
An Architecture for

Knowledge Intensive CBR Systems�

Belén Dı́az-Agudo and Pedro A. González-Calero

Dep. Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain

{belend, pedro}@sip.ucm.es

Abstract. In this paper we describe a domain independent architecture
to help in the design of knowledge intensive CBR systems. It is based on
the knowledge incorporation from a library of application-independent
ontologies and the use of an ontology with the common CBR terminology
that guides the case representation and allows the description of flexible,
generic and homogeneous CBR processes based on classification.

1 Introduction

Any knowledge-based system (KBS) achieves its reasoning power through the
explicit representation and use of different kinds of knowledge about a certain
domain. Although in a CBR system the main source of knowledge is the set of
previous experiences, our approach to CBR is towards integrated applications
that combine case specific knowledge with models of general domain knowledge,
mainly about the domain terminology. The more knowledge is embedded into the
system, the more effective is expected to be. The major problem associated with
this knowledge intensive CBR approach is the so called knowledge acquisition
bottleneck (common for every KBS).

We make an issue of domain knowledge acquisition and study how the on-
tological engineering community efforts could help us to acquire the knowledge
needed in a knowledge intensive CBR application. The goal of our current work
is to formalize this approach to CBR and provide a tool and a methodology
to assist during the design phase of CBR application development. Our main
contribution is the definition of a domain-independent architecture to help in
the integration of ontologies for CBR applications. The core of this architecture
is CBROnto, an ontology incorporating the common CBR terminology that is
used to guide the domain ontologies integration, and that will be the base of a
future system to support the design of knowledge intensive CBR applications.
This paper discusses the issues involved, but the whole system implementation
is far from its final form.

Section 2 introduces the ontological reuse we propose for the CBR knowledge
acquisition process and Section 3 describes CBROnto, the CBR ontology we have
� Supported by the Spanish Committee of Science & Technology (CICYT TIC98-0733)

E. Blanzieri and L. Portinale (Eds.): EWCBR 2000, LNAI 1898, pp. 37–48, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



38 Belén Dı́az-Agudo and Pedro A. González-Calero

developed. In Section 4 we sketch the main ideas of the CBR processes defined
within our architecture. Finally the conclusions, advantages and shortcomings
of the current framework are discussed.

2 The Synergy of the Ontological and CBR Communities

The word ontology is used as a technical term by different groups to mean
slightly different things. The more well-known definition for ontology is: “An
ontology is a specification of a conceptualization” [8]. To clarify, an ontology:

– Expresses the consensus knowledge of a community of people.
– Defines the basic terms and relations comprising the vocabulary of a topic

area, and contains precisely defined terms that can be used to describe and
understand more complex descriptions.

– Can be reused and serve as a starting point to construct different knowledge-
based applications.

Most of the KBSs (including the KB CBR systems) have some reusable
ontological content but it is often influenced by the specific task, the restrictions
of the representation language, and the specific inference procedures employed.

We state that ontologies can be useful for designing knowledge intensive CBR
applications because they allow the knowledge engineer to use knowledge already
acquired, conceptualised and implemented in a formal language, reducing con-
siderably the knowledge acquisition bottleneck. Moreover, the reuse of ontologies
from a library also benefits from their reliability and consistency [6].

We know of little interactions among the CBR community and the ontological
community although the knowledge in an ontology is specially well-suited to be
shared, and many CBR systems codify this kind of domain knowledge. Ontologies
may help in the creation of complex, multirelational knowledge structures to
support the CBR processes.

