
Learning and Joint Deliberation through Argumentation in
Multi-Agent Systems

Santi Ontañón
CCL, Cognitive Computing Lab
Georgia Institute of Technology

Atlanta, GA 303322/0280
santi@cc.gatech.edu

Enric Plaza
IIIA, Artificial Intelligence Research Institute

CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia

(Spain)

enric@iiia.csic.es

ABSTRACT
In this paper we will present an argumentation framework for learn-
ing agents (AMAL) designed for two purposes: (1) for joint deliber-
ation, and (2) for learning from communication. The AMAL frame-
work is completely based on learning from examples: the argument
preference relation, the argument generation policy, and the coun-
terargument generation policy are case-based techniques. For join
deliberation, learning agents share their experience by forming a
committee to decide upon some joint decision. We experimentally
show that the argumentation among committees of agents improves
both the individual and joint performance. For learning from com-
munication, an agent engages into arguing with other agents in or-
der to contrast its individual hypotheses and receive counterexam-
ples; the argumentation process improves their learning scope and
individual performance.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intel-
ligence]: Distributed Artificial Intelligence—Multiagent systems,
Intelligent Agents

Keywords
multi-agent learning, argumentation, case-based reasoning

1. INTRODUCTION
Argumentation frameworks for multi-agent systems can be used

for different purposes like joint deliberation, persuasion, negotia-
tion, and conflict resolution. In this paper we will present an argu-
mentation framework for learning agents, and show that it can be
used for two purposes: (1) joint deliberation, and (2) learning from
communication.

Argumentation-based joint deliberation involves discussion over
the outcome of a particular situation or the appropriate course of ac-
tion for a particular situation. Learning agents are capable of learn-
ing from experience, in the sense that past examples (situations and
their outcomes) are used to predict the outcome for the situation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

at hand. However, since individual agents experience may be lim-
ited, individual knowledge and prediction accuracy is also limited.
Thus, learning agents that are capable of arguing their individual
predictions with other agents may reach better prediction accuracy
after such an argumentation process.

Most existing argumentation frameworks for multi-agent sys-
tems are based on deductive logic or some other deductive logic
formalism specifically designed to support argumentation, such as
default logic [3]). Usually, an argument is seen as a logical state-
ment, while a counterargument is an argument offered in opposition
to another argument [4, 13]; agents use a preference relation to re-
solve conflicting arguments. However, logic-based argumentation
frameworks assume agents with preloaded knowledge and prefer-
ence relation. In this paper, we focus on an Argumentation-based
Multi-Agent Learning (AMAL) framework where both knowledge
and preference relation are learned from experience. Thus, we con-
sider a scenario with agents that (1) work in the same domain using
a shared ontology, (2) are capable of learning from examples, and
(3) communicate using an argumentative framework.

Having learning capabilities allows agents effectively use a spe-
cific form of counterargument, namely the use of counterexam-
ples. Counterexamples offer the possibility of agents learning dur-
ing the argumentation process. Moreover, learning agents allow
techniques that use learnt experience to generate adequate argu-
ments and counterarguments. Specifically, we will need to address
two issues: (1) how to define a technique to generate arguments
and counterarguments from examples, and (2)how to define a pref-
erence relation over two conflicting arguments that have been in-
duced from examples.

This paper presents a case-based approach to address both is-
sues. The agents use case-based reasoning (CBR) [1] to learn from
past cases (where a case is a situation and its outcome) in order
to predict the outcome of a new situation. We propose an argu-
mentation protocol inside the AMAL framework at supports agents
in reaching a joint prediction over a specific situation or problem
— moreover, the reasoning needed to support the argumentation
process will also be based on cases. In particular, we present two
case-based measures, one for generating the arguments and coun-
terarguments adequate to a particular situation and another for de-
termining preference relation among arguments. Finally, we eval-
uate (1) if argumentation between learning agents can produce a
joint prediction that improves over individual learning performance
and (2) if learning from the counterexamples conveyed during the
argumentation process increases the individual performance with
precisely those cases being used while arguing among them.

The paper is structured as follows. Section 2 discusses the rela-
tion among argumentation, collaboration and learning. Then Sec-

tion 3 introduces our multi-agent CBR (MAC) framework and the
notion of justified prediction. After that, Section 4 formally de-
fines our argumentation framework. Sections 5 and 6 present our
case-based preference relation and argument generation policies re-
spectively. Later, Section 7 presents the argumentation protocol in
our AMAL framework. After that, Section 8 presents an exemplifi-
cation of the argumentation framework. Finally, Section 9 presents
an empirical evaluation of our two main hypotheses. The paper
closes with related work and conclusions sections.

2. ARGUMENTATION, COLLABORATION
AND LEARNING

Both learning and collaboration are ways in which an agent can
improve individual performance. In fact, there is a clear parallelism
between learning and collaboration in multi-agent systems, since
both are ways in which agents can deal with their shortcomings.
Let us show which are the main motivations that an agent can have
to learn or to collaborate.

