions
are allowed to subsume less than 100% of positive examples.

Concept convergence is assessed individually by an agent Ai by computing
the individual degree of convergence among two definitions Ci and Cj as:

Definition 3. The individual degree of convergence among two intensional def-
initions Ci and Cj for an agent Ai is:

Ki(Ci,Cj) =
|{e ∈ Ei|Ci v e ∧ Cj v e}|
|{e ∈ Ei|Ci v e ∨ Cj v e}|

where Ki is 0 if the two definitions are totally divergent, and 1 when the two
definitions are totally convergent. The degree of convergence corresponds to the
ratio between the number examples covered by both definitions (intersection)
and the number of examples covered by at least one definition (union). The
closer the intersection is to the union, the more similar the definitions are.

Definition 4. The joint degree of convergence of two intensional definitions Ci
and Cj is:

K(Ci,Cj) = min(Ki(Ci,Cj),Kj(Cj ,Ci))

Concept convergence is defined as follows:

Definition 5. Two intensional definitions are convergent (Ci ∼= Cj) if K(Ci,Cj) ≥
1− ε, where 0 ≤ ε ≤ 1 is a the degree of divergence allowed.

3 Empirical Argumentation

An argumentation framework AF = 〈A,R〉 is composed by a set of arguments A
and an attack relation R among the arguments. In our approach we will adopt
the semantics based on dialogical trees [1]. For a wider explanation the formal
model underlying our framework see [5].

There are two kinds of arguments in A-MAIL:

– A rule argument α = 〈r, C〉 is a pair where r is a generalization and C ∈
{C,¬C}. An argument 〈r, C〉 states that induction has found a rule such
that r → C (i.e. that examples covered by r belong to C), while 〈r,¬C〉
states that induction has found a rule such that r → ¬C (i.e. that examples
covered by r do not belong to C).

– An example argument α = 〈e, C〉 consists of an example e ∈ E , which can be
a positive or a negative example of C, i.e. C ∈ {C,¬C}.
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Fig. 3. Exemplification of several arguments, their confidences, and attack relations.

Moreover, we allow rules to cover some negative examples, while defining a
confidence measure as follows:

Definition 6. The confidence Bi(α) of a rule argument α for an agent Ai is:

Bi(α) =


|{e∈E+

i |α.rve}|+1

|{e∈Ei|α.rve}|+2 if α.C = C

|{e∈E−i |α.rve}|+1

|{e∈Ei|α.rve}|+2 if α.C = ¬C

Bi(α) is the ratio of examples correctly covered by α over the total number
examples covered by α. Moreover, we add 1 to the numerator and 2 to the
denominator following the Laplace probability estimation procedure. Other con-
fidence measures could be used, our framework only requires some confidence
measure that reflects how much a set of examples endorses the argument.

Definition 7. A rule argument α is τ -acceptable for an agent Ai if Bi(α) ≥ τ ,
where 0 ≤ τ ≤ 1.

In our framework, only τ -acceptable generalizations are allowed for a prede-
termined threshold τ . To ensure only highly quality rules are considered. Next,
we will define attacks between arguments.

Definition 8. An attack relation (α� β) between arguments α, β holds when:
1. 〈r1, Ĉ〉� 〈r2, C〉 ⇐⇒ Ĉ = ¬C ∧ r2 @ r1, or
2. 〈e, Ĉ〉� 〈r, C〉 ⇐⇒ Ĉ = ¬C ∧ r v e
(where C, Ĉ ∈ {C,¬C})

Notice that a rule argument α only attacks another argument β if β.r @ α.r,
i.e. when β is a strictly more general argument than α. This is required since
it implies that all the examples covered by α are also covered by β, and thus if
they support opposing concepts, they must be in conflict.

Figure 3 exemplifies some arguments and with their corresponding attacks.
Positive examples of the concept C are marked with a positive sign, whereas



negative examples are marked with a negative sign. Rule arguments are repre-
sented as triangles covering examples; when an argument α1 subsumes another
argument α2, we draw α2 inside of the triangle representing α1. Argument α1

has a generalization r1 supporting C, which covers 3 positive examples and 3
negative examples, and thus has confidence 0.5, while argument α2 has a gen-
eralization r2 supporting ¬C with confidence 0.66, since it covers 3 negative
examples and only one positive example. Two example arguments are shown:
〈e3, C〉 and 〈e4,¬C〉. Now, α2 � α1 because α2 supports ¬C, α1 supports C
and r1 @ r2. Additionally 〈e3, C〉 � α2, since e3 is a positive example of C, α2

supports ¬C and r2 v e3.
Next we will summarily define when arguments defeat other arguments, based

on the idea of argumentation lines [1]. An Argumentation Line αn � αn−1 �
... � α1 is a sequence of arguments where αi attacks αi−1 and α1 is called the
root. Notice that odd arguments are generated by the agent whose generalization
is under attack (the proponent) and the even arguments are generated by the
agent attacking that generalization (the opponent).

