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Abstract

Understanding of many complex biological systems is limited both by incomplete
models and limited empirical data. Accurate prediction of the behavior of such sys-
tems requires exploitation of multiple, individually incomplete, knowledge sources.
Model-based adaptation is a technique for integrating case-based reasoning with model-
based reasoning to predict the behavior of biological systems. This approach is im-
plemented in CARMA, a system for rangeland grasshopper management advising that
implements a process model derived from protocol analysis of human expert problem-
solving episodes. CARMA’s ability to predict the forage consumption judgments of
expert pest managers was empirically compared to that of case-based and model-based
reasoning techniques in isolation. This evaluation provided initial confirmation for the
hypothesis that an integration of model-based and case-based reasoning can lead to
more accurate predictions than either technique individually.

1 Prediction in Biological Systems
Decision-support in agriculture and natural resources management often requires predic-
tion of the behavior of biological systems. For example, providing advice about the optimal
planting time for a crop may require predicting the emergence date of important pests of
that crop (Plant and Stone, 1991). Similarly, determining the most cost-effective response
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to a given pest infestation requires predicting crop or forage loss under each available op-
tion.

Various approaches to prediction of system behavior are possible. In systems for which
a precise model exists and accurate values of state variables can be determined, simulation
can be used to predict the system’s behavior. Alternatively, if there are sufficient historical
data, empirical methods such as case-based reasoning (Aamodt and Plaza, 1994), decision-
tree induction (Quinlan, 1993), or statistical techniques can be lead to accurate prediction.

Precise models exist for the behavior of many simple physical systems. However, mod-
els of agricultural, ecological, and other biological systems are often incomplete, either
because a complete state description for such systems cannot be determined or because the
number and type of interactions between system elements are poorly understood. More-
over, while historical data often exist for such systems, they are often insufficient for accu-
rate prediction using empirical methods. As illustrated in Figure 1, biological systems often
occupy an intermediate point in the continuum between highly analytic domains, such as
celestial mechanics and the prediction of artifact behavior, and highly empirical domains,
such as sociology (Allen and Hoekstra, 1992). In such biological systems, both models
and empirical data exist, but neither is per se sufficient for accurate prediction. Accurate
prediction of the behavior of such systems requires exploitation of multiple, individually
incomplete, knowledge sources.
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Figure 1: The continuum from highly empirical domains to highly analytical domains.

This paper describes the use of model-based adaptation as a technique for integrating
case-based reasoning with model-based reasoning in domains in which neither technique is
individually sufficient for accurate prediction. Under this approach, case-based reasoning
is used to find an approximate solution, and model-based reasoning is then used to adapt
this approximate solution into a more precise solution. In model-based adaptation, models
are used to compensate for insufficient case coverage by extending the range within which
cases can be adapted. Conversely, cases compensate for incompleteness in the models by
providing a set of reference points with known values.

The next section describes rangeland pest management, a task that requires predict-
ing the behavior of a complex biological system, and sets forth a process description of
expert problem solving in this domain. Section 3 describes CARMA, a system that im-
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plements this process description, and describes how CARMA performs model-based case
adaptation. Section 4 describes how CARMA learns match and adaptation weights. An
experimental evaluation in which the predictive accuracy of CARMA’s model-based adap-
tation component is compared to that of case-based and model-based reasoning in isolation
is set forth in Section 5. This evaluation provides initial confirmation that model-based
case adaptation can lead to more accurate simulation of entomologists’ predictions than
empirical or model-based reasoning alone.

2 Rangeland Pest Management
Rangeland ecosystems typify biological systems having an extensive but incomplete causal
theory and limited empirical data. Management tasks for rangelands include optimal stock-
ing rates and grazing systems, water development, wildlife enhancement, noxious weed
control, and insect pest management. Each of these management tasks requires evaluating
alternative actions by predicting their potential consequences.

The particular rangeland management task of interest to us is pest management. On av-
erage, grasshoppers annually consume 21–23% of rangeland forage in the western United
States, at an estimated loss of $400 million (Hewitt and Onsager, 1983). Rangeland grasshop-
per infestations can be treated with chemical or biological insecticides, but in many situa-
tions the costs of insecticide application exceed the value of the forage saved. Determining
the most cost-efficient response to a grasshopper infestation requires predicting the forage
savings that would ensue from each response and comparing the savings to the cost of the
response itself.

While model-based reasoning can play a role in grasshopper management, there is a
general recognition that the interactions affecting grasshopper population dynamics are too
poorly understood and too complex to permit precise prediction through numerical simula-
tion (Lockwood and Lockwood, 1991; Pimm, 1991; Allen and Hoekstra, 1992). Neverthe-
less, entomologists and pest managers appear able to provide useful recommendations to
ranchers through the Cooperative Extension Service, the USDA’s Animal and Plant Health
Inspection Service, state departments of agriculture, and county-based weed and pest of-
fices. This indicates that other sources of knowledge can compensate for the absence of a
complete model of rangeland ecosystems.

To explicate these knowledge sources and the problem-solving methods employed by
experts in applying this knowledge, we performed a protocol analysis of problem solving
by an expert in rangeland grasshopper management at the University of Wyoming (Jeffrey
A. Lockwood). We transcribed a number of problem-solving episodes in which the expert
responded to a simulated telephone inquiry by a rancher. These “solve-aloud” problem-
solving episodes illustrated the elicitation of relevant case facts by the expert, the formation
and discrimination among tentative hypotheses, and expert explanations.
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The key expert problem-solving step revealed by the protocol analysis was prediction
of the proportion of available forage that will be consumed by grasshoppers if no action is
taken. Experts appear to perform this predictive step by comparing the current situation to
prototypical infestation cases. For example, a moderate density of emerging grasshoppers
in a cool, wet spring is associated with a low proportion of forage consumption because
wet conditions both promote growth of fungal pathogens that decrease grasshopper pop-
ulations and increase forage growth. Moreover, cool conditions tend to prolong the early
developmental phases1 during which grasshoppers are most susceptible to pathogens and
other mortality factors. In predicting forage consumption by comparing new cases to pro-
totypical cases, such as the cool, wet spring prototype, experts appear to be using a form of
case-based reasoning.