2.1 The Ontology Server

The Ontology Server (OS) (see [6] for a complete description and references) is a
set of tools and services that support the building of shared ontologies between
geographically distributed groups. It was developed in the context of the ARPA
Knowledge Sharing Effort by the Knowledge System Laboratory at Stanford
University. This server is an extension of the language Ontolingua1. The ontol-
ogy server architecture manages a library of ontologies to be reused and provides
a HTML interface to build, modify and browse ontologies; lexical and syntac-
tic analyzers to avoid incompleteness, inconsistencies and redundant knowledge;
and a set of translators to various knowledge representation languages as CLIPS,
CML RE, EPIKIT, LDL, KIF, LOOM, OKBC, PROLOG. The OS and Ontolin-
gua have been accepted by the knowledge-sharing community as the main tool
to implement ontologies mainly due to its complete set of translators.
1 http:\\www-ksl-svc.stanford.edu:5915\ or http:\\granvia.dia.fi.upm.es:5915\



An Architecture for Knowledge Intensive CBR Systems 39

2.2 Description Logics

Ontologies must be codified in a formal language. Description Logic based lan-
guages (DLs) are commonly used to implement ontologies, and it is the technol-
ogy we use in our model to formalize aspects of representation and reasoning.
DLs, rooted in the KL-ONE family [3] and the frame systems, are characterized
by its expresiveness and clearly defined semantics. The implementation language
we use is Loom [9], one of the destination languages of the OS translators.

DLs capture the meaning of the data by concentrating on entities (grouped
into classes or concepts) related by relationships. This intuition is shared by
formalisms such as semantic data models, semantic networks or frame systems.
More important than the DLs representational characteristics are its reasoning
mechanisms. The most important characteristic is the checking of incoherencies
and the organization of the concepts on a taxonomy that the system automat-
ically builds from the concept definitions. This is possible because of the clear
and precise semantic of concept definitions that avoid the user to put the con-
cepts in the correct place of the hierarchy (as is the case in frame systems, which
provide inheritance but not classification).

DLs reasoning mechanisms and deductive inferences are based on subsump-
tion and instance recognition. Subsumption determines if a term is or not more
general than another, and instance recognition finds all the concepts that an
individual satisfies. Furthermore, completion mechanisms perform logical con-
sequences like inheritance, combination of restrictions, restriction propagation,
contradiction detection, and incoherent term detection. These mechanisms will
be used during the ontology integration, the case representation and, in general,
as the base for all the CBR processes.

2.3 How the Ontologies Are Used

We are interested in three types of ontologies [6] from those provided by the
OS: (1) the domain ontologies provide the vocabulary for describing a domain
and interpreting a description of a problem in that domain; (2) the task ontolo-
gies provide the vocabulary for describing terms involved in the problem-solving
processes, which could be attached to similar tasks that may, or may not, be
in the same domain; and (3) the common sense ontologies include a wide-range
amount of foundational knowledge as time, space, or causality.

The activities performed by the CBR application designer to model a domain,
and to formalize it as Loom knowledge base, are summed up as follows.

1. The designer begins with a preliminary idea of what domain is to be mod-
elled, and selects from the library those ontologies that are potentially use-
ful. For example, if we were modelling the used-car domain, a sensible choice
would be the Vehicles ontology which comprises knowledge about “vehicles
which are typically bought and sold through the classified ads . . . ”2

2 Excerpt from the OS documentation.



40 Belén Dı́az-Agudo and Pedro A. González-Calero

Our tool may suggest the designer some other ontologies depending on the
ontologies previously chosen. In the example, the incorporation of the Vehi-

cles ontology will suggest the Product-Ontology inclusion, which “de-
fines the terms used for describing products, objects that are typically bought

and sold . . . ”2 This, in its turn, will lead the system to consider the termi-
nology within the Scalar-quantities and Standard-Units ontologies.

2. The domain terminology from the ontologies has to be integrated as two
term hierarchies: the concept hierarchy rooted by the Thing concept, and
the relation hierarchy, rooted by the Binary-Tuple relation. The designer
chooses where, within those hierachies, the ontology components have to be
placed, The system, in its turn, combines and propagates through inheritance
the restrictions included in the terms, and eventually signals contradictions
and incoherencies. Then, it is again the designer who must solve the in-
tegration problems detected. Anyway, we must point out that the issue of
coherent integration of definitions from different ontologies is still an open
problem [13].