• Motivations to learn:

– Increase quality of prediction,
– Increase efficiency,
– Increase the range of solvable problems.

• Motivations to collaborate:

– Increase quality of prediction,
– Increase efficiency,
– Increase the range of solvable problems,
– Increase the range of accessible resources.

Looking at the above lists of motivation, we can easily see that
learning and collaboration are very related in multi-agent systems.
In fact, with the exception of the last item in the motivations to
collaborate list, they are two extremes of a continuum of strategies
to improve performance. An agent may choose to increase perfor-
mance by learning, by collaborating, or by finding an intermediate
point that combines learning and collaboration in order to improve
performance.

In this paper we will propose AMAL, an argumentation frame-
work for learning agents, and will also also show how AMAL can be
used both for learning from communication and for solving prob-
lems in a collaborative way:

• Agents can solve problems in a collaborative way via en-
gaging an argumentation process about the prediction for the
situation at hand. Using this collaboration, the prediction
can be done in a more informed way, since the information
known by several agents has been taken into account.

• Agents can also learn from communication with other agents
by engaging an argumentation process. Agents that engage
in such argumentation processes can learn from the argu-
ments and counterexamples received from other agents, and
use this information for predicting the outcomes of future sit-
uations.

In the rest of this paper we will propose an argumentation frame-
work and show how it can be used both for learning and for solving
problems in a collaborative way.

3. MULTI-AGENT CBR SYSTEMS
A Multi-Agent Case Based Reasoning System (MAC) M =

{(A1, C1), ..., (An, Cn)} is a multi-agent system composed ofA =
{Ai, ..., An}, a set of CBR agents, where each agent Ai ∈ A
possesses an individual case base Ci. Each individual agent Ai

in a MAC is completely autonomous and each agent Ai has ac-
cess only to its individual and private case base Ci. A case base
Ci = {c1, ..., cm} is a collection of cases. Agents in a MAC
system are able to individually solve problems, but they can also
collaborate with other agents to solve problems.

In this framework, we will restrict ourselves to analytical tasks,
i.e. tasks like classification, where the solution of a problem is
achieved by selecting a solution class from an enumerated set of
solution classes. In the following we will note the set of all the solu-
tion classes by S = {S1, ..., SK}. Therefore, a case c = 〈P, S〉 is
a tuple containing a case description P and a solution class S ∈ S.
In the following, we will use the terms problem and case descrip-
tion indistinctly. Moreover, we will use the dot notation to refer to
elements inside a tuple; e.g., to refer to the solution class of a case
c, we will write c.S.

Therefore, we say a group of agents perform joint deliberation,
when they collaborate to find a joint solution by means of an ar-
gumentation process. However, in order to do so, an agent has to
be able to justify its prediction to the other agents (i.e. generate an
argument for its predicted solution that can be examined and cri-
tiqued by the other agents). The next section addresses this issue.

3.1 Justified Predictions
Both expert systems and CBR systems may have an explanation

component [14] in charge of justifying why the system has pro-
vided a specific answer to the user. The line of reasoning of the
system can then be examined by a human expert, thus increasing
the reliability of the system.

Most of the existing work on explanation generation focuses on
generating explanations to be provided to the user. However, in our
approach we use explanations (or justifications) as a tool for im-
proving communication and coordination among agents. We are
interested in justifications since they can be used as arguments.
For that purpose, we will benefit from the ability of some machine
learning methods to provide justifications.

A justification built by a CBR method after determining that the
solution of a particular problem P was Sk is a description that con-
tains the relevant information from the problem P that the CBR
method has considered to predict Sk as the solution of P . In partic-
ular, CBR methods work by retrieving similar cases to the problem
at hand, and then reusing their solutions for the current problem,
expecting that since the problem and the cases are similar, the solu-
tions will also be similar. Thus, if a CBR method has retrieved a set
of cases C1, ..., Cn to solve a particular problem P the justification
built will contain the relevant information from the problem P that
made the CBR system retrieve that particular set of cases, i.e. it
will contain the relevant information that P and C1, ..., Cn have in
common.

For example, Figure 1 shows a justification build by a CBR sys-
tem for a toy problem (in the following sections we will show jus-
tifications for real problems). In the figure, a problem has two at-
tributes (Traffic_light, and Cars_passing), the retrieval mechanism
of the CBR system notices that by considering only the attribute
Traffic_light, it can retrieve two cases that predict the same solu-
tion: wait. Thus, since only this attribute has been used, it is the
only one appearing in the justification. The values of the rest of at-
tributes are irrelevant, since whatever their value the solution class
would have been the same.

Problem
Traffic_light: red
Cars_passing: no

Case 1
Traffic_light: red
Cars_passing: no

Solution: wait

Case 3
Traffic_light: red
Cars_passing: yes

Solution: wait

Case 4
Traffic_light: green
Cars_passing: yes

Solution: wait

Case 2
Traffic_light: green
Cars_passing: no

Solution: cross

Retrieved
cases

Solution: wait

Justification
Traffic_light: red

Figure 1: An example of justification generation in a CBR system. Notice that, since the only relevant feature to decide is Traffic_light
(the only one used to retrieve cases), it is the only one appearing in the justification.

