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Abstract

Case-Based Reasoning (CBR) can give agents the capability of learn-
ing from their own experience and solve new problems, however, in a
multi-agent system, the ability of agents to collaborate is also crucial. In
this paper we present an argumentation framework (AMAL) designed to
provide learning agents with collaborative problem solving (joint delibera-
tion) and information sharing capabilities (learning from communication).
We will introduce the idea of CBR multi-agent systems (MAC systems),
outline our argumentation framework and provide several examples of new
tasks that agents in a MAC system can undertake thanks to the argu-
mentation processes.

1 Introduction

Case-Based Reasoning (CBR) [1] can give agents the capability of learning from
their own experience and solve new problems [19]. Moreover, in a multi-agent
system, the ability of agents to collaborate is crucial in order to benefit from the
information known by other agents, both during learning and problem solving.
In this paper we will present an argumentation framework designed for learning
agents (AMAL), and show that agents can use it to learning and problem solving.
On the one hand we will show that individual agent’s learning can be enhanced
through learning from communication, and on the other hand we will show that
individual problem solving can also be enhanced by joint deliberation.

Learning agents are capable of learning from experience, in the sense that
past examples (situations and their outcomes) are used to predict the outcome
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for the situation at hand. For example, agents might be able to predict the
species of a given animal from observing the animal features thanks to reason-
ing about past observations of animals. In general, in this work, we focus on
any kind of predictive classification tasks. However, since individual agents ex-
perience may be limited, individual knowledge and prediction accuracy is also
limited. Thus, learning agents that are capable of arguing their individual pre-
dictions with other agents may reach better prediction accuracy after such an
argumentation process. Specifically, joint deliberation involves discussion over
the outcome of a particular situation or the appropriate course of action for a
particular situation.

Existing argumentation frameworks can be classified in two groups: abstract
argumentation frameworks, derived from Dung’s seminal work [7], or logical ar-
gumentation frameworks [4]. Argumentation frameworks focus on how to assess,
given a set of arguments, which arguments are acceptable, and which of them
are defeated by other arguments. However, these argumentation frameworks
do not focus on how are arguments constructed, i.e. where do they come from.
Moreover, all additional pieces of knowledge required for argumentation, like
the attack relation among arguments, or any required preference relation are
assumed to be given in advance. In this paper, we focus on an Argumentation-
based Multi-Agent Learning (AMAL) framework where both arguments and pref-
erence relation relation are learned from experience.

Specifically, we consider a scenario with agents that (1) work in the same
domain using a shared ontology, (2) are capable of learning from examples, and
(3) communicate using an argumentative framework. We present a case-based
approach to address both: how learning agents can generate arguments from
examples, and how they can define a preference relation among arguments based
on examples. Our agents use case-based reasoning (CBR) [1] to learn from past
experience, represented as a set of examples or cases (where a case is a situation
and its outcome) in order to predict the outcome of a new situation. We pro-
pose an argumentation protocol inside the AMAL framework to support agents
in reaching a joint prediction over a specific situation or problem — moreover,
the reasoning needed to support the argumentation process will also be based on
cases. Finally, we present several applications where the argumentation frame-
work can be useful. First we will show how using argumentation agents can
achieve joint deliberation, and we’ll see how agents can act as committees or
as an information market. Then we will show how agents can use argumen-
tation as an information sharing method, and achieve effective learning from
communication, and information sharing among peers.

This paper is an extended version of the results informally presented in [14].
The paper is structured as follows. Section 2 introduces our multi-agent CBR
(MAC) framework. After that, Section 3 briefly describes our argumentation
framework. Section 4 presents several applications of the argumentation frame-
work, and finally Section 5 presents related work. The paper closes with related
work and conclusions sections.
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2 Multi-Agent Case-Based Reasoning Systems

[Figure 1 about here.]

A Multi-Agent Case Based Reasoning System (MAC)M = {(A1, C1), ..., (An,
Cn)} is a multi-agent system composed of A = {Ai, ..., An}, a set of CBR
agents, where each agent Ai ∈ A possesses an individual case base Ci, as il-
lustrated in Figure 1. Each individual agent Ai in a MAC is completely au-
tonomous and each agent Ai has access only to its individual and private case
base Ci = {c1, ..., cm} consisting of a collection of cases. CBR methods solve
new problems by retrieving similar problems stored in a case base, where each
case is a previously solved problem. Once a set of problems has been retrieved,
the solution to the problem at hand is computed by reusing the solution con-
tained in the retrieved cases (adapting or combining those solutions if needed).
The newly solved problem might be incorporated into the case base as another
case.