If a particular new case differs in some ways from a prototypical case, the expert can
perform causal reasoning to predict the effects of the differences. For example, if there is a
moderately low density of emerging grasshoppers in a cool, wet spring, an expert will pre-
dict low forage consumption because lower density generally means less consumption and,
in the prototypical situation, low consumption results even from a moderate grasshopper
density.

The prototypical infestation cases are expressed in terms of abstract features, such as
grasshopper species, developmental phases, and density, that are relevant to the expert’s
model of rangeland ecosystems. In contrast, a rancher’s description is almost always in
terms of directly observable features, such as the color, size, and behavior of grasshoppers,
temperatures, and precipitation. As a result, determining the most similar prototypical
case requires inferring the relevant abstract features from a set of observations provided
by the rancher. Experts exhibit great flexibility in inferring these features. For example,
if a rancher is unable to provide the information that discriminates most reliably among
grasshopper species (e.g., whether the grasshoppers have slanted faces or a spur on their
“throats”), the expert is able to ask less reliable but easier to answer questions (e.g., “Do
the grasshoppers have brightly colored wings or make a clicking sound in flight?”).

If the forage consumption will be high enough to lead to forage competition with live-
stock, the expert determines the interventions that are compatible with local conditions,
using knowledge such as that wet conditions preclude the use of malathion, or chemical
treatments are precluded by environmental sensitivity. Finally, the expert estimates the
relative value of the forage saved in this and future seasons and the cost of each control
measure based on market price. The expert then advises the rancher to take the most eco-
nomical action, either applying the most cost-effective control measure or doing nothing.
Experts can justify their advice by appeal to an underlying causal model, but seem to use

1During their lifetime, grasshoppers progress through three developmental stages: egg, nymph, and adult.
The nymphal stage usually consists of five instars separated by molts. We define the developmental phases
of a grasshopper’s lifecycle to include egg, five nymphal instars, and adult.
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this model only in explaining and adapting the predictions associated with prototypes and
not in performing any sort of simulation.

In summary, the protocol analysis indicated that experts in rangeland pest manage-
ment use a highly eclectic reasoning method that includes a form of case-based reasoning
for consumption-prediction, rules for inferring case features and acceptable control mea-
sures, and causal reasoning for adaptation and explanation. In addition, experts exhibit
opportunistic problem solving in that they terminate a consultation as soon as the minimum
necessary information has been obtained. For example, if the majority of grasshoppers are
at too early a stage of development to permit the extent of the infestation to be determined,
the rancher is informed that no prediction can be made until later in the season.

3 CARMA: A Rangeland Pest Management
Advisory System

We have implemented the problem-solving process described in the previous section in a
system termed CARMA (CAse-based Range Management Adviser)(Hastings, 1996). The
purpose of CARMA is to make expert-quality advice freely available to ranchers and to
land and pest managers who are not experts in grasshopper bionomics. CARMA is there-
fore designed to model the problem solving, knowledge, and advice of experts in man-
aging grasshopper infestations. Expert human problem-solving is emulated in CARMA
by integrating multiple reasoning techniques and knowledge sources in a flexible fashion.
CARMA emulates expert human advice by providing a treatment recommendation sup-
ported by an explanation in terms of causal, economic, and pragmatic factors, including a
numerical estimate of the proportion of forage consumed and a cost-benefit analysis of the
various treatment options.

CARMA’s consultation process consists of the following steps:

1. Determine the relevant facts of the infestation case, such as grasshopper species,
developmental phases, and density, from information provided by the user. This
requires inference rules such as, “if grasshoppers are observed in the spring to have
brightly colored wings or make a clicking sound in flight, then they are bandwinged
adults that overwintered as nymphs.”

2. Determine whether grasshopper consumption will lead to competition with livestock
(primarily cattle, as few sheep are produced on rangeland most often infested with
grasshoppers) for available forage.

(a) Estimate the proportion of available forage that will be consumed by each dis-
tinct grasshopper population (i.e., nymphal overwintering, egg overwintering).
For each distinct grasshopper population (i.e., subcase):
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i. Determine the prototypical infestation case that most closely matches the
current subcase. This requires model-based reasoning to assist matching by
aligning the developmental phases of the prototypical case and the subcase.

ii. Adapt the consumption estimate predicted by the prototypical case based
on the feature differences between the prototypical and current subcase.
This requires model-based reasoning to account for the influence of each
feature on consumption.

(b) Total the forage loss estimates for each subcase to predict the overall proportion
of available forage that will be consumed by grasshoppers.

(c) Compare grasshopper consumption with the proportion of available forage needed
by livestock.

3. If there will be competition, determine what possible treatment options should be
excluded using rules such as “Wet conditions preclude the use of malathion”; “Envi-
ronmental sensitivity precludes all chemical treatments.”

4. If there are possible treatment options, for each one provide an economic analysis by
estimating both the first-year and long-term savings.

(a) Estimate the first-year savings using model-based reasoning to determine the
proportion of forage which would be saved given the efficacy of the treatment
type, the developmental phases of the grasshoppers at the time of treatment, and
the proportion of lifetime consumption by grasshoppers at each phase.

(b) Estimate the long-term savings using rule-based reasoning to determine if the
majority of the grasshoppers will begin laying eggs before treatment can be ap-
plied given the developmental distribution of the grasshoppers at the time of
treatment. If the majority of grasshoppers will not begin laying eggs, use sta-
tistical reasoning to determine the decreased probability of infestation in sub-
sequent years given the Markov transitional probabilities for the infestation lo-
cation and the effect of the treatment type on beneficial control agents (i.e.,
predators and parasites).

Figure 2 provides a high-level overview of the main steps in the consultation process.
To model the ability of human experts for opportunistic problem solving, CARMA

terminates a consultation if it discovers any of the following conditions:

• The current date is outside of the season when forage needed for livestock grows.

• The size of the infestation is below the minimum threshold for viability.
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Figure 2: The main steps in CARMA’s consultation process.