3. Due to the fact that ontologies are very general and reusable, sometimes
all the definitions inside an ontology are not useful for our concrete domain
model. The elimination of not relevant terms is not essential but, in our
approach, will effect on the final system efficiency and quality because the
search space will be smaller and contain only relevant terms. Notice that the
selection of a definition from an ontology can provoke the automatic inclusion
of others interrelated definitions that can not be eliminated and conversely,
the elimination of some definitions could cause others to be erased.

4. Mechanisms are also provided to allow the inclusion of new definitions, just
in case some useful specific definitions for our domain are not included in the
chosen ontologies. Unfortunately, when there are not appropriate ontologies
to be reused, an effort is needed to build a new ontology (or knowledge base).

In its final form, our tool will allow the term hierarchies graphic visualization
(the OS doesn’t provide with this functionality) and select, merge, eliminate,
move, add or modify their definitions.

3 The CBR Ontology

As it was described in Section 2, our approach proposes the use of an ontology
library to build the domain model for knowledge-rich CBR applications. To
take advantage of this domain knowledge, the CBR knowledge needed by the
processes, or at least part of it, should be expressed in a similar way. We have
developed an ontology for CBR (CBROnto) that provides the vocabulary for
describing the elements involved in the CBR processes. CBROnto serves two
purposes: the integration between the domain ontologies and the CBR process
knowledge; and as a domain-independent framework to design CBR applications.

With this approach, the designer of a knowledge rich CBR application does
not only borrow domain terminology from the ontology library but also CBR



An Architecture for Knowledge Intensive CBR Systems 41

[CASE_WITH_RESULT]

[CASE_WITH_DESCRIPTION]...

[CASE_WITH_SOLUTION]...

[CASE]

[MANDATORY]

[HIGH]

[LOW]

[NONE]

[IMPORTANCE]

[PROPERTIES]

[GOALS]

[ACTIONS]

[FUNCTIONAL-DESCRIPTION]

[COMPOUND_DESCRIPTION]

[SPATIAL_DESCRIPTION]

[TEMPORAL_DESCRIPTION]

[WITH_GOALS_DESCRIPTION]

[WITH_PRE_DESCRIPTION]

[CASE-DESCRIPTION]

[INTERPRETATION_SOLUTION]

[COMPOUND_SOLUTION]

[SPATIAL_SOLUTION]

[TEMPORAL_SOLUTION]

[CASE-SOLUTION]

[CASE-RESULT]

[CASE-COMPONENT]

[REASONING-TYPE]

[SIMILARITYMEASURE]

[DOMAIN-CONCEPT]

[WITH_SIM_MEASURE]

[THING]

[DOMAIN-RELATION]

[DOCUMENTATION]

[PRINT-NAME]

[CURRENTMEASURE]

[HIGH]

[LOW]

[NONE]

[MANDATORY]

[IMPORTANCE]

[WEIGHT]

[DESCRIPTION-PROPERTY]

[PART_OF]

[HAS_PART]
[COMPOSITION]

[TOUCHING]

[NEAR_OF]
[SPATIAL]

[DEPENDS_ON]

[CAUSE]

[EXPLAINS]

[CAUSING]

[DURING]

[BEFORE]

[AFTER]

[TEMPORAL]

[LITE-RESTRICTION][RESTRICTION]

[DESCRIPTION]

[HAS-DESCRIPTION]

[NLCASE-DESCRIPTION]

[HAS-SOLUTION]

[HAS-RESULT]

[CASE-COMPONENT]

[GETS]

[PERFORM]

[HAS-PRECONDITION]

[BINARY-TUPLE]

Fig. 1. The process support knowledge

terminology from CBROnto. CBROnto seeks to capture semantically important
terms and the representation primitives commonly used in the case-based repre-
sentation languages. It should be categorized inside the task ontologies because
it provides a vocabulary for describing terms involved in the problem-solving
CBR processes. Figure 1 shows a fragment of the CBROnto hierarchies.