Agents in a MAC system are able to individually solve problems by using
case-based reasoning. In this paper we will limit our selves to analytical tasks,
where solving a problem means to identify a particular solution class among
a set of possible solutions. For example, diagnosing a patient with the right
disease, classifying a customer in the right risk category for a loan, etc.

CBR gives agents the capability to individually learn how to solve these kinds
of tasks from experience, however, in a multi-agent system where each agent is
exposed to different experiences we would like agents to collaborate and make
use of information known by other agents. However, we are not interested in
complete information sharing, but in a selective information sharing that only
shares the information that is needed for the task at hand, thus keeping the
amount of information each agent knows and has to share manageable.

The AMAL framework presented in this paper complements MAC systems
by allowing agents to perform joint deliberation (solve classification tasks in a
collaborative way) and learning from communication.

3 Argumentation-Based Multi-Agent Learning:
AMAL

The AMAL argumentation framework is based on the idea that, when CBR
agents solve new problems, they can provide a justification of the predicted
solution. These justifications can then be used as arguments. The kinds of
arguments that CBR agents can generate are thus based on justifications and
cases. For example, in a medical domain, a justification could be “I predict pa-
tient A has pneumonia because he coughs and has night sweat.” In the following
sections we will define this idea of justifications, and then define the different
components of the AMAL framework: the set of argument types that agents can
use, a preference relation based in cases, and finally the AMAL argumentation
protocol.
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3.1 Justified Predictions

[Figure 2 about here.]

The basis of the AMAL framework is the ability of some machine learning
methods to provide explanations (or justifications) for their predictions. We
are interested in justifications since they can be used as arguments. Most of
the existing work on explanation generation focuses on generating explanations
to be provided to the user. However, in our approach we use explanations (or
justifications) as a tool for improving communication and coordination among
agents.

In particular in the AMAL framework agents use CBR as their learning and
problem solving method. Since CBR methods solve problems by retrieving cases
from a case base, when a problem P is solved by retrieving a set of cases c1, ..., cn,
the justification D will contain the relevant information from the problem P that
made the CBR system retrieve that particular set of cases, i.e. it will contain
the relevant information that P and c1, ..., cn have in common, but no other
case in the case-base does. More formally:

Definition 3.1 A justification D built by an agent Ai to justify a prediction
S for a problem P , solved by retrieving a set of cases CP = {c1, ..., cn} ⊆ Ci
is a symbolic description D such that D v P and ∀cj ∈ CP : D v cj and
∀cj ∈ Ci∧cj 6∈ CP : D 6v cj, i.e. D is satisfied (v) by P and by all the retrieved
cases, but by no other case in the case base of Ai.

So, when an agent solves a problem providing a justification for its solution,
it generates a justified prediction. A Justified Prediction is a tuple J = 〈A,P,
S,D〉 where agent A considers S the correct solution for problem P , and that
prediction is justified by a symbolic description D. Justifications can have many
uses for CBR systems [16, 18]. In this paper, we are going to use justifications
as arguments, in order to allow learning agents to engage in argumentation
processes.

For instance, Figure 2 shows a real justification generated by LID [3], a CBR
method capable of generating justifications, after solving a problem P in the
domain of marine sponges identification. In particular, Figure 2 shows how
when an agent A1 receives a new problem to solve (in this case, a new sponge to
determine its order), the agent uses LID to generate a justified prediction using
the cases in the case base of the agent. The justification shown in Figure 2 can
be interpreted saying that “the predicted solution to problem P is hadromerida
because the smooth form of the megascleres of the spiculate skeleton of the
sponge is of type tylostyle, the spiculate skeleton of the sponge has no uniform
length, and there is no gemmules in the external features of the sponge”.

3.2 Arguments and Counterarguments

For our purposes an argument α generated by an agent A is composed of a
statement S and some evidence D supporting S as correct. In the context of
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MAC systems, agents argue about predictions for new problems and can provide
two kinds of information: a) specific cases 〈P, S〉, and b) justified predictions:
〈A,P, S,D〉. Using this information, we can define two types of arguments:
justified predictions, and counterexamples:

• A justified prediction α is generated by an agent Ai to argue that Ai
believes that the correct solution for a given problem P is α.S, and the
evidence provided is the justification α.D.