Moreover, an α-rooted argumentation tree T is a tree where each path from
the root node α to one of the leaves constitutes an argumentation line rooted on
α. Therefore, a set of argumentation lines rooted in the same argument α1 can
be represented as an argumentation tree, and vice versa. Notice that example
arguments may appear only in the leaves of an argumentation tree. The example-
free argumentation tree T f corresponding to T is a tree rooted in α that contains
the same rule arguments of T but no example arguments.

In order to determine whether the root argument α is warranted (undefeated)
or defeated the nodes of the α-rooted tree are marked U (undefeated) or D
(defeated) according to the following (cautious) rules: (1) every leaf node is
marked U; (2) each inner node is marked U iff all of its children are marked D,
otherwise it is marked D.

Finally we will define the status of the argumentation among two agents Ai
and Aj at an instant t as the tuple 〈Rti, Rtj , Gt〉, consisting of:

– Rti = {〈r, C〉|r ∈ {r1, ..., rn}}, the set of rule arguments representing the
current intensional definition Cti = r1 ∨ ... ∨ rn for agent Ai.

– Gt contains the collection of arguments generated before t by either agent,
and belonging to a tree rooted in an argument in Rt

′

i , where t′ ≤ t.

Rtj is the same for agent Aj . Now we can turn to integrate inductive learning
with computational argumentation.

3.1 Argument Generation Through Induction

Agents need two kinds of argument generation capabilities: generating an initial
intensional definition from examples, and generating attacks to arguments.

When an agent Ai that wants to generate an argument β that attacks another
argument α, β has to satisfy four conditions: a) support the opposite concept
than α, b) have a high confidence Bi(β) (at least being τ -acceptable), c) satisfy
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Fig. 4. ABUI is an inductive concept learning algorithm which can take additional
background knowledge, in the form of arguments, into account.

β � α, and d) β should not be defeated by any argument previously generated
by any of the agents. Existing inductive learning techniques cannot be applied
out of the box for this process, because of the additional restrictions imposed.
For this purpose, we developed the Argumentation-based Bottom-up Induction
(ABUI) algorithm, capable of performing such task [7]. However, any algorithm
which can search the space of rules, looking for one which satisfies the four
conditions stated before would work in our framework.

ABUI is an inductive method for concept learning which, in addition to train-
ing examples, can take into account additional background knowledge in the form
of arguments (see Fig. 4). ABUI is a bottom-up inductive learning method, which
tries to generate rules that cover positive examples by starting from a positive
example and generalizing it as much as possible in order to cover the maximum
number of positive examples and while covering the minimum number of negative
examples possible. During this generalization process, ABUI only considers those
generalization which will lead to arguments not being defeated by any rule in
the background knowledge. Specifically, ABUI takes 4 input parameters: a target
concept C ∈ {C,¬C}, a set of examples E+

i ∪E−i , a generalization g, and a set of
arguments Q which both agents have agreed to be true. ABUI finds (if it exists)
an argument β = 〈r, C〉 such that: (g v r)∧ (Bi(r) ≥ τ)∧ (@α ∈ Q : α� 〈r, C〉).

To generate a β such that β � α, the agent calls ABUI with g = α.r and
with the set of agreed upon arguments Q (the subset of arguments in Gt which
are undefeated).

– If ABUI returns an individually τ -acceptable β, then β is the attacking ar-
gument to be used.

– If ABUI fails to find an argument, then Ai looks for examples attacking α in
Ei. If any exist, then one such example is randomly chosen to be used as an
attacking argument.

Otherwise, Ai is unable to generate any argument attacking α.

3.2 Belief Revision

During argumentation, agents exchange arguments which contain new rules and
examples. The Belief Revision process of an agent Ai triggered at an instant t,
with an argumentation state 〈Rti, Rtj , Gt〉 works as follows:



1. Each example argument in Gti is added to Ei, i.e. Ai expands its extensional
definition of C.

2. Since Ei might have changed, the confidence in any argument in Rti or Gt

might have changed. If any of these arguments becomes not individually
τ -acceptable they removed from Rt+1

i and Gt+1.
3. If any argument α in Rti became defeated, and Ai is not able to expand

the argumentation tree rooted in α to defend it, then the rule α.r will be
removed from Ci. As a consequence, some positive examples in Ei will not
be covered by Ci any longer. Then ABUI is called with the now uncovered
examples to find new rules that cover them and that will be added to Ci.