CBROnto reveals our current view of certain CBR dependent but domain-
independent terms that make possible different types of CBR, and that are used
as the junction between the domain knowledge and the processes we define with
a domain-independent perspective (see Figure 2). After the domain modelling,
the phase of integration is based on classifying the domain terms with respect to
the CBROnto terms. That mechanism allows the CBR processes being domain
independent because they only refer to the CBROnto terms, that are correspond-
ingly linked to the domain terminology by the classification mechanism.

Next subsections describe the main characteristics of CBROnto, the place it
takes during the case representation, and how it is used to integrate the domain
knowledge to be utilized by domain-independent CBR processes.

3.1 Case Representation

The cases in the case base should be described somehow by mean of the vocab-
ulary provided by the domain model. The issue of case representation involves
deciding the type and the structure of the domain knowledge within the cases.
Efficiency pushes many CBR systems to use simple case representations that typ-



42 Belén Dı́az-Agudo and Pedro A. González-Calero

Fig. 2. CBROnto as a join between the domain terminology and the CBR pro-
cesses

ically contain two sets of attributes, problem and solution features, and where
there are no relationships or constraints between the features of a case. That is
not our choice. We don’t want to restrict the cases to be monolithic units of a
fixed format because our framework is intended to be suitable for different types
of CBR [4]. Our aim is to propose a rich framework to represent cases based
on the terminology from the CBROnto together with a reasoning system that
works with such representations.

The Case Representation Language In the CBROnto origins, the first de-
cision was the definition of a primitive concept CASE. We will call case-type con-
cepts to the CASE subconcepts. That way, cases can be represented as instances
of the case-type concepts and will be described by using both the domain vo-
cabulary provided by the domain model, and the CBR vocabulary provided by
the CBROnto. Cases are represented as instances of different CASE subconcepts,
so they won’t have, in general, the same structure. Besides, the concrete cases
(CASE instances) may add other proper features to the fixed structure inherited
through the case-type concepts.

The designer will define case-type concepts to represent the new types
of cases. The CBROnto vocabulary is used to guide the definition of
these concepts by providing with CBR semantically important terms as
has-description, has-solution, has-result, similarityMeasure, weight,
goal, precondition, or description-property.

Our case representation language is based on the Loom instance definition
language and on the CBROnto terminology. This representational framework
allows complex structures and does not restrict the possible relations among the
parts of a case, facilitates the definition of cases having different structures, is



An Architecture for Knowledge Intensive CBR Systems 43

able to handle incomplete cases and allows default values (by inheritance). The
case instances may be related with other individuals, and in particular with other
case instances, i.e. a case can be related with cases that are cases themselves.

We propose the use of an instance of the concept CASE-DESCRIPTION to
represent the description of a case. The has-description relation links a CASE
instance with the individual representing the description of this case. CBROnto
includes the following components to describe a CASE-DESCRIPTION instance.
The use of different components builds different types of case descriptions.

– The kind of reasoning the case will be used for. We use (by now) the follow-
ing: diagnosis, evaluate, explain, design, solve, and search. They are
represented as instances that will be linked to the case description instance
by means of the kind of reasoning relation.

– The goals achieved by the case. The goals will be specific for the concrete
domain and will be represented as instances of the CBROnto GOAL concept.

– The restrictions to be considered before applying the solution.
– Other suitable properties to describe the case: composition, causing, tem-

poral, or description-property relations. (see Figure 1 (right)).

That way, the CBR processes can take advantage of this explicit definition of
certain parts of the case structures, through the concept and relation hierarchies
and the DLs inference mechanisms.

The solution of a case is represented as an instance of the CASE-SOLUTION con-
cept. The has-solution relation links a CASE instance with the CASE-SOLUTION
individual representing its solution. We use a general perspective, because the
solution of a case depends very much on the kind of reasoning the case represents.
The kind of solution is represented by classifying the solution individual below
the CASE-SOLUTION subconcepts. It can be a designed component, a layout, a
plan, or a diagnostic or interpretation for the current situation. As an example of
the CBROnto terms that might be used to describe a CASE-SOLUTION instance
we cite the spatial, temporal, composition or causing relations to represent the
temporal sequence of reasoning steps used to solve the problem represented by
the case; the spatial layout of the pieces used to design a component, or the
adaptation (dependency) knowledge used to build this solution and links to the
cases used to make it. To finish with the case main parts, the result of a case
might include components as the success or failure of the case, the explanation
of a failure, or links to other possible solutions.