In general, the meaning of a justification is that all (or most of)
the cases in the case base of an agent that satisfy the justification
(i.e. all the cases that are subsumed by the justification) belong to
the predicted solution class. In the rest of the paper, we will use v
to denote the subsumption relation. In our work, we use LID [2], a
CBR method capable of building symbolic justifications such as the
one exemplified in Figure 1. When an agent provides a justification
for a prediction, the agent generates a justified prediction:

DEFINITION 3.1. A Justified Prediction is a tuple J = 〈A, P,
S, D〉 where agent A considers S the correct solution for problem
P , and that prediction is justified a symbolic description D such
that J.D v J.P .

Justifications can have many uses for CBR systems [8, 9]. In this
paper, we are going to use justifications as arguments, in order to
allow learning agents to engage in argumentation processes.

4. ARGUMENTS AND
COUNTERARGUMENTS

For our purposes an argument α generated by an agent A is com-
posed of a statement S and some evidence D supporting S as cor-
rect. In the remainder of this section we will see how this gen-
eral definition of argument can be instantiated in specific kind of
arguments that the agents can generate. In the context of MAC
systems, agents argue about predictions for new problems and can
provide two kinds of information: a) specific cases 〈P, S〉, and b)
justified predictions: 〈A, P, S, D〉. Using this information, we can
define three types of arguments: justified predictions, counterargu-
ments, and counterexamples.

A justified prediction α is generated by an agent Ai to argue that
Ai believes that the correct solution for a given problem P is α.S,
and the evidence provided is the justification α.D. In the exam-
ple depicted in Figure 1, an agent Ai may generate the argument
α = 〈Ai, P, Wait, (Traffic_light = red)〉, meaning that the agent Ai

believes that the correct solution for P is Wait because the attribute
Traffic_light equals red.

A counterargument β is an argument offered in opposition to
another argument α. In our framework, a counterargument con-
sists of a justified prediction 〈Aj , P, S′, D′〉 generated by an agent
Aj with the intention to rebut an argument α generated by another
agent Ai, that endorses a solution class S′ different from that of
α.S for the problem at hand and justifies this with a justification
D′. In the example in Figure 1, if an agent generates the argument
α = 〈Ai, P, Walk, (Cars_passing = no)〉, an agent that thinks that
the correct solution is Wait might answer with the counterargument

β = 〈Aj , P, Wait, (Cars_passing = no∧ Traffic_light = red)〉, mean-
ing that, although there are no cars passing, the traffic light is red,
and the street cannot be crossed.

A counterexample c is a case that contradicts an argument α.
Thus a counterexample is also a counterargument, one that states
that a specific argument α is not always true, and the evidence pro-
vided is the case c. Specifically, for a case c to be a counterex-
ample of an argument α, the following conditions have to be met:
α.D v c and α.S 6= c.S, i.e. the case must satisfy the justification
α.D and the solution of c must be different than the predicted by
α.

By exchanging arguments and counterarguments (including coun-
terexamples), agents can argue about the correct solution of a given
problem, i.e. they can engage a joint deliberation process. How-
ever, in order to do so, they need a specific interaction protocol, a
preference relation between contradicting arguments, and a deci-
sion policy to generate counterarguments (including counterexam-
ples). In the following sections we will present these elements.

5. PREFERENCE RELATION
A specific argument provided by an agent might not be consistent

with the information known to other agents (or even to some of the
information known by the agent that has generated the justification
due to noise in training data). For that reason, we are going to
define a preference relation over contradicting justified predictions
based on cases. Basically, we will define a confidence measure for
each justified prediction (that takes into account the cases owned by
each agent), and the justified prediction with the highest confidence
will be the preferred one.

The idea behind case-based confidence is to count how many of
the cases in an individual case base endorse a justified prediction,
and how many of them are counterexamples of it. The more the
endorsing cases, the higher the confidence; and the more the coun-
terexamples, the lower the confidence. Specifically, to assess the
confidence of a justified prediction α, an agent obtains the set of
cases in its individual case base that are subsumed by α.D. With
them, an agent Ai obtains the Y (aye) and N (nay) values:

• Y Ai
α = |{c ∈ Ci| α.D v c.P ∧ α.S = c.S}| is the number

of cases in the agent’s case base subsumed by the justification
α.D that belong to the solution class α.S,

• NAi
α = |{c ∈ Ci| α.D v c.P ∧ α.S 6= c.S}| is the number

of cases in the agent’s case base subsumed by justification
α.D that do not belong to that solution class.

+ +
+

+
+

+

-
- -

-

- +

α = hAi, P,+,Di

Case base of agent Ai

CAi
(α) = 3

3+1+1
= 0.6α.D

Figure 2: Confidence of arguments is evaluated by contrasting them against the case bases of the agents.