3.3 Concept Convergence Argumentation Protocol

The concept convergence argumentation process follows an iterative protocol
composed of a series of rounds, during which two agents argue about the indi-
vidual rules that compose their intensional definitions of a concept C. At every
round t of the protocol, each agent Ai holds a particular intensional definition
Cti, and only one agent will hold a token. The holder of the token can assert new
arguments in the current round. At the end of each round the token is passed
on to the other agent. This cycle continues until Ci ∼= Cj .

The protocol starts at round t = 0 and works as follows:

1. Each agent Ai communicates their current intensional definition by sharing
R0
i . The token goes to one agent at random, and the protocol moves to 2.

2. The agents share Ki(Ci,Cj) and Kj(Cj ,Ci), their individual convergence
degrees. If Ci ∼= Cj the protocol ends with success; if no agent has produced
a new attack in the last two rounds then the protocol ends with failure;
otherwise it moves to 3.

3. If modified by belief revision, the agent with the token, Ai, communicates
its current intensional definition Rti. Then, the protocol moves to 4.

4. If any argument α ∈ Rti is defeated, and Ai can generate an argument α′ to
defend α, α′ is sent to Aj . Also, if any of the undefeated arguments β ∈ Rtj
is not individually τ -acceptable for Ai, and Ai can find an argument β′ to
extend any β-rooted argumentation line, in order to attack β, then β′ is sent
to Aj . If any of these arguments was sent, a new round t+1 starts; the token
is given to the other agent, and the protocol moves back to 2. Otherwise the
protocol moves to 5.

5. If there is any example e ∈ E+
i such that Ctj 6v e, Ai sends e to Aj (since the

intentional definition of Aj does not cover e). A new round t+ 1 starts, the
token is given to the other agent, and the protocol moves to 2.

Moreover, in order to ensure termination, no agent is allowed to send twice the
same argument. A-MAIL ensures that the convergence of the resulting concepts
is at least τ if (1) the number of examples is finite, (2) the number of rules that
can be generated is finite. Convergence higher than τ cannot be ensured, since
100×(1−τ)% of the examples covered by a τ -acceptable rule might be negative.
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Fig. 5. An example concept convergence argumentation. Left hand side shows starting
point and result. The middle shows the list of messages exchanged during the protocol.
Right hand side shows the resulting argumentation trees.

Even when both agents use different inductive algorithms, convergence is assured
since by assumption they are using the same finite generalization space, and there
is no rule τ -acceptable to one agent that could not be τ -acceptable to the other
agent when both know the same collection of examples.

An example process of concept convergence is shown in Fig. 5. On the left
hand side are the arguments (concept definition) of each agent before and after.
In the middle, Fig. 5 shows the messages exchanged during the protocol, and on
the right hand side the argumentation trees used. We can see that in round t = 0
the agents just exchange the arguments that compose their concept definitions.
Then, in rounds 1, 2 and 3, the agents are arguing about the argument α4, when
ends up being defeated (shaded node). As a consequence, agent A1 retracts α4

and proposes a new one, α8 (dashed node). The agents argue about α8 in rounds
5 to 7, and eventually α8 is defeated. Finally, agent A1 retracts α8, and proposes
a new argument α9, which is accepted (not attacked) by A2. In this example,
A1 does not attack any argument in the definition of agent A2.

4 Concept Convergence for Marine Sponges

Marine sponge classification poses a challenge to benthologists because of the in-
complete knowledge of many of their biological and cytological features, and due
to the morphological plasticity of the species. Moreover, benthology specialists
are distributed around the world and they have experience in different benthos
that spawn species with different characteristics due to the local habitat condi-
tions. Due to these problems, the classification or sponges into different classes
is a challenging problem which is still under discussion among specialists.

The problem that we use as our test bed is that of learning which are the
features that distinguish the different orders of sponges among each other, i.e.
finding their intensional definition. We will focus on the scenario where two
different experts have collected sponges in different locations and that these
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Fig. 6. Original concept definition learnt by an agent for the Axinellidae class, and
composed of three rules.

sponges are properly classified into their respective orders. Now, the two experts
are interested in having a specific agreed definition of each of the different order
of sponges, so that their classification is clear in the future.