3.2 The Domain and CBROnto Integration

As we have introduced, after the domain modelling phase, there is an integration
phase where the CBR application designer relates the specific domain knowledge
with the CBROnto terms. This section aims to explain the basic mechanisms
used to integrate the domain and the CBROnto term hierarchies.

We use DLs classification to relate the specific domain terms with the CBR-
Onto terms. Suppose a domain relation that is used to describe a property of the



44 Belén Dı́az-Agudo and Pedro A. González-Calero

Fig. 3. Integration mechanisms based on classification (CBROnto terms in bold)

domain cases. For example, the color relation. With our framework, it will be
classified as a subrelation of description-property because is a relation used
to describe a domain property (see Figure 3). The same mechanism is used to
classify other kinds of relations as temporal, composition or spatial.

We are using relation classification here, but the mechanism is similar in the
concept hierarchy. For example, once we have modelled the used-car domain by
means of the Vehicles and Product Ontologies we want to represent the differ-
ent types of cases. We would like to have cases representing second-hand products
and without solution. Each case can include one or more products. We are build-
ing the case-type concept CASE-PRODUCT-CLASS with the structure of Figure 4
(left). The integration mechanism classifyies the PRODUCT-PREVIOUSLY -OWNED
domain concept below the CBROnto CASE-DESCRIPTION concept. With this
representation the PRODUCT-PREVIOUSLY -OWNED instances (from the Product
ontology) are used as the description components of the CASE-PRODUCT-CLASS
cases. Due to the classification mechanism, instances of FAMILY-CAR, SPORT-CAR,
BUSINESS-CAR, CAR, and VEHICLE-FOR-SALE, are also appropriate instances to
be used to describe a CASE-PRODUCT-CLASS case.

Also based on classification, our framework provides with a way to express
preferences between the terms. This mechanism can be used for many purposes,
and either by the designer, the final user of the designed CBR application, or by
the organization processes. The importance for the case descriptors used during
retrieval can be expressed by classifying them under the IMPORTANCE terms:
MANDATORY, HIGH, LOW, and NONE. The domain independent CBR processes will
prefer the domain relations classified under the HIGH relation and avoid the NONE
classified ones. Figure 3 illustrates the use of the HIGH relation to strengthen the
color, model-number and price domain relations; and the use of the MANDATORY



An Architecture for Knowledge Intensive CBR Systems 45

Fig. 4. Case definition example

concept to indicate that only the FAMILY-CAR type of CASE-DESCRIPTION should
be considered for this retrieval.

The designer doesn’t handle this low-level classification mechanisms nor clas-
sify one by one every domain term. Due to the inheritance mechanism only the
top level terms in the hierarchies should be classified. Besides, we are developing
a graphical environment to help this integration between the domain and the
CBROnto terminology.

4 The CBR Processes

The described representational framework facilitates general and homogeneous
CBR processes that refer to the CBR terminology and not to the specific do-
main terminology (see Figure 2). In this sense, the CBR processes are domain-
independent but they are guided by the domain terminology organized below (in
the subsumption hierarchies) the CBROnto terms. We are working nowadays in
the development of the CBR processes and we are no elaborating here their
details but only enumerating some of the alternatives we are considering.

Several alternatives can be chosen in our system to index the cases. The
straight one is the use of the domain terminology as the case organization struc-
ture. That’s the approach we used in [5]. Other approach [14] is let the designer
explicitly define indexes as new DLs concepts. The links between indexes and
between cases and indexes are automatically (semantically) computed. The al-
ternative we are mainly using is the computation of a different index structure
by inductive techniques guided by the domain knowledge.