• A counterexample c is a case that contradicts an argument α. Thus a
counterexample is a counterargument, one that states that a specific ar-
gument α is not always true, and the evidence provided is the case c that
is a counterexample of α.

.
In our framework, justified predictions can also be used as counterarguments.

A counterargument β is an argument offered in opposition to an argument α.
Counterarguments can be either justified predictions or counterexamples. For
example, a justified prediction β = 〈Aj , P, S′, D′〉 generated by an agent Aj
with the intention to rebut an argument α generated by another agent Ai,
that endorses a solution class S′ different from that of α.S for the problem at
hand is a counterargument to α. The only restriction we impose for a justified
prediction to be a counterargument is that D v D′, i.e. the counterargument
must be more specific than the original argument.

[Figure 3 about here.]

For example Figure 3 shows a justified prediction, generated as a counter-
argument to the justified prediction shown in Figure 2. Notice that the jus-
tification in the counterargument is more specific than the justification in the
original argument.

3.3 Case-Based Preference Relation

[Figure 4 about here.]

A specific argument provided by an agent might not be consistent with the
information known to other agents (or even to some of the information known
by the agent that has generated the justification due to noise in training data).
This means that other agents might have cases in their case-bases which con-
tradict arguments generated by other agents. Therefore, it is possible that
different agents generate justified predictions for the same problem which pre-
dict different solutions. For that reason, we will define a preference relation
over contradicting justified predictions based on cases. Basically, we will define
a confidence measure for each justified prediction and the justified prediction
with the highest confidence will be the preferred one. In the absence of further
evidence (e.g. counterarguments or counterexamples attacking some of the jus-
tified predictions), when agents are faced with competing arguments for a given
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problem, the preference relation can be used to determine which argument to
accept.

The idea behind case-based confidence is to count how many of the cases in
an individual case base endorse a justified prediction, and how many of them are
counterexamples of it. The more the endorsing cases, the higher the confidence;
and the more the counterexamples, the lower the confidence. Specifically, an
agent estimates the confidence of an argument as:

CAi(α) =
Y Ai
α

1 + Y Ai
α +NAi

α

where Y Ai
α are the set of cases in the case base of Ai that endorse α and NAi

α is
the set of its counterexamples in the case base of Ai, defined as follows:

• Y Ai
α = |{c ∈ Ci| α.D v c.P ∧α.S = c.S}| is the number of cases in the case

base of Ai subsumed by the justification α.D that belong to the solution
class α.S,

• NAi
α = |{c ∈ Ci| α.D v c.P ∧ α.S 6= c.S}| is the number of cases in the

case base of Ai subsumed by justification α.D that do not belong to that
solution class.

Figure 4 illustrates the individual evaluation of the confidence of an argu-
ment, in particular, three endorsing cases and one counterexample are found in
the case base of agents Ai, giving an estimated confidence of 0.6.

Moreover, we define the joint confidence of an argument α as the confidence
computed using the cases present in the case bases of all the agents in the group:

C(α) =
∑
i Y

Ai
α

1 +
∑
i

(
Y Ai
α +NAi

α

)
In AMAL, agents use this joint confidence as the preference relation: a jus-

tified prediction α is preferred over another one β if C(α) ≥ C(β).

3.4 The AMAL Argumentation Protocol

The main idea behind joint deliberation is to follow the problem solving proce-
dure used by committees of humans, using a two stage process: in a first stage
(deliberation), agents expose their point of view and argue about it; in a second
stage (voting), agents take into account all the previously exposed arguments to
cast a vote and decide on a final solution for the problem at hand. If all agents
reach an agreement during deliberation, there is no need for voting. The AMAL
interaction protocol outlined in this section exactly models this process (for a
more formal description, see [17]).

The interaction protocol of AMAL allows a group of agents A1, ..., An to
deliberate about the correct solution of a problem P by means of an argumen-
tation process. If the argumentation process arrives to a consensual solution,
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the joint deliberation ends; otherwise a weighted vote is used to determine the
joint solution. Moreover, AMAL also allows the agents to learn from the coun-
terexamples received from other agents. Thus, letting the agents learn from
communication during deliberation.