We have designed an experimental suite with a collection of 280 marine
sponges pertaining to three different orders of the Demospongiae class (As-
trophorida, Hadromerida and Axinellidae), taken from the Demospongiae dataset
from the UCI repository. For our evaluation, we divide this collection of sponges
in two disjoint sets, and give each set to one agent, which corresponds to an
expert. Given a target order, say Axinellidae, each agent learns by induction a
definition which characterizes all the sponges belonging to that order, and does
not cover any sponge from any other order. After that, both agents argue about
those definitions to reach an agreement using A-MAIL. The expected result is
that the definition they reach after argumentation is better than the definitions
they found individually (it is in agreement with the data known to both agents),
and that it is achieved without exchanging large amounts of information.

Figure 6 shows an example definition of Axinellidae found by one agent in
our experiments. The definition is composed of three rules. The first one, for
instance states that “all the sponges which have a branching line-form growing
and acanthose in the megascleres in the spikulate-skeleton” are Axinellidae.

Figure 7 shows two arguments (α3 and β4) as generated in one of our experi-
ments by 2 agents while arguing about the definition of the Axinellidae order. An
agent A1 had proposed α3, stating that “all the sponges which have a branching
line-form growing and megascleres in the spikulate skeleton” are Axinellidae.
This was so, since this rule was consistent with A1 knowledge, i.e. with the set
of sponges A1 knew. However, this rule turned out to be too general, since it
covered some sponges known to the other agent, A2, which were not Axinellidae.
In order to attack this rule, agent A2 generated the argument β4, which states
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Concept Centralized Individual A-MAIL

P R P R K P R K

Axinellidae 0.98 1.00 0.97 0.95 0.80 0.97 0.95 0.89

Hadromerida 0.85 0.98 0.89 0.91 0.78 0.92 0.96 0.97

Astrophorida 0.98 1.00 0.97 0.97 0.93 0.98 0.99 0.97

Table 1. Precision (P), Recall (R) and degree of convergence (K) for the intensional
definitions obtained using different methods.

that “all the sponges which have a branching line-form growing, a hand, and a
shaft in the smooth form of the megascleres” are actually Hadromeridae. Since
A1 could not attack β4, α3 is defeated.

4.1 Experimental Evaluation

We perform concept convergence on each of the 3 orders in the marine sponges
data set: Astrophorida, Hadromerida and Axinellidae. In an experimental run,
we randomly split the data among the two agents and, given a target concept,
the goal of the agents was to reach a convergent definition of such concept.
We compare the results of A-MAIL with respect to agents which do not perform
argumentation (Individual), and to the result of centralizing all the examples and
performing centralized concept learning (Centralized). Comparing the results of
Individual agents and agents using A-MAIL provides a measure of the benefits
of A-MAIL, whereas comparing with Centralized gives a measure of the quality
of the outcome. All the results are the average of 10 executions, ε = 0.05 and
τ = 0.75. We used the same induction algorithm, ABUI, for all the experiments.

Table 1 shows one row for each of the 3 concepts we used in our evaluation;
for each one we show three values: precision, (P, how many examples covered
that are actually positive examples); recall, (R, how many positive examples
in the data set are covered by the definition); and convergence degree (K, as
defined in Definition 4). The first thing we see is that indeed A-MAIL is able
to increase convergence from the Individual setting. Moreover, for all concepts



Concept Centralized Individual A-MAIL

time R time R time R NE NR

Axinellidae 82.3s 7 40.8s 4.10 65.2s 6.65 10.7 15.6

Hadromerida 173.3s 11 75.6s 6.15 164.8s 9.2 18.5 32.6

Astrophorida 96.7s 6 47.7s 7.00 50.6s 4.1 4.1 9.7
Table 2. Comparison of the cost and quality of obtaining intensional definition from
examples using different settings. Cost is measured in time (in seconds), and for A-
MAIL, also the average number of example arguments (NE) and rule arguments (NR)
exchanged. Quality is measured by the average number of rules (R) in intensional
definitions.

except for Axinellidae the convergence degree is higher than 0.95 (i.e. 1 − ε).
100% convergence is not reached because τ = 0.75 in our experiments. This
means that acceptable rules can cover some negative examples, which allows
for the appearance of some divergence. Increasing τ could improve convergence
but makes finding rules by induction more difficult, and thus recall might suffer.
Finally, notice that argumentation also improves precision and recall that reach
values close to the ones achieved by Centralized.