• The majority of the grasshoppers overwintered as nymphs. Such grasshoppers di-
vide their consumption between two growing seasons and therefore consume far less
during the growing season than grasshoppers overwintering as eggs.

• The majority of the grasshoppers are at such an early developmental phase that the
extent of the infestation cannot be predicted with reasonable certainty or at such a late
developmental phase that a significant proportion of lifetime forage consumption and
egg-laying have already occurred, making treatment futile.

3.1 Determining Relevant Case Features
CARMA begins a consultation by eliciting observations from the user through a series of
window-based interface procedures. These observations are used to infer the relevant fea-
tures of a new case, such as the species, density, and developmental phases of the grasshop-
pers. CARMA uses multiple levels of rules for inferring each case feature, ordered by a
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qualitative estimate of each rule’s accuracy or reliability. The rules are applied in succes-
sion until either the user can provide the necessary information or a default value is chosen.
For example, if the value of the case feature “total number of grasshoppers per square yard”
is unknown to the user, CARMA instructs the user to estimate the number of grasshoppers
that would be present in 18 square-foot circles. If the user can’t provide this information,
the system attempts to infer this feature using a rule that grasshopper density is equal to 1.5
times the number of grasshoppers seen hopping away with each step taken by the user in the
field. Otherwise, the value defaults to the statewide historic average of four grasshoppers
per square yard. By applying rules in the order of their accuracy or reliability, CARMA
reasons with the best information available.2

A typical interface window for determining the observed grasshopper type distribution
appears in Figure 3. It includes the options “Why” for describing why this information
is important to the consultation, ”Help” for advising the user about the various window
features and their operations, “How To” to explain the proper procedure for gathering the
required information, “Not sure” to trigger the selection of an alternative rule for inferring
the feature, and “OK” to indicate that the user has chosen an answer. “Display planthopper”
shows a small insect that the user should distinguish from a grasshopper. Figure 4 shows an
input window that asks the user to provide the infestation location by clicking on a map of
Wyoming’s major roads, towns, and county borders. CARMA uses this location to retrieve
the historical values for the site including infestation history, range value, temperature, and
precipitation.

Because a complete case specification is not always required for useful advice, CARMA
fills in the facts of a new case opportunistically. This means that CARMA asks the user for
information only when the corresponding case feature is required for the reasoning process
to continue. At the earliest point at which a decision can be made, the case-feature infer-
ence process halts, advice is given, and the consultation is completed. This minimizes the
amount of input required for CARMA to make a decision, thereby accelerating consulta-
tions. For example, if the date and location of an infestation indicate that it is too early
to assess the severity of a grasshopper infestation, CARMA advises the user to rerun the
consultation at a later time without prompting for further information.

3.2 Case Matching
The protocol analysis indicated that pest managers estimate forage consumption by com-
paring new cases to prototypical cases. These prototypical cases differ from conventional
cases (Kolodner, 1993) in two important respects. First, the prototypical cases are not ex-
pressed in terms of observable features (e.g., “Whenever I take a step, I see four grasshop-
pers with brightly colored wings fly”), but rather in terms of abstract derived features (e.g.,

2No attempt is made to quantify the uncertainty associated with less accurate or reliable rules.
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Figure 3: CARMA’s interface window for determining the observed distribution of
grasshopper types.
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Figure 4: CARMA’s interface window for determining infestation location.

“Approximately six nymphal overwintering grasshoppers in the adult phase per square
yard”). Second, the prototypical cases are extended in time, representing the history of
a particular grasshopper population over its lifespan. Each prototypical case is therefore
represented by a ”snapshot” at a particular, representative point in time selected by the
entomologist. In general, this representative point is one at which the grasshoppers are at
developmental phases during which treatment is feasible. An example prototypical case
appears as Case 4 in Table 1.

A tract of rangeland almost invariably contains multiple grasshopper species, which
may differ widely in consumption characteristics. In particular, grasshoppers that spend
the winter as nymphs consume far less during the growing season than grasshoppers over-
wintering as eggs. CARMA therefore partitions the overall population of a new case into
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subcases according to life history (i.e., overwintering as nymphs or eggs).3 The overall
grasshopper population is initially divided into three observed categories: bandwinged (i.e.,
grasshoppers having brightly-colored wings or make a clicking sound in flight); forb or
mixed grass/forb feeders (i.e., grasshoppers having a round head with a spurthroat); and
grass feeders (i.e., grasshoppers having a slanted face or pointed head, or a round head
with no spur throat). If the grasshoppers are part of the bandwinged category, CARMA
concludes that the grasshopper population is nymphal-overwintering. Otherwise, the pop-
ulation is determined to be egg-overwintering. For example, the new case set forth in Table
1 is split into two subcases, Subcase A and Subcase B, based on overwintering type.

Prototypical New case Case 4
Case 4 Subcase A Subcase B after projection

Overwintering type egg egg nymph egg
Feeding types grass 10% grass 50% grass 100% grass 10%

mixed 90% mixed 50% mixed 90%
Average phase 2.0 3.0 7.0 3.0
Density 27.0 36.0 4.0 24.0
Proportion of lifetime 92.7 86.0 12.4 92.7
consumption in critical period
Date June 8 June 14 June 15
Precipitation normal dry normal
Temperatures normal cool normal
Infestation history high high high
Range value low moderately-high low
Total area infested 12000 9800 12000
Forage loss 60% (high) ? 60% (high)

Table 1: A new case comprising two subcases: subcase A, consisting of grasshoppers that
overwinter as eggs; and subcase B, consisting of grasshoppers that overwinter as nymphs.
Prototypical Case 4 differs from Subcase A in developmental phase and is therefore pro-
jected until the developmental phases are aligned. Not shown is the match between subcase
B and its most similar Prototypical Case.