An agent estimates the confidence of an argument as:

CAi(α) =
Y Ai

α

1 + Y Ai
α + NAi

α

i.e. the confidence on a justified prediction is the number of endors-
ing cases divided by the number of endorsing cases plus counterex-
amples. Notice that we add 1 to the denominator, this is to avoid
giving excessively high confidences to justified predictions whose
confidence has been computed using a small number of cases. No-
tice that this correction follows the same idea than the Laplace cor-
rection to estimate probabilities. Figure 2 illustrates the individual
evaluation of the confidence of an argument, in particular, three en-
dorsing cases and one counterexample are found in the case base
of agents Ai, giving an estimated confidence of 0.6

Moreover, we can also define the joint confidence of an argument
α as the confidence computed using the cases present in the case
bases of all the agents in the group:

C(α) =

∑
i Y Ai

α

1 +
∑

i

(
Y Ai

α + NAi
α

)
Notice that, to collaboratively compute the joint confidence, the

agents only have to make public the aye and nay values locally
computed for a given argument.

In our framework, agents use this joint confidence as the prefer-
ence relation: a justified prediction α is preferred over another one
β if C(α) ≥ C(β).

6. GENERATION OF ARGUMENTS
In our framework, arguments are generated by the agents from

cases, using learning methods. Any learning method able to pro-
vide a justified prediction can be used to generate arguments. For
instance, decision trees and LID [2] are suitable learning methods.
Specifically, in the experiments reported in this paper agents use
LID. Thus, when an agent wants to generate an argument endors-
ing that a specific solution class is the correct solution for a problem
P , it generates a justified prediction as explained in Section 3.1.

For instance, Figure 3 shows a real justification generated by
LID after solving a problem P in the domain of marine sponges
identification. In particular, Figure 3 shows how when an agent
receives a new problem to solve (in this case, a new sponge to
determine its order), the agent uses LID to generate an argument
(consisting on a justified prediction) using the cases in the case
base of the agent. The justification shown in Figure 3 can be in-
terpreted saying that “the predicted solution is hadromerida be-
cause the smooth form of the megascleres of the spiculate skele-
ton of the sponge is of type tylostyle, the spikulate skeleton of the
sponge has no uniform length, and there is no gemmules in the ex-
ternal features of the sponge”. Thus, the argument generated will
be α = 〈A1, P, hadromerida, D1〉.

6.1 Generation of Counterarguments
As previously stated, agents may try to rebut arguments by gen-

erating counterargument or by finding counterexamples. Let us ex-
plain how they can be generated.

An agent Ai wants to generate a counterargument β to rebut an
argument α when α is in contradiction with the local case base of
Ai. Moreover, while generating such counterargument β, Ai ex-
pects that β is preferred over α. For that purpose, we will present
a specific policy to generate counterarguments based on the speci-
ficity criterion [10].

The specificity criterion is widely used in deductive frameworks
for argumentation, and states that between two conflicting argu-
ments, the most specific should be preferred since it is, in prin-
ciple, more informed. Thus, counterarguments generated based on
the specificity criterion are expected to be preferable (since they are
more informed) to the arguments they try to rebut. However, there
is no guarantee that such counterarguments will always win, since,
as we have stated in Section 5, agents in our framework use a pref-
erence relation based on joint confidence. Moreover, one may think
that it would be better that the agents generate counterarguments
based on the joint confidence preference relation; however it is not
obvious how to generate counterarguments based on joint confi-
dence in an efficient way, since collaboration is required in order to
evaluate joint confidence. Thus, the agent generating the counter-
argument should constantly communicate with the other agents at
each step of the induction algorithm used to generate counterargu-
ments (presently one of our future research lines).

Thus, in our framework, when an agent wants to generate a coun-
terargument β to an argument α, β has to be more specific than α
(i.e. α.D < β.D).

The generation of counterarguments using the specificity crite-
rion imposes some restrictions over the learning method, although
LID or ID3 can be easily adapted for this task. For instance, LID is
an algorithm that generates a description starting from scratch and
heuristically adding features to that term. Thus, at every step, the
description is made more specific than in the previous step, and the
number of cases that are subsumed by that description is reduced.
When the description covers only (or almost only) cases of a sin-
gle solution class LID terminates and predicts that solution class.
To generate a counterargument to an argument α LID just has to
use as starting point the description α.D instead of starting from
scratch. In this way, the justification provided by LID will always
be subsumed by α.D, and thus the resulting counterargument will
be more specific than α. However, notice that LID may sometimes
not be able to generate counterarguments, since LID may not be
able to specialize the description α.D any further, or because the
agent Ai has no case inCi that is subsumed by α.D. Figure 4 shows
how an agent A2 that disagreed with the argument shown in Fig-
ure 3, generates a counterargument using LID. Moreover, Figure 4
shows the generation of a counterargument β1

2 for the argument α0
1

(in Figure 3) that is a specialization of α0
1.