Table 2 shows the average cost of each of the three settings. Column time
shows the average CPU time used in each execution; when there are 2 agents
(in the Individual and A-MAIL settings) individual time is obtained dividing 2.
The Centralized setting uses more time on average than either Individual or A-
MAIL settings. Table 2 also shows the average number of examples and of rule
arguments exchanged among the agents, showing that A-MAIL only requires the
exchange of a small amount of examples and arguments in order to converge.

Quality of solution is estimated by compactness of concept descriptions. The
definitions found by A-MAIL are more compact (have less rules) than the def-
initions found by a Centralized approach. For instance, for the concept As-
trophorida, the Centralized setting obtains a definition consisting of 6 rules,
whereas A-MAIL generates only 4.1 rules on average.

In summary, we can conclude that A-MAIL successfully achieves concept con-
vergence. In addition to improve the quality of the intensional definition (preci-
sion and recall), this is achieved by exchanging only a small percentage of the
examples the agents know (as opposed to the centralized strategy where all the
examples are given to a single agent, which might not be feasible in some ap-
plications). Moreover, the execution time of A-MAIL is on average lower than
that of a centralized strategy. An interesting implication of this is that A-MAIL
could be used for distributed induction, since it achieves similar results than a
centralized approach, but at a lower cost, and in a distributed fashion.

5 Related Work

In our approach to concept convergence, we used our A-MAIL framewok [7]. A-
MAIL is a framework which integrates inductive learning techniques with com-



putational argumentation. In previous work, we applied A-MAIL to the task of
distributed inductive learning, where agents are interested in benefitting from
data known to other agents in order to improve performance. In this paper, we
have used A-MAIL for a different task: concept convergence, where the goal is
for two agents to coordinate their definitions of specific concepts. This process
can be used, as we have shown, to model the process of argumentation between
biology specialists about the definition of specific species. However, A-MAIL can
be used for other tasks such as joint deliberation (when agents what to reach an
agreement on a specific decision to a particular problem).

The integration of arguments into a machine learning framework is a recent
idea, receiving increasing attention, as illustrated by the argument-based ma-
chine learning framework [4]. The main difference between this framework and
A-MAIL is that in argument-based machine learning, arguments are given as the
input of the learning process, while A-MAIL generates arguments by induction
and uses them to reach agreements among agents.

Our work is also related to multiagent inductive learning. One of the earliest
in this area was MALE [9], in which a collection of agents tightly cooperated
during learning, effectively operating as if there was a single algorithm working
on all data. Similar to MALE, DRL [8] is a distributed rule learning algorithm
based on finding rules locally and then sending them to the other agents for eval-
uation. The idea of merging theories for concept learning has been also studied
in the framework of Version Spaces [2].

6 Conclusions

This paper has presented the task of concept convergence. Concept convergence
is different from ontology alignment in that we are not trying to find correspon-
dence between ontologies, but reach shared definitions to known concepts. Since
concept convergence is a broad subject we have focused on empirical domains.
We have proposed to use inductive learning techniques to represent concepts and
computational argumentation to regulate the communication process. For this
purpose we have summarized A-MAIL, a framework that integrates inductive
learning and computational argumentation; this integration is achieved by (1)
considering rules learned by inductive learning as arguments, and (2) developing
inductive learning techniques that are able to find new generalizations that are
consistent with or attack a given set of arguments.

We have motivated the approach in the biological domain of marine sponges,
where definitions of taxonomic concepts are still under debate. Experiments in
this domain show that computational argumentation integrated with induction
is capable of solving the concept convergence task, and the process is efficient
(in the sense of the number of arguments that need to be exchanged).

As part of our future work, we intend to investigate more complex settings
of concept convergence, and other tasks than can be performed by integrating
induction with argumentation. Concerning concept convergence, we have started
by focusing on the 2-agent scenario, but we intend to investigate concept conver-



gence for n agents. Since computational argumentation is traditionally modeled
as a dialogue between 2 agents, moving to a n-agents scenario requires more com-
plex interaction models, such as those of committees (following argumentation-
based deliberation in committees as in [6]). Another avenue of research is con-
vergence on more than one concept; when these concepts are interdependent we
surmise our current approach would work when dependencies are not circular;
circular dependencies would require a more sophisticated approach.

Moreover, integrating induction with argumentation allows other kinds of
tasks, such are using argumentation among agents to improve the individual
inductive model [7]; another task is deliberative agreement, where 2 or more
agents disagree on whether a situation or object is an instance of a concept C
and user argumentation to reach an agreement on that issue.

Acknowledgments. This research was partially supported by projects Next-
CBR (TIN2009-13692-C03-01), Aneris (PIF08-015-02) and Agreement Technolo-
gies (CONSOLIDER CSD2007-0022).

References
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