To predict the forage loss of a subcase, CARMA first retrieves all prototypical cases
whose life history (i.e., overwintering type) matches that of the subcase. The weighted
sum of feature differences between each prototypical case and the new subcase is calcu-
lated to determine the most similar prototypical case. Match weights are determining from

3Prototypical cases, being idealizations of actual infestations, contain only a single grasshopper popula-
tion.
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the mutual information gain between case features and qualitative consumption categories
in a given set of training cases, because recent research indicates that this is often the
most accurate measure of feature importance for matching (Wettschereck and Dietterich,
1995). Separate match weights are computed for each grasshopper overwintering type for
the seven case features: precipitation, temperature, range value, infestation history,
average developmental phase, density, and feeding type. Quantitative features, such
as density, are converted to qualitative values for computation of mutual information gain,
as small quantitative variations seemed to have little effect on matching. The difference
between two individual feature values is determined by finding the difference between the
positions of the values in an ordered qualitative feature value list. For example, range value
can equal one of the qualitative values in the ordered set {low, low-moderate, moderate,
high-moderate, and high}, so that the matching feature difference between low and high,
the maximum possible difference, is four. The forage loss prediction associated with the
best matching prototypical case is then adapted to apply to the current subcase.

3.3 Model-Based Adaptation
The assumption underlying model-based adaptation is that the causal models associated
with a biological or other partially understood systems may be accurate in the neighbor-
hood of a case, even if the models are not per se sufficient for accurate prediction through-
out the entire feature space. CARMA uses three specific forms of model-based adaptation:
temporal project; feature adaptation; and critical period adaptation. The details of these
adaptation methods reflect the particular causal models associated with rangeland ecosys-
tems. However, we believe that the general approach of performing simulation or other
model-based reasoning to adapt a case to apply to new cases in its neighborhood in feature
space has applicability to a wide range of biological systems.

3.3.1 Temporal Projection

Prototypical cases are extended in time but are represented at a particular moment. CARMA
must therefore project the best matching prototypical case forward or backward in time to
align its average developmental phase with that of the new subcase. This requires using
a model to simulate grasshopper attrition, which depends on developmental phase, pre-
cipitation, and developmental rate (which in turn depends on temperature) throughout the
interval of the projection. CARMA assumes that the grasshoppers within a developmental
phase are evenly distributed throughout the phase. Therefore, CARMA breaks the distribu-
tion into daily populations, projects the populations the required number of days (adjusting
the density each day based on attrition), then regroups the daily populations into their new
developmental phases. Attrition rates are adjusted by scalars (one scalar for precipitation =
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Figure 5: Projection of a prototypical case from Case 4 to Case 4’ to align its development
phase with Subcase A.

wet, and another for precipitation = nonwet) that are learned via the algorithms described
in Section 4. A graphic example of temporal projection appears in Figure 5.

For example, the prototypical case that best matches Subcase A is Case 4, shown in
Table 1. Because the developmental phase of Case 4 before projection is earlier than that
of Subcase A, the population in Case 4 must be projected forward in time in order for it
to be at the same stage of development as the population in Subcase A. Projection forward
in time causes grasshoppers to be removed from the population due to attrition (i.e., 27.0
grasshoppers per square yard before projection to 24.0 grasshoppers per square yard after
projection). Temporal projection aligns developmental phases but not necessarily dates.

3.3.2 Feature Adaptation

The forage loss predicted by the best matching prototypical case, FL(PC), is modified to
account for any feature differences between it and the subcase, based on the influence of
each of the n features on consumption as represented by a list of feature adaptation weights
Ā = (A1, . . . , An). Thus, the predicted forage loss for the new subcase, FL(NC), is
determined as follows:

FL(NC) = FL(PC) +
n∑

i=1

Ai ∗QFD(i)
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where QFD(i) is the quantitative difference for feature i between the new subcase and
prototypical case. For example, a lower temperature value means more forage, because
lower temperatures tend to slow development, increasing grasshopper attrition. Thus, the
forage loss estimate predicted by Case 4—60%—must be adapted downward somewhat
to account for the fact that temperatures in Subcase A (cool) are lower than in Case 4
(normal). In determining quantitative feature differences between the new subcase and the
prototypical case for qualitative features such as temperature, CARMA computes a simple
difference:

Q(NC, i)−Q(PC, i)

where Q(NC, i) and Q(PC, i) are the quantitative values for feature i in the new subcase
and prototypical case, respectively. For quantitative features such as density, proportion of
lifetime consumption in the critical period, and total area infested, a proportional difference
is used:

Q(NC, i)−Q(PC, i)

Q(PC, i)

Adaptation weights are set using a hill-climbing algorithm that optimizes CARMA’s pre-
dictive accuracy on training instances (discussed in Section 4). The weights used in feature
adaptation can be viewed as a linear approximation of the function from derived case fea-
tures to consumption amounts in the neighborhood of each prototypical case.

3.3.3 Critical Period Adaptation

Grasshopper consumption is most damaging if it occurs during the critical forage grow-
ing period, i.e., the portion of the growing season during which forage losses caused by
grasshoppers cannot be fully replaced by forage growth.4 The forage loss predicted by a
prototypical case must be adapted if the proportion of the lifespan of the grasshoppers over-
lapping the critical period in the new case differs from that in the prototypical case. This
process, termed critical period adaptation, requires determining the proportion of lifetime
consumption occurring in the critical period. This is based on the developmental phases
of the new and prototypical cases that fall within the critical period and the proportion of

4The critical period is estimated by starting with a baseline of 43 degrees latitude and 4,000 feet elevation,
which in Wyoming is associated with a critical period of June 12 to November 8. For each additional degree
of latitude, four days are added to the beginning and subtracted from the end of the critical period. Similarly,
for each additional 1000 feet of elevation, seven days are added to the beginning and subtracted from the
end of the period. Latitude and altitude are determined from a lookup table indexed by the location of the
infestation.
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lifetime consumption occurring in these developmental phases. The forage loss estimate is
then adjusted based on the feature adaptation weight for the critical period and the differ-
ence in the proportion of lifetime consumption in the critical period between the new case
and prototypical case.