Solution: hadromerida

Justification: D1

Sponge

Spikulate
skeleton

External
features

External features

Gemmules: no

Spikulate Skeleton

Megascleres

Uniform length: no

Megascleres

Smooth form: tylostyle

Case Base
of A1

LID
New

sponge

P

α01 = hA1, P, hadromerida,D1i

Figure 3: Example of a real justification generated by LID in the marine sponges data set.

Specifically, in our experiments, when an agent Ai wants to rebut
an argument α, uses the following policy:

1. Agent Ai uses LID to try to find a counterargument β more
specific than α; if found, β is sent to the other agent as a
counterargument of α.

2. If not found, then Ai searches for a counterexample c ∈ Ci

of α. If a case c is found, then c is sent to the other agent as
a counterexample of α.

3. If no counterexamples are found, then Ai cannot rebut the
argument α.

7. ARGUMENTATION-BASED
MULTI-AGENT LEARNING

The interaction protocol of AMAL allows a group of agents A1,
..., An to deliberate about the correct solution of a problem P by
means of an argumentation process. If the argumentation process
arrives to a consensual solution, the joint deliberation ends; other-
wise a weighted vote is used to determine the joint solution. More-
over, AMAL also allows the agents to learn from the counterexam-
ples received from other agents.

The AMAL protocol consists on a series of rounds. In the initial
round, each agent states which is its individual prediction for P .
Then, at each round an agent can try to rebut the prediction made
by any of the other agents. The protocol uses a token passing mech-
anism so that agents (one at a time) can send counterarguments or
counterexamples if they disagree with the prediction made by any
other agent. Specifically, each agent is allowed to send one coun-
terargument or counterexample each time he gets the token (notice
that this restriction is just to simplify the protocol, and that it does
not restrict the number of counterargument an agent can sent, since
they can be delayed for subsequent rounds). When an agent re-
ceives a counterargument or counterexample, it informs the other
agents if it accepts the counterargument (and changes its predic-
tion) or not. Moreover, agents have also the opportunity to answer
to counterarguments when they receive the token, by trying to gen-
erate a counterargument to the counterargument.

When all the agents have had the token once, the token returns
to the first agent, and so on. If at any time in the protocol, all the
agents agree or during the last n rounds no agent has generated
any counterargument, the protocol ends. Moreover, if at the end of
the argumentation the agents have not reached an agreement, then
a voting mechanism that uses the confidence of each prediction as
weights is used to decide the final solution (Thus, AMAL follows

the same mechanism as human committees, first each individual
member of a committee exposes his arguments and discuses those
of the other members (joint deliberation), and if no consensus is
reached, then a voting mechanism is required).

At each iteration, agents can use the following performatives:

• assert(α): the justified prediction held during the next round
will be α. An agent can only hold a single prediction at each
round, thus is multiple asserts are send, only the last one is
considered as the currently held prediction.

• rebut(β, α): the agent has found a counterargument β to the
prediction α.

We will define Ht = 〈αt
1, ..., α

t
n〉 as the predictions that each

of the n agents hold at a round t. Moreover, we will also define
contradict(αt

i) = {α ∈ Ht|α.S 6= αt
i.S} as the set of con-

tradicting arguments for an agent Ai in a round t, i.e. the set of
arguments at round t that support a different solution class than αt

i .
The protocol is initiated because one of the agents receives a

problem P to be solved. After that, the agent informs all the other
agents about the problem P to solve, and the protocol starts:

1. At round t = 0, each one of the agents individually solves P ,
and builds a justified prediction using its own CBR method.
Then, each agent Ai sends the performative assert(α0

i) to
the other agents. Thus, the agents know H0 = 〈α0

i , ..., α
0
n〉.

Once all the predictions have been sent the token is given to
the first agent A1.

2. At each round t (other than 0), the agents check whether their
arguments in Ht agree. If they do, the protocol moves to step
5. Moreover, if during the last n rounds no agent has sent any
counterexample or counterargument, the protocol also moves
to step 5. Otherwise, the agent Ai owner of the token tries
to generate a counterargument for each of the opposing argu-
ments in contradict(αt

i) ⊆ Ht (see Section 6.1). Then, the
counterargument βt

i against the prediction αt
j with the low-

est confidence C(αt
j) is selected (since αt

j is the prediction
more likely to be successfully rebutted).

• If βt
i is a counterargument, then, Ai locally compares

αt
i with βt

i by assessing their confidence against its in-
dividual case base Ci (see Section 5) (notice that Ai is
comparing its previous argument with the counterargu-
ment that Ai itself has just generated and that is about

Sponge

Spikulate
skeleton

External
features

External features

Gemmules: no

Growing:

Spikulate Skeleton

Megascleres

Uniform length: no

Megascleres

Smooth form: tylostyle

Growing

Grow: massive

Case Base
of A2

LID

α01 = hA1, P, hadromerida,D1i
Solution: astrophorida

Justification: D2

β12 = hA2, P, astrophorida,D2i

Figure 4: Generation of a counterargument using LID in the sponges data set.