The AMAL protocol consists on a series of rounds. At each round, each
agent holds one single justified prediction as its preferred prediction. In the
initial round, each agent generates its individual justified prediction for the
current problem P and uses it as its initial preferred prediction.

Then, at each round t each agent agent has a chance to rebut the prediction
made by any of the other agents. The protocol uses a token passing mechanism
so that agents (one at a time) can send counterarguments or counterexamples
if they disagree with the prediction made by any other agent. Specifically, each
agent is allowed to send one counterargument or counterexample each time it
gets the token (notice that this restriction is just to simplify the protocol, and
it does not restrict the number of counterargument an agent can sent, since
they can just be delayed for subsequent rounds). When an agent receives a
counterargument or counterexample, it informs the other agents if it accepts the
counterargument (and changes its prediction) or not. Agents take that decision
based on the preference relation: when the received counterargument is preferred
to the currently held argument, the counterargument is accepted, otherwise it
is not, and the agent will try to generate a counterargument to it. Thus, agents
have also the opportunity to answer to counterarguments when they receive the
token, by trying to generate a counterargument to the counterargument.

When all the agents have had the token once, the token returns to the first
agent, and so on. If at any time in the protocol, all the agents agree or during
the last n rounds no agent has generated any counterargument, the protocol
ends. Moreover, if at the end of the argumentation the agents have not reached
an agreement (an agreement is reached when the arguments that all the agents
are holding at a particular round endorse the same solution), then a voting
mechanism that uses the confidence of each prediction as weights is used to
decide the final solution. Specifically, if Ht is the set of arguments that all the
agents are holding in the last round t of the protocol, the final solution is defined
as:

S = arg max
Sk∈S

∑
αi∈Ht|αi.S=Sk

C(αi)

Moreover, notice that agents can learn from the counterexamples received
from other agents during an argumentation process. As we will show in the
next section, the counterexamples received by a particular agents are those ones
that are in contradiction with the agent’s predictions, and thus the ones where
the different agents in the committee disagree about. It is well known from
the active learning field in machine learning [5], that those are precisely the
examples which can better improve the problem solving performance of agents.
Thus, learning from counterexamples exchanged during deliberation is a very
effective way to improve performance.
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Notice that the main difference between the AMAL argumentation framework
and existing argumentation framework such as Dung’s [7], is that in existing
frameworks arguments are given, and the goal is to decide which arguments to
accept. In AMAL, arguments are not given, but generated from examples by
the agents, and argumentation is used as a communication framework for agents
to decide when to change their minds concerning the prediction for a specific
problem P .

4 Applications of AMAL

The AMAL argumentation framework gives agents in a MAC system two new
capabilities: joint deliberation and learning from communication. In this section
we will present an evaluation of those two capabilities, in addition to a third
evaluation where agents use AMAL as an “information sharing” mechanism.

4.1 Joint Deliberation

[Figure 5 about here.]

To evaluate the joint deliberation capabilities of agents using AMAL we de-
signed the following experiment. A machine learning data set is divided in two
disjoint sets: a training set and a test set. The training set distributed among
5 agents without replication (the training set is split in 5 disjoint parts and
each agent only has access to one of them). Then, one of the agents is given a
problems from the test set (not in the training set) and is asked to solve it. Such
agent will engage in an argumentation process with some other agents in the
system about the correct solution for each problem. We compare how accurate
the prediction is using argumentation with respect to traditional voting mech-
anisms, and also study how much the number of agents that take part in the
argumentation affects the prediction accuracy. The agents in our experiments
use LID to solve problems and generate justifications.

We performed experiments with two different data sets: soybean (a propo-
sitional data set from the UCI machine learning repository) and demospongiae
(a complex relational data set also from the UCI machine learning repository).
The soybean data set has 307 examples and 19 solution classes, while the sponge
data set has 280 examples and 3 solution classes. In the testing stage, problems
in the test set are sent randomly to one of the agents, and its goal is to predict
the correct solution.

We ran experiments using 2, 3, 4, and 5 agents respectively (in all exper-
iments each agent has 20% of the training data, since the training is always
distributed among 5 agents). Thus, in our experiments with the soybean data
set, each agent has about 55.26 cases each, and in the demospongiae dataset,
each agent has about 50.4 cases each.