A graphic example of critical period adaptation is illustrated in Figure 6. Because
grasshopper development in Subcase A is ahead of that in Case 4 (Subcase A’s developmen-
tal phase on June 14 corresponds to Case 4’s developmental phase on June 15), CARMA
determines that Case 4 applies to more of the critical period than Subcase A because it will
only reach Day 1 of developmental phase 3 by the beginning of the critical period (June
17), while Subcase A will already reach Day 8 of developmental phase 3. CARMA uses a
model of grasshoppers’ rate of consumption at each developmental phase to calculate the
proportion of lifetime consumption occurring after the beginning of the critical period and
before the end of the critical period. For example, only 86% of Subcase A’s consumption
occurs during the critical period, whereas 93% of Case 4’s consumption occurs within this
period. The quantitative feature difference for critical period adaptation is computed as a
proportional difference, therefore CARMA adjusts the initial consumption estimate by (86
− 93) / 93 = −0.07 multiplied by the adaptation feature weight for critical period.

In summary, CARMA uses a model of grasshopper developmental phases, consump-
tion, and attrition, knowledge concerning the relative contribution of case features to con-
sumption, and a model of a rangeland’s critical forage growth period in adapting the cases
in its library.

3.4 Forage Loss Estimation
After adaptation, the consumption predictions for each subcase (i.e., populations of grasshop-
pers with distinct feeding patterns) are summed to produce an overall consumption esti-
mate. In the example new case, the sum of predicted consumption of the two subcases,
Subcase A and Subcase B, is 90% (86.5 + 3.4). Because of variability resulting from the
imprecise nature of rangeland ecosystems, this prediction is converted to the qualitative
range, high, meaning that approximately 60 to 100% of the available forage will be lost.5

An interface window explaining estimated forage loss is presented in Figure 7. It gives
both aggravating and mitigating factors (i.e., factors tending to increase and factors tending
to reduce estimated forage loss).

Text for the language explanation is produced using conventional schema-based tech-
niques (McKeown, 1982; Paris, 1988). First, the explanation generator creates the natural
language representation of pertinent qualitative feature values using simple lookup tables

5The association of the range 60 to 100% with the qualitative category high is based on the general rule
that livestock usually should not be allotted more than half of the available forage (Heady, 1975). A high
loss of forage due to pests is therefore one that generates competition by clearly overlapping the portion that
could be allocated to livestock.
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Figure 6: Critical period adaptation is necessary because the proportion of consumption
occurring during the critical forage growing season is higher in Case 4 than in Subcase A.
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Figure 7: Interface window explaining CARMA’s estimate of forage loss.

(e.g., the text string for feature value high-mod is “moderately high”). The text strings
are then combined with the explanation template. For example, the template for the first
sentence in the forage loss explanation is:

< “From the information you have provided, it is estimated that the grasshop-
pers will consume a ” qualitative-forage-loss-string “ percentage of the forage
available for the year or approximately ” quantitative-forage-loss-range-string
“%.”>

If the proportion of available forage that will be lost to grasshoppers and the propor-
tion needed for livestock (and wildlife) exceeds 100% of the forage available, CARMA
concludes that competition will occur. In this example, competition is possible and the
consultation should continue if the proportion of available forage needed by livestock is
greater than 40%. For example, if forage need is 60%, the expected year-long competition
should range from 20% (i.e., (60 + 60) − 100)) to 60% (i.e., (100 + 60) − 100)). A typical
interface window explaining estimated forage competition is shown in Figure 8.
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Figure 8: Interface window explaining CARMA’s estimate of forage competition.

Figure 9: CARMA’s interface window explaining acceptable treatments.

3.5 Determining Treatment Options
If there will be competition, CARMA applies a set of rules to determine what possible
treatment options are excluded by the conditions of the case. Some of the information nec-
essary for determining exclusion is already known from the case features (e.g., the presence
of grasshoppers in the first nymphal instar indicates an ongoing hatch, thereby excluding
malathion and carbaryl bait from consideration). Other conditions must be determined from
further user input (e.g., “Will it be hot at the time of treatment?” If so, exclude malathion).
An interface window explaining the selection of acceptable treatments appears in Figure 9.
The explanation includes the rules that were used to exclude treatments. This explanation
is also derived using standard schema-based techniques.

3.6 Treatment Recommendation
For each possible treatment option, CARMA provides estimates of the reduced probabil-
ity of future reinfestation and current-year and long-term savings. From the estimated
savings, CARMA recommends the treatment or treatments that are most economical. A
typical treatment recommendation window including estimates of future reinfestation and
economic savings appears in Figure 10. Note that this analysis includes “no treatment” as
an option.
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Figure 10: CARMA’s interface window recommending a treament option and estimating
the probability of future reinfestation and economic savings. The dashed line in the second-
year reinfestation probability for carbaryl indicates no reduction in infestation probability
for that year.

3.6.1 Reduced Probabilities of Future Reinfestation.

CARMA uses Markov transitional probabilities for the infestation location (derived from
historical infestation history data collected by the USDA and synthesized by the Univer-
sity of Wyoming Entomology Section (Lockwood and Kemp, 1987)) to calculate for each
treatment type the total reduced probability of future reinfestation.

CARMA first determines whether the grasshoppers will begin laying eggs before the
treatment date. If the developmental distribution of the grasshoppers at treatment is dom-
inated by adults, CARMA determines that too many eggs will already be laid, and no
reduction in the probability of future reinfestation will result from treatment because eggs
are not affected by treatment. If few eggs will have been laid, CARMA calculates the
yearly reinfestation probabilities for each treatment type based on the historical Markov
transitional probabilities for as many years as the probability of infestation with treatment
is significantly lower than the probability without treatment (i.e., until the benefits of treat-
ment have ended). The total reduced probability of future reinfestation for each treatment
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is calculated by summing each yearly difference between the probabilities of infestation
without and with treatment.

Because the number of grasshoppers that may emerge in future years is often not di-
rectly proportional to the number of eggs laid the current year (e.g., under ideal conditions,
grasshoppers are capable of expanding from a low population one year to a very high popu-
lation the next), transitional probabilities are adjusted only slightly based on the efficacy of
treatments in reducing the number of eggs laid. The transitional probabilities are reduced
further for those treatments capable of preserving beneficial organisms (e.g., grasshopper
predators and parasites). For example, treatments such as carbaryl bait are designed to be
consumed specifically by grasshoppers and are therefore unlikely to affect biological con-
trol agents such as birds and insects. Conversely, sprays such as malathion blanket an entire
area and hurt beneficial organisms indiscriminately. A greater reduction in the transitional
probabilities is made for treated infestations whose total area is quite large, because treat-
ment will tend to reduce the chance that grasshoppers from previously untreated areas will
migrate into the treated area.