to send to Aj). If CAi(β
t
i) > CAi(α

t
i), then Ai con-

siders that βt
i is stronger than its previous argument,

changes its argument to βt
i by sending assert(βt

i) to
the rest of the agents (the intuition behind this is that
since a counterargument is also an argument, Ai checks
if the newly counterargument is a better argument than
the one he was previously holding) and rebut(βt

i ,
αt

j) to Aj . Otherwise (i.e. CAi(β
t
i) ≤ CAi(α

t
i)), Ai

will send only rebut(βt
i , α

t
j) to Aj . In any of the two

situations the protocol moves to step 3.
• If βt

i is a counterexample c, then Ai sends rebut(c, αt
j)

to Aj . The protocol moves to step 4.
• If Ai cannot generate any counterargument or coun-

terexample, the token is sent to the next agent, a new
round t + 1 starts, and the protocol moves to state 2.

3. The agent Aj that has received the counterargument βt
i , lo-

cally compares it against its own argument, αt
j , by locally

assessing their confidence. If CAj (β
t
i) > CAj (α

t
j), then

Aj will accept the counterargument as stronger than its own
argument, and it will send assert(βt

i) to the other agents.
Otherwise (i.e. CAj (β

t
i) ≤ CAj (α

t
j)), Aj will not accept

the counterargument, and will inform the other agents ac-
cordingly. Any of the two situations start a new round t + 1,
Ai sends the token to the next agent, and the protocol moves
back to state 2.

4. The agent Aj that has received the counterexample c retains
it into its case base and generates a new argument αt+1

j that
takes into account c, and informs the rest of the agents by
sending assert(αt+1

j) to all of them. Then, Ai sends the
token to the next agent, a new round t + 1 starts, and the
protocol moves back to step 2.

5. The protocol ends yielding a joint prediction, as follows: if
the arguments in Ht agree then their prediction is the joint
prediction, otherwise a voting mechanism is used to decide
the joint prediction. The voting mechanism uses the joint
confidence measure as the voting weights, as follows:

S = arg max
Sk∈S

∑
αi∈Ht|αi.S=Sk

C(αi)

Moreover, in order to avoid infinite iterations, if an agent sends
twice the same argument or counterargument to the same agent, the
message is not considered.

8. EXEMPLIFICATION
Let us consider a system composed of three agents A1, A2 and

A3. One of the agents, A1 receives a problem P to solve, and de-
cides to use AMAL to solve it. For that reason, invites A2 and A3 to
take part in the argumentation process. They accept the invitation,
and the argumentation protocol starts.

Initially, each agent generates its individual prediction for P , and
broadcasts it to the other agents. Thus, all of them can compute
H0 = 〈α0

1, α
0
2, α

0
3〉. In particular, in this example:

• α0
1 = 〈A1, P, hadromerida, D1〉

• α0
2 = 〈A2, P, astrophorida, D2〉

• α0
3 = 〈A3, P, axinellida, D3〉

A1 starts owning the token and tries to generate counterargu-
ments for α0

2 and α0
3, but does not succeed, however it has one

counterexample c13 for α0
3. Thus, A1 sends the the message rebut(

c13, α
0
3) to A3. A3 incorporates c13 into its case base and tries to

solve the problem P again, now taking c13 into consideration. A3

comes up with the justified prediction α1
3 = 〈A3, P, hadromerida,

D4〉, and broadcasts it to the rest of the agents with the message
assert(α1

3). Thus, all of them know the new H1 = 〈α0
1, α

0
2, α

1
3〉.

Round 1 starts and A2 gets the token. A2 tries to generate coun-
terarguments for α0

1 and α1
3 and only succeeds to generate a coun-

terargument β1
2 = 〈A2, P, astrophorida, D5〉 against α1

3. The
counterargument is sent to A3 with the message rebut(β1

2 , α1
3).

Agent A3 receives the counterargument and assesses its local confi-
dence. The result is that the individual confidence of the counterar-
gument β1

2 is lower than the local confidence of α1
3. Therefore, A3

does not accept the counterargument, and thus H2 = 〈α0
1, α

0
2, α

1
3〉.

Round 2 starts and A3 gets the token. A3 generates a counter-
argument β2

3 = 〈A3, P, hadromerida, D6〉 for α0
2 and sends it to

A2 with the message rebut(β2
3 , α0

2). Agent A2 receives the coun-
terargument and assesses its local confidence. The result is that the
local confidence of the counterargument β2

3 is higher than the local
confidence of α0

2. Therefore, A2 accepts the counterargument and
informs the rest of the agents with the message assert(β2

3). After
that, H3 = 〈α0

1, β
2
3 , α1

3〉.
At Round 3, since all the agents agree (all the justified predic-

tions in H3 predict hadromerida as the solution class) The pro-
tocol ends, and A1 (the agent that received the problem) considers
hadromerida as the joint solution for the problem P .