Figure 5 shows the result of those experiments. For each number of agents,
three bars are shown: individual, Voting, and AMAL. The individual bar shows

8



the average accuracy of individual agents’ predictions; the voting bar shows the
average accuracy of the joint prediction achieved by voting but without any
argumentation; and finally the AMAL bar shows the average accuracy of the
joint prediction using argumentation. The results shown are the average of 5
10-fold cross validation runs.

Figure 5 shows that collaboration (voting and AMAL) outperforms individual
problem solving. Moreover, as we expected, the accuracy improves as more
agents collaborate, since more information is taken into account. We can also
see that AMAL always outperforms standard voting, proving that joint decisions
are based on better information as provided by the argumentation process.

For instance, the joint accuracy for 2 agents in the sponge data set is of
87.57% for AMAL and 86.57% for voting (while individual accuracy is just
80.07%). Moreover, the improvement achieved by AMAL over Voting is even
larger in the soybean data set. The reason is that the soybean data set is
more “difficult” (in the sense that agents need more data to produce good pre-
dictions). These experimental results show that AMAL effectively exploits the
opportunity for improvement: the accuracy is higher only because more agents
have changed their opinion during argumentation (otherwise they would achieve
the same result as Voting).

4.2 Learning from Communication

[Figure 6 about here.]

[Table 1 about here.]

In order to evaluate the learning from communication capabilities of agents
using AMAIL , we run the following additional experiment. Using the same
scenario as the previous experiment, we distributed 25% of the training set
among the five agents; after that, the rest of the cases in the training set is
sent to the agents one by one (each case sent at random to one agent); when
an agent receives a new training case c, it has several options: 1) the agent can
discard it, 2) the agent can retain it, or 3) the agent can use it for engaging in
an argumentation process. This last option means that the agent takes the new
case c, consisting on a problem P and its solution S, and starts a deliberative
agreement process to try to predict the solution of P (ignoring the fact that the
solution is already known). This is basically used to create an opportunity for
learning from communication.

We compared the evolution of the individual classification accuracy of agents
that perform each one of these 3 options. Figure 6 contains three plots, where NL
(not learning) shows accuracy of an agent with no learning at all; L (learning),
shows the evolution of the individual classification accuracy when agents learn
by retaining the training cases they individually receive (notice that when all the
training cases have been retained, the accuracy should be equal to that of Figure
5 for individual agents); and finally LFC (learning from communication) shows
the evolution of the individual classification accuracy of learning agents that
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also learn by retaining those counterexamples received during argumentation
(i.e. they learn both from training examples and counterexamples received
during argumentation).

Figure 6 shows that if an agent Ai learns also from communication, Ai can
significantly improve its individual performance with just a small number of
additional cases (those selected as relevant counterexamples for Ai during ar-
gumentation). For instance, in the soybean data set, individual agents have
achieved an accuracy of 70.62% when they also learn from communication ver-
sus an accuracy of 59.93% when they only learn from their individual experience.
The number of cases learnt from communication depends on the properties of
the data set: in the sponges data set, agents retained only very few additional
cases, and significantly improved individual accuracy; namely they retain 59.96
cases in average (compared to the 50.4 cases retained if they do not learn from
communication). In the soybean data set more counterexamples are learnt to
significantly improve individual accuracy, namely they retain 87.16 cases in aver-
age (compared to 55.27 cases retained if they do not learn from communication).
Finally, the fact that both data sets show a significant improvement points out
the adaptive nature of the argumentation-based approach to learning from com-
munication: the useful cases are selected as counterexamples, and they have the
intended effect.

Table 1 shows the average amount of cases that each agent has at the end
of the experiments reported in Figure 6. The table shows that in some data
sets, like the sponges one, agents retain only very few additional cases (59.96
versus 50.4) and that their individual accuracy has improved significantly. This
fact indicates that the argumentation process provides a useful framework for
learning from communication, finding which cases are specifically useful for each
particular agent.

4.3 Information Sharing

Finally, a third use of the AMAL framework is for information sharing. To
evaluate this capability, we performed some experiments in prediction markets.
Prediction markets, also known as information markets, are an alternative to
voting systems. The goal of a prediction market is to aggregate information
based on a price signal emitted by the members of a group. The advantage of the
price signal is that it encapsulates both the information and the preferences of a
number of individuals. In this approach, the task of aggregating information is
achieved by creating a market, and that market should offer the right incentives
for the participating people or agents to disclose the information they possess.