3.6.2 Economic Analysis

For each possible treatment option, CARMA provides estimates of current-year and long-
term savings. Each analysis involves a range that indicates best- to worst-case estimates
(negative values indicate a loss). A typical interface window explaining the savings calcu-
lations appears in Figure 11.

Current-year Savings. For each possible treatment option, CARMA estimates the current-
year savings as the difference between the value of forage in competition saved and the
treatment cost. CARMA first computes the amount of pretreatment forage loss. This is
done by projecting the developmental distribution of each subcase forward to the user-
provided treatment date (often a week or more from the current date). In a manner sim-
ilar to determining the percentage of lifetime consumption occurring within the critical
period, CARMA applies a model of grasshoppers’ rate of consumption at each develop-
mental phase to each subcase to calculate the proportion of lifetime consumption occurring
before the treatment date. This proportion is used to scale the year-long forage loss esti-
mate, resulting in the pretreatment loss. The pretreatment forage loss estimates for each
subcase are summed to produce the total pretreatment forage loss. Next, CARMA esti-
mates of post-treatment loss without treatment by subtracting pretreatment loss from total
loss. For example, if total forage loss is estimated to be 60 to 100%, and pretreatment loss
is estimated to be 2.0 to 3.3%, then the post-treatment loss will be 58.0 to 96.7%.

For each option, CARMA estimates subsequent losses (1) with treatment, given the
expected efficacy of the treatment and (2) forage loss without treatment. For example, the
insecticide carbaryl formulated as a bait is usually 65 to 80% effective. If the estimated
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Figure 11: Interface window explaining CARMA’s economic savings calculations.

post-treatment forage loss without treatment is 58 to 97%, then at best carbaryl bait should
prevent 80% of the 58% loss, and at worst prevent 65% of the 97% loss, resulting in a 12
to 34% post-treatment forage loss.

CARMA calculates the year-long forage loss for each option by summing pre- and post-
treatment loss. Year-long competition resulting from a treatment option is calculated by
comparing year-long forage loss resulting from the option and forage need. The proportion
of forage in competition saved is simply the proportion of forage in competition without
treatment minus the proportion of forage in competition with treatment. For example, if
pretreatment forage loss is 2.0 to 3.3% and post-treatment forage loss is 11.6 to 33.9%, the
year-long loss for the option is 13.6 to 37.2%. Given a forage need of 60%, the year-long
competition with treatment ranges from (13.6 + 60) − 100 = −26.4 to (37.2 + 60) − 100
= −2.8, which is less than zero, thereby preventing competition. If the year-long forage in
competition without treatment is 20 to 60%, and treatment will result in no competition,
then the expected forage in competition saved by treating is 20 to 60%.

With the per-unit forage value and range value estimates provided by the user, CARMA
estimates the current-year savings for an option to be the value of forage in competition
that is saved minus the cost of the treatment. In this example, the per-unit forage value
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is $30/AUM (i.e., an animal unit month: the amount of forage necessary to support a
cow and calf for one month as determined under standard federal lease rates) and the esti-
mated range value (or productivity) is 6–10 acres/AUM. Therefore, the current-year savings
ranges from:

20%× $30
AUM

× AUM
10acres

= $0.60
acre

to

60%× $30
AUM

× AUM
6acres

= $3.00
acre

Long-term Savings. CARMA calculates the savings for future years for each treatment
type as the value of year-long (i.e., total) forage in competition without treatment (taken
from the first year calculations) times the total reduced probabilities of future reinfestation.6

Based on the current-year savings, CARMA recommends the treatment that is estimated
to save the most under a worst-case scenario and the treatment that is estimated to save
the most under a best-case scenario. Usually, the worst and best scenarios produce the
same recommended treatment. Following the treatment recommendation, the consultation
is complete.

4 Learning Match and Adaptation Weights
CARMA uses two sets of weights in case-based reasoning: match weights (used in the
assessment of similarity between cases) and feature adaptation weights (used to adapt the
consumption predicted by the best matching prototypical case in light of any feature dif-
ferences between it and the subcase). General domain knowledge, such as the identifying
characteristics and developmental phases of grasshoppers, can be provided by the domain
expert. By contrast, match and feature adaptation weights must be acquired by the system
itself.

As indicated above, match weights are set by determining the mutual information gain
between case features and qualitative consumption categories in a given set of training
cases.

Feature adaptation weights are set by a hill-climbing algorithm, AdaptWeights,
that incrementally varies adaptation weights Ā to minimize the root-mean-squared error
(RMSE): √√√√1/n

n∑

i=1

[PFL(Ci, P,M, Ā)− ExpertPred(Ci)]2

6The value of forage is obtained by prompting the user for the cost of replacement forage. If the user
cannot provide a replacement cost, the value of the forage defaults to the value provided by federal land
management agencies.
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for prototypical case library P and match weightsM , where PFL(Ci, P ,M , Ā) is CARMA’s
predicted forage loss and ExpertPred(Ci) is the expert’s prediction of consumption for
each training case Ci. The algorithm for AdaptWeights is as follows:

function AdaptWeights(T , P , M )
1 I ← initial increment
2 Dmin← minimum improvement threshold
3 Imin← minimum increment threshold
4 Ā← initial list of global adaptation weights
5 D′← RMSE(T,P,M,Ā)
6 D←∞
7 loop until (I < Imin) do
8 loop until (|D′ −D| < Dmin) do
9 D← D′

10 δ← the change to an element of Ā by I for which
RMSE(T,P,M,δ(Ā)) is least

11 D′← RMSE(T,P,M,δ(Ā))
12 if (D′ < D) then Ā← δ(Ā)
13 else D′← D
14 I ← I/2
15 return Ā

Separate adaptation weights are computed for each grasshopper overwintering type for
the same eight case features: precipitation, temperature, range value, infestation his-
tory, average developmental phase, density, feeding type, proportion of lifetime
consumption in the critical period, and total area infested. In computing the feature
adaptation weights, qualitative case features (such as precipitation = Dry) are converted
into quantitative values based on the position of the value in an ordered qualitative fea-
ture value list. An adaptation feature difference is computed as the difference between the
quantitative feature values of the two cases. The consumption prediction of the matching
prototypical case is adjusted by the sum of the adaptation feature differences multiplied
by the adaptation weights for each feature. CARMA can learn feature adaptation weights
in either of two modes: global, in which a single set of weights are acquired for the en-
tire entire case library or case-specific, in which separate weights are acquired for each
prototypical case.