9. EXPERIMENTAL EVALUATION

SPONGE

75

77

79

81

83

85

87

89

91

2 3 4 5

AMAL
Voting
Individual

SOYBEAN

55

60

65

70

75

80

85

90

2 3 4 5

AMAL
Voting
Individual

Figure 5: Individual and joint accuracy for 2 to 5 agents.

In this section we empirically evaluate the AMAL argumentation
framework. We have made experiments in two different data sets:
soybean (from the UCI machine learning repository) and sponge (a
relational data set). The soybean data set has 307 examples and 19
solution classes, while the sponge data set has 280 examples and 3
solution classes. In an experimental run, the data set is divided in 2
sets: the training set and the test set. The training set examples are
distributed among 5 different agents without replication, i.e. there
is no example shared by two agents. In the testing stage, problems
in the test set arrive randomly to one of the agents, and their goal is
to predict the correct solution.

The experiments are designed to test two hypotheses: (H1) that
argumentation is a useful framework for joint deliberation and can
improve over other typical methods such as voting; and (H2) that
learning from communication improves the individual performance
of a learning agent participating in an argumentation process. More-
over, we also expect that the improvement achieved from argumen-
tation will increase as the number of agents participating in the ar-
gumentation increases (since more information will be taken into
account).

Concerning H1 (argumentation is a useful framework for joint
deliberation), we ran 4 experiments, using 2, 3, 4, and 5 agents
respectively (in all experiments each agent has a 20% of the training
data, since the training is always distributed among 5 agents).

Figure 5 shows the result of those experiments in the sponge and
soybean data sets. Classification accuracy is plotted in the verti-
cal axis, and in the horizontal axis the number of agents that took
part in the argumentation processes is shown. For each number of
agents, three bars are shown: individual, Voting, and AMAL. The
individual bar shows the average accuracy of individual agents pre-
dictions; the voting bar shows the average accuracy of the joint
prediction achieved by voting but without any argumentation; and
finally the AMAL bar shows the average accuracy of the joint pre-
diction using argumentation. The results shown are the average of
5 10-fold cross validation runs.

Figure 5 shows that collaboration (voting and AMAL) outper-
forms individual problem solving. Moreover, as we expected, the
accuracy improves as more agents collaborate, since more infor-
mation is taken into account. We can also see that AMAL always
outperforms standard voting, proving that joint decisions are based
on better information as provided by the argumentation process.

For instance, the joint accuracy for 2 agents in the sponge data
set is of 87.57% for AMAL and 86.57% for voting (while individual
accuracy is just 80.07%). Moreover, the improvement achieved by
AMAL over Voting is even larger in the soybean data set. The rea-
son is that the soybean data set is more “difficult” (in the sense that
agents need more data to produce good predictions). These experi-
mental results show that AMAL effectively exploits the opportunity
for improvement: the accuracy is higher only because more agents

have changed their opinion during argumentation (otherwise they
would achieve the same result as Voting).

Concerning H2 (learning from communication in argumentation
processes improves individual prediction), we ran the following
experiment: initially, we distributed a 25% of the training set among
the five agents; after that, the rest of the cases in the training set is
sent to the agents one by one; when an agent receives a new train-
ing case, it has several options: the agent can discard it, the agent
can retain it, or the agent can use it for engaging an argumentation
process. Figure 6 shows the result of that experiment for the two
data sets. Figure 6 contains three plots, where NL (not learning)
shows accuracy of an agent with no learning at all; L (learning),
shows the evolution of the individual classification accuracy when
agents learn by retaining the training cases they individually re-
ceive (notice that when all the training cases have been retained at
100%, the accuracy should be equal to that of Figure 5 for individ-
ual agents); and finally LFC (learning from communication) shows
the evolution of the individual classification accuracy of learning
agents that also learn by retaining those counterexamples received
during argumentation (i.e. they learn both from training examples
and counterexamples).

Figure 6 shows that if an agent Ai learns also from communica-
tion, Ai can significantly improve its individual performance with
just a small number of additional cases (those selected as relevant
counterexamples for Ai during argumentation). For instance, in
the soybean data set, individual agents have achieved an accuracy
of 70.62% when they also learn from communication versus an ac-
curacy of 59.93% when they only learn from their individual expe-
rience. The number of cases learnt from communication depends
on the properties of the data set: in the sponges data set, agents
have retained only very few additional cases, and significantly im-
proved individual accuracy; namely they retain 59.96 cases in aver-
age (compared to the 50.4 cases retained if they do not learn from
communication). In the soybean data set more counterexamples are
learnt to significantly improve individual accuracy, namely they re-
tain 87.16 cases in average (compared to 55.27 cases retained if
they do not learn from communication). Finally, the fact that both
data sets show a significant improvement points out the adaptive
nature of the argumentation-based approach to learning from com-
munication: the useful cases are selected as counterexamples (and
no more than those needed), and they have the intended effect.