Prediction markets provide agents with an incentive to provide accurate
predictions (since they receive some bonus if they provide the right answer),
therefore, it is rational for agents to consult with other agents, before casting
their votes. Thus, we can distinguish two phases: an information gathering
phase, where agents consult with some of their acquaintances, and a joint de-
liberation phase, where agents cast their votes for particular solutions, together
with a price signal (the price signal can be seen as how much money the agent
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bets into the predicted solution, which is proportional to the reward the agent
will get if its prediction is correct).

In this experiment we used AMAL as a framework for information sharing,
and to evaluate it, we designed the following experiment: we split the training
set among 8 agents, and each agent in the system had a small set of acquain-
tances with which it will share information before participating in the market.
Their acquaintances are determined according to a social network, where each
node is an agent and links represent which agents are acquaintances of which
other agents. To perform information sharing, an agent does the following: it
first generates its own individual prediction for the problem at hand using its
local case base, and then it starts a one-to-one argumentation process with one
of its acquaintances. The outcome of this argumentation is a more informed
prediction than the original one. Using that prediction as a starting point,
the agent engages in another one-to-one argumentation process with its next
acquaintance, and so on. After each argumentation process, the resulting pre-
diction is stronger and stronger since it takes into account information known by
more agents (without the agents having to share their case bases). The resulting
prediction is cast by the agent as its vote in the prediction market, and the joint
confidence (computed during the argumentation processes) of that prediction
is used to compute its price signal (the higher the confidence, the higher the
price signal). In particular, in our experiments we used the following formula to
compute the price signal of an agent Ai: M ×C(α), where M is the maximum
amount an agent can bet in the prediction market.

[Table 2 about here.]

[Figure 7 about here.]

We have performed experiments with 0 to 5 acquaintances and logged the
prediction accuracy of the market. Figure 7 shows three of the networks we
used in our experiments, specifically the networks for 1, 2 and 3 acquaintances.
The prediction accuracy of each individual agent, and also the average money
reward received by each agent per problem when agents can bet between 0 and
100 monetary units per problem, i.e. M = 100, and all the agents that predicted
the right solution split all the money that every agent bet (plus a 10% bonus).

Table 2 shows that information exchange is positive both for the individual
agents and for the market as a whole. We can see that the more acquaintances
an agent has, the higher its individual prediction accuracy. For instance, agents
with 0 acquaintances have an accuracy of 74.21% while agents with 1 acquain-
tance have an accuracy of 83.99%, and when they have 5 acquaintances, their
accuracy is increased to 88.21%. Moreover, the predictive accuracy of the mar-
ket increases from 89.71% when agents do not perform information exchange,
to above 91% when agents have more than 1 acquaintances.

Another effect we can observe is that the reward that the agents obtain
increases when they perform information exchange, starting in 10.35 monetary
units per problem when they do not perform information exchange, and going
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up to about 12 when agents have 2 or 3 acquaintances. It is interesting to notice
that the performance of the prediction market doesn’t increase linearly with the
performance of the individual agents. In fact, the more accurate the individual
agents get, the more correlated their individual predictions are, and thus there
is less difference between their individual predictions and the prediction of the
market as a whole. This is a well known effect in machine learning (known
as the ensemble effect [6]), or in economics (related to the Condorcet Jury
Theorem). Therefore, if the reward signal that the agents get was only related to
its individual accuracy, agents might be interested in their classification accuracy
to a point were the correlation is too high, and then the market would not achieve
it’s optimal accuracy. The reward signal takes this into account, and rewards
the agents when the market as a whole has high accuracy.

Concerning information exchange, the experiments show that individual and
market accuracy improve. This means that the agents make a more informed
prediction, and thus that AMAL is effective in providing agents with enough
information to correct previously inaccurate predictions.

5 Related Work

Concerning CBR in a multi-agent setting, the first research was on “negotiated
case retrieval” [20] among groups of agents. Our work on multi-agent case-
based learning started in 1999 [11]; later Mc Ginty and Smyth [12] presented a
multi-agent collaborative CBR approach (CCBR) for planning. Finally, another
interesting approach is multi-case-base reasoning (MCBR) [10], that deals with
distributed systems where there are several case bases available for the same task
and addresses the problems of cross-case base adaptation. The main difference is
that ourMAC approach is a way to distribute the Reuse process of CBR (using
a voting system) while Retrieve is performed individually by each agent; the
other multi-agent CBR approaches, however, focus on distributing the Retrieve
process.