5 Evaluating Model-Based Adaptation
The design of CARMA’s forage consumption component was based on the hypothesis that
an integration of model-based and case-based reasoning can lead to more accurate forage
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consumption predictions than the use of either technique individually. This hypothesis is
based on the observation that neither the causal model nor the empirical data available for
rangelands are individually sufficient for accurate prediction. To test this hypothesis, we
separated CARMA’s empirical and model-based knowledge components, tested each in
isolation, and compared the results to the performance of the full CARMA system under
both global and case-specific adaptation weight modes.

The evaluation was complicated by the absence of empirical data against which to mea-
sure CARMA’s predictions. We therefore turned to expert human judgments as an external
standard. To obtain a representative sample of expert opinions, we sent questionnaires to 20
entomologists (including pest managers) recognized for their work in the area of grasshop-
per management and ecology. Each expert received 10 cases randomly selected from a
complete set of 20 hypothetical cases set in northern Wyoming. The descriptions of the 20
cases contained at least as much information as is typically available to an entomologist
from a rancher seeking advice. The questionnaire asked the expert to predict quantitative
forage loss and the most appropriate course of action.

A total of 15 recipients of the questionnaire responded, with mean of 15.9 years of
experience. However, there was a very wide variation in consumption predictions of the re-
spondents over the set of 20 cases (forage loss predictions had a mean standard deviation of
18.8%). There appeared to be a higher degree of consistency eight experts from Wyoming
(the mean standard deviation of forage loss predictions was 12.4%), so in the experiments
described below we restricted our attention to the eight sets of responses from Wyoming
experts, who had a mean of 18.0 years experience.

5.1 Experimental Design
Each predictive method was tested using a series of leave-one-out tests in which a set of
cases (S) from a single expert was split into one test case (C) and one training set (S − C).
The methods were trained on the forage-loss predictions of the training set and tested on the
test case. This method was repeated for each case within the set (S). The forage loss predic-
tions (between 0% and 100%) represent the proportion of available forage that would oth-
erwise be available for livestock, but will instead be consumed by grasshoppers. CARMA
was tested using a protocol under which each set of training cases was used as CARMA’s li-
brary of prototypical cases. This protocol is implemented in LeaveOneOutSpecificTest and
LeaveOneOutGlobalTest, which perform the leave-one-out tests for the specific and global
adaptation weighting schemes, respectively. Both procedures call AdaptWeights, the hill-
climbing algorithm described above. LeaveOneOutSpecificTest calls AdaptWeights with a
prototypical case library containing only one case.

function LeaveOneOutSpecificTest(T )
1 for each case CiεT do
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2 P ← T − Ci
3 M ← global match weights for set P

according to information gain
4 for each prototypical case PjεP do
5 T ← P − Pj ;training set
6 Pj(A)← AdaptWeights(T , {Pj}, M )
7 Di← (PredictForageLoss(Ci, P , M )

– ExpertPred(Ci))2

8 return (
√
Avg(D))

function LeaveOneOutGlobalTest(T)
1 for each case CiεT do
2 P ← T − Ci
3 M ← global match weights for set P

according to information gain
4 G← AdaptWeights(P , P , M )
5 Di← (PredictForageLoss(Ci, P , M , G)

– ExpertPred(Ci))2

6 return (
√
Avg(D))

CARMA’s empirical component was evaluated by performing leave-one-out-tests for
CARMA’s forage consumption module with all model-based adaptation disabled. CARMA’s
forage consumption module with model-based adaptation disabled is termed factored nearest-
neighbor prediction (factored-NN), because under this approach prediction is based simply
on the sum of nearest neighbor predictions for each subcase. Two other empirical methods
were evaluated as well: decision-tree induction using ID37 (Quinlan, 1993) and linear ap-
proximation using QR factorization (Hager, 1988) to find a least-squares fit to the feature
values and associated predictions of the training cases.

The predictive ability of CARMA’s model-based component in isolation was evaluated
by developing a numerical simulation based on CARMA’s model of rangeland ecology.
This simulation required explicit representation of two forms of knowledge implicit in
CARMA’s cases: the forage per acre based on the range value of the location, and the
forage typically eaten per day per grasshopper for each distinct grasshopper overwintering
type and developmental phase. The steps of the numerical simulation are as follows:

1. Project each grasshopper population back to beginning of the growing season.

7ID3 classified cases into 10 qualitative consumption categories representing the midpoints (5, 10, 15, ...
, 95) of 10 equally sized qualitative ranges. ID3’s error was measured by the difference between the midpoint
of each predicted qualitative category and the expected quantitative consumption value.
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2. Simulate the density and developmental phases for each overwintering type through
the end of the critical period of forage growth based on the precipitation and temper-
ature given in the case.

3. Calculate the forage eaten per day per acre based on the grasshopper density per
acre and the forage eaten per day per grasshopper for each overwintering type and
developmental phase as affected by temperature.

4. Convert the total forage consumed to the proportion of available forage consumed
based on the forage per acre.

The effect of temperature on consumption (as a result of changing metabolic rates (Hewitt,
1979; Lactin and Johnson, 1996)) was represented by multiplying a coefficient (determined
from a lookup table indexed by temperature) by the forage eaten per day per grasshopper for
each overwintering type. The temperature-based parameters of the numerical simulation
were set by hill-climbing to minimize the mean-squared error on the training cases.