10. RELATED WORK
Concerning CBR in a multi-agent setting, the first research was

on “negotiated case retrieval” [11] among groups of agents. Our
work on multi-agent case-based learning started in 1999 [6]; later
Mc Ginty and Smyth [7] presented a multi-agent collaborative CBR
approach (CCBR) for planning. Finally, another interesting ap-
proach is multi-case-base reasoning (MCBR) [5], that deals with

SPONGE

60

65

70

75

80

85

25% 40% 55% 70% 85% 100%

LFC
L
NL

SOYBEAN

20

30

40

50

60

70

80

90

25% 40% 55% 70% 85% 100%

LFC
L
NL

Figure 6: Learning from communication resulting from argumentation in a system composed of 5 agents.

distributed systems where there are several case bases available for
the same task and addresses the problems of cross-case base adap-
tation. The main difference is that our MAC approach is a way to
distribute the Reuse process of CBR (using a voting system) while
Retrieve is performed individually by each agent; the other multi-
agent CBR approaches, however, focus on distributing the Retrieve
process.

Research on MAS argumentation focus on several issues like a)
logics, protocols and languages that support argumentation, b) ar-
gument selection and c) argument interpretation. Approaches for
logic and languages that support argumentation include defeasible
logic [4] and BDI models [13]. Although argument selection is a
key aspect of automated argumentation (see [12] and [13]), most re-
search has been focused on preference relations among arguments.
In our framework we have addressed both argument selection and
preference relations using a case-based approach.

11. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an argumentation-based frame-

work for multi-agent learning. Specifically, we have presented
AMAL, a framework that allows a group of learning agents to ar-
gue about the solution of a given problem and we have shown how
the learning capabilities can be used to generate arguments and
counterarguments. The experimental evaluation shows that the in-
creased amount of information provided to the agents by the argu-
mentation process increases their predictive accuracy, and specially
when an adequate number of agents take part in the argumentation.

The main contributions of this work are: a) an argumentation
framework for learning agents; b) a case-based preference relation
over arguments, based on computing an overall confidence estima-
tion of arguments; c) a case-based policy to generate counterargu-
ments and select counterexamples; and d) an argumentation-based
approach for learning from communication.

Finally, in the experiments presented here a learning agent would
retain all counterexamples submitted by the other agent; however,
this is a very simple case retention policy, and we will like to exper-
iment with more informed policies — with the goal that individual
learning agents could significantly improve using only a small set
of cases proposed by other agents. Finally, our approach is focused
on lazy learning, and future works aims at incorporating eager in-
ductive learning inside the argumentative framework for learning
from communication.

12. REFERENCES
[1] Agnar Aamodt and Enric Plaza. Case-based reasoning:

Foundational issues, methodological variations, and system
approaches. Artificial Intelligence Communications,
7(1):39–59, 1994.

[2] E. Armengol and E. Plaza. Lazy induction of descriptions for
relational case-based learning. In ECML’2001, pages 13–24,
2001.

[3] Gerhard Brewka. Dynamic argument systems: A formal
model of argumentation processes based on situation
calculus. Journal of Logic and Computation, 11(2):257–282,
2001.

[4] Carlos I. Chesñevar and Guillermo R. Simari. Formalizing
Defeasible Argumentation using Labelled Deductive
Systems. Journal of Computer Science & Technology,
1(4):18–33, 2000.

[5] D. Leake and R. Sooriamurthi. Automatically selecting
strategies for multi-case-base reasoning. In S. Craw and
A. Preece, editors, ECCBR’2002, pages 204–219, Berlin,
2002. Springer Verlag.

[6] Francisco J. Martín, Enric Plaza, and Josep-Lluis Arcos.
Knowledge and experience reuse through communications
among competent (peer) agents. International Journal of
Software Engineering and Knowledge Engineering,
9(3):319–341, 1999.

[7] Lorraine McGinty and Barry Smyth. Collaborative
case-based reasoning: Applications in personalized route
planning. In I. Watson and Q. Yang, editors, ICCBR, number
2080 in LNAI, pages 362–376. Springer-Verlag, 2001.

[8] Santi Ontañón and Enric Plaza. Justification-based
multiagent learning. In ICML’2003, pages 576–583. Morgan
Kaufmann, 2003.

[9] Enric Plaza, Eva Armengol, and Santiago Ontañón. The
explanatory power of symbolic similarity in case-based
reasoning. Artificial Intelligence Review, 24(2):145–161,
2005.

[10] David Poole. On the comparison of theories: Preferring the
most specific explanation. In IJCAI-85, pages 144–147,
1985.

[11] M V Nagendra Prassad, Victor R Lesser, and Susan Lander.
Retrieval and reasoning in distributed case bases. Technical
report, UMass Computer Science Department, 1995.

[12] K. Sycara S. Kraus and A. Evenchik. Reaching agreements
through argumentation: a logical model and implementation.
Artificial Intelligence Journal, 104:1–69, 1998.

[13] N. R. Jennings S. Parsons, C. Sierra. Agents that reason and
negotiate by arguing. Journal of Logic and Computation,
8:261–292, 1998.

[14] Bruce A. Wooley. Explanation component of software
systems. ACM CrossRoads, 5.1, 1998.