Research on MAS argumentation focus on several issues like a) different
models of argumentation, b) logics, protocols and languages that support ar-
gumentation. The two main models of argumentation are 1) that of Dung [7]
and its derivatives, such as weighted argumentation frameworks [8], which focus
on abstract argumentation mechanism, and 2) that of Simari et al. [4], which
focus on logical models of argument based on defeasible logics. Other models,
for instance based on BDI have also been proposed [22]. Although argument
selection is a key aspect of automated argumentation (see [21] and [22]), most
research has been focused on preference relations among arguments. In our
framework we have addressed both argument selection and preference relations
using a case-based approach.

Finally, concerning argumentation-based machine learning, Fukumoto and
Sawamura [9] propose a new theoretical framework for argumentation-based
learning, where they focus on what is the belief status of an agent after receiv-
ing a new argument. The main difference with our work is that they perform a
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theoretical analysis of the belief revision problem after receiving an argument,
whereas we are concerned with the full problem of how to generate arguments,
evaluate them, and learn from them, all based on learning from examples. Am-
goud and Serrurier [2] propose an argumentation framework for classification
where both examples and hypothesis are considered as arguments in the same
way as in our framework. However, in their framework they focus on how to
extract valid and justified conclusions from a given set of examples and hypoth-
esis, where as in our framework we are concerned with how those hypothesis are
also generated. Moreover, they only focus on the single agent situation. Other
work has tried to improve the performance of machine learning methods by
combining them with argumentation techniques, for example, Možina et al. [13]
introduced the idea of argumented examples to improve the reduce the space of
the hypothesis space and help producing more meaningful hypothesis.

6 Conclusions

While Case-Based Reasoning (CBR) can give agents the capability of learning
from their own experience and solve new problems, in a multiagent setting,
agents might need to communicate and collaborate with each other. In this
paper we have presented an argumentation-based framework for multi-agent
learning, AMAL, that allows a group of learning agents to perform joint delib-
eration, learning from communication and information sharing.

The main difference of this work with other works on computational ar-
gumentation is that in our framework, by combining learning techniques with
argumentation, we focus on how can agents generate arguments from experi-
ence. In that sense, our work does not focus only in defining an argumentation
framework, but on closing the loop of how do agents learn, generate arguments
from experience, and communicate those arguments to other agents with the
purpose of solving problems or of further improve their learning.

The main contributions of this work are: a) an argumentation framework
for learning agents, where agents generate arguments from experience; b) a
case-based preference relation over arguments, based on computing an overall
confidence estimation of arguments; and c) an argumentation-based approach
for learning from communication. Additionally, we reported empirical evalua-
tions of the performance of AMAL in a collection of machine learning tasks.

Our future work follows two different paths. First, we plan to explore the sit-
uations where we have heterogeneous agents that use different learning methods
to generate arguments, and we also plan to explore more realistic the effect of
having non-trustable agents, that do not always reveal their truth information.
Second, AMAL allows agents that use lazy learning techniques to perform joint
deliberation; our second line of future work is the integration of argumentation
techniques with eager inductive learning techniques. Work on this second line
of research has already started, and we are currently working on an framework
called AMAIL [15], focusing on inductive learning techniques rather than lazy
learning ones.
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[17] Santi Ontañón and Enric Plaza. Learning and joint deliberation through
argumentation in multi-agent systems. In Proceedings AAMAS 2007, pages
971–978. ACM, 2007.

[18] Enric Plaza, Eva Armengol, and Santiago Ontañón. The explanatory power
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Figure 2: Example of a real justification generated by LID, a CBR method
capable of generating justifications, in the marine sponges data set.
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Figure 7: Three of the social networks used in our experiments, with 1, 2 and 3
acquaintances.
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Table 1: Cases retained from communication.

SPONGE SOYBEAN
NL L LFC NL L LFC
12.7 50.4 58.96 13.82 55.26 87.16
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social network market accuracy individual accuracy average reward
0 acquaintances 89.71% 74.21% 10.35
1 acquaintances 90.57% 83.99% 11.42
2 acquaintances 91.29% 86.63% 12.14
3 acquaintances 91.14% 87.64% 11.94
4 acquaintances 91.07% 88.16% 11.85
5 acquaintances 91.21% 88.21% 11.93

Table 2: Prediction markets accuracy with information exchange with varying
number of acquaintances in the sponge dataset.
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