With regard to retrieval and similarity assessment, the straight possibility [1]
is the use of the Loom query language to enable the user to describe the current
situation and interests. Also, in the line of [12,14] a similarity term (concept)
could be explicitly computed (and automatically classified) to represent in a
declarative way the similarity and differences between the cases, expressed with



46 Belén Dı́az-Agudo and Pedro A. González-Calero

Fig. 5. User interaction simulation

the domain terminology. Another possibility is the representational approach
that assigns similarity meaning to the path joining two individuals. We are us-
ing CBROnto to define different similarity components depending on the used
terms: the structural similarity will be computed based on the composition re-
lations (part-of, has-part), the semantics similarity is due to all the concepts
and relations describing the meaning of the case, the contextual similarity de-
pends on the case context relations and the adaptation similarity will use the
dependency knowledge.

4.1 A Case Definition Example

This section exemplifies the process of incorporating a new case to the case base.
The used-car domain case structure represented by the CASE-PRODUCT-CLASS
concept (see Section 3.1 and Figure 4 (left)) is very simple and doesn’t illustrate
all the representational possibilities, for example, cases with solutions and re-
sults, or more complex descriptions described by not simple properties. However,
it exemplifies and facilitates the comprehension of the domain-independent and
classification based mechanisms that provide access to the domain terminology
through the CBROnto terms.

Figure 5, simulates the user interaction to instantiate the CBROnto concepts
and relations. The key issue in the example is that the system questions are
dinamically generated by querying the knowledge base with domain-independent
questions referring only to the CBROnto terms (system internal in the figure).



An Architecture for Knowledge Intensive CBR Systems 47

Notice that during the example, the domain terms are always reached because
they are classified below the CBROnto terms.

The user chooses the FAMILY-CAR type of CASE-DESCRIPTION, and the sys-
tem creates the individual Ford1-desc, which is an instance of the FAMILY-CAR
concept; and an individual called Ford1, which is an instance of the concept
CASE-PRODUCT-CLASS and that is related with Ford1-desc by the has-descrip-
tion relation. The meaning is that the Ford1-desc individual represents the
description of the case Ford1. The next step is describing the Ford1-desc in-
stance. The system will access the relation hierarchy and formulate a question for
each DESCRIPTION subrelation. When possible, the system offers a set of fillers
according to the range of each relation (as is the case with the color relation).
Figure 4 (right) shows the Ford1 case resultant from this user interaction.

5 Conclusions and Related Work

In this paper we have not aimed to describe all the terms within the CBROnto,
mainly because we don’t think it is complete but it is evolving with our current
work. It only makes explicit certain CBR terms that are useful as a junction
between the domain knowledge and the CBR processes defined with a domain-
independent perspective. The use of domain ontologies provides a CBR applica-
tion with the vocabulary for describing a domain and interpreting a description
of a problem in that domain. The use of domain ontologies guides the construc-
tion of cases (and queries) and constitutes a warehouse of vocabulary to solve
lexical, semantic and synonym problems. Besides, it avoids misunderstandings if
cases are given by different sources and allows for a seamless integration of cases
without requiring all the cases to have the same structure. As the main drawback
of our approach we cite the ontology integration problem. When there are not
appropriate ontologies to be reused, an effort is needed to build new ontologies
or to integrate definitions from different ontologies [13]. Anyway, we consider
this effort is not waste time if this knowledge is reused for other applications.

Although we aim to build a tool capable to fit many CBR approaches, we
don’t expect to contribute in the design of simple CBR applications, where cases
can be attribute-value vectors, and where many optimised technologies exist. Our
contribution is expected to be in the knowledge intensive applications where our
system will allow for a quick way of design and prototyping a CBR application
and study the results of the incorporation of certain domain knowledge.

Other works [1,10,14] use DLs to represent the cases and the domain knowl-
edge for CBR systems, but none of them do it with a domain and application
independent view as ours. As we did in [5,7], these works presume the existence
of a DL knowledge base in the application domain, typically built ad hoc for a
concrete application.