5.2 Results
The accuracy of each approach was tested using leave-one-out testing for each of the eight
Wyoming Expert Sets and for a data set consisting of the median of the predictions of the
Wyoming experts on each case. The results, which appear in Table 2, include the root-
mean-squared error for each of the methods.

CARMA Empirical Only Model-Based Only
Specific Global Factored- ID3 Linear Numerical
weights weights NN appr. simulation

Wyoming expert sets 13.3 14.2 21.1 34.9 25.6 29.6
Wyoming median set 9.7 10.0 22.8 35.2 11.9 28.8

Table 2: Root-mean-squared errors (in %) for leave-one-out-test results.

The results of the integration experiment provide initial confirmation for the hypothe-
sis that integrating model-based and case-based reasoning through model-based adaptation
leads to more accurate forage consumption predictions than the use of either technique in-
dividually. The smallest root-mean-squared error rate was obtained by CARMA-specific.
On the Wyoming Expert Sets, the root-mean-squared error rate was 13.3% for CARMA-
specific and 14.2% for CARMA-global. The root-mean-squared error rate was higher both
for the empirical approaches—21.1% for factored-NN, 34.9% for ID3, and 25.6% for lin-
ear approximation—and for the purely model-based approach—29.6%. CARMA-specific
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and CARMA-global were also more accurate than the alternative methods on the Wyoming
median set, although linear approximation was only slightly less accurate. The initial con-
firmation of the hypothesis that integrating model-based and case-based reasoning through
model-based adaptation leads to more accurate forage consumption predictions than the
use of either technique individually is tentative because the low level of agreement among
experts and the absence of any external standard give rise to uncertainty about what consti-
tutes a correct prediction. While there are small-scale cage studies of grasshopper feeding,
the heterogeneity of rangelands and infestations has effectively precluded systematic anal-
ysis of forage losses over the large scales considered during management programs (Lock-
wood, 1997). This validation problem appears to be an inherent property of biological
domains such as rangeland pest management.

Consumption prediction can be viewed as approximating a function from derived case
features to consumption predictions (a consumption function). Prototypical cases constitute
representative points in feature space for which function values are known. The prototyp-
ical cases can be used to induce a representation of the function as a decision tree (e.g.,
ID3) or a numerical function (e.g., linear approximation). The poor performance of ID3
and linear approximation indicates that the biases of these inductive methods are poorly
suited to the consumption prediction task. The high performance of linear approximation
on the Wyoming median set (11.9%) indicates that taking the median of the predictions for
the expert sets causes the complex consumption function curve to be drastically flattened,
with the result that it is much more easily predicted by linear approximation.

Numerical simulation can be used to derive individual values for the function. How-
ever, the incompleteness of available models of rangeland ecology limits the accuracy of
this approach. A pure nearest-neighbor approach implicitly assumes that the consumption
function is constant in the neighborhood of prototypical cases. CARMA’s model-based
adaptation approach uses a model of rangeland ecology to approximate the consumption
function in the neighborhood of individual prototypical cases. For example, projection
consists of simulation through the temporal interval necessary to align the developmental
phases of two cases. Although the model may be insufficient in itself for accurate con-
sumption prediction, it may greatly improve the accuracy of nearest-neighbor prediction.

In summary, the tests of CARMA’s forage consumption prediction component provide
an initial confirmation of the hypothesis that integrating model-based and case-based rea-
soning can lead to more accurate forage consumption predictions than the use of either
technique individually.

6 Status
On June 17, 1996, CARMA was distributed to the University of Wyoming Cooperative
Extension offices and Weed and Pest District Offices in each of the 23 Wyoming counties.
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The fielded version consists of CARMA-specific using a case library consisting of the
Wyoming median set. CARMA is available free of charge for noncommercial purposes
and can be down-loaded from

http://meru.cs.uwyo.edu/̃hastings/carma.html

CARMA is implemented in Allegro CL/PC and runs under Windows 3.1 or Windows-95
on 486 or higher processors with a minimum of 8MB of RAM and 21MB of swap space.

7 Related Work
Several previous research projects have investigated the benefits of integrating case-based
reasoning with model-based reasoning. However, the approaches used in these projects
have generally been premised on the existence of a correct and complete causal model,
which is absent in the rangeland management domain. For example, CASEY (Koton,
1988) performed diagnosis using model-based reasoning to assist both case matching and
case adaptation. However, CASEY presupposed both the existence of a complete causal
theory of heart disease and complete explanations of each case in terms of that theory.
Goel’s (Goel, 1991) use of device models to adapt design cases also presupposed that the
device models are complete and correct. Similarly, Rajamoney and Lee’s prototype-based
reasoning (Rajamoney and Lee, 1991) presupposed a complete and correct (though not
necessarily tractable) causal model.

Feret and Glascow (Feret and Glascow, 1993) described an alterative approach under
which model-based reasoning is used for “structural isolation” (i.e., identification of the
structural components of a device that probably give rise to the symptoms of a fault). Cases
are indexed by these tentative diagnoses, which are then refined using case-based reasoning.
This approach, while appropriate for diagnosis, is ill-suited for behavioral prediction in the
absence of faults.

CARMA’s technique of model-based matching and adaptation represents an alterna-
tive approach to integrating case-based reasoning and model-based reasoning in domains
characterized by an incomplete causal model.

8 Summary
This paper has described a technique for integrating case-based reasoning with model-
based reasoning to predict the behavior of biological systems characterized both by in-
complete models and insufficient empirical data for accurate induction. This technique is
implemented in CARMA, a system for rangeland pest management advising. An empir-
ical evaluation provided confirmation of the hypothesis that integrating model-based and
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case-based reasoning through model-based adaptation can lead to more accurate forage
consumption predictions than the use of either technique individually. The approach to
model-based adaptation embodied in CARMA may be appropriate for a variety of other
domains in which empirical and model-based knowledge are individually insufficient for
accurate prediction, such as predictive tasks involving biological, ecological, and other
complex natural systems.
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