Other CBR systems codify specific domain ontologies. In [2] an ontology is
developed for the representation of cases and adaptation knowledge for a CBR
system that helps in the estimation of effort for software project. The ontology
manages software project terms like task, project, resource and deliverable. Their



48 Belén Dı́az-Agudo and Pedro A. González-Calero

proposal fits in our architecture if the built project-effort ontology is included in
the library of domain ontologies. More related with our CBROnto is the Multis
Ontology (see [6] for references), a task ontology that defines the terminology for
scheduling. We intend to use it to enhance CBROnto in the design of planning
CBR applications. Also we plan to integrate the context ontology developed
in [11] for its use in contextualized problem solving and learning.

The development of this system brings several lines of CBR future research.
We will perform empirical studies comparing our system with other CBR shells,
mainly for the CBR system design time, and the efficiency, quality of the results,
suitability and effectiveness of the designed applications.

References

1. Ashley K. & Aleven V., 1993: “A logical representation for relevance criteria”, in
Topics in CBR (Wess S., Althoff K. & Richter M., eds.), Springer-Verlag. 45, 47

2. Aarts R. J., 1998: “A CBR Architecture for Project Knowledge Management”, in
Advances in CBR (Smyth B. & Cunningham P., eds.), Springer-Verlag. 47

3. Brachman R. J., McGuinness D. L., Patel-Schneider P. F., Resnick L. A., & Borgida
A., 1991: “Living with CLASSIC: When and How to Use a KL-ONE-Like Lan-
guage”. In Principles of Semantic Networks. Morgan Kaufmann Publishers. 39

4. Gebhardt F., VoB A., Gräther W., Schmidt-Belz B., 1997: Reasoning with Complex
Cases. Kluwer Academic Publishers. 42

5. Gómez-Albarran M., González-Calero P. A., Dı́az-Agudo B. & Fernndez-Conde C.,
1999: “Modelling the CBR Life Cycle Using Description Logics”, in Procs. of the
3rd International Conference on Case-Based Reasoning (ICCBR’99). K.-D. Althoff,
R.Bergmann & L. K. Branting (Eds.). 45, 47

6. Gómez-Pérez A., 1998: “Knowledge Sharing and Reuse”. The handbook on Applied
Expert Systems. By Liebowitz. ED CRC Press. 1998. 38, 39, 48

7. González-Calero P. A., Gómez-Albarran M., & Dı́az-Agudo B., 1999: “Applying
DLs for Retrieval in Case-Based Reasoning”, in Procs. of the 1999 Description
Logics Workshop (DL’99). 47

8. Gruber, T. “A translation Approach to portable ontology specifications”. Knowl-
edge Acquisition. Vol, 5. 1993. 38

9. Mac Gregor, R., 1991: “The evolving technology of classification-based knowledge
representation systems”, in Principles of Semantic Networks: Explorations in the
Representation of Knowledge (J. Sowa, ed.), 39

10. Napoli A., Lieber J., & Courien R., 1996: “Classification-Based Problem Solving
in CBR”, in Advances in CBR (Smith I. & Faltings B., eds.), Springer-Verlag. 47

11. Ozturk P. & A.Aamodt, 1998: ”A Context Model for Knowledge-Intensive Case-
Based Reasoning ”, International Journal of Human-Computer Studies. Vol.48,3.
48

12. Plaza E., 1995: “Cases as Terms: A feature term approach to the structured rep-
resentation of cases”. In Procs. ICCBR-95. 45

13. Pinto H. S., Gómez-Pérez A. & Martins J. P., 1999: “ Some Issues on Ontology
Integration”, in IJCAI-99, Workshop on Ontologies and Problem-Solving Methods:
Lessons Learned and Future Trends. 40, 47

14. Salotti S. & Ventos V., 1998: “Study and Formalization of a CBR System using
a Description Logic”, in Advances in CBR (Smyth B. & Cunningham P., eds.),
Springer-Verlag. 45, 47


	Introduction
	The Synergy of the Ontological and CBR Communities
	The Ontology Server
	Description Logics
	How the Ontologies Are Used

	The CBR Ontology
	Case Representation
	The Domain and CBROnto Integration

	The CBR Processes
	A Case Definition Example

	Conclusions and Related Work
	References

